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Abstract 

Thermospheric density impacts satellite position and lifetime through atmospheric 

drag. More accurate specification of thermospheric temperature, a key input to current 

models such as the High Accuracy Satellite Drag Model (HASDM), can decrease model 

density errors. This thesis builds on Burke et al.’s driven-dissipative model (2009) to 

model the arithmetic mean temperature, T1/2 , defined by the Jacchia, 1977 model (J77),  

using the magnetospheric electric field as a driver. Three methods of treating the UV 

contribution to T1/2 (T1/2UV) are tested.  Two model parameters, the coupling and 

relaxation constants, are adjusted for 38 storms from 2002 - 2008 to minimize modeled 

T1/2 errors. Observed T1/2 values are derived from densities and heights measured by the 

GRACE satellite. It is found that allowing T1/2 UV to vary produces the lowest errors for 

27 of 38 storms in the sample and 27 of 28 storms with decreasing UV contributions over 

the storm period. Treating T1/2UV as a constant produces the lowest errors for 7 of 10 

storms with increasing UV contributions. The coupling and relaxation constants were 

found to vary over the solar cycle and are fit well as quadratic functions of ඥ10.7ܽܨ. By 

using the J77 model to convert the model T1/2 values to density values, the driven-

dissipative model produces density errors slightly lower than HASDM storm time errors.
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MODELING THE THERMOSPHERE AS A DRIVEN-DISSIPATIVE 
 

THERMODYNAMIC SYSTEM 
 
 

I.  Introduction 

Motivation 

The thermosphere is defined as the neutral part of the Earth’s upper atmosphere 

from roughly 95 – 1000 km above sea level. Hundreds of Department of Defense and 

other low-Earth orbit satellites operate at these altitudes. The ability to accurately 

characterize the thermospheric environment is critical in an era when the Department of 

Defense’s dependence on satellites for communications, intelligence and other 

capabilities has never been higher. Likewise as the thermosphere becomes more crowded 

with low-Earth orbit satellites and space debris the consequences of inaccurate forecasts 

are becoming more significant. Several recent events illustrate these consequences. The 

destruction of the defunct Feng Yun 1C satellite by an anti-satellite weapons test in 

January, 2007 resulted in more than 2500 new pieces of debris in low earth orbit (Burke, 

et al., 2009). The risk posed to operational satellites by space debris was illustrated in 

2009 when the Iridium 33 satellite was destroyed by a collision with the non-operational 

Cosmos 2251 satellite (Burke, et al., 2010). There have been several instances, such as 12 

March and 1 December, 2009, where the risk of collision with debris has forced the crew 

of the International Space Station to take emergency actions to ensure their safety 
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(Weimer, et al., 2011). Improved characterization of the thermospheric environment is 

necessary to increase space object tracking accuracy and allow satellite operators and 

manned spaceflight missions to anticipate and avoid collisions (Wright, 2007). 

Satellite Drag 

Variations in thermospheric density impact satellite orbit trajectories through 

increased drag. The acceleration due to atmospheric drag is given by 

where ܣ௦௖ and ܯ௦௖ are the cross-sectional area and mass of the spacecraft, respectively,  

is the neutral mass density of the atmosphere, and V is the spacecraft velocity relative to 

the neutral atmosphere. The drag coefficient ܥ஽ depends on the angle of flow to the 

spacecraft surface, the ratio of the temperatures of the spacecraft surface and the local 

atmosphere, and the ratio of the mean mass of atoms in the atmosphere to those on the 

spacecraft surface (Bruinsma and Biancale, 2003).  

An increase in atmospheric drag decreases orbit altitude and increases orbit 

velocity. Thus, an inaccurate drag forecast will result in inaccurate position forecasts for 

satellites in low-earth orbit. In addition, increased drag over longer periods of time will 

decrease a satellite’s operational lifetime by decreasing its orbit altitude until it 

experiences re-entry (Owens, et al., 2000). Accurate characterization of thermospheric 

density is necessary in the short term for accurate position modeling and in the long term 

for accurate satellite lifetime projections. 

 

(1)
2sc

drag D
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A
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
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Thermospheric Density Measurements 

Accurate and continuous measurements of thermospheric density have become 

readily available over the last 10 years from the Challenging Minisatellite Payload 

(CHAMP) (Bruinsma, et al., 2004) and Gravity Recovery and Climate Experiment 

(GRACE) (Tapley, et al., 2004) satellites. Densities are derived from on-board 

accelerometers that measure the electrostatic force needed to maintain a proof mass at the 

center of a cage located within 2 mm of the spacecraft’s center of mass. Since the 

spacecraft and the proof mass respond to gravity in the same way, the changes in the 

electrostatic force needed to maintain the proof mass’s position reflect the spacecraft’s 

response to non-gravitational forces such as thermospheric drag (Bruinsma and Biancale, 

2003). The availability of reliable in-situ thermospheric density measurements allows 

relevant comparisons with current modeled densities as well as “ground truth” data with 

which to test new methods of modeling the thermospheric environment. 

Thermosphere as a Driven-Dissipative Thermodynamic System 

One approach for modeling the thermosphere was developed by Burke et al., 2009 

in which the thermosphere is assumed to be a driven-dissipative thermodynamic system. 

The term “driven-dissipative” simply describes the behavior of a system which gains 

energy from an input source, or “driver”, but then contains a mechanism which dissipates 

the excess energy once the driver is lessened. This type of system is described by a 

differential equation of the same form as that governing the behavior of the disturbance 

storm time index (Dst), an index that monitors geomagnetic activity at low latitudes. The 

driven-dissipative approach uses empirical coupling and relaxation constants to model the 
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input of energy to the thermosphere from the solar wind during geomagnetic storms and 

the recovery of the thermosphere back to quiet conditions after the storm period, 

respectively.  Values for these empirical constants were determined by Burke et al., 2009 

by examining just two storm periods during 2004. Similar differential equations and 

constants can be used to model thermospheric energy, exospheric temperature, and Dst. 

Many existing thermospheric density models use exospheric temperature as a key input. 

By obtaining a predicted value of exospheric temperature from solar wind data, this 

approach seeks to provide a more accurate input for existing density models that can be 

linked to solar wind models to provide improved forecast capabilities.  

Problem 

While the driven-dissipative model approach of Burke et al., 2009  showed 

promising results when compared to observed data from GRACE, it was not applied to a 

large enough sample of storm events to establish its general applicability. In later work 

Burke, 2011 used the driven-dissipative model to establish coupling constants for 38 

geomagnetic storms between 2002 and 2008. Burke’s approach leaves several areas open 

to improvement. This thesis expands on the approach of Burke et al., 2009 in the 

following main areas: 

1. Burke used two storms in 2004 to determine the value of the relaxation 

constant and did not allow it to vary for other storms. This value is suspect because Burke 

et. al, 2009 used an early version of GRACE data that has been replaced by a revised 

calibration (Burke, 2011) (Sutton, 2011). It is also likely that different storms will have 

different optimal relaxation constants.  In addition, Burke used “trial and error 
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comparisons” (Burke, et al., 2009) to determine values for the coupling constant by 

attempting to generally align model results with the peak values in observed data. A more 

rigorous approach to determine the optimal values for both the coupling and relaxation 

constants is applied here. 

2. Burke et al., 2009 treated energy input to the thermosphere from solar extreme 

ultra-violet (EUV) irradiance as a constant through each storm period.  In this thesis, it is 

allowed to vary. 

3. Burke used a simplified method of calculating observed orbit-averaged 

GRACE densities and exospheric temperatures (Burke, et al., 2009). In Burke’s approach 

orbit-averaged values of density and height were calculated from raw GRACE 

measurements and then a quadratic fit to the Jacchia, 1977 model (J77) was applied to 

determine an orbit-averaged exospheric temperature. This thesis modifies the orbit-

averaging technique and uses a different application of J77 to produce more physically 

accurate temperatures. 

4. Burke modeled exospheric temperature but current thermospheric models use a 

global temperature parameter to model the EUV contribution to the thermospheric energy 

budget. J77 uses a parameter known as the arithmetic mean temperature, T1/2. This thesis 

modifies Burke’s approach to model the arithmetic mean temperature. 

Overview  

By modifying Burke’s approach, this thesis provides a more rigorous test of the 

applicability of the driven-dissipative system model. The result is a more accurate, 

generalized model of thermospheric temperatures using solar wind inputs as a driver. 
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Since exospheric temperature is used as a parameter in existing thermospheric models to 

determine densities (Wise, et al., 2012), a more accurate specification of exospheric 

temperature can be used to improve density forecasts. 

The remainder of this thesis is structured as follows. Section II provides 

background information on the thermospheric energy budget, thermospheric variability, 

current thermospheric models, and Burke’s driven-dissipative system model. Section III 

details the methodology used to develop the model formulation of this thesis. Section IV 

presents the results of the updated model formulation and where appropriate compares 

the results with Burke’s earlier work. Finally section V presents conclusions and 

recommendations for future research. 
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II.  Background 

The Thermosphere  

The thermosphere is generally defined as the neutral part of the Earth’s upper 

atmosphere from 95 to 1000 km above sea level. It is characterized by a temperature 

profile that increases with height in its lower levels to a maximum constant value which 

is maintained to the top of the atmosphere (Schunk and Nagy, 2009). The top of the 

thermosphere is defined as the altitude at which neutral densities become low enough that 

collisions become negligible, the atmosphere can no longer be treated as a fluid and 

individual atoms and molecules have a realistic probability of escaping the atmosphere all 

together (Schunk and Nagy, 2009). This level is referred to as the exobase and the 

temperature at this level, the exospheric temperature, is a major input for many current 

thermospheric models.  

Thermospheric Energy Input 

There are three main sources of energy input to the thermosphere: Extreme 

ultraviolet (EUV,  < 175nm) irradiance from the sun, joule heating, and particle 

precipitation (Knipp, et al., 2004). Figure 1 shows the contribution of each energy input 

over the period of solar cycles 21-23 from 1975 through 2003. The lower gray curve in 

Figure 1 shows the power input to the thermosphere from particle precipitation, the blue 

curve represents the joule power input and the upper red curve depicts power input from 

EUV irradiance. EUV irradiance in general dominates the day side of the thermosphere 

and is closely associated with the 11-year solar cycle. Joule heating and particle 
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precipitation are most important in the auroral zones and are closely associated with 

geomagnetic activity (Knipp, et al., 2004). Each of the three energy sources is discussed 

in the subsequent sections.  

 

 

 

Figure 1:  Power input to the thermosphere by particle precipitation (bottom gray line), joule heating 
(blue line), and EUV irradiance (red line) for each day from 1975 to 2003. Adapted from Knipp, et al., 

2004. 

 

Solar EUV Irradiance 

Solar EUV irradiance, emitted from the sun’s chromosphere and corona, is 

usually the dominant contributor to thermospheric energy. From 1975-2003 solar 

irradiance made up an average of 78% of the total energy input to the thermosphere 

(Knipp, et al., 2004). The energy is deposited mainly in the layer from 150-200 km 

(Knipp, et al., 2004) via absorption by neutrals, primarily O2 and N2 (Schunk and Nagy, 
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2009). Because a portion of the absorbed energy goes into dissociation and ionization, the 

heating efficiency is limited to around 50% (Knipp, et al., 2004). The solar irradiance 

contribution to thermospheric energy varies by 100% or more over the course of a solar 

cycle as seen in Figure 1.  The day to day variation is much smaller during solar 

minimum than near solar maximum.  

Joule Heating 

Joule heating is the process in which an electric current passes through the 

thermosphere resulting in resistance and heating of the neutral gas (Qian and Solomon, 

2011). On average, joule heating accounts for 16% of the total energy input to the 

thermosphere via deposition mainly from 110-140 km (Knipp, et al., 2004). The energy 

source for thermospheric joule heating is the solar wind which interacts with the 

magnetosphere to create electric fields that map into the thermosphere and drive currents. 

Lu et al., 1998 showed that on average about 60% of the solar wind energy that is 

transferred to the magnetosphere is deposited in the thermosphere. During storm times 

the amount of solar wind energy deposited in the thermosphere through the 

magnetosphere can reach 80% (Lu, et al., 1998). Since joule power input is caused by 

currents, it can be monitored with indices that respond to ionospheric or magnetospheric 

currents such as the AE index, which monitors the auroral electrojet, and the Dst index, 

which monitors the ring current (Knipp, et al., 2004).  

While joule power input is generally much smaller than solar irradiance, it 

exhibits more variability. Since joule heating is over 90% efficient in transferring power 

to the thermosphere (compared to 50% efficiency for the solar and particle inputs) any 
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change in available power is readily transferred to the thermosphere (Knipp, et al., 2004; 

Thayer and Semeter, 2004). When looking at the 100 days with the highest total power 

inputs of from solar cycles 21 - 23, Knipp, et al., 2004 found that solar irradiance 

increased 50% above its average value while joule power increased by over 600% above 

its average. During large geomagnetic storms the joule power input becomes the 

dominant power source for the thermosphere and when combined with the particle 

precipitation power input, the power input due to geomagnetic activity accounts for 65% 

of the total (Knipp, et al., 2004). When examining thermospheric variability on short time 

scales joule power becomes the most important term. 

Particle Precipitation 

Another way that energy is transferred from the solar wind to the thermosphere is 

via precipitation of electrons. Solar wind electrons travel along open magnetic field lines 

or through the magnetotail into the auroral zone where they are absorbed (Prölss, 2004), 

primarily from 100-120 km (Knipp, et al., 2004).  Since some of the electron energy goes 

into ionization, rotational, or vibrational states the heating efficiency for particle 

precipitation is limited to around 50%. On average, particle precipitation accounts for 6% 

of the total power input to the thermosphere (Knipp, et al., 2004). During geomagnetic 

activity, the magnetosphere interacts with the solar wind magnetic field resulting in more 

open field lines and more available paths for electrons to reach and transfer power to the 

thermosphere (Prölss, 2004).  Strong geomagnetic storms result in an increase in power 

input due to particle precipitation of up to 200% compared with average values (Knipp, et 

al., 2004). 
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Thermospheric Energy Loss 

On long time scales the thermospheric system is in a state of equilibrium where 

the energy input is equal to the energy loss as evidenced by observations that show 

thermospheric temperatures do not increase or decrease indefinitely. One of the major 

loss mechanisms for thermospheric energy is emission by nitric oxide (NO) at 5.3 m 

(Sharma, et al., 1996). Radiation at 5.3 m is not readily absorbed by any major 

atmospheric constituent so energy at this wavelength is able to escape into space.  

To maintain equilibrium, there must be a mechanism during storm time by which 

the excess energy input to the thermosphere via joule heating and particle precipitation is 

dissipated as the thermosphere relaxes to its pre-storm state. Since the production rate of 

NO is highly dependent on temperature (Bailey, et al., 2002), the high thermospheric 

temperature during geomagnetic storms leads to increased NO densities resulting in 

increased cooling rates. Mlynczak et al., 2005 found that increased NO emissions during 

geomagnetic storming accounted for roughly 94% of the added thermospheric energy 

loss during the recovery period. The rest of the energy loss increase can be accounted for 

by increased CO2 emissions at 15 m (2%) and increased conduction between the 

thermosphere and mesosphere (4%) (Mlynczak, et al., 2005). 

Thermospheric Variability 

Solar EUV irradiance is the primary energy input to the thermosphere, while joule 

heating and particle precipitation are secondary the majority of the time. Both the primary 

and secondary drivers result in variability in thermospheric densities and temperatures on 

different time scales and each can be accounted for through the use of various 
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observations and proxies. Variations on specific temporal and spatial time scales will be 

discussed below. 

Solar Cycle Variability 

The sun exhibits a cycle between solar minimum and solar maximum with a 

period of roughly 11 years, characterized in part by changes in solar irradiance (Figure 1). 

During solar maximum there are many more active regions on the sun resulting in 

increased irradiance, increased flaring, and more frequent coronal mass ejections which 

in turn increase geomagnetic activity. This periodic irradiance variation, along with the 

increase in geomagnetic activity as a lesser factor, generates a similar variation in 

exospheric temperature, thermospheric energy and density at the earth. The 

thermospheric density at a given altitude during solar max can be up to ten times more 

than the density at that same altitude during solar min (Qian and Solomon, 2011).  

Semiannual Variability 

Thermospheric density varies on a semiannual basis with maximums at the 

equinoxes and minimums near the solstices. This variation was first identified by 

Paetzold and Zchorner, 1961 when they showed that the difference between minimum 

and maximum is more than 100%. Semi-annual variability is driven primarily by the 

variation in the distance from the sun to the earth which causes differences in solar 

irradiation. Between this variation and the solar cycle variation described above, it is 

clear that even with geomagnetic activity removed from consideration the density of the 

thermosphere fluctuates. Any attempt to model densities accurately must account for 
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variations in both the solar and geomagnetic contributions if it is to accurately 

characterize the thermospheric environment. 

Solar-Rotation Variability 

The sun rotates differentially with an average period of 27 days and during this 

rotational period active regions of the sun appear and disappear from the Earth’s view. 

Since active regions can persist for several months they may come into and disappear 

from the Earth’s view multiple times during their lifetime. Active regions are associated 

with increased solar irradiance and geomagnetic activity and therefore solar rotation 

results in periodic changes in irradiance and geomagnetic activity. This periodic 

variability in irradiance and geomagnetic activity results in a variability of up to 100% in 

thermospheric density during solar maximum (Qian and Solomon, 2011). 

Multi-Day Variability 

Variations in the solar wind caused by high-speed streams (HSS) result in low 

levels of geomagnetic activity and can therefore impact the thermosphere via increased 

joule heating and particle precipitation. Observations during the declining phase of solar 

cycle 23 showed periodic variations in the source of HSS, coronal holes (Temmer, et al., 

2007).  Similarly Lei et al., 2008, found a 9-day periodic variation in neutral density 

observations from the CHAMP satellite in 2005. The magnitude of these variations is 

smaller than those due to solar rotation, roughly 30 – 50% in density. 

Diurnal Variability 

As expected, the large disparity in solar irradiance between the day and night 

sides of the thermosphere results in a large density variation between the two. Mueller et 
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al., 2009, found that during geomagnetic quiet periods the density on the day side was 

roughly twice that on the night side. By taking orbit averages of density measurements 

from polar orbiting satellites such as GRACE the diurnal variation can be effectively 

averaged out of observed data. 

Short Term Variability 

Density variations on time scales of minutes to hours can be caused by rapidly 

changing energy inputs to the system from solar flares or geomagnetic storms associated 

with coronal mass ejections (CMEs) or high-speed streams. Solar flares cause rapid 

increases in EUV and X-ray irradiance leading to heating and expansion of the upper 

atmosphere (Pawlowski and Ridley, 2008). Thermospheric density increases depend on 

the flare’s intensity, location, and the details of the flare’s spectral enhancement. Density 

increases of up to 40% have been observed in response to long duration ( > 40 min) X-

class flares (Qian and Solomon, 2011).  

Geomagnetic storms also result in increased energy inputs to the thermosphere 

however the process by which the energy is deposited is different. During geomagnetic 

storms energy is transferred from the solar wind to the thermosphere via joule heating 

and particle precipitation at high (auroral) latitudes. Joule heating in the thermosphere is 

the dominant form of energy transfer over particle precipitation during geomagnetic 

storms (Wilson, et al., 2006). The energy deposited at high latitudes is propagated 

throughout the thermosphere via circulation and atmospheric gravity waves over a time 

period of several hours (Bruimsma, et al., 2006). The focus of this research is to better 

characterize the impact of geomagnetic storms on the thermosphere. 
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Geomagnetic Storming 

A geomagnetic storm has been defined by Prölss, 2004 as “an event of strongly 

enhanced dissipation of solar wind energy in the near-Earth space environment.”  During 

geomagnetic storming both the joule heating and particle precipitation energy inputs to 

the thermosphere are enhanced. The dominant factors in determining the amount of 

energy transfer, and therefore the strength of a geomagnetic storming event, is the 

component of the interplanetary magnetic field in the z direction, Bz and the length of 

time Bz is in the negative z direction.  The z direction is defined by Geocentric Solar 

Magnetospheric (GSM) coordinates shown in Figure 2.  

 

Figure 2:  Illustration of the geocentric solar magnetospheric (GSM) coordinate 
system. The origin is the center of the earth, the x axis points toward the sun, the 
y axis is perpendicular to both x and the geomagnetic dipole axis, and the z axis 
completes the set with positive pointing north. (Knecht and Shuman, 1985) 

 

Solar wind energy is transferred to the thermosphere through the magnetosphere 

via a dynamo of conductive solar wind plasma moving across the Earth’s magnetic field 

lines. This dynamo is made possible by an “open magnetosphere” magnetic field 

configuration created by the interaction between a southward interplanetary magnetic 
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field and the Earth’s dipole magnetic field shown in Figure 3. The southward Bz interacts 

with Earth’s northward-pointing magnetic field, weakening the field on the day side of 

Earth and resulting in an increased number of open magnetic field lines (Prölss, 2004). 

An open magnetic field line has one footpoint on Earth in the auroral region and the other 

in space (Prölss, 2004). These open magnetic field lines provide pathways that allow 

energetic particles to reach the thermosphere, increasing power input from particle 

precipitation, and allow an electric dynamo to transfer energy from the solar wind to the 

thermosphere via joule heating. 

 

 

Figure 3: The interaction between a southward Interplanetary Magnetic Field (Bz south) and the 
Earth’s dipole magnetic field is shown. The result is open magnetic field lines, with one footpoint near 
the polar cap and the other in interplanetary space. This configuration is referred to as the open 
magnetosphere. Figure from  Prölss, 2004. 

 

Prölss, 2004 describes the energy transfer process as follows. With an open 

magnetosphere the Earth’s magnetic field lines originating near the polar cap are not 
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closed but open extending into the interplanetary medium, as shown in Figure 4. As the 

solar wind flows across this magnetic field the charged particles experience a Lorentz  

 

 

Figure 4:  The interaction between the solar wind and the open magnetosphere 
configuration is shown. Figure from Prölss, 2004. 

 

force, causing the positively charged particles to be deflected towards the dawn side and 

the negative particles to be deflected towards the dusk side.  The resultant charge 

separation creates a polarization electric field, ߝԦ௉, which builds up until the force on 

charged particles due to the polarization field matches that due to the Lorentz force, as 

shown in Equation (2) 
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where ns is the number density of a given species, qs is the charge of a given species, and 

 ሬԦ௦௪ is the solar wind velocity. Solving, we see that the polarization electric field is equalݑ

to the negative solar wind velocity crossed with the z component of the magnetic field.  

This quantity is also known as the electric dynamo field, ߝԦௗ௬௡, and is shown in Figure 4.  

The dawn to dusk electric dynamo field maps along the magnetic field lines to the polar 

cap region where it drives a current, denoted in Figure 4 as jP, that deposits energy into 

the thermosphere/ionosphere system via joule heating.  

 The energy input to the thermosphere by joule heating is extracted from the solar 

wind and manifested through a reduction in solar wind velocity. The electric dynamo 

field drives a current in the magnetosphere, denoted in Figure 4 by jdyn, which interacts 

with the interplanetary magnetic field to produce a force in the direction opposing the 

solar wind flow and decreasing the flow velocity. 

The current loop between the  polar cap current, jp, and the dynamo current, jdyn, is closed 

by the region one Birkeland currents, jB, shown in Figure 4. Region one currents are 

defined as currents originating on the poleward boundary of the auroral oval (Prölss, 

2004). 

 

(2)

 

(3)
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An open magnetosphere configuration is necessary to create the enhanced joule 

heating and particle precipitation power input to the thermosphere observed during 

geomagnetic storming. The two main solar phenomena which lead to strong southward 

Bz, creating an open magnetosphere and geomagnetic storming, are coronal mass 

ejections (CMEs) and co-rotating interaction regions (CIRs).  

Coronal Mass Ejections  

A CME is a large emission of mass from the sun, on the order of 1012 – 1013 kg, at 

speeds of 50 – 1800 km/s with an average kinetic energy ranging from 1023 to 1025 J 

(Prölss, 2004). CMEs are accelerated outward from the sun by magnetic forces in the 

sun’s corona. Depending on the orientation of the magnetic field within the ejected 

material, a CME’s encounter with earth can produce a southward Bz along with enhanced 

solar wind velocity and density resulting in geomagnetic storming (Prölss, 2004).  

Co-Rotating Interaction Regions 

CIRs have their source on the sun at the boundaries between coronal holes and 

coronal streamers. Coronal holes are a source of high-speed solar wind streams while 

coronal streamers are a source of low-speed solar wind flow (Prölss, 2004). As the solar 

wind propagates out from the sun towards Earth the difference in velocity between the 

two regions results in a compression of the solar wind plasma in the area where the high-

speed stream interacts with the low-speed flow. This area of compression is defined as a 

CIR. When solar plasma leaves the sun as the solar wind it carries with it a “frozen-in” 

magnetic field with the same orientation as its source region on the sun. The magnetic 

field is compressed along with the plasma inside the CIR. If the frozen-in magnetic field 
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was already oriented southwards, the amplification inside the CIR is sufficient to produce 

geomagnetic storming when the CIR encounters Earth’s magnetic field (Prölss, 2004). 

Storm Type Characteristics 

A geomagnetic storm produced by a CME is distinct from one produced by a CIR 

in several ways (Borovsky and Denton, 2006). The rate of CME-driven storm occurrence 

peaks during solar maximum and is smallest during solar minimum (Webb, 1991) while 

the frequency of CIR-driven storms is the highest during the declining phase of the solar 

cycle (Mursula and Zeiger, 1996). The occurrence pattern for CME-driven storms is 

irregular with no characteristic spacing between events while CIR-driven storms are 

characterized by a 27-day periodicity due to the rotation of their source regions, coronal 

holes, on the sun (Borovsky and Denton, 2006). CME-driven storms are more effective 

than CIR-driven storms in producing highly negative Dst values (Dst < -100 nT) and are 

usually characterized by a shock in the solar wind flow, evidenced by a sharp increase in 

solar wind velocity and density (Borovsky and Denton, 2006). CIR-driven storms 

normally produce less extreme Dst values and exhibit a more gradual commencement. 

These differences were used to classify the storms used in this thesis as either CME or 

CIR storms. 

Figure 5 shows typical solar wind profiles for both CME (top) and CIR (bottom) 

storms. The CME storm has an extreme Dst minima of -181 nT while the CIR storm does 

not drop below -50 nT. The start of the CME storm is evident in the rapid rise in solar 

wind pressure and velocity around JD 250.7. In contrast, the CIR storm exhibits a gradual 

increase in solar wind pressure and veolcity between JD 191.5 and 192. 
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Figure 5:  Typical solar wind signatures resulting from a coronal mass ejection 
(CME) driven geomagnetic storm (top) and a co-rotating interaction region (CIR) 
driven geomagnetic storm (bottom). From top to bottom the plots show Dst in 
nano-Tesla, the z-component of the interplanetary magnetic field in nano-Tesla 
(GSM coordinates), solar wind pressure (P) in nano-pascals, solar wind velocity 
(V) in km/s, and the resulting magnetospheric electric field value, in 
milivolts/meter as functions of julian date (JD) counted as days since 1 January of 
the given year. 
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Thermospheric Driver Proxies 

Since both the primary (solar EUV irradiance) and secondary (geomagnetic 

activity) sources of thermospheric energy have historically been difficult to measure 

directly various proxies and indices are used to quantify their variation for use in models. 

In some thermospheric models geomagnetic activity has been accounted for through the 

use of the ap index. The ap index is a linear index ranging from zero to 400 that is derived 

using the deviation from the standard magnetic field values measured at 13 locations 

worldwide at geomagnetic latitudes ranging from 42 to 62 degrees (Helmholtz Centre 

Potsdam GFZ, 2012). Values are computed every three hours for ap and daily averages 

are computed and reported as Ap. The fact that the ap index is measured at mid latitudes 

results in a failure to detect the full impact of large geomagnetic storms (Bowman, et al., 

2008) due to distortion from the equatorward movement of the auroral electrojet. 

Another measure of geomagnetic activity is the disturbance storm time index 

(Dst). Dst is measured hourly at four different near-equatorial observatories and it 

measures the variations in the Earth’s magnetic field resulting from changes in the 

magnetospheric ring current. Since the ring current responds directly to energy inputs 

from the solar wind, it is enhanced during periods of geomagnetic storming. Dst is 

measured in nano-Tesla (nT) and during quiet conditions it is usually near zero. Storming 

conditions are indicated by negative values and the more negative the value the stronger 

the storm. Because of the equatorial location of its observation stations, Dst is not 

influenced by the auroral zone and is able to detect more fully the energy enhancements 

to the ring current caused by strong geomagnetic storms. The Dst index has been adopted 
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for use in some recent thermospheric models such as Jacchia-Bowman 2008 (Bowman, et 

al., 2008). 

The F10.7 index has long been the standard proxy for EUV flux. Since the 

atmosphere absorbs virtually all of the EUV radiation before reaches the surface it is not 

possible to measure EUV flux at a surface based observatory.  Instead, EUV flux values 

can be inferred using measurements of the solar radio flux at a wavelength of 10.7 cm at 

the Earth’s surface. This 10.7 cm flux has been shown to correlate well with actual EUV 

flux. F10.7 values are observed at the Pentictin Radio Observatory in British Columbia, 

Canada daily at 2000Z (local noon). Daily F10.7 values, along with a longer term 81 or 

162-day average, have been used in many models to account for the variation in EUV 

flux (Tascione, 1994). Unfortunately, the observed nature of the F10.7 index and its once-

daily time resolution have limited models making use of it as a input. 

Partly in an effort to overcome these limitations, the first full-spectrum solar 

irradiance model, SOLAR2000, was developed by Tobiska et al. in 2000. This model 

includes a new EUV proxy index, E10.7, which is in the same units of the standard F10.7 

index so as to enable its use in existing modeling applications. The E10.7 has several 

advantages over the F10.7 including the availability of high temporal resolution data rather 

than the once-daily F10.7 and the ability to forecast E10.7 values into the future which does 

not exist with the observed F10.7 index. Some recent models, such as HASDM, have 

adopted E10.7 to replace F10.7 for these and other reasons (Storz, et al., 2005).  

The E10.7 models total integrated EUV emissions from both the chromosphere and 

the corona while the F10.7 proxy only captures coronal emissions. By providing a more 
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complete picture of total EUV irradiance the E10.7 is a more representative proxy for the 

impact of EUV irradiance on the thermosphere. However, it leads to differences when 

compared with the longtime-standard F10.7. Tobiska et al., 2000 found that F10.7 exhibited 

more variability than E10.7, as much as +/- 20% during comparisons ran for July, 1982. 

The increased variability of the F10.7 was due to the fact that it does not measure 

chromospheric emissions, which tend to smooth out the E10.7 values. 

Thermospheric Models 

These indices and proxies, along with historic and real-time observations, have 

been used to create many different models of the thermosphere. The following sections 

briefly describe three thermospheric models relevant to this thesis. 

Jacchia Models  

Jacchia developed a model of the thermosphere in 1970 (J70) (Jacchia, 1970) and 

an updated version in 1977 (J77)  (Jacchia, 1977) that are still used as a baseline today. 

The Jacchia models are static models which were developed using thermospheric 

densities calculated from satellite drag and mass spectrometer measurements. They are 

based on the assumption that the thermosphere is in thermal diffusion equilibrium, 

meaning that the heat inputs to the thermosphere equal heat losses. The J77 model 

assumes the mesopause, the bottom of the thermosphere, is at an altitude of 90 km with a 

temperature of 188K and a mass density of 3.43 
௚

௖௠య. Model temperatures rise as a 

function of altitude from the minimum value at 90km, pass through an inflection point at 

125km, and increase asymptotically to the given exospheric temperature, T . T 
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uniquely defines the temperature profile. Once the temperature profile is determined, 

densities are calculated by integrating the thermal diffusion equation, Equation (5), 

where the index i denotes the ith species, n is the number density, m is the mass, g is 

gravity, a is the thermal diffusion coefficient, T is the temperature and R* is the universal 

gas constant. The J77 model includes six species: N2, O2, O, Ar, He, and H. The total 

mass density at a given altitude can be calculated by simply summing the product nimi 

over all species (Wise, et al., 2012). Through this process, tables are produced that give 

density profiles for a given exospheric temperature input. 

 Variations due to solar changes and geomagnetic activity are accounted for in the 

Jacchia models either solely through perturbations to the temperature profile (J70) or 

through perturbations to both the temperature and resulting density profiles (J77).  The 

J77 model accounts for variations in EUV energy input by using the F10.7 proxy and an 

F10.7 index value averaged over six solar rotations (162-days), F10.7a, to compute a 

geomagnetic-quiet (defined as Ap = 0) arithmetic-mean exospheric temperature, T1/2UV.  

The arithmetic mean temperature, T1/2, is defined as the average of the nighttime 

minimum exospheric temperature, T0, and the daytime maximum exospheric temperature, 

TM, which occur in opposite hemispheres at 0524 and 1648 Local Standard Time (LST), 

respectively (Jacchia, 1977). T1/2  is related to T at any given location via a conversion 

factor dependent on latitude, local time and solar declination angle. Using the J77 model, 

unique temperature and density profiles can be computed for any location given T1/2. The 
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J70 model uses a similar process but instead of T1/2 its global temperature parameter is 

T0. The tables in the J70 and J77 models form the basis of many current thermospheric 

models. For this thesis, J77 serves as the link between observed neutral density 

measurements from GRACE data and an “observed” exospheric temperature used for 

comparison with the exospheric temperature calculated using Burke’s driven-dissipative 

model. 

High Accuracy Satellite Drag Model (HASDM) 

The Jacchia models have been improved through the years but continue to be 

limited by their use of proxies to measure actual thermospheric conditions as well as their 

reliance on a static and limited set of observed data upon which their empirical fits are 

based. These limitations, along with others, prevent satellite position error from 

decreasing below 15% (Marcos, et al., 2007). To address this problem the Air Force 

Space Command Battlelab created HASDM, the Air Force’s current operational 

thermospheric density model, in 2004 (Storz, et al., 2005). 

HASDM makes use of the ap index to characterize geomagnetic activity. To 

characterize EUV flux HASDM uses the E10.7 index from the SOLAR2000 model 

described by Tobiska et al., 2000. The critical advance of the HASDM approach is the 

use of near real-time observed density data. The model uses data from the observed drag 

on a set of about 80 calibration satellites to create spatially varying density corrections 

every three hours.  These corrections are used in conjunction with a modified J70 model 

to produce a global density forecast up to 72 hours into the future.   This approach of 

relying on observed data in real time to dynamically update and correct density 



 

27 
 

predictions helped reduce positional errors down to 5% for the calibration satellites and 

down to 8% for all tracked objects during quiet conditions (Storz, et al., 2005). 

Unfortunately, HASDM does not perform as well during geomagnetic storming 

conditions. During storm periods neutral density errors increase by roughly 30%, from 

13% during quiet conditions (Ap = 0) to 17% during storming conditions (Ap > 100)  

(Marcos, et al., 2010). HASDM leaves room for improved characterization of storming 

conditions. 

Jacchia-Bowman 2008 (JB2008) Model 

JB2008 is an empirical model which uses density inputs from Air Force daily 

density values (computed using tracking data from around 100 calibration satellites) and 

HASDM as well as CHAMP and GRACE accelerometer data (Bowman, et al., 2008). 

JB2008 uses the F10.7 index and the 81-day average F10.7 index along with 26 - 34 nm 

integrated EUV flux data from the Solar Heliospheric Observatory (SOHO) satellite, 

chromospheric and photospheric active region activity data measured by the Solar 

Backscatter Ultraviolet (SBUV) spectrometer, and X-ray emission data from GOES X-

ray spectrometers to compute T0. This approach allows the JB2008 model to capture not 

only solar cycle and semi-annual solar irradiance variations but also measure shorter term 

variations on the scale of the 27-day solar rotation period.  

Another advance of the JB2008 model is its use of Dst to measure geomagnetic 

activity rather than the ap index used by previous models. It is a better input to 

thermospheric models than ap because ap responds mainly to ionospheric currents rather 

than magnetospheric ones. Since the energy deposited into the thermosphere during 
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geomagnetic storms comes from the solar wind through the magnetosphere it is 

reasonable to use an input that primarily measures magnetospheric conditions like Dst. In 

addition, ap is determined by observatories at latitudes from 42 to 62 degrees which can 

incorrectly characterize energy inputs during severe storms due to the equatorward 

movement of the auroral electrojet. Since ground-based observatories are immobile, 

significant electrojet movement during storm time leads to underestimates of storm 

impacts (Huang and Burke, 2004). Dst responds to the ring current and is derived from 

measurements at four equatorial observatories not impacted by auroral electrojets. Using 

Dst as an input, a geomagnetic activity contribution to T0 is calculated and then used to 

generate a density profile.  

Modeling the Thermosphere as a Driven-Dissipative Thermodynamic System 

While thermospheric models have made advances in accuracy recently, they are 

still physically limited by the lack of a direct link between the solar wind and the 

thermosphere which is the dominant source of energy during geomagnetic storming. The 

driven-dissipative approach attempts to solve this problem by linking the thermosphere to 

the solar wind using the electric field of the magnetosphere as the primary driver during 

geomagnetic storm conditions.  

Burke et al., 2009 used neutral density observations from the GRACE satellite 

along with the J77 model (Jacchia, 1977) to calculate thermospheric energies, Eth, as a 

function of time during 2004. Magnetospheric electric field magnitudes, VS, were 

computed using observed solar wind data and plotted as a function of time along with the 

Eth data. Figure 6  (Burke, et al., 2009) shows that Eth decays to pre-disturbance levels 
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when VS drops to pre-disturbance levels and the rate of decay, at least for the two cases 

shown, was the same. This behavior matches that of a driven-dissipative system. The e-

fold relaxation time of Eth, τE, was calculated to be 6.5 hours. Burton et al., 1975  

proposed that Dst behaved in a similar way and could be described by a simple 

differential equation. Burke et al., 2009 applied this technique to modeling Eth using VS 

as the driver. Since Eth is related to the exospheric temperature (T∞ሻ linearly, T∞	can also 

be modeled in this way. The following sections will detail the Burke et al., 2009 approach 

and highlight some of the simplifying assumptions that were made during its 

development. 

 

 

Figure 6:  Plots of magnetospheric electric field VS (black) and the natural 
logarithm of Eth SW (red) for the disturbance on JD 204-211, 2004. Vertical lines 
mark times of electric field decrease. The slanted blue lines have the same slopes 
indicating that Eth SW decays exponentially when VS turns off. The estimated e-fold 
relaxation time is 6.5 hrs. (Adapted from Burke et al., 2009) 

 

Observed Data  

Burke et al., 2009 used measured thermospheric orbit-averaged density and orbit-

averaged altitude from the GRACE satellite as ground truth data. These data were used to 
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calculate exospheric temperature using a quadratic fit to the Jacchia 1977 model (Burke, 

2008), namely 

 

where ஶܶ is the exospheric temperature and ߩ௜൫ത݄൯ is the orbit averaged neutral density in 

g/cm3 raised to the ith power. The term ܽ௜൫ത݄൯ is a coefficient described by the matrix 

equation 

where ത݄ is the orbit averaged altitude in km. Burke (Burke, et al., 2009)  took an orbit 

average of density and height before calculating the orbit averaged exospheric 

temperature.  

 Once the exospheric temperature is calculated, the total energy of the 

thermosphere can be calculated using the empirical formula 
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Where ܧ௧௛ is the energy of the thermosphere in Joules and തܶஶ is the orbit-averaged 

exospheric temperature. These values of ܧ௧௛ and തܶஶ were used as the “observed” data for 

comparison with the results of the driven-dissipative model (Burke, et al., 2009). 

Differential Equations 

As shown in Figure 6, ܧ௧௛ responds to changes in magnetospheric electric field in 

a way reminiscent of a driven-dissipative thermodynamic system. Burton et al., 1975, 

suggested that Dst evolves in a similar way and developed a differential equation for the 

pressure corrected Dst (Dst*) 

where ߙ஽ is the coupling coefficient, ߝூ is the interplanetary magnetic field magnitude 

and ߬ோ஼ is the relaxation time constant of the ring current. Dst* is defined as ݐݏܦ∗ ൌ

ݐݏܦ െ ܾඥ ௌܲௐ ൅ ܿ where b and c are empirical constants and PSW is the dynamic pressure 

of the solar wind (Burton, et al., 1975).  The term “driven-dissipative system” is 

illustrated by the form of Equation (9). The term ߙ஽ߝூ models the driver of energy input 

to the system and the term 
஽ೞ೟
∗

ఛೃ಴
 models the dissipation of energy from the system.	

Burke et al., 2009 used this approach to create a differential equation for Eth using 

magnetospheric electric field as the driver. Using this equation along with the linear 

relationship between ܧ௧௛ and തܶஶ from Equation (8) yields a similar equation for തܶஶ. To 

simplify the model, Eth and T∞	were broken into two independent components, one due to 

the EUV radiation and one due to the solar wind given by 
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where ܧ௧௛	௎௏ ൌ 6.1 ൈ 10ଵ଻ܬ and തܶஶ	௎௏ ൌ  ௌௐ	௧௛ܧ both considered constant. Then ,ܭ	850

and തܶஶ	ௌௐ were both modeled using the differential equations 

 

where ߙா and ்ߙ are the coupling constants and for thermospheric energy and exospheric 

temperature respectively, ߬ is the relaxation time constant, the same for both parameters, 

and VS is the magnetospheric electric field calculated from solar wind data. 

Equations (12) and (13) can be solved numerically for any time in the future using 

the simple Euler method. 

Burke et al., 2009 used a time step (t) of 1 hour in their analysis. 
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Relaxation Constant 

The relaxation constant () is defined as the e-fold relaxation time of Eth and 

determined by the linear fit to a plot of the natural logarithm of Eth SW during periods of 

low ߝ௏ௌ after storming periods seen in Figure 6. Using two relaxation periods in 2004, the 

constant’s value was determined to be ߬ ൎ  This value is the same when applied .ݏݎ݄	6.5

to model either Eth or T. 

Coupling Constant 

Burke, et al., 2009 used comparisons with GRACE data from JD 150-230, 2004 

to determine the value of the coupling constant for thermospheric energy, ߙா. 

Using this value good agreement was shown between modeled thermospheric energy 

using Equation (14) and GRACE-derived thermospheric energy using Equation (8) 

during two storming periods in 2004, as shown in Figure 7.   

Using the relationship between ܧ௧௛ and തܶஶ shown in Equation (8), the coupling 

coefficient for exospheric temperature was found to be:  

 

(17)

Using this value, relatively good agreement was shown between modeled, Equation (15), 

and GRACE-derived, Equation (6), exospheric temperatures during two storming periods 

in 2004, as shown in Figure 8. 
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Figure 7:  Comparison of ࡿࢂࢿ (black), modeled ࢎ࢚ࡱ  values ࢃࡿ	ࢎ࢚ࡱ and ,(blue) ࢃࡿ
inferred from GRACE measurements (red dots) plotted as functions of Universal 
Time during the magnetically disturbed periods of July (top) and November 
(bottom) 2004. ࢎ࢚ࡱ	ࢃࡿ is plotted in units of 1016 J (Burke, et al., 2009). 

 

 

Figure 8:  Modeled ࢀഥஶ	ࢃࡿ (blue) and values inferred from GRACE measurements 
of orbit averaged neutral density (red dots), plotted as functions of Universal Time 
during July (top) and November (bottom) 2004. ࢀഥஶ	ࢃࡿ was approximated by 
subtracting 850 K from GRACE-based estimates of ࢀഥஶ (Burke, et al., 2009). 
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 To further test the validity of the coupling constant ߙா, Burke et al., 2009 

compared the term ߙாߝ௏ௌ, which represents the rate at which energy is input into the 

thermosphere from the solar wind, to predictions from the independent W5 model 

(Wiemer, 2005). The W5 model uses IMF and solar wind measurements to predict the 

Poynting flux into the ionosphere. By integrating this flux over the polar caps, the total 

rate of power input to the ionosphere can be determined and compared with the 

predictions from the term ߙாߝ௏ௌ in the driven-dissipative model (Burke, et al., 2009). 

Figure 9 shows that during two storm periods in 2004 these two independent models 

produce similar results, validating the value for ߙா. 

 

Figure 9: Comparison of storm time power into the global thermosphere 
predicted by the W5 model (red) and  plotted as functions of UT (black) ࡿࢂࢿࡱࢻ
during July (top) and November (bottom), 2004 (Burke et al., 2009). 

  



 

36 
 

III.  Methodology 

Overview 

The success of the driven-dissipative model in predicting TSW and EthSW for the 

storm periods in 2004 is promising but to establish general applicability, a larger sample 

of storms needs to be studied. This section outlines the methodology used to test the 

driven-dissipative model in this thesis. First, a general schematic of the model is 

discussed. Then, the procedures utilized to determine the observed thermospheric 

temperatures and magnetospheric electric field values used in the model are outlined. 

Second, the model’s governing equation is developed and solved. Next, the procedure 

used to determine optimal coupling and relaxation constant values for each storm is 

presented. Finally, a method to convert model temperature values to model density values 

is discussed.  

Model Schematic 

A general schematic of the model is shown in Figure 10. The model uses 

observed data from the GRACE satellite to derive orbit-average T1/2 values which are 

used as the data the model attempts to replicate. Observed solar wind data from the ACE 

satellite is used to calculate magnetospheric electric field magnitudes which serve as the 

driver of energy input to the thermosphere in the model. The governing equation is then 

solved using one of three UV methods and an error minimization routine which selects 

values for the coupling and relaxation constants for each storm. This process results in 

model T1/2 data for each method and each storm. Model T1/2 data is then converted to 
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model density values via the J77 model. Each step is explained in subsequent sections of 

this chapter. 

 

 

Figure 10: Schematic of the Driven-Dissipative model used in this Thesis. Green text indicates 
observed model inputs. Red text indicates model outputs. 
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Observed Data 

Burke, 2011 conducted a study of 38 geomagnetic storms from 2002 through 

2008 using the methods outlined above from Burke et al., 2009. The storms were selected 

based on the availability of the solar wind data necessary to compute magnetospheric 

electric field values. These same storm periods were used in this thesis, with one 

exception. One of the storms used by Burke, 2011 (Julian Date 168-170, 2003) did not 

have solar wind data available at the one-minute time cadence used for this thesis. This 

storm was replaced by a storm from Julian Date 94 - 98, 2004 which was not studied by 

Burke, 2011.  The storm start times, end times, and storm types (CME or CIR-driven) for 

storms used in this thesis are listed in Table 1. The following sections outline how the 

observed data in the model was obtained. 

Storm Period 

The start of a geomagnetic storm is usually defined in part by an increase in solar 

wind speed and/or density coupled with a southward Z-component of the solar wind 

magnetic field (Bz south). Using the initial days listed in Burke, 2011 for each storm 

period as a starting point the time of this increase was determined for each storm. The 

storm starting time was defined as the last time the GRACE satellite crossed the equator 

on an ascending pass prior to the increase in solar wind speed and/or density. The end of 

the storm period was generally defined as the final day listed by Burke, 2011. In some    

cases, that time was clearly after both the magnetospheric electric field and GRACE-

derived exospheric temperature had recovered to a state of quasi-equilibrium near pre-

storm levels. In these cases the storm end time was adjusted backwards to match  
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Table 1:  Storm Periods Studied 

 

Day Hour Min Sec Day Hour Min Sec
2002 246 18 16 59 248 0 0 0 CME
2002 250 13 35 35 252 0 0 0 CME
2002 272 23 56 57 275 16 48 0 CIR
2002 276 9 47 28 278 0 0 0 CIR
2002 296 22 24 0 299 0 0 0 CIR
2002 324 14 23 18 327 0 0 0 CIR
2003 149 12 22 43 151 0 0 0 CME
2003 229 14 1 55 232 0 0 0 CIR
2003 324 6 54 25 326 0 0 0 CME
2004 22 0 37 57 24 0 0 0 CME
2004 94 0 54 55 98 0 0 0 CIR
2004 204 9 53 59 210 0 0 0 CME
2004 208 22 10 40 210 0 0 0 CME
2004 243 1 12 42 246 0 0 0 CIR
2004 312 9 44 47 314 0 0 0 CME
2004 314 10 22 30 316 0 0 0 CME
2005 127 17 35 50 130 0 0 0 CIR
2005 135 4 20 33 136 0 0 0 CME
2005 148 4 20 25 152 0 0 0 CME
2005 163 8 4 12 165 0 0 0 CIR
2005 236 0 53 0 239 0 0 0 CME
2005 243 8 26 32 245 0 0 0 CIR
2006 98 10 5 11 100 19 33 36 CIR
2006 103 4 29 30 107 0 0 0 CIR
2006 348 14 1 20 350 0 0 0 CME
2007 142 7 30 53 148 9 36 0 CIR
2007 191 20 17 30 193 0 0 0 CIR
2007 195 7 18 0 197 0 0 0 CIR
2007 218 12 52 5 221 0 0 0 CIR
2007 298 9 50 7 305 0 0 0 CIR
2007 323 17 29 20 325 21 14 24 CIR
2007 351 3 12 50 356 0 0 0 CIR
2008 31 13 9 13 37 0 0 0 CIR
2008 68 9 55 30 71 0 0 0 CIR
2008 86 2 17 0 91 0 0 0 CIR
2008 166 17 38 35 170 0 0 0 CIR
2008 194 0 8 55 195 0 0 0 CIR
2008 247 2 40 2 250 0 0 0 CIR

Year
Storm Start  Storm End Storm 

Type
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observations. Temperatures derived from observed GRACE density and height values are 

referred to as observed temperature values for the remainder of the thesis. Figure 11 

shows an example of a typical storm period. 

 

Figure 11: Example of a storm period, defined as the start time of the GRACE 
orbit just prior to the initial electric field rise until both the electric field and the 
observed T1/2 have returned to quasi-equilibrium near their pre-storm values. 
Observed GRACE T1/2 (top) and magnetospheric electric field data (bottom) are 
shown as functions of Julian date (JD), 2007 where JD is counted from 1 Jan, 
2007. The red vertical lines indicate the storm start time (left) and storm end time 
(right). 

 

Exospheric Temperature  

Once the storm periods were determined, data from the GRACE A satellite was 

used to calculate the exospheric temperature, T. The GRACE A satellite was in a polar 

orbit at altitudes from 455-534 km during the period from 2002-2008. The GRACE data 

set used for this thesis was calibrated by Sutton, 2011 with thermospheric parameters 
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averaged into 3 degree latitude bins. For this research neutral density, altitude, latitude 

and local time were used.  Burke et al., 2009 used an earlier calibrated version of 

GRACE data (Burke, 2011) that was not averaged into latitude bins. His approach was to 

orbit-average the density and altitude from raw GRACE data first, and then calculate the 

orbit-averaged T using Equations (6) and (7). Wise et al., 2012 showed that this method 

of orbit averaging produced inaccurate results. The GRACE satellite orbit is slightly non-

circular with an apogee about 20km higher than perigee. Orbital dynamics dictate that the 

satellite moves slower near apogee than perigee. This results in underestimates of orbit-

average density and orbit-average heights higher than the time-independent average.  

Combined, these factors lead to underestimates of orbit-averaged T when it is calculated 

from orbit-averaged heights and densities (Wise, et al., 2012).  

Wise et al., 2012 showed that a more physically accurate way to calculate orbit-

averaged T is to calculate T in each GRACE 3-degree latitude bin and then average the 

result. In this thesis I used the approach of Wise, 2012 and computed exospheric 

temperature for each latitude bin prior to the orbit averaging, resulting in an observed T  

for each GRACE latitude bin. The change in technique does impact the resulting 

observed orbit-average temperature values and results are shown in section IV. 

The method to compute exospheric temperature used by Burke et al., 2009 

(Equations (6) and (7) ) is taken from Burke’s (2008) quadratic fit to the J77 model. This 

fit was developed to be accurate only within the ranges of 300 – 500 km in altitude and 

700 – 2000 K in T which leaves open the possibility that the fit is not sufficiently 

accurate over the entire temperature range present in the 38-storm sample listed in Table 
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1. To quantify and correct this possible source of error an interpolation/iteration 

technique was developed to produce an exospheric temperature that, coupled with the 

GRACE altitude, produces the observed GRACE density via the J77 model. To begin, 

tables of data from the J77 model were generated using a Fortran code written by David 

Huestis in 1999 and provided by John Wise at the Air Force Research Laboratory. Data 

tables list densities as a function of altitude for a given exospheric temperature. Tables 

were generated for exospheric temperatures from 500-2000K with a resolution of 100K, 

listing densities for altitudes of 300km-1000km with a resolution of 1km.  

Data from the J77 tables were used to create a 3-D grid of data giving density for 

a specified T - altitude pair. The temperature and altitude ranges chosen ensure that all 

of the observed GRACE data fit inside the data grid. With the data grid as a basis, a 

density can be generated using any specified T, altitude pair by interpolating between 

the data points. For this thesis, cubic spline interpolation (Press, et al., 2007) was used via 

MATLAB’s interp2 function. To generate observed exospheric temperatures from 

observed GRACE heights and densities an iterative technique, the Nelder-Mead simplex 

direct-search method (Lagarias, et al., 1998), was used.  Starting at an initial guess for T, 

here 800K, the search method iterates over T values until a T is found that minimizes 

the relative error (to a tolerance of 10-4 %) between the observed density and the 

interpolated density when paired with the observed altitude. The Nelder-Mead method is 

detailed in Appendix B. 

Thermospheric models like J70, J77 and HASDM use a global temperature 

parameter to account for the EUV contribution to the thermosphere’s energy budget. The 
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J77 uses the arithmetic mean temperature, T1/2, defined as the average of the daytime 

maximum T and the nighttime minimum T at a given time. While T characterizes the 

thermosphere at a specific location and time, T1/2 is general parameter that removes the 

diurnal variation of T and characterizes the state of the thermosphere as a whole. The 

formula from the J77 model (Jacchia, 1977) shown in Equation (18) was used to convert 

the observed T values from the GRACE data into T1/2. 

 

(18)

The conversion factor D is a function of solar declination angle (), latitude () and solar 

hour angle (H) and given by Equation (19).  

where: 
 

(19)

 

Latitude was taken as the mean location of the GRACE satellite in each latitude bin. The 

hour angle H is simply the mean local time of each latitude bin, converted to an angle 

counted from local noon via the formula: 
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(20)

The solar declination angle () was calculated using the time of each data point via the 

method described by Meeus, 1991 outlined in Appendix A.  

Once observed T values were converted to T1/2 via Equation (18) in each latitude 

bin, the observed T1/2 data was orbit averaged. The start of each orbit was defined as the 

equator on each ascending pass of the GRACE satellite. The end of each orbit was 

defined as the point just before the equator on each ascending pass. All of the T1/2 values 

for each orbit were averaged to produce a single value for each orbit, and the time for 

each orbit-averaged value was defined as the time of the start of the orbit. The resulting 

orbit-averaged T1/2 values and times were used as the observed data the model attempts to 

replicate. 

Magnetospheric Electric Field 

The main source of energy for the thermosphere during geomagnetic storms is the 

solar wind which couples to the thermosphere via the magnetospheric electric field, VS. 

Using solar wind data from the Advanced Composition Explorer (ACE) satellite, VS can 

be calculated in near real-time using a version of the Volland-Stern model originally 

formulated by Ejiri, 1978 and modified by Burke, 2007. The ACE satellite is located at 

the L1 Lagrange point between the Sun and the Earth which is roughly one hour 

upstream of the Earth in the solar wind flow. For this thesis ACE data that had already 

been time shifted, meaning the time stamp on the data was adjusted by roughly one hour 

to account for the transit time to earth, was utilized. The exact amount of time adjustment 

 ( ) 12 15oH Local Time hours  
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depends on the current solar wind velocity. This data is available at a one-minute time 

cadence from the NASA OMNIWeb. Solar wind pressure, ௌܲௐ, and velocity, ௌܸௐ, were 

obtained from the ACE Solar Wind Electron Proton Alpha Monitor (SWEPAM) while 

the Y (By) and Z (Bz) components of the solar wind magnetic field were obtained from 

the ACE Magnetic Field Experiment (MFE) sensor. All calculations and data use GSM 

coordinates, illustrated in Figure 2. 

Using Burke’s (Burke, 2007) formulation, the magnetospheric electric field 

magnitude can be calculated using the relation 

The denominator in Equation (21) gives the width of the magnetosphere in the Y 

direction. RE is the radius of earth and LY is the distance to the magnetopause in the Y 

direction, in earth radii, calculated using the solar wind pressure with Equation (22). 

 

The numerator in Equation (21), ௉஼, is the cross-polar cap electric potential.  

Siscoe et al., 2002 built on the Hill model (Hill, 1984) and developed a formula for ௉஼ 

using the magnetospheric saturation potential, ௌ, and the magnetospheric convection 

potential, ா as inputs.  

 

(21)

 

(22)

2
PC

VS
Y EL R

 


 6

14.4
Y

SW

L
P nPa





 

46 
 

Equation (23)  shows that ௌ serves as a limiting value for ௉஼. In other words, when 

ா ≪ ௌ, ௉஼ ൎ ா while when ா ≫ ௌ, ௉஼ ൎ ௌ (Hill, et al., 1976). 

ௌ is the potential that drives region one currents in the magnetosphere which 

create magnetic fields that weaken the earth’s magnetic field at the magnetopause 

(Siscoe, et al., 2002). It can be calculated using the solar wind dynamic pressure (PSW) 

using the formula 

where p is the effective Pedersen conductance of the polar cap, here approximated as a 

constant ௣ ൌ  We see that increased solar wind pressure results  . (Burke, 2007) ݋݄݉	10

in a greater magnetospheric saturation potential. 

 ா results from magnetic reconnection processes at the magnetopause 

(Boudouridis, et al., 2004).  It can be calculated using the solar wind velocity and 

magnetic field data via Equation (25) 

where the first term, ௢, is a residual potential due to viscosity in the low-latitude 

boundary layer (Burke, 2007), (Kennel, 1995). Burke found that ௢ typically ranges 

between 20 and 30 kV (Burke, et al., 1999) and for this research the value of ௢ was set 
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at 25 kV.  The second term in Equation (25), ௌܸௐ்ܤ sinଶ
ఏ

ଶ
, gives the magnitude of the 

interplanetary electric field as developed by Sonnerup, 1976,  where VSW is the solar 

wind velocity, ்ܤ ൌ ඥܤ௒
ଶ ൅ ߠ ௭ଶ andܤ ൌ cosିଵ ஻ೋ

஻೅
, the interplanetary electric field clock 

angle in the Y-Z plane. The interplanetary electric field multiplied by LG, the width of the 

space (in Earth radii) through which geoeffective solar wind streamlines must pass to 

reach the dayside magnetopause (Burke, 2007), gives the interplanetary electric potential.  

Typically LG values between 3 – 4 Earth radii and in this research the approximation is 

made that LG = 3.5, a constant, as suggested by Burke et al., 1999.  

Data from the ACE satellite is occasionally either bad or missing. When missing 

or bad data made reliable electric field values impossible to calculate directly, 

interpolation was used between the nearest good data points to fill in the gap and ensure 

good electric field values existed for each minute during storm time. Because storm 

periods were selected based on relatively good ACE data availability, the amount of 

interpolation was kept to a minimum. None of the storms studied had contiguous gaps in 

ACE data of longer than four hours and none of the storms studied had missing ACE data 

at the time of peak observed temperatures. Figure 12 shows an example of the ACE solar 

wind data and the magnetospheric electric field magnitude calculated using the above 

formulation for a geomagnetic storm in July, 2004.  
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Figure 12: Illustration of ACE solar wind data and the resultant magnetospheric 
electric field magnitude. From top to bottom the figure shows the y and z 
components of the interplanetary magnetic field (By and Bz) in nano-Teslas, the 
solar wind pressure (P) in nano-Pascals, the solar wind velocity (V) in km/s, and 
the magnetospheric electric field magnitude (E field) in miliVolts/meter as 
functions of modified Julian date (JD), 2004 where JD is counted from 1 Jan, 
2004. 

Governing Equation 

 Burke’s original model (Burke, et al., 2009) assumed that the UV contribution to 

the exospheric temperature was constant throughout the storm period. It is true that 

during storm time, the geomagnetic contribution to thermospheric energy and therefore 

exospheric temperature is much more variable than the UV contribution. However, since 

the sun’s UV irradiance can change on short time scales as well, a more realistic model 

would allow the UV contribution to vary during storm time. Since the J77 model 

accounts for the UV contribution via the arithmetic mean temperature (T1/2), T1/2 is 

modeled via a new differential equation governing its time rate of change. 
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 Since T1/2 differs from T by only a conversion factor shown in Equation (18), 

T1/2  can be expressed as the sum of UV and solar wind contributions just as T was by 

Burke in Equation (11). 

Likewise the time rate of change of T1/2 is simply the sum of the time rates of change of 

its components. 

Just prior to storm time the thermosphere is taken to be at equilibrium with 
ௗ்భ/మ
ௗ௧

ൌ 0 and  

Equation (28) expresses the pre-storm equilibrium arithmetic mean exospheric 

temperature ( ଵܶ/ଶ
଴ ) as the sum of the equilibrium UV and solar wind contributions. In 

general, outside geomagnetic storming periods, the UV contribution to thermospheric 

energy is much larger than the solar wind contribution (Figure 1), which indicates that 

ଵܶ/ଶ௎௏
଴ ≫ ଵܶ/ଶௌௐ

଴  suggesting the approximation ଵܶ/ଶ௎௏
଴ ൌ ଵܶ/ଶ

଴ .  

 Using Burke’s (Burke, et al., 2009) expression for 	
ௗ்భ/మೄೈ

ௗ௧
 given by Equation (13) 

and substituting ଵܶ/ଶௌௐ ൌ ଵܶ/ଶ െ ଵܶ/ଶ
଴ , Equation (27) becomes 
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where  is a coupling constant linking the magnetospheric electric field (VS) to T1/2 and 

 is a relaxation constant. Solving Equation (29) using Euler’s method provides a model 

of T1/2 as a function of time to compare with the observed data from GRACE.  

UV contribution to T1/2 

 Equation (29) shows that any solution for ଵܶ/ଶ depends on the ways in which both 

ଵܶ/ଶ௎௏ and ଵܶ/ଶ
଴  are treated. They can be treated as constants through the storm period or 

allowed to vary. If they are variable, a method of calculating their value must be selected. 

The following sections outline the three ways in which ଵܶ/ଶ௎௏ and ଵܶ/ଶ
଴  are treated for 

this research. 

Method One  

 The simplest way to treat ଵܶ/ଶ௎௏ and ଵܶ/ଶ
଴  is to approximate them as constants 

through the storm period. This is the method Burke et al., 2009 used in their original 

model. In method one, 
ௗ்భ/మೆೇ

ௗ௧
ൌ 0 at all times and Equation (29) becomes 

Solving Equation (30) via the Euler method results in a time dependent formula for ଵܶ/ଶ 

shown in Equation (31). 
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In method one, ଵܶ/ଶ
଴  was defined as the mean of the observed arithmetic mean exospheric 

temperature from the 8 GRACE orbits (12 hrs) prior to the storm start time and 

considered constant throughout the storm. A time step (t) of 1 minute was used to match 

the cadence of the ACE-derived magnetospheric electric field data. 

Method Two 

In method two the pre-storm equilibrium temperature, ଵܶ/ଶ
଴ , was still considered to 

be constant throughout the storm period and defined identically to method one. However,  

ௗ்భ/మೆೇ
ௗ௧

  was allowed to be non-zero in Equation (29).  Solving Equation (29) with a non-

zero 
ௗ்భ/మೆೇ

ௗ௧
 via the Euler method with a one-minute time step results in the time-

dependent expression for ଵܶ/ଶ used in method two.  

To account for the variation in the UV contribution to the exospheric temperature, 

the J77 model calculates ଵܶ/ଶ௎௏ as a function of the F10.7 index using the formula  

where F10.7 is simply the daily value of the F10.7 index and F10.7a is an 162-day averaged 

value of the F10.7 index. Using the results of Equation (33), the time rate of change of 

ଵܶ/ଶ௎௏ was calculated for each minute during the storm period using Equation (34). 

 

(32)
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Equation (34) results in a value for 
ௗ்భ/మೆೇ

ௗ௧
 for each minute during the storm period with 

units of 
௄

௛௥
. The J77 formulation for ଵܶ/ଶ௎௏ in Equation (33) results in values for 

ௗ்భ/మೆೇ
ௗ௧

 

that are constant, but not necessarily zero, for 24 hour periods between F10.7 observations 

at 20Z each day.  

Method Three 

 In method three,  
ௗ்భ/మೆೇ

ௗ௧
 was allowed to vary using Equations (33) and (34) in the 

same way as method two.  ଵܶ/ଶ
଴  was also allowed to vary by approximating               

ଵܶ/ଶ
଴ ൌ ଵܶ/ଶ௎௏

௖௢௥ , where ଵܶ/ଶ௎௏
௖௢௥  is a corrected version of ଵܶ/ଶ௎௏. To obtain values for 

ଵܶ/ଶ௎௏
௖௢௥ ሺݐሻ at a one-minute time cadence, the J77 formula for ଵܶ/ଶ௎௏ was used (Equation 

(33)) to calculate a value for ଵܶ/ଶ௎௏ at 20Z each day and then interpolated to produce a 

value at each minute during the storm period. Because Equation (33) is a modeled input, 

it does not always match the observed value of ଵܶ/ଶ
଴ , as defined in method one, at the 

beginning of the storm period. To remove this discrepancy a correction factor, K, was 

added to the modeled value of ଵܶ/ଶ௎௏ at each time 

where ଵܶ/ଶ௎௏ሺݐሻ is the result of Equation (33) after interpolation and K is given by  

 

(34)
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In Equation (36)  ଵܶ/ଶ௎௏
଴,௢௕௦௘௥௩௘ௗis the observed pre-storm equilibrium temperature defined in 

method one and ଵܶ/ଶ௎௏
଴,௠௢ௗ௘௟௘ௗ is the modeled value of the exospheric temperature, using 

Equation (33) and interpolation, at the start of the storm period.  

The approximation ଵܶ/ଶ
଴ ൌ ଵܶ/ଶ௎௏

௖௢௥  results in a modified version of Equation (29) 

to be used for method three, given by Equation (37). 

 

Solving Equation (37) with Euler’s method using a one-minute time step results in the 

time-dependent expression for ଵܶ/ଶ used in method three. 

Orbit Averages 

 Because the observed T1/2 data from GRACE that the model is attempting to 

replicate is averaged over the period of an orbit, the modeled data needs to be averaged 

over the same time periods to facilitate direct comparison.  After modeled T1/2 values are 

calculated for each minute of the storm period using one of the three methods above the 

modeled values were averaged over the same time periods defined earlier by the GRACE 
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orbits. The time stamp for each averaged value is taken to be the start of the average 

period, which is equivalent to the start of the GRACE orbit used for the observed data.  

Coupling Constant and Relaxation Constant 

 The last piece of the model that must be determined is the value of the coupling 

constant, , and the relaxation constant, , in Equations (31), (32), and (38) for methods 

one, two and three respectively. The values of both  and  were considered constant 

through each storm period but were allowed to have different values for each storm 

period and for each method. To determine the optimal value of  and  for each storm 

period, the MATLAB fminsearch function was used to minimize the relative root-mean-

squared (RMS) error, defined by Equation (39), between the observed and modeled 

values of T1/2 by adjusting the values of  and  . 

Here ଵܶ/ଶ
௢௕௦௘௥௩௘ௗ denotes the orbit-averaged observed T1/2 values derived from GRACE 

data,  ଵܶ/ଶ
ெ௢ௗ௘௟ denotes the orbit-averaged model T1/2 values using one of the methods 

described above and N is the number of data points during the storm period. The 

MATLAB fminsearch function uses the Nelder-Mead simplex direct search method 

(Lagarias, et al., 1998) to minimize a given function. The algorithm is outlined in 

Appendix B. Using this procedure optimal values for  and  were determined for each 

storm period and each method, along with the resulting relative RMS error.   
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Density Conversion 

The main purpose of the driven-dissipative model is to show the relevance of 

using the magnetospheric electric field to model the energy input to the thermosphere 

during geomagnetic storming. This is accomplished by modeling orbit-averaged T1/2. 

However, since there are no published temperature errors for current thermospheric 

models such as HASDM, the temperature errors from the driven-dissipative model cannot 

be directly compared to existing thermospheric models. In order to facilitate comparisons 

with published mean HASDM density errors of 17% during geomagnetic storming 

(Marcos et al., 2010) the model T1/2 results must be used to generate model density 

values. In an operational application, this would be done by using the driven-dissipative 

method or model T1/2 output in a current thermospheric model such as HASDM or JB08. 

For the purpose of assessing the relationship between T1/2 errors and density errors, the 

J77 model can be used to generate model densities from model T1/2 values. 

 The model used in this thesis is designed to minimize the error between observed 

and modeled orbit-average T1/2 values, not the error between modeled and observed T1/2 

at any given point and time. Observed T1/2 values reflect the GRACE satellite’s latitude 

while model T1/2 values do not exhibit this same variation. Instead they are generated by 

the Equation (38) which produces T1/2 as a function of time that, while not matching the 

latitudinal variation of the observed T1/2, results in orbit-average values very close to 

those observed. This relationship is shown in Figure 13. The observed T1/2 values (blue 

line) vary as a function of latitude (bottom plot) while the modeled T1/2 values (red line) 
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do not. Despite this difference, orbit-averaged observed T1/2 values (blue x’s) agree well 

with model orbit-averaged T1/2 values (red dots).  

 

Figure 13: Illustration of the latitudinal dependence of observed (blue) and 
modeled (red) T1/2 values. The top plot shows observed T1/2 values in each GRACE 
latitude bin (blue line) and raw modeled T1/2 values at a one minute time cadence 
(red line). Orbit-averaged observed T1/2 values are shown as blue x’s and orbit-
averaged model T1/2 values are shown as red dots. The bottom plot shows that 
Latitude of the GRACE satellite as a function of Julian Date, 2004.  

 

Since the model is not formulated to accurately model T1/2 in each GRACE 

latitude bin, the model cannot be expected to accurately model density in each GRACE 

latitude bin. This means that the orbit-averaging method used previously, where values 

were computed for each latitude bin and then averaged over an orbit, cannot be used 

when converting model T1/2 into model density values. Instead, to generate orbit-average 

model densities, orbit-average model T1/2 values are used. Since the J77 model tables list 
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density as a function of T and height, model orbit-averaged T1/2 is converted to model 

orbit-averaged T via Equation (40) 

where തܶஶ,௠௢ௗ is the modeled orbit-averaged T, തܶଵ/ଶ,௠௢ௗ is the modeled orbit-averaged 

T1/2, and ܦഥ is the observed orbit-averaged conversion factor from the J77 model 

calculated via Equation (19).   

Once തܶஶ,௠௢ௗ was calculated it was paired with the corresponding observed 

GRACE orbit-averaged height to generate model orbit-averaged density via interpolation 

within the J77 model tables. Using this process, model orbit-averaged density was 

calculated for each storm and then compared to the observed GRACE orbit-averaged 

density to calculate the relative density RMS error via Equation (41) 

where ̅ߩ௢௕ is the observed orbit-averaged density, ̅ߩ௠௢ௗ is the modeled orbit-averaged 

density and N is the number of data points. 
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IV.  Analysis and Results 

Chapter Overview 

Section IV begins with a comparison of the method used by Burke et al., 2009 to 

derive observed exospheric temperatures from GRACE data with the method developed 

for this thesis. Second, results are presented using the three model methods for the 38 

storms in the sample. Results from three individual storms are presented in detail and the 

results of the different methods are compared. Model results are compared with the 

results from Burke, 2011 and differences are discussed. Next, values for  and  

determined for each storm are fit as functions of F10.7a in an effort to make the model 

operationally useful. Results of the fits are presented. To test general applicability, the 

model is applied to two storms outside the original sample of 38. Finally, model 

temperature values are converted to model density values and the resulting errors are 

compared with published HASDM density errors.  

Observed Data 

Before running the model, observed temperature values need to be determined 

from GRACE data. As discussed in section III, Burke’s approach (2009) was to calculate 

orbit-averaged values of height and density from raw GRACE data and then calculate an 

orbit-averaged T  value. Wise et al., 2012 showed that calculating orbit-averaged T  

from orbit-averaged density and height data produces an inaccurate result due to the fact 

that GRACE orbits are slightly non-circular. Instead, the more accurate approach is to 

average GRACE density and altitude into 3-degree latitude bins, calculate T for each 
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GRACE latitude bin, and then orbit-average the resulting values. Wise’s approach to 

orbit-averaging values is applied here. 

 After calculating orbit-averaged density and height values, Burke et al., 2009, 

applied the quadratic fit to the J77 model given in equations (6) and (7) to calculate the 

orbit-averaged T values. This fit was developed to provide good results for heights 

within the range from 300 to 500 km and for T from 700 to 2000 K (Burke, 2008). For 

the storms sampled in this thesis, GRACE heights range from 455-534 km and T ranged 

from roughly 500K – 1400K. Since the GRACE data for the storm sample does not fit 

entirely within the range treated well by the quadratic fit a test was run to determine if the 

quadratic fit would produce accurate results for all storms. To compare the results of 

Burke’s quadratic fit with the J77  model, T was calculated for each GRACE latitude 

bin in 2004 using Burke’s quadratic fit given in equations (6) and (7) and using the 

interpolation/iteration technique with J77 model tables described in section III. Resulting 

values of T were then orbit averaged. While the J77 table interpolation/iteration 

technique is much more computationally intensive than the quadratic fit, it produces a 

more accurate representation of the true J77 model output because it includes a maximum 

error tolerance described in section III.  

Figure 14 shows the orbit-averaged exospheric temperature values resulting from 

Burke’s quadratic fit (red) and the J77 interpolation/iteration technique (black) for all of 

2004. Burke’s fit exhibits significantly less variation than the J77 interpolation/iteration 

method, especially when temperatures drop below 850K or rises above 1000K.  
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Figure 14: Comparison of the orbit-averaged exospheric temperature resulting 
from Burke’s quadratic fit to the J77 model (red) and the J77 
interpolation/iteration method developed for this thesis (black) as a function of 
Julian Date, 2004 where the date is counted from 1 January, 2004. 

 

 Figure 15 shows the quadratic fit results ( ஶܶ,஻௨௥௞௘ሻ, plotted as a function of the 

interpolation/iteration results ( ஶܶ,ூ௡௧௘௥௣). If the methods produced equivalent results, all 

data would fall along the line with a slope of one and a y-intercept of zero shown as a 

black dashed line. Burke’s fit only closely matches the J77 tables in a narrow range 

around 850K. Above this value Burke’s fit produces temperatures lower than the J77 

tables and below this value Burke’s fit produces temperatures significantly higher than 

J77 tables. Because the quadratic fit does not closely match the J77 interpolation/iteration 

technique over the whole range of temperatures, and departs significantly for the low 

temperatures below 850K that are common near solar min from 2006-2008, the J77 

interpolation/iteration technique was used to generate the observed GRACE temperatures 
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used in this thesis. T was calculated for each GRACE latitude bin and converted to T1/2 

using Equation (18). The temperature values were then orbit-averaged.  

 

Figure 15: Orbit-averaged exospheric temperature from Burke’s J77 quadratic fit 
 ሻ plotted as a function of orbit-averaged exospheric temperature fromࢋ࢑࢛࢘࡮,ஶࢀ)
the J77 interpolation/iteration method (ࢀஶ,࢖࢘ࢋ࢚࢔ࡵሻ is shown with blue dots. Data 
shown is from 2004. The dotted black line has a slope of 1 and a y-intercept of 0. 

Model Results 

Using the observed orbit-average T1/2 values calculated from GRACE data via the 

J77 interpolation/iteration technique, the model was run using methods one, two and 

three described in section III for each storm period listed in Table 1. Table 2 shows the 

model results. The columns from left to right list the year of the storm, the starting day of 

the storm, the minimum value of the Dst index during the storm period, the value of the 

F10.7a index on the first day of the storm, the value of the pre-storm equilibrium 

temperature (T1/2
0), and the change in T1/2UV over the storm period (T1/2UV) defined as 

the difference between the value of T1/2UV at the end of the storm period and T1/2
0. All of 
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these values are the same for each method. Next values for the coupling constant () with 

units of  
௄∙௠

௛௥∙௠௏
, relaxation constant () with units of hrs, and the relative T1/2  RMS error 

(RMS) in percent resulting from each method for each storm are listed. 

Table 2:  Model Results 

 

Year F10.7a T1/2
0   RMS   RMS   RMS

2002 246 -109 179.0 1214.4 -0.07 39.47 6.80 1.087% 39.61 6.78 1.088% 39.61 6.79 1.087%

2002 250 -181 179.1 1273.2 21.58 67.28 3.64 1.828% 67.82 3.55 1.884% 68.38 3.32 2.332%

2002 272 -176 175.7 1134.5 -5.49 37.93 5.95 1.932% 37.11 6.12 1.921% 36.40 6.18 1.901%

2002 276 -146 175.0 1141.2 31.96 28.65 7.64 0.745% 27.22 7.43 0.750% 31.33 4.97 1.018%

2002 296 -98 174.4 1158.4 18.04 31.95 4.23 1.980% 38.61 3.40 2.066% 36.54 3.55 2.619%

2002 324 -128 174.0 1116.8 -24.16 25.44 4.25 2.631% 26.79 4.18 2.654% 27.02 5.30 2.040%

2003 149 -144 128.8 983.3 -49.18 41.42 3.20 3.715% 37.96 3.68 3.563% 36.02 4.39 2.174%

2003 229 -148 127.7 937.2 -10.75 41.35 6.98 3.599% 42.59 6.85 3.626% 41.79 7.43 3.444%

2003 324 -422 129.2 983.4 17.93 71.14 4.41 3.939% 69.68 4.45 3.960% 70.56 4.18 4.486%

2004 22 -149 126.0 1044.2 -32.74 26.29 5.08 2.122% 26.73 5.26 2.084% 26.29 6.46 1.763%

2004 94 -112 120.8 885.1 -22.38 37.23 7.49 1.452% 36.87 7.71 1.403% 35.46 8.23 1.468%

2004 204 -197 106.4 876.0 -117.63 31.45 7.16 4.456% 30.72 7.82 4.279% 35.32 10.03 3.003%

2004 208 -197 107.7 856.2 -26.60 33.99 6.72 1.603% 34.47 6.84 1.586% 33.62 7.47 1.554%

2004 243 -126 109.1 793.8 7.17 44.63 5.58 2.270% 43.32 5.72 2.331% 41.13 5.76 2.338%

2004 312 -373 109.9 970.0 -10.76 61.12 7.05 1.739% 61.07 7.11 1.746% 60.05 7.34 1.691%

2004 314 -289 110.3 1122.4 -84.39 63.56 2.96 2.731% 59.20 3.34 2.746% 44.58 5.22 1.941%

2005 127 -127 93.5 914.9 28.97 46.38 5.88 2.354% 48.74 5.47 2.476% 50.14 5.11 3.048%

2005 135 -263 94.0 904.3 3.49 52.88 7.33 2.070% 52.73 7.28 2.056% 52.81 7.19 2.077%

2005 148 -138 94.2 793.7 6.43 26.89 11.96 2.242% 27.39 11.63 2.153% 29.48 10.77 2.164%

2005 163 -106 95.3 830.2 -37.58 30.27 8.27 3.027% 30.13 9.04 2.989% 28.84 11.08 2.610%

2005 236 -216 94.8 802.7 -31.30 46.59 5.33 3.401% 47.46 5.37 3.430% 44.87 6.72 1.926%

2005 243 -131 94.7 797.1 -19.41 47.31 5.33 2.669% 46.68 5.55 2.586% 45.55 6.08 2.076%

2006 98 -80 81.2 839.3 -8.75 22.99 11.51 1.548% 24.20 11.11 1.508% 24.19 12.09 1.483%

2006 103 -111 81.5 816.6 -12.25 31.61 9.09 2.587% 31.62 9.20 2.543% 31.31 9.78 2.336%

2006 348 -146 80.0 788.2 -19.73 35.52 8.81 2.104% 35.35 9.18 2.103% 34.44 9.84 1.961%

2007 142 -63 75.8 725.7 -16.93 20.98 8.11 2.312% 21.88 7.92 2.336% 20.32 10.41 1.686%

2007 191 -39 74.6 758.6 0.63 22.51 12.28 0.830% 22.43 12.28 0.825% 22.43 12.18 0.826%

2007 195 -45 74.5 767.6 -7.36 29.67 8.74 1.058% 30.39 8.71 1.041% 29.99 9.35 0.973%

2007 218 -34 74.0 709.3 -3.11 25.63 9.16 0.973% 25.58 9.26 1.005% 24.87 9.83 0.940%

2007 298 -52 71.5 715.8 -1.67 30.55 5.58 1.571% 30.69 5.56 1.564% 30.90 5.59 1.521%

2007 323 -63 69.9 697.7 -1.70 24.09 12.96 1.973% 23.89 13.15 1.967% 23.79 13.22 1.953%

2007 351 -38 70.5 821.4 -30.61 22.20 5.25 2.470% 22.28 5.48 2.467% 24.32 7.58 1.425%

2008 31 -44 70.3 708.2 -5.25 18.16 13.73 1.308% 18.40 13.64 1.253% 18.64 13.99 1.181%

2008 68 -72 70.4 711.4 1.24 17.99 11.46 1.391% 18.53 11.05 1.404% 18.56 11.21 1.423%

2008 86 -43 70.8 731.7 -13.79 23.28 14.90 0.964% 24.74 14.19 0.905% 25.89 14.53 0.791%

2008 166 -40 70.5 714.7 -3.87 28.66 8.46 0.776% 28.81 8.49 0.798% 27.80 9.29 0.693%

2008 194 -40 69.9 681.9 -1.89 25.57 7.42 0.793% 25.79 7.46 0.792% 25.70 7.70 0.783%

2008 247 -51 69.3 645.1 -3.59 18.47 12.39 1.204% 18.24 12.73 1.198% 17.83 13.28 1.161%

Method 1 Method 2 Method 3Start 
Day

Min 
Dst


T1/2UV 
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Table 3 lists the mean and standard deviation of , , and the relative T1/2  RMS 

error for each method. The mean values of ,  and relative RMS error are very similar 

between methods one and two. The only difference between these two methods is the 

factor 
ௗ்భ/మೆೇ

ௗ௧
 in Equation (32). Since 

ௗ்భ/మೆೇ
ௗ௧

  is calculated using the 24-hr change in the 

F10.7 index via Equations (33) and (34) it is generally a small term resulting in little 

difference between methods one and two. Method three has mean alpha values lower than 

methods one and two and mean tau values slightly higher. The mean relative RMS error 

for method three is 10% less than that of method one.  

Table 3:  Model Statistics 

 

 

Figure 16 shows histograms of relative T1/2 RMS error values (top),  values 

(bottom left), and  values (bottom right) for each of the three methods. Relative RMS 

error values for methods one and two have a diffuse peak from 1.5 – 2.5%, and a range of 

0.76% - 4.46%. The standard deviation is very similar for the two methods: 0.94% for 

method one and 0.93% for method two. Method three has a stronger relative RMS error 

peak between 1.5% - 2% but a larger overall range from 0.69% - 4.49%.  In general the 

method three errors are more tightly packed, with a standard deviation of 0.80%. 

 

Mean    


Std Dev 


Mean    


Std Dev   


Mean        
RMS

Std Dev 
RMS

Number Percentage

Method 1 35.03 13.90 7.71 3.07 2.04% 0.94% 7 18%
Method 2 35.15 13.50 7.74 3.01 2.03% 0.93% 4 11%
Method 3 34.65 12.87 8.25 3.05 1.84% 0.80% 27 71%

Lowest RMS Storms
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Figure 16: Histograms showing relative T1/2 RMS errors (top),  values (bottom 
left),  and  values (bottom right) for method one (blue), method 2 (green), and 
method 3 (maroon). Bars for methods 1-3 indicate values which fall between 
adjacent labels on the x axis. For example, the bottom left histogram shows that 
methods 1, 2, and 3 each had 3 storms with  values between 10 and 20. 

 

Coupling constant values range from roughly 17 - 68 for all methods with values 

most frequently falling between 20 and 30. Higher  values amplify the impact of VS on 

T1/2 in the model due to the term VS(t) in Equations (31), (32), and (38) for methods 

one, two, and three respectively. Therefore, storms with higher temperature rises will 

require higher alpha values in order to model them accurately.  values for method three 
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are slightly more closely spaced than those of methods one and two as evidenced by the 

slightly smaller standard deviation of 12.87 for method three vs. 13.90 for method one 

and 13.50 for method two.  

The relaxation constant controls how quickly T1/2 recovers to near pre-storm 

levels after VS returns to normal. Storms with a faster recovery result in lower  values. 

Relaxation constant values ranged from roughly 3 – 15 for all methods with values falling 

most frequently between 5 – 7.5. The range in  values was significantly smaller than the 

range in  values indicating that the recovery period of geomagnetic storms is less 

variable than the main phase. The spread in  values was similar for all methods, with 

standard deviations just over 3 hours. 

It should be noted that the seemingly small difference in mean T1/2 errors between 

method three (1.84%) and method one (2.04%) is significant due to its impact on density 

errors. Small changes (or errors) in thermospheric temperatures result in large changes 

(or errors) in thermospheric densities. A brief example from the J77 model illustrates this 

point. If the observed exospheric temperature is taken to be 700K, a 1.84% error in T  

(matching the mean method three T1/2 error) would generate a density error of 13.58% at 

an altitude of 500 km. If instead the 2.04% T1/2 error from method one were applied, the 

resulting density error would increase to 15.14% at 500 km. In this case the 0.2% 

increase in temperature error produces a 1.56% increase in density error illustrating that 

the slight increase in temperature accuracy produced by method three is operationally 

relevant. Density results will be discussed in further detail later in the document.  
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Individual Storms  

Figure 17 shows the T1/2 results of the model for the CME storm from Julian Date 

(JD) 204-210, 2004. This storm period actually includes three distinct CMEs hitting the  

earth in rapid succession as evidenced by the magnetospheric electric field data shown in 

the bottom plot. The start of the storm period is defined as the time the first CME hits on 

JD 204, indicated by the vertical red line. The second and third CMEs can be seen in the 

abrupt rises in electric field magnitude on JD 206 and just prior to JD 209. For this storm, 

method three was significantly better than methods one or two, producing a relative  

 

Figure 17: Model results for the CME storm from Julian Date 204-210, 2004. The 
top plot shows observed GRACE T1/2 (red dots), along with model T1/2 results for 
methods one (black), two (pink), and three (green). The dotted red line shows the 
pre-storm equilibrium temperature for methods one and two and the black dotted 
line shows the results of the approximation ࢀ૚/૛

૙ ൎ  used for method 3. The ࢂࢁ૚/૛ࢀ
bottom plot shows the electric field values calculated from ACE data as a function of 
time. The red vertical line indicates the storm starting time. 
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T1/2 RMS error of 3.00% compared with 4.46% for method one and 4.28% for method 

two. Method three clearly outperformed the other two methods especially in fitting the 

T1/2 peak from the first CME right around JD 205 and during the T1/2 minimum just prior 

to the third CME at the end of JD 208. 

The large differences between method three and methods one and two for this 

storm are due to the relatively large change in ଵܶ/ଶ௎௏ during the storm period from a pre-

storm equilibrium value of 876.00 K down to 758.37 K by the end of the storm as shown 

by the dotted black line in Figure 17. Method one ignores this change entirely by treating 

ଵܶ/ଶ௎௏ as a constant value through the storm. Method two takes the change into account 

partially through the 
ௗ்భ/మೆೇ

ௗ௧
 term in equation (32) but does not allow ଵܶ/ଶ

଴  to vary with 

ଵܶ/ଶ௎௏ during the storm period. For this storm, while the overall  ଵܶ/ଶ௎௏ is -117.63K 

over the storm period, the rate of change 
ௗ்భ/మೆೇ

ௗ௧
 remains small, never dropping below      

-1.79 K/hr. By not allowing ଵܶ/ଶ
଴  to vary with ଵܶ/ଶ௎௏ during the storm, methods one and 

two result in an awkward situation on JD 208, when observed GRACE ଵܶ/ଶ values drop 

below the supposed UV contribution to ଵܶ/ଶ. This means that if methods one and two 

were to be accurate during this period, they would have to produce a negative value for 

ଵܶ/ଶௌௐ, the amount of temperature rise due to the solar wind, which is an unphysical 

result. 

 Method three avoids this situation by taking into account the change in ଵܶ/ଶ௎௏ 

during the storm period by approximating ଵܶ/ଶ
଴ ൎ ଵܶ/ଶ௎௏ which results in Equation (38). 

Allowing ଵܶ/ଶ௎௏ to decrease through the storm period by definition (Equation (26)) 
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increases ଵܶ/ଶௌௐ. This results in a higher  value for method three for this storm, 35.32, 

than methods one and two, 31.45 and 30.72, respectively. Similarly, the decrease in 

ଵܶ/ଶ௎௏ during the storm period results in an increased  value for method three, 10.03, 

compared with methods one and two, 7.16 and 7.82, respectively. The decreasing ଵܶ/ଶ௎௏ 

plays a role similar to the relaxation constant and helps the modeled T1/2 recover after VS 

decreases. Since the decreasing ଵܶ/ଶ௎௏ performs a similar role to the relaxation constant, 

method three results in a higher  value. 

Figure 18 shows the results of methods one, two and three for the CIR storm from 

JD 351-356, 2007. The overall T1/2 increase for this storm over the pre-storm equilibrium 

value of 821K is about 60K. Similarly to the CME storm in Figure 17, this CIR has a 

decreasing T1/2UV throughout the storm period. Methods one and two produce virtually 

identical results, due to the fact that the 
ௗ்భ/మೆೇ

ௗ௧
 for this storm is very small, never 

dropping below -0.32 K/hr. Method three accounts for the drop in T1/2UV of about 30K 

resulting in a relative RMS error of only 1.43% compared with 2.47% for methods one 

and two. The drop in T1/2UV also results in higher  and  values compared with methods 

one and two for the same reasons as the CME storm.  

Method three produced larger errors than method one or method two for 11 

storms in the sample. Figure 19 shows the results for one of these storms, the CME-storm 

from JD 250-252, 2002. For this storm method 1 produced the lowest RMS error. Unlike 

the two previous storms, in this CME T1/2UV increases throughout the storm period. This 

causes  for method three to be lower than methods one or two, resulting in the 
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Figure 18: Model results for the CIR storm from JD 351-356, 2007. The top plot 
shows observed GRACE T1/2 (red dots), along with model T1/2 results for methods one 
(black), two (pink), and three (green). The dotted red line shows the pre-storm 
equilibrium T1/2 for methods one and two and the black dotted line shows the results 
of the approximation ࢀ૚/૛

૙ ൎ  used for method 3. The bottom plot shows ࢂࢁ૚/૛ࢀ
magnetospheric electric field values. The red vertical line indicates the storm start 
time. 

 

decreased accuracy near the peak of the storm. In addition, method three models the 

recovery phase of the storm worse than methods one or two because the increasing T1/2UV  

increases the method three model  
ௗ்భ/మ
ௗ௧

ሺݐሻ in Equation (37) during a time when observed 

T1/2 is decreasing .  
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Figure 19: Model results for the CME from JD 250-252, 2002. The top plot shows 
observed GRACE T1/2 (red dots), along with model T1/2 results for methods one 
(black), two (pink), and three (green). The dotted red line shows the pre-storm 
equilibrium T1/2 for methods one and two and the black dotted line shows the results 
of the approximation ࢀ૚/૛

૙ ൎ  used for method three. The bottom plot shows ࢂࢁ૚/૛ࢀ
magnetospheric electric field values. The red vertical line shows the storm start time. 

Method Comparison 

Overall, method three produced the lowest errors most frequently among the 38 

storms tested.  Table 3 shows that method three produced the lowest relative RMS error 

for 27 of the 38 storms studied (71%), while methods one and two only had the lowest 

error for 7 storms (18%) and 4 storms (11%), respectively. The method that produced the 

lowest error for a given storm was strongly dependent on the nature of the change (either 

increasing or decreasing) in T1/2UV over the storm period.  

Figure 20 shows the model method that produced the lowest relative T1/2 RMS 

error as a function of the change in T1/2UV (T1/2UV) over the storm period. T1/2UV was  



 

71 
 

 

Figure 20: Model method producing the lowest relative T1/2 RMS error as a 
function of the change in T1/2UV (T1/2UV) over the storm period.  

 

defined as the difference between the value of T1/2UV at the end of the storm period and 

the pre-storm equilibrium temperature. The majority of the storms (28 of 38) had a 

decrease in T1/2UV over the storm period. Method three produced the lowest error for 27 

of those 28 storms. A negative T1/2UV allows method three to accurately characterize the 

recovery period of the storm with a larger  value than methods one and two because 

some of the decrease in T1/2 is accounted for by the decreasing T1/2UV at the end of the 

storm period. This larger  value in turn means that the peak of the storm is more 

accurately modeled because a larger  tends to increase	
ௗ்భ/మ
ௗ௧

ሺݐሻ, Equation (37), during 

the growth phase of the storm when T1/2UV is still near the pre-storm equilibrium level. 
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The single storm with a negative T1/2UV that was not modeled best by method three was 

the CIR storm from JD 94-98, 2004. For this storm T1/2UV rose above the pre-storm 

equilibrium temperature on JD 95-96 before dropping below on JD 97. Method two was 

the best method for this storm. 

Method three did not produce the lowest error for any of the 10 storms with a 

positive T1/2UV.  Storms with higher values of T1/2UV tended to be modeled by method 

one best while all three of the storms with positive T1/2UV values for which method two 

produced the best results had T1/2UV < 6.5K. Positive T1/2UV forced the  value for 

method three to decrease, resulting in an underestimate of the peak T1/2 values of the 

storm. In addition, the increase in T1/2UV caused method three to model the recovery 

phase of the storm worse than method one. Both of these problems are clearly illustrated 

in the JD 250, 2002 CME shown in Figure 19. 

Comparison with Burke, 2011 

Burke, 2011 determined  values for 37 of the 38 storms listed in Table 1. To 

compare Burke’s 2011 results with current results, Burke’s  values need to be divided 

by a storm-average value of the conversion factor D, from Equation (19), to account for 

the fact that he modeled T instead of T1/2. The storm average value of D was generally 

near 0.95. After conversion, Burke’s (2011) results have a mean  value of 36.07 
௄∙௠

௛௥∙௠௏
 

and a standard deviation of 17 
௄∙௠

௛௥∙௠௏
. Burke (2011) treated TUV as a constant in his 

model similarly to method one here. Burke’s mean  and standard deviation of  are 

higher than those resulting from method one, shown in Table 3. 
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There are several reasons for the difference. First, Burke (2011) assumed  was 

constant over all storms. The value of 6.84 hrs (after conversion) was determined from 

the single storm of JD 204-210, 2004 by Burke et al., 2009 using a different calibration of 

GRACE data. Allowing   to change between storms impacts the value of . In addition, 

Burke, 2011 used one-hour averaged ACE data to calculate VS values and a time-step of 

1 hr when applying Equation (31) rather than the 1 minute time step used here. Further, 

Burke 2011 used slightly different start and end times for the storm periods than used 

here, used the quadratic fit to the J77 model in Equations (6) and (7)  to calculate 

observed T, and used a different method to calculate the pre-storm equilibrium 

temperature; namely using the value of T at the start time of the storm rather than 

averaging over the 12 hours prior. Finally, Burke, 2011 used trial and error to determine 

the best value for  in an effort to align modeled T with the observed peak. In this 

thesis, the Nelder-Mead simplex direct search method was applied in order to rigorously 

determine the best  and  values. Out of all these procedural differences, the method of 

determining  and  values for each storm has the biggest impact on results. 

To quantify the impact of using a rigorous method to determine optimum  and  

values the model was re-run for the storm of JD 204-210, 2004 using Equation (31) from 

method one and matching Burke’s procedures as closely as possible. One-hour ACE data 

was used to calculate VS and a one-hour time step was used in Equation (31). In addition 

T was modeled instead of T1/2, Burke’s pre-storm equilibrium temperature was used  
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(T
0 = 810K), and Burke’s quadratic fit and orbit-averaging technique was used to 

determine observed GRACE T.  

 Figure 21 shows a contour plot of relative T RMS errors as a function of  and  

values for the JD 204-210, 2004 storm. Contour plots were generated by running the 

model (method one here) for a 100x100 grid of  and  values and computing the relative 

RMS error resulting from each  and  pair. The  and  values from Burke, 2011 (point 

A) result in a relative T RMS error of  3.82% compared with a relative T RMS error of 

2.58% resulting from optimal  and  values (point C) determined by using the  

 

Figure 21: Contour plot of relative RMS errors (%) in T resulting from different  and  
values using the procedures from Burke, 2011 for the CME storm from JD 204-210, 2004. 
Point A shows the  and  values reported by Burke, 2011. Point B shows the  and  
values that result from using the Nelder-Mead simplex direct search method to minimize 
the error between the peak observed GRACE T and the modeled value. Point C shows 
the  and  values resulting from using the Nelder-Mead simplex direct search method to 
minimize the relative RMS error in T over the entire storm period. 
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Nelder-Mead simplex direct search method to minimize the relative RMS error. Point B 

shows the  and  values resulting from the Nelder-Mead method applied to minimize 

the error between the peak observed GRACE T and the modeled value. This is the error 

Burke (2011) was trying to minimize via trial and error.  

The contour plot shows that the relative RMS error is a relatively shallow 

function of   within the range of 5 – 8 hrs and  within the range of 30 to 45 
௄∙௠

௛௥∙௠௏
. 

Because of this the difference between Burke’s  and  values (44.00 
௄∙௠

௛௥∙௠௏
,6.50 hrs) and 

the optimal values (31.83
௄∙௠

௛௥∙௠௏
,7.25 hrs) only decreases relative RMS error from 3.82% 

to 2.58%. This shows that while Burke’s trial and error method came close to the optimal 

values, the more rigorous approach produces superior results and helps explain the 

difference between the method one  values and Burke’s results. The fact that relative 

RMS error is a relatively shallow function of  and  near the minimum also suggests 

that it is possible to produce acceptable results with  and  values different than the 

optimal values.  

Solar Cycle Dependence of  and  

Burke, 2011 suggested that the values for  might vary throughout the solar cycle 

as a function of F10.7a. Since the relative RMS error is a shallow function of  and  near 

the minimum, it is reasonable to expect that the model will produce low errors with 

values of  and  that are different than the optimal values for each storm. In order to test 

this, best-fit curves were constructed to produce  and  as functions of the F10.7a value, 



 

76 
 

the 162-day running average of the F10.7 index used in the J77 model, at the start of each 

storm period shown in Table 2. Since F10.7a is a 162-day average, it changes very little 

over the 1- 6 day storm periods used in this Thesis. Least-Squares fits were constructed 

using data from method three because it proved to produce the lowest errors of the three 

methods for most of the storms in the sample. 

Figure 22 shows method three  values as a function of F10.7a for all storms. A 

linear fit, shown in black, produces a tenuous correlation of R = 0.21. Robinson and 

Vondrak, 1984 showed that both the ion-electron production rate, which impacts particle 

precipitation, and ionospheric conductance, which impacts joule heating, depend on 

ඥܨଵ଴.଻ (Burke, 2011). Since  accounts for the energy transfer from the magnetosphere 

to the thermosphere via joule heating and particle precipitation in the driven-dissipative 

model, it is reasonable to fit  as a quadratic function of  ඥܨଵ଴.଻௔ (Burke, 2011). The 

quadratic fit of  to ඥܨଵ଴.଻௔ , shown in red, produces a correlation of R = 0.40 which is 

much improved over the linear fit. Figure 23 shows  as a function of F10.7a for all storms 

using method three. Again, a quadratic least-squares fit was constructed of  as a function 

of ඥܨଵ଴.଻௔. The correlation of R = 0.53 is higher than the correlation for .   
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Figure 22: Coupling constant () as a function of F10.7a shown with blue dots. The black 
line and text show the best linear fit to the data. The red line and text show the best fit 
of  as a quadratic function of ඥࡲ૚૙.ૠࢇ. 

 

Figure 23: Relaxation constant () as a function of F10.7a shown with blue dots. The 
black line shows the best fit of  as a quadratic function of ඥࡲ૚૙.ૠࢇ. 
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Outliers 

Figure 22 highlights the fact that three storms have significantly higher values of 

 than the others. The JD 250, 2002 CME has an  value of 68.38, the JD 324, 2003 

CME has an  value of 70.56 and the JD 312, 2004 CME has an  value of 60.05. All 

other storms have  < 53. The high  values for the 2003 and 2004 storms are due to the 

fact that they were by far the strongest storm in the sample. For the 2003 storm, the 

minimum Dst value was an extreme -422 nT and it had T1/2 rise of 536 K over the pre-

storm equilibrium value. The 2004 storm had a minimum Dst value of -389 nT and a T1/2 

rise of 538K.  These T1/2 rises are 270K larger than the next highest rise in the sample. 

The high  values for the JD 324, 2003 CME and the JD 314, 2004 CME are a result of 

the large storm-time rise in T1/2.  

In contrast, the JD 250, 2002 storm has a minimum Dst of -181 nT and a storm-

time rise in T1/2 of 210K. While this is a large rise in T1/2, there were 11 storms in the 

sample which had a larger T1/2 rise yet a smaller . The JD 250, 2002 CME had such a 

high  value because its storm time T1/2 rise resulted from a relatively weak VS signature 

with a maximum of 1.37 mV/m shown in Figure 19. For comparison, the JD 204, 2004 

storm shown in Figure 17 had a T1/2 rise 18% higher than JD 250, 2002 yet the maximum 

VS value was 58% higher. The JD 250, 2002 storm had a temperature rise that was 

disproportionately larger than the solar wind energy contribution, modeled with the VS 

term, would indicate. For this storm, the extra energy came from a spike in solar EUV 

energy shown in Figure 24.  
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Figure 24 plots five-minute average EUV (26-34 nm) flux (black line), as 

measured by the Solar and Heliospheric Observatory (SOHO) satellite, as a function of 

JD, 2002 for the time period of the JD 250, 2002 CME. Daily F10.7 (solid red line and x’s) 

and F10.7a (dotted red line with x’s) values are also shown. The blue vertical line indicates 

the storm start time. A large spike in EUV flux, due to a solar flare, is clearly seen just 

after the storm start time. Since the model accounts for EUV energy with the daily F10.7 

index, it does not capture variations on such short time scales as the flare seen during this 

storm. As a result, the model has to account for this EUV flare energy by attributing it to 

the solar wind contribution, VS. Since VS is small for this storm, the only way to 

increase the solar wind contribution is by increasing the  value. 

 

 

Figure 24: Five-minute average Solar EUV flux (26-34 nm) measured by the SOHO 
satellite (black) shown as a function of JD, 2002. Daily F10.7 (solid red line and x’s) and 
F10.7a values (dotted red line and x’s) are also shown. The blue line indicates the start 
time of the JD 250, 2002 CME storm.  
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Impact of Storm Type 

Since CME-driven storms have features distinctly different than CIR-driven 

storms, their response to solar cycle changes may not be equivalent.  To test this, least-

squares fits of  and  to ඥܨଵ଴.଻௔ were constructed for each storm type separately. Of the 

38 storms in the sample, 25 were CIR storms and 13 were CME storms. Table 1 lists the 

storm type of each storm. Figure 25 shows  as a quadratic function of ඥܨଵ଴.଻௔ for CME 

storms (blue) and CIR storms (red). The value of  for CME storms exhibits a very low 

correlation, R = 0.12, and is nearly a straight line. CME storms generally had higher  

values than CIR storms. In fact all storms with  > 50 are CMEs while all of the storms 

with  < 25 are CIR storms. CIR storms are fit much better as a function of ඥܨଵ଴.଻௔ with 

a correlation of R = 0.60, much improved from the all-storms fit. The CIR storms are fit 

better because both CIR occurrence and F10.7 index both exhibit a 27-day period linked to 

solar rotations. Since CME occurrence is irregular with no characteristic spacing, CMEs 

are not as well correlated with F10.7 measurements (Borovsky and Denton, 2006). 

Figure 26 shows  as a quadratic function of ඥܨଵ଴.଻௔ for CME storms (blue) and 

CIR storms (red). Both best fit curves are similar, with correlations of R=0.47 and 

R=0.51 for CIRs and CMEs, respectively. The correlations are worse for both storm 

types than the correlation of the all storms fit indicating that  is not strongly dependent 

on storm type. In general,  values are higher for CIR storms. All storms with  > 11 are 

CIR-driven. 
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Figure 25: Coupling constant () as a function of F10.7a. Best fits of  as a quadratic 
function of ඥࡲ૚૙.ૠࢇ are shown. CME storms are shown in blue, CIR storms in red. 

 

 

Figure 26: Relaxation constant () as a function of F10.7a. Best fits of  as a quadratic 
function of ඥࡲ૚૙.ૠࢇ are shown. CME storms are shown in blue, CIR storms in red. 
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Best Fit  and  Results 

All 38 storms were run with all storm fit  and  values determined with the 

quadratic equations shown in Figure 22 and Figure 23 using method three procedures. In 

addition, CME storms were run using the CME fit  and  values and CIR storms were 

run using CIR fit  and  values determined using functions shown in Figure 25 and 

Figure 26. Table 4 shows the mean T1/2 relative RMS errors, calculated using Equation 

(39), that result from method three using optimal  and  values for each storm listed in 

Table 2, along with relative RMS errors that result from the all storms fit, CME fit, and 

CIR fit  and  values. Column 2, labeled All Storms Mean, shows that the mean T1/2 

RMS error increased from 1.84% to 3.15% for all 38 storms when using the all storms fit 

 and  values. For CME and CIR storms, errors increased from the optimal values when 

both the all storms fit and the storm specific fit was applied. For both storm types, the 

storm type specific fit values of  and  produced a lower average RMS error than the all 

storms fit. Applying best-fit curves to determine  and  for each storm also created more 

spread in the relative T1/2 RMS error values.  

Table 4:  Relative T1/2 RMS Error Results using Best Fit  and  values with 
Method Three  

 

  

Mean Std Dev Mean Std Dev Mean Std Dev
Optimal and 1.84% 0.80% 2.17% 0.83% 1.67% 0.75%

All Storms Fit  and  3.15% 1.68% 4.37% 2.00% 2.52% 1.06%
CME-Fit  and  4.01% 1.77%
CIR-Fit  and  2.24% 1.01%

All Storms CME Storms CIR Storms
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Table 4 shows standard deviations of the relative RMS error for each of the 

different fits. In all cases, the standard deviation increased over the value for the optimal 

 and  case. Figure 27 shows histograms of the relative T1/2 RMS error for all storms 

(top), CME storms (bottom left) and CIR storms (bottom right). In the all storm 

histogram we see the all storm fit error values are spread over a much larger range than  

 

 

Figure 27: Histograms showing relative T1/2 RMS errors from method three using 
best-fit  and  values  for all storms (top), CME storms (bottom left),  and CIR 
storms (bottom right). Errors for optimal  and  values are shown in green, errors 
for all storm fit  and  values are shown in gray, errors for CME-fit  and  
values are shown in blue, and errors for CIR-fit  and  values are shown in red. 
Bars show the number of storms which resulted in a relative T1/2 RMS error 
between the adjacent values of the x-axis. 
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the optimal error values. The maximum error using optimal  and  values lies between  

4 – 4.5% while the maximum error using all storm fit  and  values lies between            

8 - 8.5%. Similar patterns are seen for CME storms and CIR storms. The spread is most 

significant for CME storms, where the standard deviation more than doubles from 0.83% 

for the optimal case to 2.00% for the all storm fit case.  

Individual Storms 

Table 5 shows the results of the all storms fit and the CME fit  and  values 

applied to the CME storm of JD 204-210, 2004. The optimal  and  for this storm are 

included for comparison. In this case, the CME fit produced a higher error than the all-

storms fit. This is not surprising as the correlation for the CME-fit function for  was 

very low (R = 0.12).  and  values resulting from the all storms fit and the CME fit are 

very similar for this storm, resulting in the similar model T1/2 curves for these two cases 

seen in Figure 28 as the solid pink (all storms fit) and black (CME fit) lines.  Both the 

best fit  and  values produce model T1/2 curves that are below the optimal one (shown 

in green) resulting in decreased accuracy especially during the second and third T1/2 

peaks on JD 207 and JD 209. The best fit  values are higher than the optimal value, 

suggesting that model T1/2 increase more rapidly when VS increases, however the best fit 

 values are lower than the optimal case which indicates a quicker recovery time and 

decreases the modeled increase in T1/2. For this storm, the decrease in  wins out and 

causes the model T1/2 for the all storm and CME fit cases to lag below the optimal case 

during the peaks on JD 205 and 207.  
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Table 5:  Results for JD 204-210, 2004 CME 

 

 

 

Figure 28: Model results for the CME storm from Julian Date 204-210, 2004. The top 
plot shows observed GRACE T1/2 (red dots), along with method three model T1/2 using 
optimal  and  values (green), all storms fit  and  values (pink), and CME fit  and 
 values (black). The the black dotted line shows T1/2UV. The bottom plot shows the 
electric field values calculated from ACE data as a function of time. The red vertical 
line indicates the storm starting time. 

 

A contour plot of relative T1/2 RMS errors (%) as a function of  and  is shown 

in Figure 29 for the JD 204-210, 2004 CME storm. As expected, relative RMS error is a 

relatively shallow function of  and  around the minimum, shown as point A 

  Relative T1/2 RMS Error

Optimal 35.32 10.03 3.00%

All Storms Fit 41.93 7.74 3.30%
CME Fit 42.08 7.17 3.76%
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corresponding to the optimal  and  values for this storm.  Points B and C correspond to 

 and  values calculated using the all storms fit and the CME fit, respectively. Even 

though these values are not very close to the minimum, the relative RMS error for both is 

still less than four percent.  

 

 

Figure 29: Contour plot of relative T1/2 RMS errors (%) as a function of  and  for the JD 
204-210, 2004 CME storm using method three. Point A shows the optimal  and  values, 
point B shows the all storms fit  and  values, and point C shows the CME fit  and  
values. 

 

Table 6 shows the results of the all storms fit and the CIR fit  and  values 

applied to the CIR storm of JD 351-356, 2007. The optimal values of  and  are 

included for comparison. For this storm the CIR-fit produced a lower relative RMS error 

than the all-storms fit.  Best fit  values for this storm are very close to the optimal value 
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while best fit  values are 3 – 3.5 hrs higher than the optimal value. The increased  value 

indicates that the best fit models should result in higher T1/2 values, especially after VS 

decreases, because higher  values equate to a longer e-fold recovery time.  

Table 6:  Results for JD 351-356, 2007 CIR 

 

 

Figure 30 shows the model results for the JD 351-356, 2007 CIR storm and as 

expected, both the all storm fit and the CIR fit  and  values have T1/2 curves that are 

higher than the optimal case resulting in the increased errors shown in Table 6. As with 

the JD 204, 2004 CME, here the all storm fit and the storm specific fit  and  values are 

similar leading to the small difference between the all storm and CIR fit T1/2 curves.  

A contour plot of relative T1/2 RMS error (%) as a function of  and  is shown 

for the JD 351-356, 2007 CIR in Figure 31. Point A shows the location of the minimum  

error resulting from optimum  and   values while points B and C show the locations of 

the all storm fit and CIR fit  and   values, respectively. Again, the error is a relatively 

shallow function of  and  around the minimum. Any ,  pair within the ranges of 20 < 

 < 28 and 5 <  < 10 results in a relative RMS error of less than 3% for this storm.  

 

  Relative T1/2 RMS Error

Optimal 24.32 7.58 1.43%
All Storms Fit 23.84 11.26 2.76%

CIR Fit 23.32 10.53 2.24%
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Figure 30: Model results for the CIR storm from Julian Date 351-356, 2007. The top 
plot shows observed GRACE T1/2 (red dots), along with method three model T1/2 using 
optimal  and  values (green), all storms fit  and  values (pink), and CIR fit  and 
 values (black). The black dotted line shows T1/2UV. The bottom plot shows the 
electric field values calculated from ACE data as a function of time. The red vertical 
line indicates the storm starting time. 

General Applicability 

The results of the model using best fit  and  values indicate that relatively low 

errors can be obtained using model parameters determined without prior knowledge of 

storm-time T1/2 values. To test this conjecture the model with best-fit  and  values was 

applied to two storms, one CME and one CIR, outside the original sample of 38 storms 

that were used to determine the best fit  and  curves. Due to the constraints of GRACE 

data availability, both test storms were within the same time frame of the original storms 
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Figure 31: Contour plot of relative T1/2 RMS errors (%) as a function of  and  for the JD 
351-356, 2007 CIR storm using method three. Point A shows the optimal  and  values, point 
B shows the all storms fit  and  values, and point C shows the CME fit  and  values. 

 

(2002-2008). Test storms were selected based on the availability of ACE data needed to 

calculate storm time VS values. Table 7 shows from left to right the year, start time, end 

time, minimum Dst index during the storm period, F10.7a value on day one of the storm, 

the pre-storm equilibrium temperature (T1/2
0), T1/2UV for each storm period, and the 

storm type for each of the test storms. 

Table 7:  Test Storm Data 

 

Day Hour Min Sec Day Hour Min Sec

2003 308 3 36 0 309 6 0 0 -69 132.06 1049.4 -24.39 CME
2004 42 4 48 0 45 0 0 0 -109 123.46 928.5 -20.16 CIR

T1/2UV Year
Storm Start  Storm End Storm 

Type
Min 
Dst

F10.7a T1/2
0
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Table 8 shows the results for the JD 308-309, 2003 CME. Although the relative 

T1/2 RMS error for both the all storms fit and CME-fit  and  values are more than 

double the optimal error, they are also less than the average error for CME storms in the 

original sample. This indicates that the best fit  and  values are reasonable even outside 

the original sample.  

Table 8:  Results for JD 308-309, 2003 CME 

 

 

Figure 32 shows the T1/2 curves resulting from the optimal, all storms fit, and 

CME fit  and  values. Both fits cause the model to overestimate the peak T1/2 value and 

do not recover as fast as the observed T1/2. The CME fit has slightly lower errors than the 

all storms fit due to its lower  value, which causes T1/2 to drop faster during the recovery 

period and close the gap between the modeled and observed T1/2. 

 Figure 33 shows a contour plot of the relative T1/2 RMS error as a function 

of  and  for the JD 308, 2003 storm. The errors for this storm are more sensitive to 

changes in  compared to the storms shown previously. However, within the range of 3 < 

 < 6,  can take any value between 35 and 48 and still produce an error of less than 3%. 

  Relative T1/2 RMS Error

Optimal 39.01 4.46 0.98%
All Storms Fit 45.54 6.47 2.89%

CME Fit 46.42 5.50 2.17%
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Figure 32: Model results for the CME storm from Julian Date 308-309, 2003. The top 
plot shows observed GRACE T1/2 (red dots), along with method three model T1/2 using 
optimal  and  values (green), all storms fit  and  values (pink), and CME fit  and 
 values (black). The black dotted line shows T1/2UV. The bottom plot shows the 
electric field values as a function of time. The red vertical line shows storm start time. 

 

Figure 33: Contour plot of relative T1/2 RMS errors (%) as a function of  and  for the 
JD 308-309, 2003 CME storm using method three. Point A shows the optimal  and  
values, point B shows the all storms fit  and  values, and point C shows the CME fit  
and  values. 
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  Results from the CIR test storm are shown in Table 9. Again, the relative T1/2 

RMS error for both the all storms fit and the CIR fit  and  values are less than or equal 

to the average errors for CIR storms in the original sample. The CIR storm fit produces 

lower errors than the all storms fit for this storm. The T1/2 curves produced by each model 

run are shown in Figure 34. The CIR fit model actually matches the peak T1/2 value just  

Table 9:  Results for JD 42-45, 2004 CIR 

 

 

 

Figure 34: Model results for the CIR from JD 42-45, 2004. The top plot shows 
observed T1/2 (red dots), along with method three model T1/2 using optimal  and  
values (green), all storms fit  and  values (pink), and CIR fit  and  values (black). 
The black dotted line shows T1/2UV. The bottom plot shows the electric field values 
calculated from ACE data. The red vertical line indicates the storm start time. 

  Relative T1/2 RMS Error

Optimal 28.74 8.56 1.05%
All Storms Fit 44.99 6.81 2.52%

CIR Fit 42.46 5.98 1.43%
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after JD 42.5 more accurately than the optimal case. The increase in error is due to the 

modeled T1/2 over-reacting to the second VS peak on JD 43 resulting in over-estimates of 

T1/2. The higher  and  values of the all storms fit cause the all-storm fit model to 

produce higher T1/2 at all times compared with the CIR fit.  A notable feature of this 

storm is the fact that the best fit  and  values are significantly different than the optimal 

values yet the relative RMS errors do not increase drastically. Figure 35 shows the 

relative T1/2 RMS error as a function of  and . There is a very broad range of  and  

values which result in errors of less than 3% for this storm and both best fit models fall 

within the range. 

 

Figure 35: Contour plot of relative T1/2 RMS errors (%) as a function of  and  for the JD 42-
45, 2004 CIR storm using method three. Point A shows the optimal  and  values, point B 
shows the all storms fit  and  values, and point C shows the CIR fit  and  values. 



 

94 
 

Density Errors 

 In order to compare the results of the driven-dissipative model to published 

HASDM density errors, model T1/2 values are used to calculate model densities. Using 

the methods described in section III, model orbit-averaged densities were computed for 

each storm in the 38-storm sample and relative density RMS errors for each storm were 

calculated. In general, higher temperature errors should result in higher density errors. 

Figure 36 shows the relative RMS error in model orbit-average density plotted as a 

function of relative RMS error in model orbit-average T1/2. In general, the errors follow 

the expected trend with high T1/2 errors resulting in high density errors. However, there 

are three outlier storms with density errors greater than 13% resulting from T1/2 errors of 

less than 1.5%.  

 

Figure 36: Model relative orbit-average density RMS error plotted as a function of 
relative orbit-average T1/2 RMS errors. Blue dots show storms from 2002 – JD 290, 
2007. Red x’s show storms from JD 290, 2007 – 2008. 
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 The outlier storms are caused in part by differences in the orbit-average 

techniques used when computing observed GRACE orbit-averaged T1/2 and model orbit-

averaged density. Figure 37 illustrates the two different techniques as applied to 

exospheric temperature. Observed GRACE orbit-averaged T1/2 was calculated via the 

bin-averaging technique where the J77 model is applied to calculate a temperature in 

each latitude bin prior to orbit-averaging. Producing observed orbit-averaged temperature 

values via the bin- averaging technique is mathematically preferable to the whole-orbit 

technique because the latter technique is akin to calculating an average of averages. 

These techniques are not equivalent and produce slightly different results. The average 

relative RMS difference between the orbit-averaged T produced by the two techniques 

was small for most storms, ranging between 0.20%  and  3.07% with an average of 

1.33%. Figure 38 shows the results of the two techniques for the storm with the largest 

difference between the two. Temperature values calculated via the bin-averaging 

technique (blue) are lower than those generated from whole-orbit technique (green) for 

this storm and all storms in the sample. 

 

Figure 37: Diagram outlining two different orbit-averaging techniques.  is the mass density, H is the 
height above sea level, and T  is the exospheric temperature. Orbit-average values are indicated by 
,ഥࡴ,ഥ࣋  .ഥஶࢀ		܌ܖ܉
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Figure 38: Orbit-Average exospheric temperature as a function of Julian Date, 2008. 
T values calculated via bin-averaging are shown in blue. T values calculated via the 
whole-orbit technique are shown in green. 

 

Ideally, to ensure consistency, the bin-averaging technique would be applied to 

calculated model orbit-averaged densities from modeled T1/2 values. This would require 

calculation of a model density in each latitude bin and then the results would be averaged 

over entire orbits. As discussed in section III, the current model is not formulated to 

accurately produce exospheric temperatures in specific latitude bins. Therefore, it is not 

meaningful to apply the bin-averaging technique to produce orbit-averaged model 

densities. Instead, the whole-orbit technique is used to calculate model orbit-averaged 

densities from model orbit-averaged T  and observed orbit-averaged height values. 

The result of this mixing of techniques is a built-in model density error caused by 

the difference between the two techniques. If the model performed perfectly and 
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produced model T1/2 values equivalent to the observed T1/2 values calculated using the 

bin-averaging technique, the orbit-average model densities resulting from the whole-orbit 

technique would be lower than the observed orbit-averaged densities. Since the difference 

between the T  produced by the two techniques is small for most storms, the resulting 

density errors are not contaminated significantly. However, for two of the outlier storms 

(JD 86, 2008 and JD 247, 2008) the relative T RMS difference between the two 

techniques was greater than 2.4% resulting in model density values that were 

significantly lower than the observed values despite the fact that the T1/2 errors for these 

storms were quite small.   

The third outlier (JD 351, 2007) had a relatively small difference between 

exospheric temperatures calculated with the two different orbit averaging techniques 

which suggests that there is another factor influencing the density errors for outlier 

storms. All of the outlier storms fell at the end of the sample period, at the end of 2007 

and into 2008. This matches the time period of the last solar minimum (solar cycle 

23/24), which was centered in November, 2008 (Emmert, et al., 2010). EUV flux and 

thermospheric density during the last solar min were markedly lower than all five other 

solar mins observed since the start of the space age (Solomon et al., 2010). This is likely 

to impact the driven-dissipative model because it is based on the J77 model, which was 

built using fits to observed data from satellite drag measurements. In addition, the driven-

dissipative model accounts for EUV flux by using the F10.7 index. During the last solar 

min, observed EUV flux decreased by 15% compared with averages from the previous 

five solar mins while F10.7 values were only down by 5% (Chen et al., 2011). This 
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indicates a change in the relationship between F10.7 and EUV flux which could impact the 

model through Equation (33).  

Emmert, et al., 2010, studied whether the changes in thermospheric densities 

during the last solar min could be modeled by solely changing exospheric temperatures. 

A model density profile was constructed using a Bates-Walker diffusive equilibrium 

profile (Walker, 1965). This type of profile is similar to the one used in the J77 model. 

Perturbing exospheric temperature alone did not result in a model density profile which 

matched the average density profile observed in 2008 – 2009. Instead, changes to 

exospheric temperature and thermospheric composition were both needed to produce a 

model density profile which matched observations (Emmert, et al., 2010). This suggests 

that the driven-dissipative model, which only perturbs temperatures, will not perform 

well during the last solar min.  

Emmert et al., 2010 found that the difference between observed thermospheric 

density departed from 1986 – 2007 climatology by more than 10% beginning in 

November, 2007. To eliminate the impact of the last solar min on model density results, 

all storms from November, 2007 through 2008 (shown as red x’s in Figure 36) were 

discarded. This removed all outlier storms and resulted in the expected trend of 

increasing T1/2 errors resulting in increasing density errors as shown by the blue dots in 

Figure 36. 

After discarding storms during the last solar min density errors resulting from the 

driven-dissipative model compare favorably with HASDM. This is significant because 

the model results include the built-in error introduced by the difference between orbit-
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averaging techniques. Table 10 shows the mean and standard deviation of the relative 

density RMS errors for the 29 storms from the original sample, defined in Table 1, 

occurring from 2002 – October, 2007. Results are shown for all storms and separated by 

storm type for the optimal  and  values as well as the all storms fit  and  values and 

the storm type (CME or CIR) fit  and  values. The optimal and all storms fit mean 

density errors of 11.18% and 18%, respectively, compare favorably with the mean 

HASDM storm-time error of 17%. Optimal errors for the CME and CIR storms are also 

well below HASDM errors. Density errors resulting from best fit  and  values for CIR 

storms are less than HASDM mean errors while for CMEs, best fit  and  values result 

in mean density errors slightly higher than mean HASDM storm-time errors.    

 
Table 10:  Relative Density RMS Error resulting from Best Fit  and  Values for 

29 storms from 2002 – October 2007 

 

 

Figure 36, along with comparisons between mean T1/2 errors shown in Table 4 

and mean density errors shown in Table 10, illustrates that for any given storm density 

errors are much higher than temperature errors. The increase in error is due to the fact 

that small changes in temperature result in large changes in density within the J77 model. 

Figure 39 shows the observed orbit-averaged density for the JD 204, 2004 CME (red 

Mean Std Dev Mean Std Dev Mean Std Dev
Optimal and 11.18% 3.52% 11.69% 2.72% 10.77% 4.10%

All Storms Fit  and  18.00% 9.78% 22.28% 11.96% 14.53% 5.96%

CME-Fit  and  20.23% 7.51%
CIR-Fit  and  12.47% 5.23%

All Storms CME Storms CIR Storms
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dots)  along with model densities resulting from optimal  and  values (green line), all 

storm fit  and  values (blue line), and CME fit  and  values (black line). Similar to 

the T1/2 results shown for this storm in Figure 28, the all storm fit and CME fit  and  

values result in densities that are lower than both observed and optimal model values for 

the second and third peaks on JD 207 and 209.  For this storm the observed orbit-average 

densities range from 2.17 x 10-16 to 10.72 x 10-16 g/cm3, an increase of 394%. In contrast, 

observed orbit-average T1/2 values for this storm, shown in Figure 28, range from 841.18 

to 1124.4K, an increase of only 34%. In other words relatively small changes (or errors) 

in temperature values result in large changes (or errors) in density values. This sensitivity 

explains the difference between model temperature and model density errors.  

 

 

Figure 39: Model density results for the CME storm from Julian Date 204-210, 2004. 
Observed GRACE orbit-average density is shown by red dots, along with model 
density values resulting from optimal  and  values (green line), all storm fit  and  
values (blue line), and CME fit  and  values (black line). 
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Model density errors were also computed for the two test storms outside of the 

original sample, defined in Table 7. Table 11 shows the relative density RMS error 

resulting from optimal, all storm fit, and storm type (CME or CIR) fit  and  values for 

these two storms. As expected, density errors are higher than T1/2 errors but still low 

compared to the mean HASDM storm-time density error of 17%.  

 
Table 11:  Relative Density RMS Error resulting from Best Fit  and  Values for 

Two Test Storms 

 

  

JD 308-309, 2003 
CME

JD 42-45, 2004    
CIR

Optimal 4.51% 6.20%
All Storms Fit 11.86% 15.38%

Storm Type Fit 8.19% 8.97%
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V.  Conclusions and Recommendations 

Conclusions of Research 

This project has produced conclusions in three main areas. First, the impact of the 

EUV term in the driven-dissipative model was explored. It was found that over the entire 

38 storm sample, method three procedures (allowing both the time rate of change of 

T1/2UV, 
ௗ்భ/మೆೇ

ௗ௧
, and approximating T1/2UV(t) = T1/2

0) were on average slightly more 

accurate than methods one and two. Method three had a mean relative T1/2 RMS error 

1.84% compared to 2.04% and 2.03% for methods one and two, respectively. The impact 

of the treatment of the UV contribution was strongly dependent on the character of the 

change in T1/2UV over the storm period. Method three produced the smallest relative T1/2 

RMS error for 27 of the 28 storms in the sample that had decreasing T1/2UV profiles. In 

contrast method one, which treated T1/2UV as a constant, produced the smallest relative   

T1/2 RMS error for seven of the 10 storms with increasing T1/2UV profiles. Method two, 

which allowed 
ௗ்భ/మೆೇ

ௗ௧
 to vary but treated T1/2

0 as a constant, produced results very 

similar to method one for all storms. In general, for the declining phase of the solar cycle, 

the full treatment of the UV contribution used in method three is the most accurate 

variation of the driven-dissipative model.  

The second conclusion of this thesis is that the two empirical parameters in the 

driven-dissipative model exhibit solar cycle dependence and can be determined as 

quadratic functions of ඥܨଵ଴.଻௔, where the F10.7a value used is the value at the start of the 

storm period. This is important because it provides a way to determine model parameters 



 

103 
 

without any prior knowledge of the storm to be modeled. Using best-fit model parameters 

degraded model accuracy slightly, but the mean relative T1/2 RMS error for all storms 

remained small at less than 3.2%. Around the minimum, relative T1/2 RMS error is a 

shallow function of the model parameters allowing departures from the optimal values 

without significantly increasing errors. Model accuracy was improved slightly by 

separating storms by type (CME or CIR) and determining model parameters separately as 

functions of ඥܨଵ଴.଻௔ for each storm type. The general applicability of the model and the 

model parameter fits was established by applying them to two test storms outside the 

original sample of 38 which resulted in errors similar to those within the original sample.  

The final conclusion of this research is that the driven-dissipative model, as 

formulated in method three, can be used in conjunction with the J77 model to produce 

model density values with accuracies similar to those currently produced by HASDM. 

Mean relative density RMS errors for the model averaged 11.18% when optimal model 

parameters were used and 18% when the model parameters determined by the all-storms 

fit functions of ඥܨଵ଴.଻௔ were used. These values compares favorably to HASDM’s mean 

error of 17% during geomagnetic storming conditions. Of course the current formulation 

of the driven-dissipative model uses observed solar wind data as the driver, which helps 

produce accurate results. Still, the comparison with HASDM is significant because while 

the driven-dissipative model does not use observed density data to correct the model in 

near real-time as HASDM does, it is still able to produce comparable density errors. This 

suggests that future research could further improve the driven-dissipative model. 
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Recommendations for Future Research 

In addition to producing several satisfying conclusions, this project suggests 

several promising avenues of future research. First, the set of 38 storms used in this thesis 

all occurred during the declining phase of the solar cycle from 2002-2008. Since the 

results indicate that the most accurate method of treating T1/2UV depends strongly on the 

character of the T1/2UV change over the storm period it would be useful to expand the 

storm sample to cover an entire solar cycle. This would likely result in a storm sample 

that is more evenly split between storms with increasing and decreasing T1/2UV changes 

and provide a more rigorous test of the three methods of treating T1/2UV used in this thesis. 

Currently, the ability to test storms over an entire solar cycle is limited by the availability 

of the GRACE data used as ground truth in the model.  

A second avenue of research is related to the current formulation’s use of the J77 

model as a basis. The J77 model was used in the current formulation to be consistent with 

Burke’s earlier work (2009, 2011). Current cutting edge models such as HASDM and 

JB08 are based on Jacchia’s 1970 model instead of J77. This suggests that it may be 

useful to reformulate the driven-dissipative model to use J70 as a basis instead of J77. 

Doing this should provide two main advantages. First, it would allow experimentation 

with different formulas to account for the UV contribution to thermospheric temperature. 

Using the J70 model as a basis would allow the driven-dissipative model to easily use the 

J70, HASDM, or JB08 formulations for T0UV which could result in improved accuracy. 

Second, using the J70 model as a basis could allow the method or the output from the 

driven-dissipative model to be integrated with HASDM and/or JB08 in order move from 



 

105 
 

a model temperature to a model density value. Doing so could eliminate the built-in error 

that results from the current model’s method of converting from model T1/2 to model 

density and also take advantage of the use of observed data in both HASDM and JB08 to 

improve accuracy.  

A final recommendation for future research would be to move toward replacing 

the observed solar wind data used as a driver in the current formulation with input from a 

current solar wind model. While this would almost certainly degrade accuracy, it is 

necessary to make the driven-dissipative model useful in an operational sense. 

Determining how much the use of a model input changes the results would be important 

in assessing the potential of the driven-dissipative model for use in real-world forecasting 

applications. 
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Appendix A – Solar Declination Angle Calculation 

This appendix outlines the procedure from Meeus, 1991 used to calculate the 

solar declination angle. All angle formulas presented here are in decimal degrees.  Let Y 

denote the year of the data point, m the month number of the data point, and D the day of 

the month including decimals (for example the 5th day of the month at 12Z would mean 

D = 5.5). If m    2, replace Y with Y-1 and m with m-2. Adopting the notation where 

INT( ) denotes the integer part of the argument within the parenthesis, the Julian date 

(JD) is calculated via the formula 

 

             
(42) 

 

Next a time T is calculated. 

 

(43)

Using T the values for the geometric mean longitude of the sun (Lo), the mean anomaly 

of the sun (M), the longitude of the ascending mode of the Moon’s mean orbit on the 
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ecliptic (), the mean obliquity of the elliptic (o), the mean longitude of the sun (L) and 

the mean longitude of the Moon (L’) are calculated in decimal degrees. 

 

 (44)

  

 

 (45)

  

 

 (46)

  

 

    (47)

  

 
 (48)

 

 
 (49)

 

Using these values a true obliquity () is calculated.  

 

                  (50) 

Where , the nutation of the obliquity, is given by Equation (51).  
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 (51)

 

Next the sun’s equation of center (C) is calculated based on the time T and the mean 

anomaly of the sun M 

 

 (52)

which leads to the sun’s true longitude (). 

 

 (53)

Finally, the apparent longitude of the sun, , is calculated 

 

(54)

leading to the solar declination angle (). 

 

 (55)
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Appendix B – The Nelder-Mead Simplex Direct Search Method 

MATLAB’s fminsearch function uses the Nelder-Mead simplex direct search 

method (Lagarias, et al., 1998) to minimize a given function by adjusting the specified 

variables. For this research the function to be minimized is the RMS error function given 

in Equation (39), denoted here as f(x) and the variables to be adjusted are the coupling 

constant, , and the relaxation constant, , denoted here as the two element vector x. The 

number of elements in the vector x is denoted by n, here n=2. The algorithm is started by 

providing initial values of the vector x, denoted as xo. Here the initial values were set at 

௢ߙ ൌ 44	 ௄∙௠

௛௥∙௠௏
 and ߬௢ ൌ  To start the algorithm an initial simplex is created .ݏݎ݄	5.4

around xo by adding 5% to each value of xo one at a time, resulting in n+1 vectors 

defining the vertices of the initial simplex. 

Once a simplex is defined, the vertices ݔ௜ are ordered based on their function 

value such that ݂ሺݔଵሻ ൏ ݂ሺݔଶሻ ൏ ⋯ ൏ ݂ሺݔ௡ାଵሻ. During each step in the search iteration 

the worst point,	ݔ௡ାଵ, is discarded and replaced by a new point via one of the methods 

outlined below.  The iteration continues until the values of the cost function converge to a 

user-defined tolerance. For this research the tolerance was defined as 10-6. 

Reflection 

A reflected point,	ݔ௥,  is generated using the formula 

where  

 

(56)
12r nx x x  
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After the point ݔ௥ is generated the function value, ݂ሺݔ௥ሻ, is calculated. If  

݂ሺݔଵሻ ൑ ݂ሺݔ௥ሻ ൏ ݂ሺݔ௡ሻ the point ݔ௥ is accepted to replace	ݔ௡ାଵ, creating a new simplex, 

and the iteration starts over. Figure 40 shows the simplices after a reflection step. 

 

Figure 40:  Nelder-Mead simplices after a reflection. The original simplex is 
shown with a dashed line (Lagarias, et al., 1998). 

 

Expansion 

If ݂ሺݔ௥ሻ ൏ ݂ሺݔଵሻ an expansion point, ݔ௘ , is calculated using the formula 

and the resulting function value ݂ሺݔ௘ሻ is calculated. If ሺݔ௘ሻ 	൏ ݂ሺݔ௥ሻ , the point ݔ௘ is 

accepted to replace ݔ௡ାଵ and the iteration starts over. If ሺݔ௘ሻ 	൐ ݂ሺݔ௥ሻ , the point ݔ௥ is 

accepted to replace ݔ௡ାଵ and the iteration starts over. Figure 41 shows the simplices after 

an expansion step. 

 

(57)

 

(58) 12e nx xx x   

1

n

ii
x

x
n
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Figure 41:  Nelder-Mead simplices after an expansion. The original simplex is 
shown with a dashed line (Lagarias, et al., 1998). 

 

Contraction 

If ݂ሺݔ௥ሻ ൒ ݂ሺݔ௡ሻ, a contraction is performed between the point ̅ݔ	and the point 

௥ሻݔ௥ that produces the lowest function value. If ݂ሺݔ ௡ାଵ orݔ ൏ ݂ሺݔ௡ାଵሻ an outside 

contraction is performed by calculating the point ݔ௖ 

and the resulting function value, ݂ሺݔ௖ሻ. If ݂ሺݔ௖ሻ ൏ ݂ሺݔ௥ሻ, the point ݔ௖ is accepted to 

replace ݔ௡ାଵ and the iteration starts over. If ݂ሺݔ௖ሻ ൒ ݂ሺݔ௥ሻ, a shrink is performed using 

procedures in the next section. Figure 42 shows the simplices after an outside contraction. 

 

(59) 
2

r
c

x x
x x


 



 

112 
 

 

Figure 42:  Nelder-Mead simplices after an outside contraction. The original 
simplex is shown with a dashed line (Lagarias, et al., 1998). 

 

If ݂ሺݔ௥ሻ ൒ ݂ሺݔ௡ାଵሻ an inside contraction is performed by calculating the point 

 ௖௖ݔ

and the resulting function value, ݂ሺݔ௖௖ሻ. If ݂ሺݔ௖௖ሻ ൏ ݂ሺݔ௡ାଵሻ, the point ݔ௖௖ is accepted to 

replace ݔ௡ାଵ and the iteration starts over. If ݂ሺݔ௖௖ሻ ൒ ݂ሺݔ௡ାଵሻ, a shrink is performed 

using procedures in the next section. Figure 43 shows the simplices after an inside 

contraction. 

 

Figure 43:  Nelder-Mead simplices after an inside contraction. The original 
simplex is shown with a dashed line (Lagarias, et al., 1998). 
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Shrink 

If none of the previous methods used to identify a new point to replace ݔ௡ାଵ in a 

the new simplex were successful a new simplex is calculated by performing a shrink 

using the formula 

where i=2…n+1.  The points are ordered by increasing values of ݂ሺݒ௜ሻ and the new 

simplex is defined by the best point in the old simplex, ݔଵ, along with the new values ݒ௜ 

where again i = 2…n+1. Figure 44 shows the simplices after a shrink. 

 

Figure 44:  Nelder-Mead simplices after a shrink. The original simplex is shown 
with a dashed line (Lagarias, et al., 1998). 

 

Schematic 

Figure 45 shows a schematic depicting the Nelder-Mead simplex direct search 

method described above. The bold text in each box depicts the condition that must be 

satisfied in order to perform the action listed in the box. 
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Figure 45:  Schematic of the Nelder-Mead simplex direct search method used by MATLAB’s 
fminsearch function, described by (Lagarias, et al., 1998). Schematic is shown for a function 
of 2 variables, as used in this thesis. The bold text in each box depicts the condition that must 
be satisfied in order to perform the action listed in the box. 
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