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Abstract
In this paper, we develop a linearized imaging theory that combines the
spatial, temporal and spectral components of multiply scattered waves as they
scatter from moving objects. In particular, we consider the case of multiple
fixed sensors transmitting and receiving information from multiply scattered
waves. We use a priori information about the multipath background. We use a
simple model for multiple scattering, namely scattering from a fixed, perfectly
reflecting (mirror) plane. We base our image reconstruction and velocity
estimation technique on a modification of a filtered backprojection method that
produces a phase-space image. We plot examples of point-spread functions
for different geometries and waveforms, and from these plots, we estimate the
resolution in space and velocity. Through this analysis, we are able to identify
how the imaging system depends on parameters such as bandwidth and number
of sensors. We ultimately show that enhanced phase-space resolution for a
distribution of moving and stationary targets in a multipath environment may
be achieved using multiple sensors.

(Some figures may appear in colour only in the online journal)

1. Introduction

Traditional wave-based imaging theory makes the assumption that the waves travel directly
from the sensor to the target and back. However, there are many situations in practice where
complicated scenes cause waves to multiply scatter from non-target objects in the scene
of interest. This makes imaging targets of interest more difficult because of the additional
unknowns that are introduced. A number of researchers have considered wave-based imaging
in the presence of multipathing when the scene of interest consists of stationary targets
illuminated by waves transmitted from moving platforms. The studies [9] and [4] showed that
a backprojection algorithm that exploits multiply scattered fields can improve image fidelity
if it is possible to uniquely identify the part of the data corresponding to each scattering

0266-5611/13/054012+14$33.00 © 2013 IOP Publishing Ltd Printed in the UK & the USA 1



Inverse Problems 29 (2013) 054012 A Miranda and M Cheney

wave path. In particular, this work showed that targets oriented in certain directions can be
effectively invisible from direct scattering but may become visible when multipath scattering
is used in the image formation process. The studies [2] and [5] showed that, compared to
standard backprojection, a backprojection algorithm that exploits multiply scattered fields can
improve image resolution even if a method for a priori separating paths in the data is not
feasible. This paper derives a data model, based on [1], that includes the effect of multiply
scattered waves on moving targets and then develops a corresponding phase-space imaging
method that accounts for multiple scattering in the data. We consider the case in which multiple
sensors interrogate a distribution of moving targets that are restricted to a horizontal plane.
We model multiple scattering with a perfectly reflecting (mirror) horizontal plane.

This geometry might arise in a variety of physical problems, including ultrasound,
microwave tomography, seismic prospecting, and radar and sonar imaging. The perfect
reflecting mirror is a simple model for the ocean surface, for example, that must be
considered in marine seismic surveys, active sonar surveys and radar imaging in marine
environments. Alternatively, the mirror could represent a reflecting surface in ultrasound,
microwave tomography or radar imaging. In the discussion below, we use radar terminology,
but the theory applies equally well to other modalities.

The mathematical model is discussed in section 2. Imaging is addressed in section 3, which
outlines the backprojection-type algorithm for forming phase-space images, and then proceeds
to analyze the corresponding point-spread function (PSF). Section 4 outlines simulations. Many
of the details can be found in [6] and short summaries can be found in [7] and [8].

2. Mathematical data model

A radar receiver collects information from an electromagnetic wave that was sent from a
transmitting antenna and that subsequently scattered off a set of (stationary or) moving targets
in a scene. In this work, we assume that the scattered waves arrive at the radar receiver via
multiple paths.

We assume that the electromagnetic field propagates in the lower half-space � =
{(x1, x2, x3) |x1, x2 ∈ R, x3 < z0}. The perfectly reflecting mirror is located at ∂� =
{(x1, x2, x3) |x1, x2 ∈ R, x3 = z0}. We denote the reflection of � with respect to ∂�

by �∗.
Both � and �∗ consist of a homogeneous, isotropic medium in which the wave propagation

speed is c. The geometry is shown in figure 1.
We make the assumption that one component ψ of the electromagnetic field satisfies(∇2 − c−2∂2

t − V (t, x̃) ∂2
t

)
ψ(t, x̃, y) = s(t − ty, x̃, y), (1)

with the boundary condition

ψ(t, x̃, y)|x̃∈∂� = 0. (2)

In order to define V (t, x̃), consider first an object located at position x̃ that moves with
velocity v. This object would be described by an index-of-refraction distribution with a
parameter v:

Vv(t, x̃) = c−2
[
n2

v(x̃ − vt) − 1
]
. (3)

Multiple objects translating with the same velocity v can also be described in the form (3);
for example, multiple cars moving along a highway at the same constant velocity v could be
described by (3) in which nv consists of multiple bumps, each bump representing one car. For
objects translating with velocity v, we write qv(x̃) = c−2[n2

v(x̃) − 1].
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Figure 1. This shows the geometry with one transmitter at y and one receiver at z. The mirror is
located at height z0.

Objects moving with a different velocity can be described by an expression of the form (3)
in which the velocity v is different. To describe two-way traffic along a highway, for example,
V might be of the form

V (t, x̃) = c−2
[
n2

v(x̃ − vt) − 1
] + c−2

[
n2

−v(x̃ + vt) − 1
]
, (4)

where nv describes the cars moving in one direction and n−v describes the cars moving with
the same speed in the opposite direction.

If there are many objects moving with different velocities, then we can describe the
distribution of multiple moving objects as

V (t, x̃) =
∫

c−2q2
v(x̃ − vt) dv. (5)

We see that qv(x̃) can be considered a scattering density in phase space.

2.1. Incident field

The incident field ψ in is the field, propagating in the empty reflecting environment, that
emanates from a transmitting antenna located at position y. The field ψ in satisfies

(∇2 − c−2∂2
t )ψ in = δ(x̃ − y)s(t − ty) (6)

ψ in
(
t, x̃, y

) |∂� = 0. (7)

An expression for the incident field ψ in can be derived by using the method of
images. Corresponding to the source location y ∈ �, we define the virtual source at
y′ = (y1, y2, 2z0 − y3).

First, the outgoing Green’s function satisfying

(∇2 − c−2∂2
t )g(t, x̃, y) = δ(x̃ − y)δ(t) (8)

g|∂� = 0 (9)

is

g(t, x̃, y) = gy(t, x̃, y) − gy′ (t, x̃, y), (10)

where gy is the free-space Green’s function with a source at y:

gy(t, x̃, y) = δ
(
t − |x̃−y|

c

)
4π |x̃ − y| (11)
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and similarly gy′ is the free-space Green’s function with a virtual source at y′. Note that g
vanishes at the boundary ∂�.

This means that the solution to (6) with (7) is

ψ in(t, x̃, y) = −
∫

g(t − T, x̃)δ(x̃ − y)s(T − ty) dy dT

= s
(
t − ty − |x̃−y′|

c

)
4π |x̃ − y′| − s

(
t − ty − |x̃−y|

c

)
4π |x̃ − y| . (12)

2.2. Scattered field

We split the field into the incident field ψ in and the scattered field ψ sc:

ψ = ψ in + ψ sc. (13)

We subtract (6) from (1) and use (13) to arrive at the partial differential equation for the
scattered field: (∇2 − c−2∂2

t

)
ψ sc(t, z, y) = V (t, x̃)∂2

t ψ sc(t, z, y)

ψ sc|∂� = 0. (14)

We use the Born or single-scattering approximation [1], replacing ψ sc on the right side
of (14) by ψ in. The corresponding solution of (14), measured at the receiver y, constitutes the
data d. With the Green function (10), we obtain

d(t, y, z) =
∫ ⎛

⎝δ
(
t − t ′ − |z̃−x̃|

c

)
4π |z̃ − x̃| −

δ
(

t − t ′ − |z̃′−x̃|
c

)
4π |z̃′ − x̃|

⎞
⎠V (t ′, x̃)∂2

t ψ in(t ′, x̃, y) dt ′ dx̃

=
∫ δ

(
t − t ′ − |z̃−x̃|

c

)
4π |z̃ − x̃|

∫
qv

(
x̃ − vt ′

)
dṽ

s̈y

(
t ′ − ty − |x̃−y|

c

)
4π |x̃ − y| dt ′ dx̃

−
∫ δ

(
t − t ′ − |z̃−x̃|

c

)
4π |z̃ − x̃|

∫
qv

(
x̃ − vt ′

)
dṽ

s̈y

(
t ′ − ty − |x̃−y′|

c

)
4π |x̃ − y′| dt ′ dx̃

−
∫ δ

(
t − t ′ − |z̃′−x̃|

c

)
4π |z̃′ − x̃|

∫
qv

(
x̃ − vt ′

)
dṽ

s̈y

(
t ′ − ty − |x̃−y|

c

)
4π |x̃ − y| dt ′ dx̃

+
∫ δ

(
t − t ′ − |z̃′−x̃|

c

)
4π |z̃′ − x̃|

∫
qv

(
x̃ − vt ′

)
dṽ

s̈y

(
t ′ − ty − |x̃−y′|

c

)
4π |x̃ − y′| dt ′ dx̃. (15)

Equation (15) yields a model for the scattered wavefield. Each term of (15) has a clear
physical interpretation. The first term (line 2) corresponds to activating the transmitter at y
with a waveform sy, starting at time ty. This activation results in a wave leaving the transmitter
and propagating directly to the target, arriving at time t ′. The moving target that at time t ′ is
located at x̃ was, at time t = 0, located at x̃ − vt ′. The current density induced on the target
by the incident field is assumed to be proportional to the second derivative of the transmitted
signal; this is a result of the Born approximation. After interaction with the target, the wave
then propagates directly from x̃ to z̃.

The second term of (15) (line 3) corresponds again to activating the transmitter at y with
the waveform sy. This time, however, the wave reflects from the mirror on its way to the target;
by the method of images, the field that arrives is the negative of the same wave traveling in
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free space but transmitted from the virtual location y′. This field interacts with the target and
propagates to the receiver as before.

The third term of (15) (line 4) corresponds to direct-path propagation between the
transmitter and the target, and a reflection from the mirror on the way to the receiver;
by the method of images, the received wave is the negative of the wave propagating in
free space that would have been received at the virtual receiver location z′. The fourth term
corresponds to mirror reflections between the target and both the transmitter and receiver.

We interchange the order of integration and perform a change of variables x = x̃ − vt ′:

d(t, y, z) =
∫ δ

(
t − t ′ − |x+vt ′−z|

c

)
4π |x + vt ′ − z|

∫
qv (x)

s̈y

(
t ′ − ty − |x+vt ′−y|

c

)
4π |x + vt ′ − y| dt ′ dx dv

−
∫ δ

(
t − t ′ − |x+vt ′−z|

c

)
4π |x + vt ′ − z|

∫
qv (x)

s̈y

(
t ′ − ty − |x+vt ′−y′|

c

)
4π |x + vt ′ − y′| dt ′ dx dv

−
∫ δ

(
t − t ′ − |x+vt ′−z′|

c

)
4π |x + vt ′ − z′|

∫
qv (x)

s̈y

(
t ′ − ty − |x+vt ′−y|

c

)
4π |x + vt ′ − y| dt ′ dx dv

+
∫ δ

(
t − t ′ − |x+vt ′−z′|

c

)
4π |x + vt ′ − z′|

∫
qv (x)

s̈y

(
t ′ − ty − |x+vt ′−y′|

c

)
4π |x + vt ′ − y′| dt ′ dx dv. (16)

Finally, we carry out the t ′ integration in (16) by using properties of delta functions with more
complicated arguments as in [6]. In particular, in the first term of (15) (line 2), for example,
we find that the delta function contributes only to t ′ satisfying

0 = t − t ′ − |x + vt ′ − z|
c

. (17)

This time we denote t ′ by t̄xz. We also introduce the notation Rx,y(t̄xz) = |x + vt̄xz − z| and
μ = | f ′

xz

(
t̄xz(t)

) | for f ′
xz

(
t ′
) = −1 − R̂xz(t ′)/c.

This leads to the general data set for a single source y,

d(t, z, y) =
∫

s̈y[t̄xz(t) − ty − Rxy(t̄xz(t))
c ]qv (x)

(4π)2 Rxz
(
t̄xz(t)

)
Rxy

(
t̄xz(t)

)
μxz,v(t)

dx dv

−
∫

s̈y[t̄xz(t) − ty − Rxy′ (t̄xz(t))
c ]qv (x)

(4π)2 Rxz
(
t̄xz(t)

)
Rxy′

(
t̄xz(t)

)
μxz,v(t)

dx dv

−
∫

s̈y[t̄xz′ (t) − ty − Rxy(t̄xz′ (t))
c ]qv (x)

(4π)2 Rxz′
(
t̄xz′ (t)

)
Rxy

(
t̄xz′ (t)

)
μxz′,v(t)

dx dv

+
∫

s̈y[t̄xz′ (t) − ty − Rxy′ (t̄xz′ (t))
c ]qv (x)

(4π)2 Rxz′ (t̄xz′ (t)
)

Rxy′
(
t̄xz′ (t)

)
μxz′,v(t)

dx dv. (18)

2.3. Slow-moving approximation

We consider only objects that move significantly slower than the speed of light. Consequently,
we assume that the distance traveled by the objects during the relevant time is much smaller
than the distances between the targets and the transmitters and receivers. Specifically, we
assume

|v|t, |v|2t2ωmax/c � |x − z|, |x − z′|, |x − y|, |x − y′|, (19)

where ωmax is the effective maximum angular frequency of the signal sy.

5



Inverse Problems 29 (2013) 054012 A Miranda and M Cheney

This means that a first-order Taylor approximation may be made such that

Rxz(t) = |z − x + vt| = Rxz (0) + R̂xz (0) · vt + O

( |v|2
Rxz

)
, (20)

where, Rxz (0) = x − z, Rxz (0) = |Rxz (0) |, and R̂xz (0) = Rxz(0)

Rxz(0)
.

The techniques of [3] can be used to derive a time dilation or a Doppler scale factor

αxvyz = 1 − R̂xy(0)·v
c

1 + R̂xz(0)·v
c

(21)

that is closely related to the Doppler shift. We can further approximate this factor as

αxvyz
∼= 1 − (R̂xy(0) + R̂xz(0)) · v

c
. (22)

We immediately see that the Doppler scale factor αxvyx depends on the bisector (R̂xy(0) +
R̂xz(0)).

With the approximations (20) and notation (21), the data expression (18) for the slow-
mover case becomes

ds(z, y, t) =
∫ s̈y[αxvyz ·

(
t − Rxz(0)

c

)
− Rxy(0)

c − ty]qv (x)

(4π)2 Rxz (0) Rxy (0) μxz,v
dx dv

−
∫ s̈y[αxvy′z ·

(
t − Rxz(0)

c

)
− Rxy′ (0)

c − ty]qv (x)

(4π)2 Rxz (0) Rxy′ (0) μxz,v
dx dv

−
∫ s̈y[αxvyz′ ·

(
t − Rxz′ (0)

c

)
− Rxy(0)

c − ty]qv (x)

(4π)2 Rxz′ (0) Rxy (0) μxz′,v
dx dv

+
∫ s̈y[αxvy′z′ ·

(
t − Rxz′ (0)

c

)
− Rxy′ (0)

c − ty]qv (x)

(4π)2 Rxz′ (0) Rxy′ (0) μxz′,v
dx dv. (23)

In order to more succinctly describe the data model, we write

Rxy ≡ Rx10, Rxy′ ≡ Rx20, Rxz ≡ Rx01, Rxz′ ≡ Rx02. (24)

In other words, we use the subscripts x jk and v jk as placeholders for the dependence on the
object, receiver or transmitter location. A zero is added in the respective placeholder if there
is no dependence on a transmitter and/or receiver. Moreover, we use j, k = 1 for the actual
sensors and j, k = 2 for the virtual sensors. We also write αv,y,z′ as αv12, etc.

With this notation, we rewrite equation (23):

ds(z, y, t) =
∫ 2∑

j,k=1

ϒ jk
s qv (x) dx dv, (25)

where

ϒ jk
s =

(−1) j+k s̈[αxv jk

(
t − Rx0k(0)

c

)
− Rx j0(0)

c − ty]

(4π)2 Rx0k (0) Rx j0 (0) μx0k,v
. (26)

2.4. Narrowband waveform

Most radars use narrowband waveforms, which may be written as s(t) = a(t) e−iω0 j0t , where
a(t) is slowly varying and ω0 j0 is the carrier frequency for the transmitter y. (Note that in

6
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keeping with the notation defined above, the zeros indicate that there is no object or receiver
dependence.)

dN (z, y, t) =
2∑

j,k=1

∫ (ω0 j0

4π

)2
(−1) j+k

exp
(
−iω0 j0[αxv jk

(
t − Rx0k(0)

c

)
− Rx j0(0)

c − ty]
)

Rx0k (0) Rx j0 (0) μx0k,v

×a

(
t − ty − Rx0k (0) + Rx j0 (0)

c

)
qv (x) dx dv. (27)

where we use the approximation αv jk = 1 in the slowly varying amplitude a. Substituting
the time-independent exponential phase terms into the function ϕxv jk = ω0 j0

c [Rx j0 (0) +
αv jkRx0k (0) + cty], we rewrite (27) as

dN (z, y, t) =
2∑

j,k=1

∫ (ω0 j0

4π

)2
(−1) j+k eiϕxv jk e−iωx j0αv jkt

Rx j0 (0) Rx0k (0) μx0k,v

×a

(
t − ty − Rx0k (0) − Rx j0 (0)

c

)
qv (x) dx dv

=
2∑

j,k=1

(−1) j+k d jk
N (t, z) . (28)

3. Image reconstruction

In this section, we first describe how we form an image. Then we describe how we analyze the
reconstructed image. We test our analysis by performing numerical experiments. We conclude
with a summary of our results.

3.1. Image formation

The approach we take to form an image of our simulated data involves applying a matched
filter or filtered adjoint to the data. From the data d(t, z, y), we form an image I (p, u) of the
objects with hypothesized velocity u, that, at time t = 0, are located at position p.

Consider, for example, the case where the transmitters and receivers illuminate only one
path, say the direct path. In this case, the data are simply

d11
N (t, z, y) = [P11qv(x)](t, z, y) =

∫
ϒ11

N (x, v, t, z, y)qv(x) dx dv, (29)

where we have applied (19), (20) and the narrowband approximation to (26) to obtain
ϒ11

N (x, v, t, z, y):

ϒ11
N (x, v, t, z, y) =

( ωy

4π

)2 eiϕxyz e−iωyαvyzt

Rxz (0) Rxz (0) μxz,v
a11

(
t − ty − Rxz (0) − Rxy (0)

c

)
. (30)

In order to form an image I(p, u) at position p and velocity u, we apply the adjoint
operator to d11

N (t, z, y):

I(p, u) = P11∗ d11
N

=
∑
z,y

∫
ϒ11∗

N (p, u, t, z, y) d11
N (t, z, y) dt

=
∫ ∑

z,y

ϒ11∗
N (p, u, t, z, y)ϒ11

N (x, v, t, z, y) dtqv(x) dx dv

=
∫

K11
N (p, x, u, v)qv(x) dx dv, (31)

7
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where the kernel

K11
N (p, x, u, v) =

∫ ∑
z,y

ϒ11∗
N (p, u, t, z, y)ϒ11

N (x, v, t, z, y) dt (32)

is the PSF for the imaging system. We note that the PSF and the corresponding image are
in general complex-valued. The Cauchy–Schwartz inequality implies that the integral kernel
(32) is maximized when (p, u) = (x, v). In particular, each term is bounded in magnitude by∣∣∣∣
∫

ϒ11∗
N (p, u, t, . . .)ϒ11

N (x, v, t, . . .) dt

∣∣∣∣ � ‖ϒ11∗
N (p, u, . . .)‖2‖ϒ11

N (x, v, . . .)‖2, (33)

where ‖ϒ(. . .)‖2 = (
∫ |ϒ(. . . , t, . . .)|2 dt)1/2, and equality is attained in (33) when

ϒ11
N (p, u, t, z, y) = ϒ11

N (x, v, t, z, y). This occurs when (p, u) = (x, v).
If we can identify the parts of the data that correspond to the different paths, then we

can form separate images for each path and coherently (or noncoherently) add the resulting
images:

I(p, u) =
∑
i, j

P i j∗di j. (34)

If it is not possible to distinguish paths, then the data are of the form d = ∑
l,m dlm, we apply

the adjoint operator P∗
N = ∑

i, j P
i j∗
N to form an image:

I(p, u) = P∗
N dN (y, z, t)

=
∫ ∑

z,y

ϒ∗
N (p, u, t, z, y)ϒN (x, v, t, z, y) dtqv(x) dx dv, (35)

where the subscript N denotes the narrowband slowly moving case. The image that is formed
gives us an approximation to the true reflectivity function qv (x), added to copies of qv in the
wrong location.

3.2. Image analysis

In order to analyze the image in the case when data from the different paths cannot be separated,
we need to investigate the relationship between the image and the true reflectivity qv (x) .

To do this, we use (28) in (35). The result is

I(p, u) =
2∑

j,k=1

(−1) j+kK jk
N (p, u; x, v)qv(x) dx dv, (36)

where the sum of all K jk
N terms is the PSF for this imaging system. Each K jk

N is given by

K jk
N (p, x, u, v) = −

∫
ω2

0 j0a∗
jk

(
t − ty − (Rp0k(0) + Rpj0(0))

c

)
×a jk

(
t − ty − (Rx0k(0) + Rx j0(0))

c

)
×e−iϕp jk eiω0 j0αp jk eiϕx jk e−iω0 j0αx jk

Rp0k(0)Rpj0μp0k,u

Rx0k(0)Rx j0μx0k,u
dt. (37)

Equation (37) can be further simplified by noting

ϕxv jk − ϕpu jk = ω0 j0

c
[Rx j0(0) − αv jkRx0k(0) + cty − (Rpj0(0) − αu jkRp0k(0) + cty)]

= ω0 j0

c
[Rx j0(0) − Rpj0(0) − αv jkRx0k(0) + αu jkRp0k(0)]

= ω0 j0

c
[Rx j0(0) − Rpj0(0) − (1 + βv jk)Rx0k(0) + (1 + βu jk)Rp0k(0)]

= ω0 j0

c
[c
τxp jk − βv jkRx0k(0) + βu jkRp0k(0)], (38)
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where


τxp jk = Rx j0(0) − Rpj0(0) − Rx0k(0) + Rp0k(0)

c
. (39)

With this notation, we can write (37) as

K jk
N (p, u; x, v)=

∫
ω2

0 j0Ajk(ω0 j0[βp jk−βx jk],
τxp jk)exp

(
iω0 j0[βp jk−βx jk]

[
Rx j0(0)

c
− ty

])
×exp

(−iω0 j0βp jk

c
[Rx j0(0) − Rpj0(0)]

)
Rp0k(0)Rpj0(0)μp0k,u

Rx0k(0)Rx j0(0)μx0k,u
dt, (40)

where αvyz ≈ 1 + βvyz (see equation (22)) and

A(ω̃, τ ) = e−iω0τ

∫
a∗(t − τ )a(t) eiω̃t dt (41)

is the well-known narrowband ambiguity function [10].
We recall that the ambiguity function characterizes the ability of a given waveform to

provide range and (down-range) velocity information. Thus, formulas (36) and (40) provide
a way to examine the performance of a system for imaging moving targets in terms of the
sensor locations and the waveforms they transmit. These formulas thus provide a theoretical
basis for the allocation of radar resources.

4. Numerical examples

In this section, we provide some numerical examples that show how the number of sensors
affects the image reconstruction of a stationary and a moving target. We analyze the resolution
of the data by plotting a PSF, which is equivalent to an image of a single point-like target. All
simulations used the following parameters.

(i) Target. The target is a single point-like scatterer located in the horizontal plane. For the
stationary target images, the true target is located at x = (25 m, 25 m) in a scene in which
the x axis runs from 0 to 50 m and the y axis runs from 0 to 50 m. For the moving target
images, the target is located at (35 m, 35 m) in a scene where both x and y axes run from
0 to 70 m.

(ii) Waveform. Each sensor transmitted a known stepped-frequency waveform with 218 pulses
stepping through the frequencies of 30–40 GHz uniformly. Alternatively, this can be
thought of as a signal with a 35 GHz center frequency and a 10 GHz bandwidth.

(iii) Sensor geometry. The sensors lie around the scene of interest. See figure 2 for the exact
placement. Note: the velocity plots use only the nine transmitters and one receiver set-up.

(iv) Reflector. The reflector was a perfectly reflecting mirror situated 100 m above the scene
of interest. The location of the reflector is assumed to be known.

In all cases, the images are spatial images. The units on both the horizontal and vertical
axes are in meters.

Figures 3 and 4 show reconstructions of a stationary target; figure 3 shows the case in
which we are able to identify the part of the received signal coming from different transmitters,
whereas figure 4 shows the case in which we do not have this information. All the images in
figures 3 and 4 show the spatial image at velocity (0, 0).

We note that since figure 3 is reconstructed using prior information about the location
of the reflecting mirror, and consequently the wave path is known, there are no multipath
ambiguities because the algorithm matches the correct time delay with the correct path.

As we increase the number of sensors, the resolution improves: the red region
corresponding to the target is thinner than the backprojection ellipses. Since each image

9
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Figure 2. Geometry of the sensor placement. Top image: three transmitters and one receiver.
Bottom image: nine transmitters and one receiver.

cell represents 2 m of physical distance, we estimate the resolution for the stationary point
target in this example to be about 2 m.

In figure 4, on the other hand, the image is reconstructed without the knowledge of the
paths traveled by different parts of the received signal. As the figure shows, multipath artifacts
now appear. We note that there is a relationship between the configuration of the sensor
positions and the artifacts. Adding more sensors diminishes the artifacts.

In figure 5, the target was moving with velocity (3, 3) × 10 m s−1. Figure 5 shows spatial
images at two different velocity hypotheses, the velocity (1, 3)×10 m s−1 (top) and the correct
velocity (bottom). The numerical examples presented in this paper are only a representative
subset of velocity images. The reader is referred to [6] for a larger set of velocity images. We

10
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Figure 3. Stationary object PSF—perfect reflector, known paths. Top image: three transmitters
and one receiver. Bottom image: nine transmitters and one receiver. The vertical scale (image
amplitude) is the same for both plots.

can determine the correct velocity by choosing the image with the best target focus. In this
way, we may use our modified backprojection method to estimate the velocity of a moving
target. In figure 5, we show that if we use a priori information about the geolocation of a
target, then we may estimate that target’s velocity by examining the four-dimensional PSF.
As we see in figure 5, the target is geolocated with the best resolution at the correct velocity
(3, 3) × 10 m s−1. At the incorrect velocity, the true target disappears and artifacts appear at
the wrong locations.

From our velocity sampling, we estimate the resolution in velocity to be about
10 m s−1, and the image shows the spatial resolution to be about 3 m. In this case, the
waveform we used provided better spatial resolution than velocity resolution. A waveform
with better Doppler resolution would provide better velocity resolution but presumably poorer
spatial resolution. There is currently no theory that will explicitly quantify the relationship
between the waveform, the sensor locations and the phase-space resolution. This is left as an
open problem.
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Figure 4. Stationary object PSF—perfect reflector, unknown paths. Top: three transmitters and one
receiver. Bottom: nine transmitters and one receiver.

Figure 5. Spatial images of a moving object for different velocity hypotheses. This image is
zoomed to show the spatial range [20 m, 60 m] × [20 m, 60 m]. Top: velocity (1, 3) × 10 m s−1

(incorrect). Bottom: velocity (3, 3) × 10 m s−1 (correct).
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5. Conclusions

In this paper, we develop a method for forming a phase-space image of multiple moving
objects in a known multipath environment from scattering data received at multiple sensors
from multiple transmitters that could be transmitting different waveforms. The image is formed
via a modified backprojection algorithm. In particular, the approach we take to arrive at the
image formation algorithm involves developing a physics-based data model for the information
we expect to receive at the receiving sensor and subsequently applying an adjoint to the data
model in order to form the image. The resultant phase-space image is, in general, a six-
dimensional image; in the case when objects and their motion are restricted to a plane, the
phase-space image is four dimensional.

We characterize the performance of the imaging system by its PSF, for which we obtain an
explicit formula. Numerical exploration of the PSF provides information about the degree to
which the phase-space image contains information about position and velocity. In particular,
from plots of the PSF, we are able to estimate the four- or six-dimensional resolution for the
image and ascertain that multiple sensors do indeed improve the image resolution.

These results show that the modified backprojection algorithm developed in this paper is
able to recover position and velocity information from moving-object scattering data collected
in a known multiple-scattering environment. We also find that the PSF provides an insight
into system design specifications, such as how many sensors are needed and what waveforms
should be transmitted in order to produce a certain resolution image.

Much remains to be done. Our approach has assumed a simple, known multipath
environment, perfect clock synchronization for coherent imaging and, in many cases, transmit
waveforms that can be distinguished from one another by the receivers. We have also
used a simple point-like target scattering model. Other imaging approaches, such as those
incorporating sparsity and micro-Doppler techniques, remain to be explored.
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