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Abstract

A stacked array of segmented micro-structured semiconductor neutron detectors (MSNDs)

has been fabricated to perform as a neutron spectrometer simultaneously capable of

differentiating fast and thermal neutrons. The MSND devices consist of thin-film per-

forated diodes constructed from LiF powder back-filled into an etched silicon wafer.

Geant4 simulations demonstrate than an eight-layer spectrometer consisting of alter-

nating layers of MSND and hydrogenous moderator can successfully resolve neutron

energies at a resolution dependent upon the number of layers and the thickness of the

adjacent moderating materials. The simulated spectrometer response was compared

to that obtained experimentally with mono-energetic neutrons from a D+D neutron

generator. The commissioning tests of the spectrometer reveal that the energy of a

mono-energetic neutron source can be identified to within ±1 MeV. Following the

commissioning tests, the spectrometer was used to characterize the poly-energetic

neutron spectrum of a plutonium-beryllium neutron source.

iv



Acknowledgements

I would first like to thank my wife for being supportive through all the late nights

and countless hours of research. She has been my rock throughout my enlisted career,

undergraduate studies, officer training school and now graduate school- pulling me

away from studies when I needed a break and commandeering the duties around the

house when I didn’t have the time.

I would next like to thank my family for the encouragement and positive perspec-

tive over the past 18 months. I would especially like to thank my daughter, who was

born a few months ago on September 21, 2012, for her endless smiles as I walk into

the house; she has lifted my spirits in so many ways.

I would also like to thank my research advisor, LTC Stephen McHale, for his

constant praise and confidence in me. This confidence has made me a stronger person

and a better researcher. His door is always open and his motivation is inspiring.

Likewise I extend my thanks to my thesis committee members, Drs Justin Clinton

and John McClory. The early mornings and late nights with Dr. Clinton (and a cup

of coffee) at the neutron generator have been fun and the committee meetings have

always steered to me in the right direction when I was unsure.

Lastly, I would like to thank all of my classmates here at AFIT. The last year and

a half has been better because of the camaraderie and support amongst the group;

the time has flown by but I will always remember it. Thank you.

Michael A. Ford

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Special Nuclear Material Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II. Previous Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Gaseous Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Scintillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Neutron-Induced Fission Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Activation Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Proton Recoil Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Moderating Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Thin-Film Semiconductor Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Thin-Film Conversion Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Perforated Thin-Film Semiconductor Detectors . . . . . . . . . . . . . . . . . . . . . 20

Cylindrical Hole Shaped Perforations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Straight Trench-Shaped Perforations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Pillar Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Semiconductor Neutron Detector-Spectroscopy . . . . . . . . . . . . . . . . . . . . . 28

III. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Neutron Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Semiconductor Detectors: Electron-Hole Pair

Generation and Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Neutron Moderators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Neutron Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

IV. Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 LiF Detector Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Detector Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Spectrometer Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



Page

Geant4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Geant4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
NIMBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
LabVIEW R© . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Spectrometer Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
D+D Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Testing the Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

V. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 Commissioning Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 MAXED Spectrum Unfolding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

The Code and Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Unfolded Spectrum- Final Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.4 Post-Commissioning Spectrometer Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 100

VI. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

VII. Appendix A- Additional Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

VIII. Appendix B- Foil Activation Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vii



List of Figures

Figure Page

1 The energy dependent neutron capture cross sections of
LiF, 10B, 157Gd and 28Si. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Visualization of a neutron reaction in a thin-film coated
semiconductor detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Mean free path of neutrons in LiF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Perforated hole structure trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Perforated trench design trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6 Picture taken at S.M.A.R.T. Lab is a close-up of the
LiF powder-packed trench perforations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Perforated pillar structure trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

8 Comparison of the perforation geometries. . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 Cooper’s neutron spectrometer arrangement and
possible trajectories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

10 Experimental and simulated spectrometer spectrum of
252Cf. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

11 1
0n+6

3Li−→3
1H+4

2He reaction in a trench perforated
thin-film p-n diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

12 The solid angle formed by the reaction product ranges
subtending the detector at the interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

13 Solid angle of reactions occurring at the film/detector
interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

14 Bragg ionization distributions of triton and α-particle
reaction products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

15 Particle energies remaining from the 6Li(n,α)3H
reaction as a function of transit distance through LiF. . . . . . . . . . . . . . . . 36

16 Energy levels of silicon atoms arranged in a diamond
structure, as a function of lattice spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

viii



Figure Page

17 Three heterostructure electric field configurations. . . . . . . . . . . . . . . . . . . . 45

18 Neutron reaction in both direct and indirect conversion
layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

19 Model of the thermal neutron pile in the basement of
building 470, WPAFB, OH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

20 Preliminary test of each LiF semiconductor detector
and a comparison to expected results obtained from
Kansas State University’s S.M.A.R.T. Laboratory. . . . . . . . . . . . . . . . . . . 52

21 Experimental setup used for the preliminary testing of
the LiF detectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

22 Spectrum as a result of superimposing detectors 01, 04,
06 and 08 in parallel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

23 Response of the LiF detectors with Cd shield and γ
source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

24 Model of the eight-layer spectrometer created in
Solidworks R©. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

25 Top-view of printed circuit board schematic used for
each layer of the spectrometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

26 Picture of the D+D test setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

27 Side-view picture of the spectrometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

28 Exterior picture of the D+D testing environment. . . . . . . . . . . . . . . . . . . . 61

29 Flow chart representation of a Geant4 simulation. . . . . . . . . . . . . . . . . . . . 63

30 Boolean operations on constructive solid geometry. . . . . . . . . . . . . . . . . . . 64

31 Example script from the ‘DetectorConstruction.cc’ file
in Geant4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

32 Geometry of the Geant4 simulation used to determine
the appropriate thickness of moderator necessary to
resolve the energy of 2.5 MeV neutrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

33 Introduction of neutrons to the spectrometer model. . . . . . . . . . . . . . . . . . 69

ix



Figure Page

34 Geometry of the Geant4 simulation used to model the
response of the spectrometer to the D+D neutrons. . . . . . . . . . . . . . . . . . 70

35 Introduction of neutrons to the D+D model. . . . . . . . . . . . . . . . . . . . . . . . 71

36 Simulation results of α-particle energies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

37 Reaction locations on the x-y plane within the detectors
in the simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

38 Library of response functions for five energies. . . . . . . . . . . . . . . . . . . . . . . 73

39 Instrumentation capable of simultaneous data
acquisition of four channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

40 ADC block diagram for the NIMBox. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

41 LabVIEW R© interface for controlling the NIMBox. . . . . . . . . . . . . . . . . . . . 77

42 LabVIEW R© program for data acquisition, analysis and
writing to a file. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

43 LabVIEW R© interactive debugging environment. . . . . . . . . . . . . . . . . . . . . 79

44 First commissioning run results with the D+D generator. . . . . . . . . . . . . 84

45 Second commissioning run results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

46 Third commissioning run results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

47 Final commissioning run results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

48 Difference in the discrimination levels between
commissioning runs #3 and #4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

49 Library of response functions as a result of running 22
Geant4 simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

50 Unfolded energy spectra using MAXED. . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

51 Unfolded energy spectra of the D+D neutron source. . . . . . . . . . . . . . . . . 98

52 Typical neutron energy spectrum of a
Plutonium-Beryllium spontaneous fission/(α,n) neutron
source [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

53 PuBe test spectrometer results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

x



Figure Page

54 MAXED unfolding results for the PuBe spectrum. . . . . . . . . . . . . . . . . . 102

55 Typical neutron energy spectrum of a californium-252
(252Cf) spontaneous fission neutron source [2]. . . . . . . . . . . . . . . . . . . . . . 103

56 MAXED unfolding results: PuBe data with D+D initial
spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

57 MAXED unfolding results: PuBe data with Cf-252
initial spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

58 Hex design for the improved pixelation and symmetry of
the neutron spectrometer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

59 Binary detector in FS-7 with a 3m cable. . . . . . . . . . . . . . . . . . . . . . . . . . 110

60 Binary detector in FS-7 with a 1m cable. . . . . . . . . . . . . . . . . . . . . . . . . . 111

61 Binary detector in FS-7, cadmium shell. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

62 12 hour test with detector 04, no cadmium shell. . . . . . . . . . . . . . . . . . . . 112

63 12 hour test with detector 04, cadmium shell. . . . . . . . . . . . . . . . . . . . . . . 112

64 12 hour test with detector 04, no cadmium, with Co-60
source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

65 Detector 04’s response to thermal neutrons. . . . . . . . . . . . . . . . . . . . . . . . 113

66 Detector 04’s response to Co-60 γ-rays. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

67 Detector 06 testing with γ-ray source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

68 Detector 06’s response to γ-rays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

69 Detector 04 in FS-7, not smoothed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

70 Detector array γ-ray testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

xi



List of Tables

Table Page

1 Selected properties of common special nuclear material.
Adapted from McHale [3]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Maximum fractional energy transfer in neutron elastic
scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Results of initial 60 minute tests in FS-7 of the thermal
neutron pile with a PuBe source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Normalization results with detectors 01, 04, 06 and 08. . . . . . . . . . . . . . . 55

5 Instruments used for data acquisition in both the
ADCAM and the NIMBox configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Specifications of the Adelphi Technology Incorporated
DD108 Neutron Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Overview of the four tests performed to commission the
neutron spectrometer in the D+D neutron source. . . . . . . . . . . . . . . . . . . . 82

8 Control file line designators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9 Available options for line 08 of the control file. . . . . . . . . . . . . . . . . . . . . . . 91

10 Measured data file line designators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

11 Response functions file line designators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

12 Available options for specifying units of energy. . . . . . . . . . . . . . . . . . . . . . 92

13 Default spectrum functions file line designators. . . . . . . . . . . . . . . . . . . . . . 93

14 Available options for specifying the ‘form of the default
spectrum’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

15 Unfolding results using eight-layer spectrometer data
against three different default spectrums. . . . . . . . . . . . . . . . . . . . . . . . . . 106

xii



NEUTRON SPECTROSCOPY USING LiF THIN-FILM DETECTORS

I. Introduction

1.1 Motivation

The growth of nuclear technology on a global scale has created an emphasis for

increased nuclear detection capabilities within the United States. The production

and application of special nuclear material (SNM), in a weapon or otherwise, requires

transportation of the materials. The transportation of SNM is often a vulnerable

phase for a nation that is trying to displace the materials without being detected.

Whether it is an enemy transporting a weapon to the United States or a nation trying

to acquire SNM for development of a weapon, the need for detection prior to detona-

tion is a growing concern for homeland security [4, 5].

The threat is well understood; however, countering the threat is a complex en-

deavor. The Defense Threat Reduction Agency (DTRA) is the U.S. Department of

Defense’s official Combat Support Agency for countering weapons of mass destruc-

tion; they place an emphasis on improving technical capabilities to include expanding

the range of nuclear detection from several yards to stand-off distances in order to

locate, track or interdict nuclear weapons and materials in the hands of adversaries

[4]. Many new detection systems are a result of DTRA sponsored research.

Today, the Cold War has disappeared but thousands of those weapons
have not. In a strange turn of history, the threat of global nuclear war has
gone down, but the risk of a nuclear attack has gone up. More nations
have acquired these weapons. Testing has continued. Black market trade
in nuclear secrets and nuclear materials abound. The technology to build a
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bomb has spread. Terrorists are determined to buy, build or steal one. Our
efforts to contain these dangers are centered on a global non-proliferation
regime, but as more people and nations break the rules, we could reach
the point where the center cannot hold. [Speech delivered by president
Barack Obama in Prague, Czech Republic, April, 2009] [4]

This quote is indicative of the importance placed on nuclear deterrence in the United

States. While there is less effort directed to the conception of nuclear weapons; de-

fending the nation against the nuclear threat is important as ever. Additionally,

according to the May 2011 Department of Homeland Security report ‘A National

Strategy for CBRNE Standards’, there is no greater danger to the nation than a ter-

rorist attack with a weapon of mass destruction. A quote from the report underlines

this importance:

The threats are myriad: the 1995 Tokyo subway sarin attacks, the bacillus
anthracis attacks of 2001, multiple ricin toxin mailings, concerns about un-
guarded nuclear and radiological material worldwide, and the attempted
New York City Times Square bombing of 2010. The response to these
threats has been robust– all levels of government have come together to
coordinate and define capabilities from detection through response. [5]

The government placing a high value on deterrence and non-proliferation is essential

for the safeguard of the U.S. and its allies.

1.2 Special Nuclear Material Detection

Many challenges exist in the detection of SNM. The detection distance, or prox-

imity of the detector to the SNM can be a challenge because of a decrease in signature

as distance from the material is increased. Attenuation in matter, such as materials

that comprise shipping containers, exacerbates the problem. Next, the background

signals can prove to further complicate an already complicated problem of identifying
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SNM, which has predominantly low intrinsic activity. Background signals are a prob-

lem because they decrease the signal-to-noise ratio. Cosmic-ray induced spallation

neutron background is a significant problem and is due to the cosmic ray interactions

with the air and ground. This background is on the order of ≈120-150 neutrons/m2s

and sometimes dominates the SNM signature [3].

Special nuclear materials of interest to the U.S. Department of Homeland Security

are specific isotopes of uranium and plutonium. In particular, the interest is in

materials that could be used to construct a nuclear weapon, commonly uranium-

235 (235U) and plutonium-239 (239Pu). 235U is an isotope of uranium, making up

about 0.72% of natural uranium. Unlike the predominant isotope (238U), 235U is

fissile and also the only primordial isotope. 239Pu is another commonly used fissile

isotope, however, it is not found in nature and must be synthesized. 239Pu is typically

created in nuclear reactors by transmutation of individual atoms of one of the uranium

isotopes. The capture of a neutron by 238U creates 239U, which rapidly undergoes two

beta decays:

238
92 U +1

0 n −→239
92 U

β−−−−−→
23.5min

239
93 Np

β−−−−→
2.35d

239
94 Pu (1)

producing 239Pu, which can then become 240Pu via neutron absorption or 241Pu via

successive neutron absorptions. Although the SNM of interest for weapons production

is 239Pu, the spontaneous fission rate is often too low for this isotope to be detected

from only its neutron emission. An appreciable amount of the 240Pu isotope must

be present in the plutonium sample for it to be detectable via spontaneous neutron

emission as the neutron emission rate is ≈70,000 times larger for 240Pu than it is for

239Pu.

Detection typically boils down to targeting a unique signature of the material,

acquiring particles via an interaction with the detector material, then collecting the

resulting electrons (or photons) and measuring the amplitudes or timing properties
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of the signal to determine the type and/or amount of radiation present. With this in

mind, and considering that the primary decay mode of the aforementioned isotopes

is α-decay (alpha decay)[6], one would immediately consider the α-particles for the

primary detection mechanism. The range of the α-particles, however, is a severe

limiting factor and does not permit α-particles to be an effective SNM signature. The

Bethe-Bloch equation provides a theoretical relationship between range and energy

and is obtained from a quantum mechanical calculation of the collision process as a

result of the Coulombic force, which has an infinite range. The calculation gives the

magnitude of the energy loss per unit length, also known as the stopping power [7].

In the low-energy regime (v2 � c2), the stopping power is determined as:

dE

dx
=

4πnz2

mev2

(
e2

4πε0

)2 [
ln

(
2mev

2

I

)]
. (2)

Where:

v is the velocity of the α-particle,

E is the energy of the α-particle,

x is the distance traveled,

z is the charge of the particle,

e is the electron charge,

me is the rest mass of the electron,

n is the electron density of the target,

I is the mean excitation potential of the target and

ε0 is the vacuum permittivity.

The reciprocal of stopping power gives the distance travelled per unit of energy loss

so that range can be calculated by integrating the inverse of Equation (2) over the

energies of the particle:

R =

∫ 0

T

(
−dE

dx

)−1

dE. (3)
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Equation (3) can be used to determine that the 4.68 MeV α particle, resulting from

the primary decay α of 235U with an energy of approximately 4.68 MeV, will travel

an average of only 3.18 cm in air. Using the Bragg-Kleeman rule [7]:

R1

R0

∼=
ρ0

√
A1

ρ1

√
A0

(4)

where R is the range in a specific medium, ρ the density and A the atomic weight;

the range in a common material, aluminum for example (with ρ=2.70 g/cm3 and

atomic mass of 26.98 g/mol), is calculated as 9.6 µm for the 4.68 MeV α-particle.

The particles can be easily stopped with common shielding materials and are hence

not a good mechanism for detecting the SNM.

The next feasible option would be to consider the photons released from the SNM.

There are several discrete energy γ-rays (gamma-rays) emitted from both plutonium

and uranium; however, there are also prominent problems associated with their detec-

tion. According to the National Nuclear Data Center (NNDC), γ-rays in the ranges of

≈13-440 and 10-400 keV are emitted in the decay of 235U and 239Pu, respectively [8].

Gamma-rays interact with matter primarily through three processes: photoelectric

absorption, Compton scattering and pair production. The energy ranges of the γ-rays

from uranium and plutonium decays indicate that the prevalent photon interaction

mechanisms are photoelectric effect and Compton scattering [7]. In the photoelectric

effect, a photon is absorbed by an atom and one of the atomic electrons is released.

Compton scattering is the process by which a photon scatters from a nearly free

atomic electron, resulting in a less energetic photon and a scattered electron carrying

the energy lost by the photon [7]. These interactions cause an exponential decrease

in the amount of γ-rays that can penetrate a shielding material. A photon undergo-

ing photoelectric absorption will disappear while the Compton scattered γ-rays will

scatter until their energies are low enough to be absorbed as well. A photon mass at-
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tenuation coefficient (µ/ρ) dictates the attenuation of the γ-rays via the exponential

attenuation law and is dependent upon photon energy and the density of the absorber

material. The exponential attenuation law is:

I(x, i) = I0e
−(µi/ρ)ρx (5)

Where I0 is the incident number of particles in the i th energy group of a narrow beam

of photons penetrating a material with thickness x and density ρ. The resultant beam

of photons will have I particles in the i th energy group. The attenuation coefficients

are well known and tabulated on the National Institute of Standards and Technology

(NIST) website [9]. Considering 400 keV γ-rays and an attenuation coefficient from

NIST, it can be calculated that over 99% of the γ-rays will be attenuated with less

than 3 cm of aluminum shielding. The ease of shielding the γ-rays in addition to

the high background levels of γ-radiation makes photons inadequate for long-range

detection of SNM.

Electrons were also considered for the detection of SNM, however, problems similar

to both the α-particles and γ-rays are shown to exist. Electrons interact through

Coulomb scattering from atomic electrons just like alpha particles; however, there are

several important distinctions. Electrons, primarily those emitted in β-decay, travel

at relativistic speeds. The electrons will also suffer large deflections in collisions with

other electrons causing them to follow chaotic paths [7]. A common pair of fission

fragments from the fission of 235U is xenon-140 and strontium-94. Xenon-140 has

a 100% β− decay branch ratio with a Q-value of 4060 keV. Considering a highly

probable β-particle of 2632 keV penetrating aluminum with a density of 2.70 g/cm3,

the average range is only 4.77 mm. While the range is significantly larger than that

of alpha particles, the radiative energy loss and scattering cause them to be easily

shielded.
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Table 1. Selected properties of common special nuclear material. Adapted from McHale
[3].

Isotope Half Life Primary Decay
Spontaneous Fission

Neutron Emission Rate1

[years] Mode [n/kg-sec]
235U 7.0 x 108 α 1.04 x 10−2

238U 4.5 x 109 α 12.6
239Pu 2.4 x 104 α 19.9
240Pu 6.5 x 103 α 1.38 x 106

241Pu 14.4 α 2.20 x 102

The next, and arguably the last option for long range SNM detection, is to detect

neutrons from uranium and plutonium. Referencing Table 1, it can be seen that the

rate of spontaneous fission differs significantly among these isotopes. Neutrons can

also be released as a result of active interrogation, where neutrons are intentionally

ejected toward a target with the intention of inducing fission. Neutrons, because

of their charge neutrality, do not undergo the same Coulombic interaction that α-

particles and electrons endure. Neutrons lose energy primarily via elastic scattering

from collisions with other nuclei (not the electrons). As a result, neutrons penetrate

much larger distances. This penetration is valuable as it allows SNM detection at

longer ranges; however, it has a side effect of creating low probability of interaction,

including in the materials that detect the neutrons. Cross sections are important to

consider whenever dealing with neutron interactions. Roughly speaking, the cross

section is a measure of the relative probability for a reaction to occur; specific materi-

als with high neutron capture cross sections can be used to efficiently detect neutrons.

There are few of these materials and the most common in use today are particular iso-

topes of gadolinium, boron and lithium. The energy dependent cross sections for each

of these materials are shown in Fig. 1. The thermal neutron capture cross sections

1Based upon average neutrons per fission of 2.44 and 2.89 for uranium and plutonium, respectively
[10].
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of lithium, boron and gadolinium are orders of magnitude higher than most other

elements. For comparison purposes, the neutron capture cross sections of silicon-28

are also shown in Fig. 1. Each of the neutron detector materials has its own ad-

vantages and disadvantages, which will be discussed in this report in addition to the

methods for detecting neutrons and the identification of their energy using neutron

spectroscopy.
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Figure 1. The energy dependent neutron capture cross sections of LiF, 10B, 157Gd and
28Si. Compared to the thermal energy neutron absorption cross section data of silicon,
the σcapture are orders of magnitude higher in the lithium, boron and gadolinium.

A neutron spectrometer has been developed using lithium fluoride semiconductor

detectors. Neutron spectroscopy using lithium fluoride thin-film perforated semicon-

ductor neutron detectors has potential to aid in the detection of SNM. LiF detectors

are robust and can be produced very inexpensively, enabling installation within ship-

ping vessels for possible detection of neutron-emitting materials. The spectrometer

is composed of alternating layers of hydrogenated neutron moderator and neutron-

reactive LiF semiconductor wafer detectors. The spectrometer works on the idea
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that if one has a detector to observe neutrons of a particular energy (in this case,

thermal), and a moderating material that decelerates neutrons in a known fashion

then a combination of the detectors and moderating material is sufficient to detect

neutrons and characterize their energy, possibly identifying the neutron source. Neu-

tron detection has historically been accomplished primarily using highly pressurized

gas tubes and organic scintillators, both of which are reliable methods still in use

today that are applicable to unique situations. 3He has previously been a pioneer

material in the field of neutron detection, however, recent shortages in the supply

of 3He have led to rationing of this isotope and reinvigorated research in alternative

technologies for neutron detection [11]. Accordingly, solid state detectors have been

a focal point of this research because of their higher densities and will be discussed

in detail throughout this document. The development of a spectrometer utilizing

solid state LiF semiconductor detectors for identification and classification of neutron

sources was the end state of this research; the fabrication, testing and conclusions of

the research will be discussed herein. The next chapter will discuss previous studies

that have been accomplished in the field of neutron detection and spectroscopy.

9



II. Previous Studies

Over the past several decades, many researchers have examined the area of neutron

detection and spectroscopy. Because neutrons produce no direct ionization events,

neutron detectors must be based on detecting the secondary events produced by

nuclear reactions such as (n,p), (n,α), (n,γ), (n,fission), or by nuclear scattering from

light charged particles, which are then detected [7]. The secondary event is necessary

to create a prompt charged particle(s) (or photon) such as a proton, α-particle, etc.,

which can be read out via front-end electronics and processed as a signal. A variety

of methods have been operative such as: gaseous detectors, scintillation detectors

and semiconductor detectors. When determining the technology to use for a neutron

detector, several factors must be considered. First, the cross section must be as large

as possible so that efficient detectors can be built with reasonable dimensions. This

is particularly important for gas detectors which typically employ large detection

volumes with tubes extending upwards of 30 cm in length. For the same reason,

the target nuclide should be of high isotopic abundance in the natural element, or

alternatively, an economical source of artificially enriched samples should be available

for detector fabrication [12]. In many applications, intense fields of γ-rays are also

found with neutrons and the choice of reaction relies on the ability to discriminate

against these γ-ray interactions in the detection process. Of principle importance here

is the Q-value of the reaction that determines the energy liberated in the reaction

following neutron capture [12]. One typically looks for reactions with higher Q-values

(MeV range) to assist in the discrimination from γ-ray events using only amplitude

discrimination. Below is a short summary of the many methods that have been used

to detect neutrons. An emphasis has been placed on slow neutrons with energies

below the cadmium cutoff of ≈0.5 eV. Subsequently, the current research employing

the neutron detectors in spectroscopy will be reviewed.

10



2.1 Gaseous Detectors

Gaseous boron trifluoride (BF3) detectors have been widely used for detection of

slow neutrons. Boron trifluoride serves as both a target for slow neutrons and also

as a proportional gas in the detector. In nearly all commercial detectors, the gas

is highly enriched in 10B resulting in an efficiency up to five times greater than if

the gas contained only naturally occurring boron [12]. The detection efficiency for

a 30 cm long BF3 tube (96% enriched in 10B) filled to 80 kPa is upwards of 90%

at thermal neutron energies, but drops down to 3.6% at 100 eV. A very important

consideration in many application of BF3 tubes has been their ability to discriminate

against γ-rays. Gamma-rays interacting primarily with the walls of the counter create

secondary electrons that may produce ionization in the gas. Typically, this effect is

easy to discriminate in low flux γ-ray environments because the stopping power for

electrons in the gas is quite low, and the electrons only deposit a fraction of their

energy before reaching the opposite wall. In high flux γ-ray environments, however,

the problem is not so trivial; charge pile-up and even degradation of the gas has

shown to exist in very high flux γ-ray environments [12].

3He has also been used as a detection gas. 3He has a cross section that is ≈1.39

times larger than that of boron and can be operated at much higher pressures than

BF3. 3He is preferred over BF3 with respect to achieving the highest detection ef-

ficiency; however, this gas is nearly impossible to purchase and is under very strict

ration. It is, therefore, a less viable option for the military or otherwise.

2.2 Scintillators

A disadvantage of gaseous detectors is that the point of interaction cannot be

known more precisely than ‘somewhere in the tube’. In addition, typical pulse heights

will have rise times that vary by as much as 3-5 µs [12]. Typical tubes are as much
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as 10-30 cm long in order to provide reasonable detection efficiency and therefore

the path length uncertainties can be large. The limitations of gaseous detectors have

been largely circumvented using scintillators. Scintillators made by fusing B2O3 and

ZnS have found wide application in neutron time-of-flight measurements [12]. These

scintillators are usually kept quite thin at 1-2 mm due to the relative opaqueness of

this material to its own scintillation light and also to minimize path length uncer-

tainty. A large problem is that these scintillators are much less effective in γ-ray

background discrimination compared with BF3 tubes. Photon production as a result

of secondary electrons from γ-ray interactions is difficult to discriminate from the

photon production as a result of the neutron interactions. Amplitude discrimination

is no longer sufficient and pulse shape discrimination must be employed [13].

While a lithium equivalent of the BF3 tube is not available because a stable

lithium-containing proportional gas does not exist, lithium has been very successful

as a scintillating material. A common application has been in the form of crystalline

lithium iodide because of its chemical similarity to sodium iodide [12]. While highly

hygroscopic, a solution has been to keep it contained in hermetically sealed cans with

a thin optical window. The high density of the material means that crystal sizes

need not be very large for very efficient slow neutron detection. In fact, a 1 cm thick

crystal prepared from highly enriched 6LiI is nearly 100% efficient in capturing slow

neutrons though the Cd cutoff [12].

Scintillation materials for neutron detection have been somewhat of a highlight

for the past two decades. Vast research has been done with each of the materials

previously highlighted (Li, B and Gd) [14, 13, 15, 16]. Recent studies with gadolinium

aimed at loading plastic with Gd containing additives have been successful, despite the

discrimination sensitivities [16]. The aim was in developing inexpensive and efficient

thermal neutron detectors with low γ-ray sensitivity that can be produced in large (or
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complex) arrays. The study concluded with a metallo-organic compound gadolinium

isopropoxide used as an additive to synthesize polystyrene-based plastic scintillators

with a relative light output of 76% transmissivity with only 3% Gd (by weight). A

13 mm thick scintillator loaded with 0.5% Gd detects approximately 46% of thermal

neutrons that enter the detector volume [16].

2.3 Neutron-Induced Fission Detectors

The fission cross sections of 233U, 235U and 239Pu are relatively large at low neutron

energies and thus these materials can be used as the basis of slow neutron detectors

[12]. One characteristic that stands out with fission detectors is the uniquely high Q-

value of ≈ 200 MeV, relieving many of the discrimination issues prevalent with other

neutron detectors. Neutron-induced fission detectors are often ionization chambers

with their inner surfaces coated with a fissile deposit, and the dimensions of the

counters tend to be similar to those of α-particle detectors (the average range of the

fission fragments are approximately half the range of a 5 MeV α-particle). The two

fission fragments are always oppositely directed for slow-neutron-induced fission, and

therefore detectors with a solid coating of fissionable material will respond only to the

single fragment that is directed toward the active volume of the chamber [12]. Some

fission counters have been built with extremely thin backing material underneath a

thin fissile deposit so that both of the fission fragments can be detected, however, the

very thin supports required for the fissile deposits are quite fragile and consequently,

this type of fission chamber is not widely used in routine neutron detection applica-

tions [12]. Problems have also been discovered with charge pile-up as a result of the

primary α-decay with the fissionable materials used in the detectors.
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2.4 Activation Detectors

The concept behind activation neutron detection is the use of induced activity in

one of more specially chosen materials to infer the neutron flux and energy spectrum

at a particular location. Activation detection has the advantages of low cost, superior

physical form and ease of calibration. It is possible to find materials with linear

response even to very high rates of fusion and fission reactions. This method has the

primary disadvantage of being both passive and inactive; the foils must be manually

checked and measured, creating a logistical nightmare in a fast-paced and incessant

atmosphere of some shipping ports where their use is highly applicable.

2.5 Proton Recoil Instruments

The proton recoil method works by measuring the energy and direction of protons

that have been recoiled by a neutron (generally higher energy neutrons). The material

in which the recoiling takes place is typically a thin layer of hydrogenous substance.

The relative accuracy with which the recoiled proton properties can be measured

allows an acquisition of high resolution neutron spectra over a wide energy range.

Resolutions of 1-3% are typical for 14.1 MeV neutrons [12]. Also, energies from

below 1 MeV up to more than 1 GeV have been measured. The short range of the

recoiled protons and the need for higher resolutions limit the possible recoil material

thickness and thus reduce the detection efficiency.

2.6 Moderating Detectors

Moderating detectors work by utilizing a moderator to slow neutrons down to a

region where they can be more efficiently detected using conventional methods. Hy-

drogen rich materials such as paraffin or polyethylene typically surround the detector.
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The slow neutron detector is frequently a BF3 or 3He tube, 6Li doped scintillator or,

as used for the basis of this report, a thin-film solid-state semiconductor detector.

The Bonner Sphere is a well-known moderating detector.

2.7 Thin-Film Semiconductor Detectors

Semiconductor detectors, in their most basic application consist of a planar diode

supplemented with a neutron conversion layer that has been deposited on its surface.

Neutrons are captured in the converter and secondary particles are produced. The

secondary charged particles create electron-hole pairs in the diode that are swept to

the surface of the diode and collected as a current. A limitation to the semiconduc-

tor detector is that the efficiency depends on the thickness of the conversion layer,

however, if made too thick, the conversion layer may not allow the changed particles

to escape into the semiconductor to create the electron-hole pairs [17, 12]. Figure 2

shows the basic geometry of a thin-film semiconductor detector with annotation of a

neutron interaction in the thin-film.

Significant research has been conducted to improve the geometry of the semicon-

ductor thin-film detector in order to improve the neutron detection efficiency. Several

aspects of the semiconductor detector make it desirable, hence motivating the broad

range of research being conducted. They can be built very inexpensively and be mass

produced, have very low power requirements, can be built to virtually any size and

are extremely rugged.

The basic configuration consists of a common Schottky barrier or p-n junction

diode, upon which any of the aforementioned neutron reactive coatings is applied

[18]. The current restriction to the wide-spread use of these devices is the sub-

par efficiency compared to the many alternatives listed above such as scintillation

detectors and gas tubes. Material choice requires a strong neutron absorbing reactive
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Figure 2. The fundamental approach to a thin-film coated semiconductor neutron
detector. The film thickness should not exceed the maximum range of the ‘long-range’
reaction product. The reaction products are emitted in opposite directions [17]. c©2003
with permission from Elsevier.

coating that emits ionizing reaction products, preferably charged particles rather

than photons [18]. Some attractive materials that have been examined for solid

state neutron detection include gadolinium, boron and lithium. The thermal neutron

(v=2200 m/s) capture cross section for 157Gd is 240,000 barns, for 10B the cross

section is 3840 barns and for 6Li, the thermal neutron absorption cross section is 940

barns.

Thin-Film Conversion Materials.

Several materials have been explored as thin-film neutron conversion layer materi-

als. The thermal neutron capture cross section for 157Gd is 240,000 barns. This allows

for efficient absorption of thermal neutrons in a thin-film of material. Unfortunately,

gadolinium has the side effect of producing low energy internal conversion electrons,

as well as a cascade of associated Auger electrons, x-rays and γ-rays ranging in energy
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Figure 3. The mean free path (mfp) of neutrons in 157Gd, 10B and LiF. As the neu-
tron’s energy is increased, the mean free path is larger. At high energies, it becomes
increasingly probable that the neutron will pass directly through the thin-film and not
be detected.

from a few eV to several MeV making it almost impossible to discern a neutron event

from background [16]. Boron, as a more practical substitution for gadolinium has

also been applied to semiconductor detectors; the thermal neutron absorption cross

section is not as high, but still respectable at 3840 barns. Boron has been used for

decades with great success; however, the charged particles emitted from the 1
0n+10

5 B

reaction are lower energy than those emitted from the 1
0n+6

3Li reaction (and there are

two reaction paths in boron, whereas there is only a single reaction in lithium). The

energy dependent mean free path in each material is shown in Fig. 3. The mean-free-

path (mfp) has many qualitative applications in detectors, for example, if the mfp of

the neutrons is long compared to the dimensions of the sample (or thin-film in this

case), it is likely that most will escape from the sample. This is an important concept

in a spectrometer in relation to the thermalization of neutrons and will be discussed
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later in more detail. Notice that the mfp is lowest in gadolinium, as expected, due to

the significantly larger cross sections. This document will focus on the use of a 6Li

containing neutron conversion layer, which has a cross section of 940 barns and just

one neutron reaction branch. A brief description of the three most common reaction

materials follows.

Gadolinium.

Gadolinium is a naturally occurring element which has two isotopes with very high

thermal neutron cross-sections: 155Gd (14.7% natural abundance) and 157Gd (15.7%

natural abundance) with 6.1x104 barns and 2.6x105 barns, respectively [16]. These

cross sections are higher than every other isotope, which makes gadolinium an attrac-

tive material for a variety of neutron detectors. In a solid state neutron detector, one

large disadvantage of gadolinium is that the absorption of a thermal neutron results

in the emission of low energy internal conversion electrons, Auger electrons and an

array of gamma and x-rays. Unfortunately, a majority of the products are on the

low-energy end of the spectrum (below 70 keV) or high energy γ-rays, which can be

easily confused with background γ-rays or escape the detector without interacting in

the semiconductor. If the reaction products do not interact in the semiconductor, a

current is not produced and no reaction is signaled. For this reason, gadolinium coat-

ings are generally not used as a converter for coated semiconductor neutron detectors

[18].
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Boron.

The 10B(n,α)7Li neutron reaction yields two possible decay branches from the

excited 11B compound nucleus:

1
0n +10

5 B −→


7
3Li∗(1.4721MeV) +4

2 He(0.8398MeV) (93.7%)

7
3Li(1.7762MeV) +4

2 He(1.0133MeV) (6.3%)

where the Li ion in the 94% branch is ejected in an excited state and normally de-

excites through the emission of a 480 keV γ-ray [18]. In either case, the Q-value of the

reaction for thermal neutron interactions is very large (2.310 or 2.792 MeV) compared

with the incoming energy of the neutron. Thus, the incoming kinetic energy of the

neutron is convoluted in the much larger reaction energy and it is impossible to extract

any information about the initial neutron energy [12]. Also, because the incoming

linear momentum is very small, the reaction products must have a net momentum

of near zero. As a consequence of this, the reaction products are ejected in opposite

directions with the energy of the reaction shared between them. This is demonstrated

via the following equations (for the 93.7% reaction):

ELi + Eα = Q = 2.31MeV (6)

and

mLiνLi = mανα. (7)

Using the basic equation for energy (E =
1

2
mv2), this can be converted to:

√
2mLiELi =

√
2mαEα. (8)
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Solving Equations (6) and (8) simultaneously, using masses for the Li=6535.13 MeV/c2

and α=3727.38 MeV/c2 yields:

ELi=0.84 MeV and Eα=1.47 MeV.

10B has a microscopic absorption cross section for thermal neutrons of 3840 barns

(substantially less than that of Gd). With a mass density of 2.15 g cm−3, the solid

structure of 10B has a macroscopic thermal cross section of 500 cm−1 and the cross

section follows a 1/v dependence [18].

Lithium Fluoride.

The 6Li(n,t)4He neutron reaction yields a single product branch emitting high

energy charged particles:

1
0n +6

3 Li −→3
1 H (2.7276MeV) +4

2 He (2.0553MeV). (9)

Similar to the boron products, the triton and α-particles are ejected in exactly oppo-

site directions. The higher energy reaction products make them easier to discriminate

from background γ-rays. 6Li has a relatively large thermal neutron absorption cross

section of 940 barns and also follows a 1/v dependence [18]. A disadvantage of work-

ing with lithium is that it is highly reactive and difficult to prevent from decomposing,

even when using encapsulates. It is the stable compound LiF that is often used. The

mass density of LiF is ≈2.54g cm−3, and the resulting macroscopic thermal neutron

absorption cross section is 57.5 cm−1 [18].

2.8 Perforated Thin-Film Semiconductor Detectors

Quick, accurate and inexpensive neutron detection and spectroscopy has been

an enduring goal in the detection community. Thin-film semiconducting neutron
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detectors show potential for solving this problem; however, basic planar thin-film

coated diode detectors can only achieve practical maximum thermal neutron detection

efficiencies of approximately 4.5% [17]. McGregor et al., along with many others, have

conducted significant research into the perforation of diodes to improve the detection

efficiency of thin-film semiconductor detectors [17, 19, 18, 20, 21, 22, 23, 24, 25, 26].

Recent advances with high-aspect ratio deep etching (HARDE) techniques have

allowed unique perforated neutron detector structures to be realized [18]. Using

HARDE, the diode is able to be permeated with perforations which are then backfilled

with neutron reactive materials such as 10B or 6Li. As a result, the intrinsic thermal

neutron detection efficiencies of single layer devices can be increased above 25%, more

than five times that of a common, planar thin-film coated diode [18]. The stacking of

these devices can increase detection efficiency to that of scintillators and gas tubes.

An incoming neutron will produce a measurable detector signal if the following two

events occur. First, the neutron must interact in the conversion layer and produce one

or more charged particles. Second, the reaction product charged particles must enter

the detector volume to excite electron-hole pairs. Employing only planar thin-films

means that, at most, only one of the charged particles can be detected. Worse yet, in

the event that the particles are ejected at angles nearly parallel to the semiconductor

surface, the event can go without getting detected at all. Perforations serve the

main purpose of increasing the probability that the charged particles created in the

conversion layer make it into the semiconductor layer of the detector to be potentially

recorded.

Several different perforation geometries have been studied; an in-depth comparison

was conduced by J.K. Shultis et al. and the results are investigated in the following

sections. The spectra were obtained by Monte Carlo simulations and are ideal in

the sense that no energy straggling, large-angle ion scattering or detector noise and
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Figure 4. There are many trajectories for reaction products in a perforated hole struc-
ture. The main trajectories of interest are shown here: (1) A complete miss occurs if
the ions travel in the z-direction, (2) one or both of the ions are absorbed in the semi-
conductor, and (3) with small dimensions, one or both ions can reach another absorber
(LiF column), which effectively causes some ion energy to be lost and not absorbed in
the semiconductor [25]. c©2009 with permission from Elsevier.

resolution effects are considered [25]. The three geometries covered are the cylindrical

hole shaped perforations, straight trench-shaped perforations and pillars.

Cylindrical Hole Shaped Perforations.

This design offers a high probability of sensing ionizing reaction products, provided

that the hole diameter is less than the cumulative ranges of both product ions. Fig.

4 shows a depiction of the cylindrical hole shaped perforation geometry.

The basic possible trajectories that reaction ions from either the 10B(n,α)7Li (as

shown) or the 6Li(n,t)4He reaction can follow are shown in Fig. 4. Recall that

the trajectories are in opposite directions for both reactions. In trajectory (1), the

particles are emitted longitudinally along the perforation and do not enter into the

semiconductor; hence they would not be recorded. Trajectories (2) and (3), and
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variants, would result in one or both particles entering into the semiconductor and

possibly record a count. Should an event occur in which the distance between the

holes is shorter than an ion’s range, then the particle may enter into another hole and

thereby deposit less energy in the semiconductor, as depicted in trajectory (3). The

probability of these various trajectories and resultant energy deposition profiles are a

function of the fill material, hole diameter and cell pitch [25].

Straight Trench-Shaped Perforations.

Another structure investigated as a perforated detector is one with trench-shaped

perforations etched into the semiconductor and filled with a neutron reactive material

[25]. This design offers a high probability of capturing ion reaction products, provided

that the trench width is less than the sum of the ranges of both reaction ions. A

depiction of this geometry is shown in Fig. 5.

Figure 5. There are many trajectories for reaction products in a perforated trench
design. The main trajectories of interest are shown here, where (1) a complete miss
occurs if the reaction products travel in the y-direction, (2) a complete miss occurs if
the reaction products travel in the z-direction, (3) one or both charged particles are
absorbed in the semiconductor, and (4) with small dimensions, one or more charged
particle reaction products can traverse another absorber trench which reduces the
energy absorbed in the semiconductor [25]. c©2009 with permission from Elsevier.
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Again, the basic possible trajectories have been outlined. In trajectory (1), ions

are emitted parallel to the perforation axis (y-direction) and do not enter into the

semiconductor; hence, they are not recorded. Also in trajectory (2), the particles

are emitted longitudinally along the perforation (z-direction) and do not enter into

the semiconductor, hence, again are not recorded. However, trajectories (3) and (4),

and their variants, would in-fact result in both particles entering the semiconductor

and will possibly produce a count. Should an event occur in which the distance

between trenches is smaller than the ion range, then the ion may enter the adjacent

trenches and deposit less energy in the semiconductor, as depicted in trajectory (4).

The probability of these various trajectories and resultant energy deposition are a

function of fill material, trench width and pitch [25]. A close-up picture of a trench

perforated, LiF packed device is shown in Fig. 6.

Figure 6. Picture was taken at S.M.A.R.T. Lab and is a close-up image of the LiF
powder-packed trench perforations. The powder has been physically pressed into the
30 µm diameter by 20 µm deep holes with an evaporated LiF cap film [18]. c©2009 with
permission from Elsevier.
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Figure 7. There are many more different trajectories for reaction products in a pillar
structure than for the hole and trench structures. The main trajectories of interest
are shown here, where (1) a complete miss can occur if the reaction products travel
along the x or y-directions, (2) a complete miss occurs if the reaction products travel
in the z direction, (3) a miss occurs if the reaction products travel in certain critical
angles to the Si columns, (4) only one charged particle reaches the semiconductor, (5)
both charged particles reach the semiconductor, and (6) with small dimensions, one or
more charged particle reaction products can traverse more than one Si pillar, which
increases the energy absorption in the semiconductor [25]. c©2009 with permission
from Elsevier.

Pillar Devices.

To fabricate a pillar device, a large perforation is etched into the semiconductor

to form a square matrix of miniature cylindrical columns [25]. The space around

the columns is then backfilled with neutron reactive material, leaving only pillars

of semiconductor to detect the reaction products. R.J. Nikolic et al. claim that a

silicon device with 2 µm diameter pillars with a center-to-center pitch of 4 µm has

an efficiency greater than 65% for 50 µm high pillars surrounded by enriched 10B. An

example of the geometry is shown in Fig. 7.

In this geometry, 80.3% of the surface is covered by the neutron reactive material
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and 91.8% of the thermal neutrons normally incident on the 50 µm thick neutron

reactive surface will be absorbed [25]. Hence, only 73.71% of neutrons normally

incident on the surface of such a device are absorbed. The claim of 65% thermal

neutron detection efficiency would indicate that over 88% of the reactions produce a

count.

Figure 8. Provides a comparison of the geometries discussed above. Both the unit
cell dimension and the feature depth are altered. Fig. A (top-left) is a comparison of
energy deposition spectra for hole, trench and pillar designs with unit cell dimensions
of 25 µm and feature ratios of 50%. The feature depths are 90 µm and are backfilled
with LiF [25]. Fig. B. (top-right) is a comparison of energy deposition spectra for hole,
trench and pillar designs with unit cell dimensions of 25 µm and feature ratios of 50%.
The feature depths are 500 µm and are backfilled with LiF [25]. Fig. C. (bottom-left)
is a comparison of energy deposition spectra for hole, trench and pillar designs with
unit cell dimensions of 50 µm and feature ratios of 50%. The feature depths are 90 µm
and are backfilled with LiF [25]. Fig. D. is a comparison of energy deposition spectra
for hole, trench and pillar designs with unit cell dimensions of 50 µm and feature ratios
of 50%. The feature depths are 500 µm and are backfilled with LiF [25]. c©2009 with
permission from Elsevier.
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Figure 8 displays the simulation results side-by-side for each of the geometries

with different sized features. The unit cell dimension is the size of each feature, for

example, the unit cell for the cylindrical geometry in Fig. 4 is the distance from

the center of one pillar to the center of another pillar (along the x or y axis). Even

considering the large deviation between the features, there is not a large difference

realized at the lower energies. An obvious attribute to the figures is a drop-off of

the relative counts at higher energies for the deeper trenches. This is likely due to

the α-particle not escaping the neutron reactive layer. Another feature common to

each of the figures is that the highest count rate belongs to the silicon pillar devices

for the triton particle and to the LiF rod devices for the dual particle continuum

(higher energies). Simulations such as these are necessary to maximize the detection

efficiencies of the devices, taking into considerations both materials and geometries.

A conclusion of the research conducted by Shultis et al. is that the effective ranges

of the reaction products from the 6Li(n,t)4He reaction are much greater than the

effective ranges of reaction products from the 10B(n,α)7Li reaction, as expected [25].

This also has the consequence that the feature sizes with lithium can be larger and

that the features must be deeper. In addition, regarding the semiconductor detector

in use, silicon appears to be the best choice as a substrate because of its low γ-ray and

neutron interaction cross sections. This serves to reduce the background radiation

interactions; in addition, the processing technology of silicon is very mature, making

it less expensive to use and very reliable. It is also noted that higher efficiencies can

be achieved by stacking the detectors. The efficiencies for trench and hole devices can

be nearly doubled, whereas the efficiency for pillar devices will increase only slightly

due to neutron absorption in the first device of the stack [25].
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Figure 9. Fig. A (top) shows Cooper’s neutron spectrometer arrangement. The mod-
erator stack is capable of thermalizing 14 MeV neutrons. Cadmium shielding is used
to block backscattered moderated neutrons [27]. Fig. B. (bottom) shows some possible
trajectories and interactions within the neutron spectrometer as epithermal and fast
neutrons lose energy by scattering through the moderator material [27]. c©2011 IEEE.

2.9 Semiconductor Neutron Detector-Spectroscopy

Spectroscopy with MSNDs has been limited over the past decade because of the

limited efficiency of the devices. Bonner spheres have historically been the front run-

ner with respect to moderating neutron spectrometers. While Bonner spheres are

effective, they are not practical as a portable detection mechanism. A 2011 publica-

tion by Brian W. Cooper explores a MSND spectrometer for neutron energies up to 14

MeV using trench-structured 6LiF detectors [27]. A cut-out view of the spectrometer
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Figure 10. Experimental and simulated spectrometer spectrum of 252Cf [27]. c©2011
IEEE.

is shown in Fig. 9A (top). Cadmium has a very high thermal neutron absorption

cross section and is used to block backscattered moderated neutrons between each

layer and around the perimeter of the entire stack.

The moderating material in use is high-density polyethylene (HDPE); it is placed

before each subsequent detector and cadmium layer to partially moderate the neutron

beam. Between each layer are two 1 cm2 high-efficiency MSNDs [27]. A depiction of

a few possible outcomes as a neutron beam travels through the spectrometer is shown

in Fig. 9B (bottom).

In Fig. 9B, some of the thermalized neutrons will enter a detector and be counted.

Theoretically, higher energy neutrons will penetrate further into the spectrometer

(before losing enough energy to become thermalized and be detected). Other neutrons

will scatter and can be lost to the spectrometer casing or get absorbed by the cadmium

separating each layer. MCNP simulations were performed to model the response

of a californium-252 (252Cf) spectrum. A comparison between the simulated and

experimental response is shown in Fig. 10.
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Cooper states that the neutron energy spectrometer was able to match the sim-

ulated reference response for 252Cf well. The first eight detector locations followed

the expected spectrum closely whereas the last three started to deviate more. He

hypothesizes that the differences are likely due to room-scattered neutrons entering

deeper regions of the spectrometer from the side and undergoing sufficient moderation

to thermalize and interact with the detector’s neutron conversion material.

The next chapter will discuss the theory behind the neutron spectrometer, in-

cluding the slowing of the neutrons in the moderating material and the collection of

charge in the silicon semiconductor.
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III. Theory

3.1 Neutron Detection

The primary thermal neutron interaction mechanism in lithium results in energetic

triton and alpha particles liberated in opposite directions as depicted in Fig. 11.

An important consideration in thin-film conversion materials is the probability of a

neutron capture occurring and where in the material the reaction occurs. A layer too

thick will not allow the energetic charged particles to escape and if this layer is too

thin, the probability of a capture taking place in the layer will not allow a sufficient

number of neutron captures. This section addresses the probability of capture in the

conversion material and the physics governing charge generation in semiconductor

detectors.

Figure 11. 1
0n+6

3Li−→3
1H+4

2He reaction in a trench perforated thin-film p-n diode con-
sisting of p+-type silicon adjacent to n-type silicon. The region between the two types
of silicon is known as the depletion region and is represented by the light blue fill color
[28].

Neutrons may interact anywhere within the reactive film. The energy transferred

to the semiconductor is dependent upon where in the conversion film the neutron

interacts. Although it may appear that a thicker layer of neutron reactive material
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is ideal, the voltage signal measured in the semiconductor is directly proportional to

the e-h pairs liberated by the charged particles that cross the reactive material/semi-

conductor interface. If the neutron reactive layer is too thick, the charged particles

can lose most or all of their energy before making it to the active volume of the semi-

conductor, hence not creating sufficient e-h pairs for detection. The finite specific

energy loss in the reactive film limits the usable film thickness that can be deposited

over the semiconductor device. The neutron flux transmitted through the film as a

function of distance x can be described by [17]:

I(x) = I0e
−xσFNF = I0e

−xΣF , (10)

where

I0 is the initial neutron flux,

NF is the atomic density of the neutron reactive isotope in the film,

σF is the microscopic thermal neutron absorption cross-section of the film and

ΣF is the film macroscopic thermal neutron absorption cross-section.

It follows that the fraction of neutrons absorbed in the film through distance x is [17]:

1− I(x)

I0

= 1− e−xΣF . (11)

The neutron absorption probability per unit distance is described by [17]:

p(x)dx = ΣF e
−xΣF dx. (12)

The angular contribution to self-attenuation must also be addressed. For exam-

ple, a reaction product ejected perpendicular to the semiconductor surface will get

detected with a higher probability than a particle ejected at an angle other than

perpendicular due to the larger range and the decreased energy loss of the charged
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Figure 12. The solid angle formed by the reaction product range that subtends the
detector at the interface predetermines the detection probability [17]. c©2003 with
permission from Elsevier.

particles as they traverse through the neutron reactive film.

Once a neutron is absorbed and the reaction products are emitted, the probabil-

ity that a reaction product will enter the detector is determined by the solid angle

subtending the surface within the effective range (L) of the particle interaction [17].

Fig. 12 represents the solid angle of a neutron interaction taking place a distance x

from the semiconductor/film interface. The fractional solid-angle can be described

by [17]:

Pp(x) =
Ω(x)

4π
=

2π

4π

(
1− x

L

)
= 0.5

(
1− x

L

)
, x ≤ L, (13)

where the subscript ‘p’ relates to the reaction product of interest. Note that since the

reaction of interest produces two different reaction products per event, it is necessary

to add the detection probabilities of both reaction products. It is also worthy to note,

as depicted in Fig. 13, that there is a finite probability (dependent on the neutron
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Figure 13. The solid angle subtending the detector at the interface is greatest for
reactions occurring at the film/detector interface. Shown are cases where (A) either
particle may enter the detector with high probability, (B) the short-range product has
diminished detection probability, and (C) the short-range product will not be detected
and the long-range product has diminished detection probability [17]. c©2003 with
permission from Elsevier.

interaction depth) of one or none of the reaction products reaching the semiconductor

active volume.

Interactions occurring near the detector contact result in either particle entering

the detector with high probability as the solid angle approaches 2π. As the neu-

tron interaction distance x increases, the probability of interaction of the short-range

particle decreases more rapidly than that of the long-range particle, resulting in an

overall decrease in detection sensitivity [17]. At neutron interactions greater than

LLR, which is the range of the long-range particle, the long-range particle can no

longer reach the detector and the neutron absorptions are undetected. Ultimately, it

serves no purpose to increase the thickness of the neutron reactive film beyond LLR.

The 6Li(n,α)3H reaction emits a 2.73 MeV triton and a 2.05 MeV α-particle upon

the absorption of a thermal neutron. Considering the stable compound 6LiF as a
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neutron reactive layer with a molecular density of 6.12x1022 molecules/cm3 and a

mass density of 2.54 g/cm3, the ionization of the charged particles can be calculated

via the Bethe-Bloche equation (Equation (2)). The results of this calculation are

shown in Fig. 14. Although error bars are not shown, the actual range fluctuates

from particle to particle due to deviations in the number of Coulombic scatters per

unit distance and deviation in energy loss per collision [17].

Figure 14. Bragg ionization distributions for the 2.73 MeV triton and the 2.05 MeV
α-particles as they transit through a film of LiF. The ranges significantly differ for the
two reaction products. The average range for the 2.73 MeV triton in LiF is 32.1 µm
and the average range for the 2.05 MeV α-particle in LiF is 6.11 µm [17]. c©2003 with
permission from Elsevier.

An interesting characteristic of the Bragg ionization curve for both the α-particle

and the 3H ion is the increase in columnar ionization per unit volume as the ion energy

decreases. This is an important feature when considering the lower-level discriminator

(LLD) value of the electronics detecting the charged particles. Although the range of

a charged particle may be sufficient to reach the semiconductor, the particle may or

may not generate enough charge to be ultimately detected. The particle must deposit

enough energy in the semiconductor to surpass the noise level and trigger a response

of the read-out electronics. The fact that a large portion of the particle’s energy is

35



Figure 15. Energy deposited into the detector is the original particle energy minus the
energy lost through self-absorption. Shown are the particle energies remaining from
the 6Li(n,α)3H reaction as a function of transit distance through LiF [17]. c©2003 with
permission from Elsevier.

deposited at the end of its range means that there is a higher probability of trigger-

ing the electronics if it can penetrate past the contact and into the semiconductor

material. The energy remaining that is absorbed in the semiconductor is simply the

initial energy minus the energy lost in the LiF film during transit, assuming that the

energy loss in the contact is negligible. This remaining energy is shown in Fig. 15.

The next section will discuss how the charged particles are collected and read out

as a current.

3.2 Semiconductor Detectors: Electron-Hole Pair Generation and Sepa-

ration

The capture of a thermal neutron in the conversion layer is unfortunately not the

last step in the generation of a read-out signal from the detectors. The charged parti-

cles must make their way to the semiconductor where electron-hole (e-h) pairs can be
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liberated and output as a current. In order to develop a thorough understanding of

the e-h pair generation and read-out current, it is necessary to outline the statistics

governing the processes and physics controlling the generation of current from charged

particle interactions: generation, recombination, diffusion and drift. The following

section will first examine the semiconductor physics then proceed with a review of

the processes that control the generation and movement of the e-h pairs within the

semiconductor.

The success of semiconductor detectors is due to several unique properties that

are not available with other types of detectors. Examples of these properties are:

the combination of extremely precise position measurements and high readout speed,

direct availability of signals in electronic form, the simultaneous precise measurement

of energy and position and the possibility of integrating detector and readout elec-

tronics on a common substrate [29]. Semiconductor detectors usually provide only

the primary ionization as signal charge. This mode of operation is possible because of

the low energy needed for producing a signal electron (3.6 eV in silicon compared with

≈30 eV in gases) and the availability of very low noise electronics. The measurement

of the primary ionization avoids the dependence on gain variation of the detector and

therefore leads to stable operation in spectroscopic measurements [29].

Most commonly used semiconductors are single crystals with diamond or zinc

blende lattice types. Both lattices may be viewed as being composed of two in-

terpenetrating face-centered cubic sub-lattices that are displaced by one quarter of

the distance along the diagonal of the cube. A more in-depth treatment of solid-

state physics may be found in the text by Charles Kittel, ‘Solid State Physics’ [31].

Fig. 16 shows the first two energy levels in silicon, which have been calculated us-

ing quantum mechanics. Silicon semiconductors were used for the construction of

the detectors used in this document, however research is being performed for many
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Figure 16. Energy levels of silicon atoms arranged in a diamond structure, as a function
of lattice spacing [30].

alternative materials.

Laying the foundation for the movement of electrons and holes in a semiconductor

requires a general understanding of the crystal, and also the distribution of energy

states. It is possible for many purposes to treat electrons in the conduction band

and holes in the valence band similar to free particles, but with an effective mass

(mn or mp, respectively) different from elementary electrons not embedded in the

lattice. The occupation probability for an electronic state with energy E is given by

the Fermi-Dirac function [29]:

F (E) =
1

1 + exp

(
E − EF
kT

) , (14)

where EF , the Fermi Energy, is the energy at which the occupation probability of a

(possible) state is
1

2
, k is the Boltzmann constant and T is the absolute temperature.

After the occupation probability of a specific electronic state is known, the density
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of states (DOS) in the semiconductor must be found in order to determine the density

of holes and electrons which interact with the incident charged particles. The density

of states in the conduction and valence bands is obtained in the standard way by

considering standing waves in a unit volume of physical space, from which the number

of states in a spherical layer of momentum space, corresponding to a range of kinetic

energies is obtained [29]. Multiplying by two for the two electron spin directions

leads to the number of states Nstates(Ekin) in the unit volume in a small kinetic

energy interval dEkin around Ekin [29]:

Nstates(Ekin)dEkin = 4π ·
(

2m

h2

)3/2

E
1/2
kin dEkin, (15)

where m is either the effective mass of the electrons or holes (mn or mp, respectively),

h is Planck’s constant and the kinetic energy is measured from the bottom of the

conduction band for electrons and from the top of the valence band for holes. The

density of free electrons n is obtained by integrating the carrier concentration given

by the product of the density of states N and the occupation probability F (E) over

the conduction band [29]:

n = 2

(
2πmnkT

h2

)3/2

e−
EC−EF

kT = NCe
−EC−EF

kT . (16)

Similarly for holes [29]

p = 2

(
2πmpkT

h2

)3/2

e−
EF−EV

kT = NV e
−EF−EV

kT , (17)

where NC and NV are the effective densities of states in the conduction and valence

bands, respectively. The Fermi level for intrinsic semiconductors, Ei, can be found

from the requirement that the number of electrons and holes are equal (ni = n = p).

One thus finds that [29]:
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ni =
√
NCNV e

−EC−EV
2kT =

√
NCNV e

− EG
2kT (18)

and

Ei =
EC + EV

2
+

3kT

4
ln

(
mp

mn

)
. (19)

Now that the basis has been laid for the electron and hole concentrations in

an intrinsic semiconductor, it is necessary to look at the extrinsic case (where the

semiconductor has been doped to an excess concentration of electrons or holes). This

is an important case because the diodes used for the collection of the α-particles and

tritons in this research consist of a p-doped semiconductor adjacent to an n-doped

semiconductor. The two oppositely doped semiconductors, when adjoined to each

other in a specific configuration, create a p-n diode with a depletion region which

becomes an efficient device for detecting charged particles.

The configuration of a semiconductor can be changed using the practice of doping.

In silicon this can be accomplished using an atom such as arsenic (n-type). If one

silicon atom is replaced with an atom of arsenic (five valence electrons), only four

of the electrons are used for the formation of the covalent bond while the fifth is

not bound to a specific atom and is free for conduction (donor). Silicon doped with

arsenic creates an n-type material. Alternatively, if a silicon atom is replaced by

an atom with only three valence electrons, one electron is missing in the covalent

bond and a hole is thus created (acceptor), creating a p-type material. For n-type

semiconductors, the situation that the donor levels are almost completely ionized can

be described by a movement of the Fermi level (EF ) from the intrinsic level (Ei)

towards the conduction band. Up to fairly high doping concentrations, the value of

EF can be attained by setting the electron concentration in the conduction band, n,

equal to the donor concentration (ND) [29]:
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EC − EF = kT ln
NC

ND

. (20)

Similarly, one obtains for p-type material and acceptor concentration (NA) [29]:

EF − EV = kT ln
NV

NA

. (21)

Using the previous results, the number of electrons and holes can be calculated:

n = nie
EF−Ei

kT (22)

and

p = nie
Ei−EF

kT . (23)

The increase of majority carriers (electrons in the case of n-type material) is accom-

panied by a decrease of minority carriers according to the mass-action law [29]:

n · p = n2
i . (24)

Arguably, the most important electronic structure is the p-n junction, which is

obtained by joining together extrinsic semiconductors of opposite doping. Such a

structure shows diode characteristics, meaning it will conduct current mainly in one

direction. Starting with the hypothetical condition that the homogeneously doped p

and n regions are initially separated and electrically neutral in thermal equilibrium

with electrons and holes evenly distributed in their respective volumes, once the bodies

are brought into contact, electrons will diffuse into the p region and holes into the

n region. A surplus of negative electric charge in the p region and positive electric

charge in the n region will be created due to diffusion of the electrons across the
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p-n junction. This diffusion also results in the creation of an electric field that ends

up counteracting the diffusive movement of the electrons, creating what is known as

a depletion, or space-charge, region between the two materials where excess charge

from the dopant atoms is not neutralized by the movable carriers [29].

Penetration of charged particles into the semiconductor’s depletion region creates

ionizations; the two processes that subsequently dictate the density of electrons and

holes in the diode are generation and recombination. Free electrons and holes may be

generated by the promotion of electrons from the valence band into the conduction

band, thus creating simultaneously equal numbers of electrons and holes. It is also

possible to inject free carriers of a single type only, e.g. through a forward-biased

diode, or to deplete the semiconductor of its free carriers by application of a reverse

bias. The transition back to equilibrium is due to recombination, which happens as

a result of drift and diffusion.

If an electric field is present, the charge carriers will be accelerated between random

collisions in a direction determined by the electric field and a net average drift velocity

will be obtained of [29]:

νn = −µnE (25)

for electrons and [29]:

νp = −µpE (26)

for holes, where µn and µp are the mobility of the electrons and holes, respectively

and E is the electric field, which can be an applied voltage or a built-in voltage.

Diffusion is the transport mechanism which serves to smooth out the distribution

of both the holes and the electrons in order to establish an equilibrium concentration

in the diode. It is mathematically described by the diffusion equations [29]:
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Fn = −Dn∇n (27)

and

Fp = −Dp∇p. (28)

Here Fn is the flux of electrons, Dn is the diffusion constant and ∇n is the gradient

of carrier concentrations. The corresponding symbols for holes are represented by a

p or a p subscript.

Combining the effects of drift and diffusion, one obtains the current densities [29]:

Jn = qµnnE + qDn∇n (29)

for electrons and

Jp = qµppE − qDp∇p (30)

for holes, where mobility and diffusion are related to each other by the Einstein

equation [29]:

D =
kT

q
µ. (31)

Charged particles traversing material lose part of their energy through elastic col-

lisions with electrons, creating e-h pairs, as governed by the Bethe-Bloche equation

(Equation (2)) [29]. The generation rate of electrons and holes can be solved via in-

tegration of the Bethe equation, however, not every e-h pair generated will make it to

the electrodes. The electric field in the diode is important because it prevents the cre-

ated e-h pairs from recombining, and pulls the respective charge to the energy bands,

where contacts have been formed on the diode and the charge can be collected as a

current. Although timing properties are not discussed herein, it should be noted that
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generation and recombination lifetimes are important properties in a semiconductor

that greatly affect their ability to be used as efficient radiation detectors.

Defining Gn and Gp as the generation rate of electrons and holes, respectively

and Rn and Rp as the recombination rate of electrons and holes, respectively; it is

now possible to write the continuity equations. The continuity equations describe the

transport of charge carriers, maintaining that the carriers must be conserved [29]:

∂n

∂t
= µnn∇E +Dn∇2n+Gn −Rn (32)

and

∂p

∂t
= −µpp∇E +Dp∇2p+Gp −Rp. (33)

A final treatment of the subject in this quick overview looks at finding the voltage

induced by radiation in a diode. Integrating the contribution of radiation to the

current density in the depletion region yields:

JR = −qGRd0 (34)

where d0 is the width of the depletion region. In reality, the width of the deple-

tion region must also take into account the diffusion lengths of both the n and p

sides of the diode, however, that will not be considered here and d0 is an acceptable

approximation. The total current density can then be written as:

J = Js

(
e−

qV
kT − 1

)
− JR, (35)

where Js, the reverse bias saturation current, is part of the reverse current in a diode

that is caused by diffusion of minority carriers (holes in the n-type or electrons in the

p-type) from the neutral regions to the depletion region. Js is not given a quantitative

definition here, but is dependent on the intrinsic carrier concentrations, the diffusion
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Figure 17. Three heterostructure electric field configurations through which e-h pairs
may be separated: (a) resistive junction, (b) p-n junction and (c) Schottky junction.
Ef is the Fermi level, and Ec and Ev are the conduction and valence band edges,
respectively. The resistive junction requires an external voltage to establish an internal
electric field within the semi-insulating material, while the p-n and Schottky junctions
have a built-in scalar potential capable of separating e-h pairs without an external
voltage. The graded area in (b) and (c) represents a space charge region created at the
p-n and metal semiconductor interface [15]. c©2010 IOP Publishing.

Figure 18. Representation of neutron transduction from (a) indirect-conversion (or
conversion layer) and (b) direct conversion (or solid-form) solid-state p-n junction het-
erostructures [15]. c©2010 IOP Publishing.
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coefficients, the donor and acceptor concentrations and the carrier lifetimes. Finally,

the voltage induced by the charged particles in the diode can be written:

V =
kT

q
ln

[
1 +

qGRd0

Js

]
. (36)

Notice that the an increase in either the size of the depletion region or the amount

of radiation will increase the voltage across the diode. It should be noted that the

size of the depletion region can be increased, up to a point, by increasing the VRB, or

reverse bias voltage.

All solid-state devices that generate and separate e-h pairs do so through a het-

erostructure geometry [15]. Fig. 17 shows three configurations for potential use with

neutron reactive coatings. Specifically, Fig. 17(b) shows a representation of the p-n

junction previously discussed. The p-n junction diode acts as a radiation detector

by use of either an externally applied neutron reactive layer (indirect-conversion) or

by doping the semiconductor wafer with a neutron reactive isotope, hence creating

a direct conversion detector. This is represented in Fig. 18. The direct conversion

detectors will not be discussed in detail, however, they have their advantages and

disadvantages. The technology is still immature and the efficiency of the detector

is still well below that of an indirect-conversion device; however, the devices do not

have the same limitations on collecting the charged particles from the n+Li reaction

as there is a 4π solid angle. This advantage removes the need for perforations.

3.3 Neutron Moderators

The layered neutron spectrometer is dependent upon the use of a moderator be-

tween each layer so that the neutrons can be slowed to thermal velocities where they

can then be detected with higher efficiency by the LiF neutron detectors. The concept

is that the higher energy neutrons will need to penetrate a larger amount of mod-
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erator (more scatters) before being thermalized. The physical process is, of course,

stochastic, in that the behavior of the neutron (and reaction products) is intrinsically

non-deterministic. Estimating the behavior of the system is possible with the use

of simulations (as will be discussed later), however, it is still important to know the

physics behind the energy loss of the neutrons. The following section will cover how

the neutrons are decelerated.

Neutron Kinematics.

Neutrons react with the detector medium (the moderator or the neutron reactive

material) via either elastic or inelastic scattering. A collision is elastic when kinetic

energy is conserved and inelastic otherwise. For example, if some of the energy has

gone towards modifying the internal state of the ‘target’, the reaction is inelastic. In

the present case, inelastic effects are mostly negligible. The primary mechanism of

slowing the neutrons through the hydrogenated neutron moderator is elastic scatter-

ing. Elastic scattering has no threshold, which means that it can occur with neutrons

of any energy.

Since a neutron has no charge, it can enter into the nucleus and cause a reaction.

This is where the cross section has a large effect on the signal of a detector. Simply

because the interaction can easily occur does not mean that it has a high probability

of occurring. Neutrons interact primarily with the nucleus of an atom except in the

special case of magnetic scattering where the interaction involves the neutron spin

and the magnetic moment of the atom, however, the absorption cross section of a

neutron with a nucleus is negligible unless it is slowed sufficiently.

The use of highly hydrogenated materials to slow the neutrons to thermal ener-

gies is no coincidence. The physics is well known and understood, in fact, the most

efficient moderator is hydrogen because a neutron can lose up to all of its energy in a
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Table 2. Maximum fractional energy transfer in neutron elastic scattering.

Target Nucleus A ER,max
1
1H 1 1
2
1H 2 0.889

3
2He 3 0.750
4
2He 4 0.640
12
6 C 12 0.284
16
8 O 16 0.221

208
82 Pb 208 0.019

single collision with a hydrogen nucleus [12]. Below is a brief explanation of neutron

kinematics. The formulas are quite elementary, however, they accurately describe the

motion of a neutron as it scatters from surrounding nuclei. Some necessary symbols

are:

A = mass of target nucleus/neutron mass,

En= incoming neutron kinetic energy (laboratory system),

ER= recoil nucleus kinetic energy (laboratory system),

Ψ= scattering angle of the neutron in the center-of-mass coordinate system and

θ= scattering angle of the recoil nucleus in the lab coordinate system.

The laws of elastic collisions can be established using the assumptions of a purely

classical mechanical problem. If the incoming neutrons are well below the relativistic

speeds (En << 939 MeV), conservation of momentum and energy define the energy

of the recoil nucleus as:

Er =
2A

(1 + A)2
(1− cos(Ψ))En. (37)

To convert to the more familiar laboratory coordinate system in which the original
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target nucleus is at rest, we use the following transformation:

cos(θ) =

√
1− cos(Ψ)

2
. (38)

Combining Equation (38) with Equation (37) yields a new equation for the recoil

nucleus energy in terms of its own angle of recoil:

ER =
4A

(1 + A)2
(cos2θ)En. (39)

As determined by the dependence on the cos2θ, a head on collision (θ = 0) of the

incoming neutron will lead to a recoil in the same direction resulting in maximum

energy transfer:

ER,max =
4A

(1 + A)2
En. (40)

Table 2 lists the maximum energy that can be transferred to specific target nuclei.

As the mass of the target nuclei increases, the maximum amount of energy that can

be transferred decreases. This is expected due to the A−2 dependence in Equation 40.

Notice that the ER,max value for the 1
1H nucleus is 1, meaning that an incoming neutron

can potentially transfer all of its energy to the nucleus, immediately thermalizing it.

The next chapter will discuss the construction of a neutron spectrometer using al-

ternating layers of LiF detectors and moderating materials, the instrumentation used

for the experiment and also some of the preliminary results and modeling outcomes.
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IV. Experiment

The experimental end-state is the construction and analysis of an eight-layer spec-

trometer to characterize unknown neutron sources. Eleven trench-perforated LiF

micro-structured neutron detectors (MSNDs) were received from Kansas State Uni-

versity in February 2011. The detectors were each manufactured differently and had

unique neutron responses. The first task in the spectrometer construction was to

calibrate each of the individual LiF detectors to determine which of the detectors

was operational and to normalize the responses to a known flux of thermal neutrons.

Following detector calibration, the spectrometer was modeled using Geant4 computer

simulations to determine appropriate spectrometer dimensions. The spectrometer was

then constructed and commissioned using a D+D mono-energetic neutron source. An

advanced data acquisition instrumentation system was assembled using a four chan-

nel analog-to-digital converter (ADC) and LabVIEW R© for the simultaneous signal

collection and discrimination of each detector in the spectrometer. The data from

the commissioning run was unfolded using MAXED to determine the energy of the

neutron spectrum from the mono-energetic neutron source. Following the commis-

sioning runs, the spectrometer was used to identify the neutron energy spectrum of

an unshielded PuBe poly-energetic neutron source.

4.1 LiF Detector Calibration

Initial testing consisted of characterizing each of the detectors individually and

determining their response to a known flux of neutrons. The initial tests were con-

ducted using a PuBe source and a moderating thermal neutron pile in the basement

of building 470 on Wright Patterson Air Force Base, Ohio (shown in Fig. 19). Each

of the detectors was initially tested for 60 minutes with an applied reverse bias of
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Figure 19. Model of the thermal neutron pile in the basement of building 470, WPAFB,
OH. FS-7, the drawer used for calibration of the LiF detectors, is annotated in the figure
[32].

2 V in the same location with a flux of approximately 2800 thermal neutrons/cm2s.

The spectra in Fig. 20A (top) were produced, showing the thermal neutron response

of each detector. Additional testing found that of the initial 11 devices, two did not

respond to the neutrons and only four of the devices produced the ‘expected spec-

trum’. A spectrum produced by S.M.A.R.T. Laboratories at Kansas State University

(the manufacturer of the devices) is shown in Fig. 20B (bottom). There should be

a plateau-like feature where only a fraction of one reaction product is captured in

the semiconductor, then a drop-off and dual particle continuum where both reaction

products deposit some or all of their energy in the semiconductor.

The experimental setup used for the inaugural testing is shown in Fig. 21. An

ORTEC 996 counter was initially used to verify that the detectors had a response

to neutrons and that the response varied from the background counts. The counts

received during the initial testing with the ORTEC 996 are shown in Table 3. The
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Figure 20. Fig. A (top) shows preliminary tests of each LiF semiconductor detector. As
can be seen, each of the detectors has a different response. Data was accumulated for
60 minutes with each detector placed in drawer FS-7 of the thermal neutron pile with
the PuBe source installed. Fig. B. (bottom) shows results obtained by D.S. McGregor
et al. from Kansas State University’s S.M.A.R.T. Laboratory. This is the resultant
spectrum from a perforated Si device having 30 µm diameter holes, each 20 µm deep
and backfilled with LiF powder. The device was covered with a 10.8 micron thick LiF
layer and has a hole pitch of 60 µm. The major expected spectral features are clearly
visible [18].
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Figure 21. Experimental setup used for the preliminary testing of the LiF detectors.
Both the ADCAM and the counter were used at different phases of testing. The
discriminator was not used for preliminary testing, but was used to remove the noise
and background counts on all subsequent tests. The amplifier was used to gain match
the detectors.

objective of the test was to look for the detectors possessing a low background count

and a large number of counts when introduced to the PuBe source. This test allowed

for the automatic rejection of several detectors, such as #7 and #10, which did not

react to the PuBe source at all.

Table 3. Results of initial 60 minute tests in FS-7 of the thermal neutron pile with a
PuBe source.

Detector LLD Background PuBe
1 500 387 2017
2 977 659 2059
3 43 63 3226
4 109 209 1798
5 144 153 544
6 128 0 22089
7 NA 0 0
8 292 178 42779
9 26 26 8051
10 NA 9 10
11 262 2 4472

In order to calibrate the detectors, each was placed in a neutron field for 36 hours

(three different tests for 12 hours each). For consistency, three different neutron

environments were used for the calibration. First, the PuBe thermal neutron pile
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Figure 22. Spectrum as a result of superimposing detectors 01, 04, 06 and 08 in
parallel. The spectrum was smoothed using the Savitzky-Golay smoothing method and
the counting error has been accounted for. The spectrum is as-expected and closely
resembles McGregor’s spectrum as seen in Fig. 20B (bottom). The primary features
have been labeled on the plot.

was used where the detectors were placed in the same location for each test, next

the deuterium-deuterium (D+D) neutron generator was used (this was the source of

neutrons for the spectrometer commissioning), and finally the D+D generator was

used again, but with each detector wrapped in cadmium to determine each detector’s

response to only the fast neutrons. For the calibration tests in the D+D neutron

generator, the detectors were each placed equidistant from the source with the front

face of the detectors orthogonal to the ‘beam’. With each detector placed in an

identical setup for the same amount of time, the response of each detector can be

normalized. The results of the normalization run from the D+D cavity without the

cadmium shield are posted in Table 4. Note that only detectors 01, 04, 06 and 08 were

normalized. These were the only detectors deemed operational and would therefore

be the detectors used for construction of the spectrometer.

The spectrum of detectors 01, 04, 06 and 08 connected in parallel is shown in

54



Table 4. Normalization results with detectors 01, 04, 06 and 08. Each of the detectors
has a unique discrimination level to discount the noise and the background radiation.
After counting for twelve hours, a scalar value was used to normalize each of the
detectors to the least performing detector, this was done to keep the statistics on the
conservative side.

Detector LLD [Arbitrary] Counts Normalization Factor
01 8900 6842 0.289
04 10400 3599 0.550
06 9800 1980 1.0
08 10800 7098 0.279

Fig. 22. The spectrum is as-expected and closely resembles McGregor’s spectrum

as shown in Fig. 20B. The discrimination point is located at approximately channel

400, the cutoff of the 2.73 MeV triton is located close to channel 2000 and the dual

particle continuum is from channel 2000 upwards. This spectrum has been smoothed

using the Savitzky-Golay smoothing method in order to remove the sharp fluctuations

from the high resolution of the electronics and the noise (an example of a spectrum

not smoothed is shown in Appendix A, Fig. 69). The spectrum was simply used to

qualitatively verify the operation of the detectors. The values used for calibration of

the detectors were obtained from raw data and not from Savitzky-Golay smoothed

data.

After determining which of the detectors were operational, it was then necessary

to analyze that the signal was indeed a result of thermal neutrons interacting within

the detector volume. This analysis was accomplished using a 1 mm layer of cadmium

which blocks the majority of the thermal neutrons from reaching the detector. The

first 12-hour test was conducted with the detector in drawer 7 of the thermal neutron

pile with no shielding. The next test would be conducted in the same manner, but

with an enclosure of cadmium surrounding the detector. The results of the test

are shown in Fig. 23. The blue line represents the standard testing conditions with
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Figure 23. Response of the LiF thin-film detectors with the addition of a Co-60 γ-ray
source and enclosed by a 1 mm thick cadmium sleeve. The detector was in the thermal
neutron flux for all three configurations. The addition of the Cd sleeve reduces the
detector signal to negligible levels giving confidence that the counts are indeed from
the thermal neutrons. The addition of the cobalt-60 source (1.1732 and 1.3325 MeV
γ-rays), additionally, did not affect the signal of the detector beyond the discrimination
level.

detector placed in drawer 7 of the pile (PuBe source present) and no applied shielding.

The green line represents the detector signal with cadmium shielding. A decrease in

counts with the application of the cadmium is a solid indication that the signal being

produced is a result of the thermal neutrons. The addition of the cadmium shell

decreased the counts in nearly all channels ≥100 by approximately two orders of

magnitude.

The next experiment examined how γ-rays are discriminated from neutrons in the

detectors. The red line in Fig. 23 shows the detector response with the addition of a
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cobalt-60 source to the thermal neutron flux. As shown, the 1.1732 and 1.3325 MeV

γ-rays can be discriminated from the thermal neutron flux while still maintaining a

low LLD level at around channel 80 (the cadmium shield was not in place for the

γ-ray testing).

In addition to calibrating the detectors, an attempt was also made to determine

the neutron detection efficiency. Knowing the detection efficiency of the detectors

is not essential for the construction of the spectrometer, however, it is a valuable

calculation in that the efficiency of the detectors governs the amount of time for data

collection in order to identify a source of neutrons with good statistics. A higher

neutron detection efficiency results in less data collection time.

Detector Efficiency.

Determining the efficiency of the LiF detectors requires knowledge of the flux

that the detectors are being irradiated with. The thermal neutrons used for the

initial testing were generated from a 239Pu-Be source in a subcritical graphite pile.

A model of the thermal neutron pile is shown in Fig. 19. The detector was tested

in drawer 7 (FS-7), where the flux was determined via 115In foil dosimetry in 2009 to

be 2664 neutrons cm−2-sec−1 with an anticipated increase of ≈ 2% per year [32]. A

more detailed explanation of the foil activation process is presented in Appendix B.

Using this information, the approximate thermal neutron flux on the day of testing

can be calculated:

Φth ≈ 2664× 1.02x = 2827cm−2s−1 (41)

where x is the number of years since 2009.

If the approximation is made that the active detection area of the detectors is 0.5

cm x 0.5 cm, and accounting for the counting error, the efficiency of detector 04 was
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calculated to be 7.4 ± 1.1%. This number was only used for verification that the

detectors worked as prescribed. According to a publication written by the provider of

the detectors, the minimum detection efficiency (non-perforated) is ≈ 4.5% whereas

the efficiency was shown to increase up to 25% with perforations [25]. The calculated

efficiency is well within this range.

4.2 Spectrometer Construction

Initial testing showed that that highest performing detectors were detector 01,

detector 04, detector 06 and detector 08. Each of these detectors performed with an

efficiency higher than 5% and resulted in the expected spectrum. Resolving neutrons

of common fissile materials using as few layers as possible was the overarching goal,

however, it was determined using simulations that four layers would not be enough

to resolve these energies with an appreciable accuracy. Using the four operational

detectors, an eight layer design was experimentally tested to determine if this mini-

malistic approach could successfully differentiate different sources of neutrons. The

first run was conducted using the first four layers (moderator, detector, moderator,

...), and the second run consisted of the first four layers with a 5 cm thick block of

moderating paraffin wax (1.25 cm for each layer) placed in front of the first layer.

This 5 cm block of wax replicated another four layers of the spectrometer, with the

assumption that the neutron interactions with the silicon and LiF are negligible at

higher energies. Merging the results of both simulations is the closest approximation

to testing with an eight layer spectrometer. A representation of the eight layer spec-

trometer is shown in Fig. 24. This is the resultant concept of the spectrometer, as

the ‘eight layer spectrometer’ was never built.

The layers of the spectrometer were constructed using a printed circuit board

(PCB). This PCB was specifically designed to allow for easy construction of the
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Figure 24. Model of the eight-layer spectrometer created in Solidworks R©. The model
shows nine detectors in each layer (3 x 3). The nine-detector design was the original
concept to achieve higher detection efficiency with each detection layer, however, only
one detector was mounted in the center of each detector layer due to lack of operational
detectors.

spectrometer and to ensure that on-the-spot changes would be simple; the board is

shown in Fig. 25. The board allowed the detectors to be moved from one layer and

replaced in another layer using friction inserts. The boards were stacked adjacent

to one another using only mechanical standoffs and the moderating materials were

simply slid between each of the layers, again, using only friction inserts.

Use of the D+D neutron generator, which yields 2.45 MeV mono-energetic neu-

trons, was necessary in order to validate the initial construction of the spectrometer.

Each set of experimental data was compared to an output spectrum generated from

Geant4 simulations, as will be discussed in Section 5.1. For the commissioning tests,

the front face of the detectors were placed perpendicular to the D+D source with the

preamplifiers placed adjacent to the spectrometer. Testing with the PuBe source over

an extended period of time proved the preamplifiers to be mostly insensitive to the

neutrons of the D+D source; after 14 consecutive 12-hour tests with the PuBe source

which has similar neutron energy, no significant degradation of the output spectra

was evident. The coaxial cables from the output of the preamplifiers were each run

to their corresponding ORTEC 572A shaping amplifiers. The output of each ampli-

fier was then run to a corresponding channel of the NIMBox for data acquisition.

59



Figure 25. Top-view of the printed circuit board (PCB) schematic used for each layer of
the spectrometer. The schematic was created in Eagle, which is a software program for
designing PCBs. The design allows for nine detectors on each layer of the spectrometer
(four pins each, in the center of the board) and has the ability to output the signal
via two BNC connectors (five pins each, on the left edge of the board). The blue lines
represent the grounding signals and the red lines represent the signal of each detector
wired in parallel.

Figure 26. View of the D+D test setup. The D+D generator is visible extruding from
the shielding on the left side of the picture and the spectrometer is the array on the
lower-right side.
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Figure 27. Side-view of the spectrometer. Notice the stand-offs and the alternating
layers of moderator and detector (four layers).

Figure 28. Exterior view of the D+D testing environment. The red blocks are bo-
rated polyethylene for blocking neutrons from escaping the generator assembly and
penetrating into the surrounding rooms.
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The four shaping amplifiers and NIMBox were each mounted in a NIM bin, which

also provided a clean power source for each of the instruments. For the safety of

the operator, in order to provide isolation from the active neutron source, a 50’ USB

cable with a repeater mounted at the 25’ point was used to export the signal from

the NIMBox to the laptop computer. Several commissioning runs were conducted.

A picture of the testing environment is shown in Fig. 26. The stainless-steel tube

protruding from the left side of the shielding is the D+D neutron source, which emits

neutrons isotropically (there is a slight favor of momentum in the direction that the

deuterons are accelerated, however the initial momentum is small compared to the

Q-value of the reaction). The metal enclosure to the left of the picture is an array

of preamplifiers; the grey power cable and four coaxial cables output the signal to

the data acquisition system. The spectrometer assembly is shown to the right side of

the picture. The visible circuit board on the bottom layer of the spectrometer is the

board represented in Fig. 25. A side-view of the spectrometer is shown in Fig. 27

and an exterior view of the spectrometer is shown in Fig. 28.

4.3 Modeling

Simulations were necessary to model the response of the spectrometer without

doing extensive testing. The purpose of the simulations during this research were

twofold: first, they provided an indication that the spectrometer was operating as

anticipated through comparison of experimental and simulated results. Second, the

simulations were necessary in order to generate a library of response curves that were

used to unfold the resultant experimental spectrum of the spectrometer.

Two simulation packages were considered for the detector simulations: Geant4,

which is based on a Monte Carlo algorithm [33, 34] and MCNPX [35]. MCNPX, while

considered to be the de facto standard for neutron transport, has a major disadvantage
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for this application: a lack of attestation for heavy charged particle transport (Z>2)

[28]. The shortcoming has been addressed in the latest version of MCNPX (2.7.0),

however, this is still a Beta version and has not been verified. Following is a short

overview of Geant4, a description of the program that was written, and finally the

results.

Geant4 Overview.

Geant4, short for particle GEneration ANd Tracking, was originally developed

to meet an ever increasing demand for accurate and comprehensive physics simula-

tions. The Geant4 simulation toolkit provides comprehensive detector and physics

modeling capabilities embedded in a flexible C++ structure [33]. It serves primarily

to simulate the passage of particles through matter and is used by a large number of

experiments and projects in a variety of application domains including: high energy

physics, astrophysics and space science, medical physics and radiation protection.

Figure 29. Flow chart representation of a Geant4 simulation. The lowest level repre-
sents the basic simulation building blocks, the second level consists of the user defined
parameters, and the topmost level represents simulation execution and output [28].

Geant4 was chosen as the simulation package for this research because of its flex-

ibility and robustness. Its kernel encompasses tracking, geometry description and
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Figure 30. Boolean operations on constructive solid geometries (CSGs). The volumes
on the left are combined via intersections, those on the right via union, and the final
solid is a difference of the left and right [28].

navigation, material specification, abstract interfaces to physics processes, manage-

ment of events, run configuration, stacking for track prioritization, tools for handling

the detector response and interfaces to external frameworks, graphics and user in-

terface systems [34]. Fig. 29 is a flow chart representing the hierarchal structure of

Geant4. A few of the more-important processes are described below.

The first necessary step is to define the materials and geometry of the experimental

setup. Constructive Solid Geometry (CSG) was used to define the apparatus, wherein

volumes are described by a collection of simple three-dimensional volumes such as

spheres, cubes, cones, etc. Using CSG, volumes have a much smaller memory footprint

than if they were represented using Boundary Represented Solids (BREPS). BREPS

and CSG are the two basic methods of describing geometries in Geant4 [28]. A

representation of complex geometries that can be created using CSG is shown in Fig.
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30.

Figure 31. Example script from the ‘DetectorConstruction.cc’ file in Geant4. This
selection of script defines the enriched LiF material for the simulation of the spectrom-
eter.

Fig. 31 represents C++ script for defining a material in Geant4. The last two

lines of the script show LiF consisting of one atom of fluorine and one atom of en-

riched lithium, where the enriched lithium is composed of 95% 6Li and 5% 7Li. The

simulation is able to be customized and material definitions are often necessary in

order to get more accurate results that closely resemble actual testing conditions. The

materials defined herein include: air, paraffin wax, cadmium, silicon, aluminum, bo-

rated polyethylene and enriched LiF. After assembling the simulation, the next step

is specifying the necessary particles and physics processes. In contrast to MCNPX,

where most of the transport physics and secondary particle generation is automatic,

Geant4 requires the user to explicitly define all particles and processes necessary for a

particular setup; with 19 different physics models, spanning an energy range of meV

up to the TeV region, not all particles and processes are valid for a given applica-

tion [28]. When carefully implemented, the ability to select specific processes can

substantially reduce the simulation time.

The execution of Geant4 can be broken down into four components [28].

• A step, which is the path of a particle between interaction and/or geometric

boundaries.

65



• A track representing the sum of all steps for a particle.

• An event which tracks the history of a single original incident particle. This

includes the tracks of any and all secondary particles.

• A run consisting of all events in the simulation.

Once all parameters of a simulation have been defined, Geant4 will construct the

geometry and begin to simulate particle interactions as specified by the user. The

particles will interact in a manner consistent with the physics defined by the user,

with Geant4 calculating the steps as the particle traverses through the user defined

geometries. A step is the shortest distance through the simulation that a particle

travels, its length being the distance from one interaction to another. Each successive

step is calculated by the particle’s trajectory, with the energy, change in trajectory

and other changes used to update the particle’s state in order to calculate a new step.

The process is iterated until zero kinetic energy remains, the particle is absorbed, or it

escapes the simulation boundary [28]. It is important to consider, however, that there

is not only one possible trajectory of a particle. Each successive step is determined

using a Monte Carlo random sampling method. For each particle interaction, the

mean free path is found from the individual cross sections and the material number

density for the volume being traversed [28]:

λi =
1

σiN
, (42)

where λ is the mean free path and i indicates the particular reaction. The mean free

path is the average distance a particle will travel before interacting, but, there is a

probability that the particle will traverse a much shorter or larger distance than the

average. The true interaction distance li is sampled for each reaction using [28]:
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n = 1− e−λili ⇒ li = − ln(1− n)

λi
, (43)

where n is a random number uniformly distributed in the range (0,1). This is done

for each physics process assigned by the user; the interaction distances are then

compared, with the shortest one chosen as the step length. If the distance to the

volume boundary is less than the calculated step length, the step length is reduced to

the boundary distance, where a new step is calculated [28]. Each step for a particular

particle in a volume can then be stored in a track, where the particle’s properties can

be recalled. This gives the ability to sum all energy deposited in a volume, either

directly or by secondary particles of an incident particle.

The energy deposited by each original incident particle is then binned at the

run level using the Abstract Interface for Data Analysis (AIDA) [36]. AIDA was

initiated at the HepVis 1999 workshop in Orsay and has since evolved into a robust

histogramming utility allowing output of the data in several formats, most notably

in the extensible markup language (XML) that can be read by many cross-platform

applications such as MATLAB R©. The user must instantiate the AIDA interface,

specify the number of histograms required and the parameters of the histogram(s)

[28]. Data is collected using the AIDA utility, allowing easy readout by the end-user.

The next section discusses the simulation results obtained using Geant4.

Geant4 Results.

Simulations were used at several points in the spectrometer construction and eval-

uation process. Initially, simulations were conducted to determine the appropriate

thickness of moderator in order to correctly resolve neutrons in the range of approx-

imately 2.5 MeV. If the moderator was made too thick, many of the neutrons would

be stopped before penetrating several layers of the spectrometer and energy informa-
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Figure 32. Geometry of the Geant4 simulation used to determine the appropriate
thickness of moderator necessary to resolve the energy of 2.5 MeV neutrons. The
green represents the boundaries of the individual moderating layers, the internal black
lines are the boundaries of the LiF detectors and the exterior black lines represent
boundaries of the cadmium layer surrounding the spectrometer.

tion would not be attainable. If the moderator thickness was too small, the reverse

problem would occur and the neutrons would not be thermalized enough to interact

with the LiF thermal neutron detectors. Fig. 32 represents the geometry used to

determine the appropriate thickness of moderator to resolve the neutrons from the

D+D source (≈ 2.5 MeV).

As shown in Fig. 33, introduction of 2.45 MeV neutrons (using a planar source

perpendicular to spectrometer’s longitudinal axis) show that a paraffin wax moderator

thickness of 1.25 cm is sufficient to resolve neutrons with energies on the order of 1

MeV. In the figure, 100 neutrons were incident upon layer 01 of the spectrometer

(the top, from the figure); while only 5% of them ended up being thermalized and

captured by a LiF detector, 100% ended up interacting in the moderator. The blue
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Figure 33. Introduction of neutrons to the spectrometer model. The neutron trajecto-
ries are shown with blue lines. 100 neutrons were introduced to the spectrometer, none
of the original 100 penetrated all eight layers without interacting with the moderator.
While only 5% interacted with an actual detector, the interactions occurred over many
layers. More neutrons would improve the statistics.

lines indicate the trajectories of the neutrons. As specified previously, the neutrons

must undergo a certain number of interactions (stochastic, based on scattering angle)

before finally being thermalized and detected. Low energy neutrons have a high

probability of being detected in the first layer and neutrons of higher energy will

scatter many more times and have a probability of being detected further from the

source of neutrons.

After determining the appropriate thickness of moderator, the next step was to add

the D+D spectrometer environment into the simulation. The D+D spectrometer is

surrounded by borated polyethylene which serves to shield the neutrons from escaping

into the ambient atmosphere; however, it has a side effect of scattering the neutrons

back toward the spectrometer and creates a flux that is not perpendicular to the

front face of the spectrometer. Modeling this unique flux is necessary in order to
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Figure 34. Geometry of the Geant4 simulation used to model the response of the
spectrometer to the D+D neutrons. The geometry is representative of the structure
housing the D+D generator, including the generator itself. The ceiling and floor of the
room is represented by the top and bottom-most black rectangles. The generator is
represented by the orange circle and the spectrometer is perpendicular to the generator.
The four sides encompassing the generator are the borated polyethylene neutron shields
and the entire structure is shown from a side view.

understand the effect of the scattered neutrons. The simulated environment can be

seen in Fig. 34.

In Fig. 34, a side view of the generator housing is shown. This geometry can be

compared to Figs. 26, 27 and 28; the simulation very closely represents the actual

testing conditions. In Fig. 35, neutrons are introduced to the D+D enclosure. Many

reflections take place within the borated-polyethylene shielding, some of the neutrons

are directed back toward the spectrometer while some of them escape the enclosure

altogether. The neutrons are tracked through the generator housing as well as through

the spectrometer. If modeled correctly, the simulation results should closely relate to

the experimental data.

Within Geant4, it is possible to track an infinite number of parameters. For the
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SPECTROMETER 

D+D SOURCE 

Figure 35. Introduction of neutrons to the shielded D+D model. The neutron inter-
actions are tracked through the structure using Geant4 and AIDA. The neutron paths
are represented by blue lines. Significant scattering occurs around the D+D source as
shown by the inset, the orange circle represents the generator and the spectrometer is
perpendicular to the source.

2.04 2.045 2.05 2.055 2.06 2.065 2.07

0

50

100

150

200

250

300

350

400

450

500

Alpha Energy at Time of Creation [MeV]

C
o

u
n

ts

Figure 36. Simulation results of α-particle energies created in the neutron reactive
material as a result of 1.0×107 2.45 MeV particles emitted isotropically and incident
upon the front face of the spectrometer as shown in Fig. 33.
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Figure 37. Reaction locations on the x-y plane within the detectors in the simulation.
The x-y plane is defined on the face of the planar detectors with the z-axis being defined
parallel to the beam and perpendicular to the front face of the detectors. Fig. A (left)
shows the reactions along the x-axis and Fig. B. (right) shows the reactions along
the y-axis. Notice that the reactions are evenly distributed over the entire face of the
detector. This is expected from an isotropically emitting neutron source.

purpose of the spectrometer, the most important parameter is the layer in which the

neutron reacts with the LiF, creating an α-particle and a triton. A trial simulation was

run with 5.0×107 particles, consisting of 1.0×107 neutrons at five different energies

(0.50 MeV, 1.00 MeV, 1.50 MeV, 2.00 MeV and 2.45 MeV). Several results of the

simulation run are shown in Figs. 36, 37 and 38.

Fig. 36 shows the α-particle creation energy for every α-particle initialized during

the interaction of the 1.0×107 2.45 MeV simulated neutrons. As previously shown in

Equation (9), the expected α-particle energy is ≈2.055 MeV. The simulation appears

to be consistent, hence giving confidence that the simulation physics is accurate. The

two figures shown in Fig. 37 are plots of where the neutrons are reacting in the

detector (Fig. A showing interactions on the x-axis and Fig. B showing interactions

on the y-axis, the beam being projected parallel to the z-axis). The reactions are

evenly distributed along the entire face of the detector, as would be expected from an

isotropic source of neutrons. Lastly, Fig. 38 shows the interactions per layer for all

five simulated energies. This, in essence, is a small library of response functions. A

response function is a response of the spectrometer layers for a specific energy as shown
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Figure 38. Basic library of response functions as a result of 1.0×107 neutrons emitted
at each of the five listed energies. The library was created using the geometry shown in
Fig. 33 and depicts the different spectrometer response as a function of neutron energy.
Visual inspection of the data sets shows that the response functions are qualitatively
similar with energies of the same order of magnitude.

in Fig. 38 or a response of a specific layer for a range of energies. A more exhaustive

library of response functions has been compiled to unfold the spectrometer response

curve and will be reported in the Results chapter. Unfolding the spectrometer data is

necessary because each energetic neutron reacts in the spectrometer and penetrates

slightly differently (as shown in Fig. 38); in a poly-energetic source where the emitted

neutron spectrum contains a multitude of closely related energies, it is necessary to

unfold the spectrum in order to discern sources which may have closely related spectra.

Figure 38 demonstrates a point made previously that the lower energy neutrons are

more likely to be detected and that the higher energy neutrons will stop less in the

layers of the spectrometer closest to the source. This is a result of the higher number

of collisions necessary to thermalize the higher-energy neutrons. Looking at the blue

line, representing the 0.5 MeV neutrons, many more are stopped in the first two layers

than the last layer. However, looking at the purple line, the 2.45 MeV neutrons,
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more are stopped in the last layer than in the first two. This example shows neutrons

with energies on the same order of magnitude; as the energy difference become more

significant, so does the difference in features.

4.4 Data Acquisition

The data acquisition system used to gather the experimental data from the spec-

trometer started with an ORTEC 926-M32-USB Multichannel Analyzer and a laptop.

With only one ADC, however, this was not a viable option for the multilayered spec-

trometer. The system then advanced to a NIMBox with a LabVIEW R© interface as

four channel simultaneous data acquisition became necessary.

Instrumentation.

The instrumentation started with an ADCAM MCB for data acquisition as shown

previously in Fig. 21, then advanced to a Wiener NIMBox in order to support the

simultaneous data acquisition of four channels. The instruments used are listed in

Table 5.

Figure 39. Instrumentation capable of simultaneous data acquisition of four channels.
The heart of the system is the Wiener NIMBox. A LabVIEW R© program was written
for simultaneous visualization, discrimination and data storage.
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Table 5. Instruments used for data acquisition in both the ADCAM and the NIMBox
configurations. The SETUP column depicts whether the instrument was used for the
ADCAM MCB DAQ setup (#1) or the NIMBox setup (#2).

Instrument Model # Serial # SETUP
NINBin 4006 MiniBin 537-1 1,2

Bias Supply ORTEC 478 041978 1,2
Pulser ORTEC 480 2391 1,2

Amplifier ORTEC 572A 253A 1,2
Amplifier ORTEC 572A 536 2
Amplifier ORTEC 572A 717 2
Amplifier ORTEC 572A 7 2

Timing SCA ORTEC 551 3880 1
Timer/ Counter ORTEC 996 125 1
ADCAM MCB ORTEC 926 10197413 1

Oscilloscope Tektronix DP07104 B079400 1,2
PreAmplifier ORTEC 142 1987 1

PreAmplifier (x4) CREMONT 150 NA 2
Computer Gateway 0040313918 1,2
NIMBox NAD4 3789044 2

A diagram of the advanced instrumentation is shown in Fig. 39. The experimental

setup is only four channels, however, the concept is identical to the eight channel

representation. Each of the detectors connects directly to a preamplifier, then to a

shaping amplifier. The output signals from each of the amplifiers connects directly

to the front face of the NIMbox (each NIMBox is capable of 4 channel input). The

signal is read out of the NIMBox via a USB cable connected to a computer running

LabVIEW R©. A LabVIEW R© program was written for simultaneous visualization,

discrimination and data storage of each channel.

NIMBox.

The NIMBox is a programmable NIM module based on a field-programmable gate

array (FPGA) board with four slots for I/O submodules that serve as an interface

between the FPGA I/O signals and the signals in the external environment [37]. It is
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equipped with a USB port for programming and read out and a connector for direct

FPGA programming/debugging. A FPGA is a semiconductor device containing pro-

grammable logic components and programmable interconnects. The programmable

logic components can be programmed to duplicate the functionality of basic logic

gates such as AND, OR, XOR, NOR or more complex combinational functions such

as decoders or mathematical functions. In most FPGAs, these programmable logic

elements (or logic blocks, in FPGA parlance) also include memory elements which

may be simple flip-flops or more complete blocks of memories [37].

Figure 40. ADC block diagram for the NIMBox.

The manufacturer of the NIMBox, Wiener, has pre-compiled NIMBox/NEMBox

Logic Pool VIs for ease of use with LabVIEW R©, yet nothing was readily available

that fit the requirements of the spectrometer. An accomplishment of this research

was the construction of a LabVIEW R© program for the individual and simultaneous

control of each channel. A block diagram of the NIMBox is shown in Fig. 40. Using
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Figure 41. LabVIEW R© interface for controlling the NIMBox. This figure only shows
one complete interface, however three identical interfaces exist adjacently to the right
on this panel. At the top of the figure is a MASTER run switch which controls all
four channels simultaneously. There is also an option to turn the visualization on or off
to save computing power and the Samples, Threshold Value, PreSamples, PostSamples
and gain can be adjusted individually for each channel as shown in the upper left
quadrant of the figure.

LabVIEW R©, this diagram was expanded to four channels, allowing all four channels

to start collecting data simultaneously while maintaining independent triggers and

discrimination levels. The user-interface for controlling the NIMBox is shown in Fig.

41. This figure only shows one complete panel, however, three identical panels exist

adjacently to the right. The visualization portion of the panel is the black grid. The

four channels can be simultaneously controlled using the MASTER run switch at the

top of panel one (as shown) and the visualization can be turned on or off. Turning

the visualization off reduces computing power and allows the program to run faster.
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The Samples, which is essentially the resolution can be adjusted as shown on the

upper left quadrant of Fig. 41, as well as the Threshold (or discrimination level),

PreSamples and PostSamples (how much of the waveform is saved) and the Gain.

LabVIEW R©.

LabVIEW R© (Laboratory Virtual Instrument Engineering Workbench) is a graph-

ical programming language (known as G) that uses icons instead of lines of text to

create applications. In contrast to text-based programming languages, where instruc-

tions determine the order of program execution, LabVIEW R© uses data-flow program-

ming where the flow of data through the nodes on the block diagram determines the

execution order of the VIs (virtual instruments) and functions. Virtual instruments

are LabVIEW R© programs that imitate physical instruments [38]. VIs can perform

operations as simple as taking two numbers and outputting their sum, or as complex

as communication with an instrument, ‘handshaking’ and finally writing the data to

a file. The imagination is the limit. An example G program is shown in Fig. 42.

This program is written to gather data from an instrument using the DAQ Assistant

(the left-most block), analyze the data using the Amplitude and Level Measurements,

then finally export the measurement to a file using the right-most block. The G

programming is intuitive because of the visual and diagrammatical modeling process.

Because LabVIEW R© graphical G code is easy to comprehend, common pro-

gramming tasks like debugging also become more intuitive as well. For example,

LabVIEW R© provides unique debugging tools that allow the user to watch as data

interactively flows through the wires and nodes of a program and reports data values

as they pass from one function to another along the wires. This is known within the

LabVIEW R© environment as execution highlighting. An example of execution high-

lighting is shown in Fig. 43. Notice the values are shown at the appropriate nodes.
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Figure 42. LabVIEW R© program for data acquisition, analysis and writing to a file.
Data originates in the acquisition function and then flows intuitively to the analysis
and storage function through wires.

Figure 43. LabVIEW R© interactive debugging environment allows visualization of data
values as they pass from function to function along wires, reporting datum as they are
analyzed real-time. This option is known as execution highlighting and it provides an
intuitive way to understand the execution order of G code.
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When execution highlighting is turned on, it allows the user to essentially watch the

program execute in real-time; allowing for easy debugging.

4.5 Spectrometer Commissioning

Commissioning of the spectrometer occurred over four trials in the deuterium-

deuterium neutron generator. For each run, the analysis was altered in some way to

improve the fit of the experimental results with the Geant4 simulation data. The final

commissioning assessment was performed by taking two sets of data for 10 hours (20

hours total) with the spectrometer placed in a 1 mm thick cadmium case within the

neutron environment of the generator. The data was compared to simulations and

unfolded to reveal the resultant spectrum.

D+D Generator.

Because α-particles are the only heavy charged particles with low-Z conveniently

available from radioisotopes, reactions involving incident protons, deuterons, and so

on must rely on artificially accelerated particles [12]. Two of the most common reac-

tions of this type used to produce neutrons are:

2
1H +2

1 H→3
2 He +1

0 n + 3.26MeV (D +D) (44)

and

2
1H +3

1 H→4
2 He +1

0 n + 17.6MeV (D + T ). (45)

Because the coulomb barrier between the incident deuteron and the light target

nucleus is relatively small, the deuterons need not be accelerated to a very high energy

in order to create a significant neutron yield. These reactions are widely exploited

in neutron generators where deuterium ions are accelerated by a potential of about
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100-300 kV. Since the incident particle energy is then small compared to the Q value

of either reaction, all the neutrons produced have the same energy (near 2.45 MeV

for DD and 14 MeV for DT). A 1 mA beam of deuterons will produce about 109 n/s

from a thick deuterium target and about 1011 n/s from a tritium target. Somewhat

smaller yields are produced in compact neutron generators consisting of a sealed tube

containing the ion source and target, together with a portable high voltage generator

[39].

An Adelphi Technology Incorporated DD108 Neutron Generator was used to pro-

duce the neutrons for the data collection and validation of the spectrometer, shown

previously in Fig. 27. The system is actively vacuum-pumped and uses a continuous

trickle supply of non-radioactive deuterium gas. The DD108 works well as a neutron

source for testing the spectrometer because the emitted lower-energy neutrons are of

the same order of magnitude as those released by spontaneously fissioning SNM, and

it additionally does not produce higher energy neutrons which may be more difficult

to shield and moderate.

The system consists of three main parts: the accelerator head, a power supply

and control rack, and a separate heat exchanger/chiller. The rack consists of a 2 kW

high-voltage power supply running at a maximum of 120 kV with vacuum and gas

controlling gauges and interface controls. The entire system is computer controlled by

a user-friendly program and has optional capabilities and controls for pulsed operation

where a variety of parameters can be selected by the user (pulse length, rise/fall times,

dwell time, etc.). The system control unit constantly monitors the system condition

and also employs many interlocks for user safety; the interlocks are both mechanical

(e.g., on the doors of the generator room) and functional (e.g., if the beam current

gets too high) [39]. A few primary specifications of the D+D generator, as operated,

are shown in Table 6.
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Table 6. Specifications of the Adelphi Technology Incorporated DD108 Neutron Gen-
erator.

Property Value
DD neutron yield 1× 108 n/second maximum
Neutron energy ≈2.45 MeV
Operating mode Continuous

Accelerator voltage 100 kV
Operating beam current 3 mA

Testing the Spectrometer.

Four runs were performed with the spectrometer in the D+D generator. Each run

consisted of two parts: the first part corresponding to layers 01-04 and the second part

consisting of layers 05-08 (which are identical to layers 01-04) with the 5 cm block of

paraffin wax moderator placed in front of the assembly. The first run was performed

for two hours on each half of the spectrometer (totaling four hours) and the second

run was conducted for a total of eight hours. This second test was conducted to get

a higher value of counts and to improve statistics; the cadmium shield was not used

for the first series of tests. The third and fourth tests were both performed with the

spectrometer placed inside a cadmium shell, lasting eight hours and twenty hours,

respectively. An outline of the tests is shown in Table 7.

Table 7. Overview of the four tests performed to commission the neutron spectrometer
in the D+D neutron source.

Test # Date Performed Run Time [HRS] Cadmium Shell
1 10/20/2012 (2+2)=4 NO
2 10/23/2012 (4+4)=8 NO
3 11/07/2012 (4+4)=8 YES
4 11/19/2012 (10+10)=20 YES

During testing, the spectrometer was placed as close to the tube head as possible

in order to get the highest flux of directional neutrons perpendicular to the front
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face of the detectors. The next chapter will report the results of the spectrometer

commissioning runs, the resulting unfolded spectrum and an overview of the unfolding

method.

83



V. Results

The results of the commissioning runs are discussed below. The spectrometer data

is reported and compared to simulated Geant4 values. Finally, the spectrometer data

is unfolded with MAXED to determine if the resultant spectrum has an acceptable

fit with the known energy of the mono-energetic neutron source.

5.1 Commissioning Test Results

The results of commissioning runs 01, 02, 03 and 04 are shown below in Figs. 44,

45, 46 and 47, respectively. With the exception of the second commissioning run, the

peak value of the simulated data in each of the plots has been scaled to match the
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Figure 44. Results of the first commissioning run of the spectrometer. The run was
conducted twice: the first time for two hours, then again for another two hours with
the appropriate thickness of moderator in front of the assembly to represent the first
four layers. This setup was run twice in order to simulate an eight-layer spectrometer
and to increase the resolution of the output spectrum. The counts in each detector
versus the layer number (or detector number) are plotted. The peak of the simulated
data has been scaled to match the peak of the experimental values. The experimental
plot appears to follow the general shape of the simulated curve with the exception of
two values that are significantly lower than expected.
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Figure 45. Results of the second commissioning run of the spectrometer with the
D+D neutron source. The run was conducted twice: the first time for four hours,
then again for another four hours with the appropriate thickness of moderator in front
of the assembly to represent the first four layers. This setup was run twice in order
to simulate an eight-layer spectrometer and to increase the resolution of the output
spectrum. The counts in each detector versus the layer number (or detector number)
are plotted. The detector was not surrounded by cadmium for this test run, which
according to simulations, is the cause for the poor fit to the simulated data.

peak value of the experimental data. The second run was not peak matched because

of the spike in layer 02 of the experimental data. Following the second commissioning

run, and as a result of the spike in layer 02, the subsequent commissioning runs

were conducted with the spectrometer wrapped in a 1 mm thick cadmium shell. As

the particle visualization reveals in Fig. 35, significant levels of thermalization and

reflection occur within the shielded environment of the D+D generator. The neutrons

that are reflected within the shielded environment of the D+D generator and make it

back to a LiF detector are not a result of thermalization occurring as a consequence

of the moderator in the spectrometer and can therefore give results that do not agree

with the simulations.

Commissioning run #1 was the first attempt at operating the spectrometer in
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Figure 46. Spectrum was created following eight hours of testing the spectrometer
with a cadmium shell and shows the results of the third commissioning run. The peak
of the simulated data has been linearly scaled to match the peak of the spectrometer
data. The entire curve appears to be shifted slightly to the left of the simulated data.

a known neutron environment. The experimental data followed the shape of the

simulated curve, however, the experimental data from both layer 04 and layer 06

registered well below expectations. The adjusted R-squared value of the fit registered

at 0.1798, and hence was not acceptable. Although R-squared values are arbitrary

and largely depend of the testing parameters, only values over 0.70 were considered

acceptable for the validation of the spectrometer.

Run #2 was accomplished in order to get better statistics; the run was accom-

plished with a total collection time of eight hours as opposed to four and the spectrom-

eter was moved as close to the D+D generator as possible to maximize the directional

component of the neutrons parallel to the long-axis of the spectrometer. The results

of the second commissioning run are shown in Fig. 45. The adjusted R-squared value

of the fit was maximized at 0.2008 and the peaks of the experimental and simulated

data were not matched to each other. After the commissioning run #2, the Geant4

86



1 2 3 4 5 6 7 8
400

600

800

1000

1200

1400

1600

1800

DETECTOR

C
O

U
N

T
S

 

 

DATA

SIMULATION

Figure 47. Spectrum was created following 20 hours of data collection with the D+D
neutron generator and the spectrometer surrounded by a 1 mm thick cadmium shell
and shows the results of the final commissioning run. The peak of the simulation
results has been linearly scaled to match the peak of the spectrometer data; the two
data sets were then plotted side-by-side. It can be seen that the experimental spectrum
is slightly shifted with respect to the simulation results and that there is an unfounded
spike in the counts of layer 08.

simulations were altered in order to determine why the simulations were deviating

significantly from the experimental results. Troubleshooting the poor fits began with

improving the simulations as opposed to altering the test setup because the prelim-

inary simulations were very elementary and did not incorporate the environment of

the D+D generator. Improving the simulations by adding the borated polyethylene

into the simulation revealed the problem of the thermal neutrons scattering back to-

ward the spectrometer and creating additional counts in select detectors. The results

of the first two commissioning runs led to a review of the simulations and resulted in

the conclusion that a cadmium shell around the spectrometer is crucial to block the

scattered neutrons from the borated polyethylene shielding in the D+D generator.

Commissioning run #3 (shown in Fig. 46) matched the simulated data better,

however, it still had a low adjusted R-squared value of only 0.39. While the adjusted
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Figure 48. Difference in the discrimination levels between commissioning runs #3 and
#4. The x-axis of the plots show the channel (or magnitude) of pulse from the shaping
amplifier. Fig. A (left) shows the histogram from layer 03 of commissioning run #3
and Fig. B. (right) shows the histogram from layer 03 of commissioning run #4 with
a lower discrimination value. Notice the larger total area of Fig. B as a result of the
lower value.

R-squared value improved from the first two commissioning runs, it was still not

acceptable. After looking into the experimental instrumentation, it was found that

some of the discrimination values were much higher than they should have been and

some of the neutron counts were therefore being considered noise and disregarded.

The MATLAB R© script written to evaluate the spectrometer data allowed for easy

adjustment of the discrimination levels, even post-data collection. Figure 48 shows

the difference between the discrimination of layer 03 from run #3 to run #4. Dis-

crimination of the detectors was originally set by the user, however the value changes

over time because of the varying noise levels around the generator. Upon discovering

the problem with the discrimination levels, the MATLAB R© code was re-written to

automatically adjust the discrimination levels based on where the counts start from

the higher-energy reaction products. This trough is shown experimentally in Fig.

22; the higher-energy reaction products are beyond the noise level far enough that a

cusp is created where the noise ends and the neutron signal begins. Evaluating Fig.

48, the discrimination value was set far beyond the noise (Fig. A). After fine-tuning

the MATLAB R© analysis code to automatically adjust the discrimination levels, the
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experimental data fit the simulations much better and the adjusted R-squared value

of 0.89 in the fourth commissioning run (20 hours total), shown in Fig. 47, sup-

ports the conclusion. The most significant deviation between the experimental and

simulation data in the fourth commissioning run occurred in layer 08, where the ex-

perimental counts were over 25% larger than expected. The deviation in layer 08

could not be accounted for within the simulations or otherwise and was taken as

erroneous measurement in the unfolding procedure. In the following section, the re-

sultant experimental spectrum of run #4 is unfolded to reveal the associated energy

spectrum.

5.2 MAXED Spectrum Unfolding

An important consideration for the spectrometer data is that the resultant spec-

trum is a convolution of the contribution from neutrons of multiple energies. In order

to determine the energy spectrum of a neutron source, it is necessary to ‘unfold’

the resultant spectrum. The program MAXED (MXD FC33), obtained from the

Radiation Safety Information Computational Center (RSICC), was used to unfold

the spectrum. MXD FC33 applies the maximum entropy principle to the unfolding

problem and has the ability to be run in ‘few-channel’ mode (FC ) or ‘multi-channel’

mode (MC ). The FC program can analyze sets with up to 100 measurements and can

handle fluence vectors with up to 1000 energy bins. The MC program can analyze

data sets with up to 4096 measurements and can handle fluence vectors with up to

4096 energy bins. The unfolding procedure taking place herein, for the validation

of the spectrometer, has only eight detectors with less than 100 energy bins; the FC

program will therefore be sufficient and is referred to for the purpose of this document

[40].
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Table 8. Control file line designators.

Line Number Description Value Used
1 Name of file with input data dat spec.ibu
2 Name of file with response functions resp fun.fmt
3 Name of output file mxfc 001
4 Name of file with default spectrum def spec.flu
5 Highest energy of the solution spectrum 5
6 Requested final chi2 per DOF (max.) 1.0
7 Temperature and temperature reduction factor parameters 1.0,0.85
8 Energy bin structure for unfolding, Solution spectrum bins 3,2
9 Choice of scaling the default spectrum 1
10 Choice of changing the MXD FC33 scale factor 0

The Code and Input Files.

The code was initially written for ‘unfolding’ the spectrum from a multi-sphere

neutron spectrometer though it is also applicable to this layered spectrometer because

of the essentially identical operation of the two devices. The following section will

describe the input files to run the MAXED program.

MAXED was written in Fortran 90 and compiled with the Compaq Visual Fortran

compiler. The program UMGPlot, which is used to visualize the results of MAXED,

was written using the programming environment ComponentOne Studio for ActiveX.

MAXED has the option to run using a control file or alternatively can be run inter-

actively. The unfolding accomplished for this report was done using a control file.

The control file is 10 lines in length and specifies each of the parameters needed to

successfully run MAXED; these designators are specified in Table 8.

The temperature and temperature reduction factor parameters in item 07 (Table

8) are parameters used by the simulated annealing optimization subroutine. The

temperature parameter can be set to 1.0 in almost all cases. The value of 0.85 is

recommended for the simulated annealing temperature reduction factor parameter

[40]. In item 08, there are several options for the energy bin structure; these options
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are outlined in Table 9. For record 9, the options are specified by the binary 0 or 1;

‘0’ meaning to not apply a scale factor and ‘1’ meaning to scale the default spectrum.

Line 10 is designated equivalently to line 09 (binary).

Table 9. Available options for line 08 of the control file.

Option Description
0 Use a fine energy bin structure
1 Four bins per decade
2 Energy bin structure of the default spectrum
3 Energy bin structure of the response functions

The control file is just the first of four necessary files to run the algorithm. A

file with the spectrometer’s data is supplied by the user and requires fields for the

number of measurements and a description of each measurement. The file with the

measured data is outlined in Table 10. Line number 03 (a-g) is repeated for each

measurement (the number of measurements specified in line 2).

The ‘2x’ in line 02 of Table 10 simply identifies two spaces. The next logical step

would be to define the response functions. The method for inputting the response

functions is very similar to that of the measured data. The format for the file is

specified in Table 11. Line 03 requires the specification of energy units (this is the

Table 10. Measured data file line designators.

Line Number Description Value Used
1 Header (80 characters) Spectrometer Data
2 Number of measurements and correction factor 8 2x 0
3a 8 Character ID 0W0
3b Moderator thickness (cm) 1.25
3c Measured data 2.878E+04
3d Uncertainty due to statistics (absolute units) 1.696E+02
3e Uncertainty due to statistics (percentage) 0.59
3f Other uncertainties (percentage) 2.0
3g A ”flag” to describe the data 0
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Table 11. Response functions file line designators.

Line Number Description Value Used
1 Header (80 characters) Response Functions
2 Header (80 characters) Response Functions
3 Energy bin edges in response function, units of E 22 2x 1
4 The energy bin edges in the response function 1.000E-08 2x 1.000E-07 ...
5 Dummy variable (DV) 0
6 Number of response functions 8
7a Response function ID, comments 0W0
7b DV, units of response function, 7 DVs 1.000E+00, 0,...,0
7c The responses for the layer 4.784E+05 2x 3.047E+05 ...

first time units has come into the algorithm). Table 12 outlines the values to specify

certain units of energy. A ‘1’ was used throughout the unfolding algorithm to specify

that each spectrometer measurement was defined in terms of MeV. The purpose of

this file is to input the response functions for use in the unfolding procedure. Records

7a,b and c will be repeated for all response functions in this file (the number specified

in line 06).

Option Description
0 eV
1 MeV
2 keV

Table 12. Available options for specifying units of energy.

The final file describes the default spectrum. The default spectrum supplies the

a priori information which is crucial for the ‘few channel’ case, where the number of

detectors is much smaller than the number of energy bins used for the unfolding. The

approach used in MAXED can be justified on the basis of arguments that originate in

information theory and allows for the inclusion of a priori information in a well-defined

and mathematically consistent way [41]. In addition to having a sound theoretical

basis, this approach has other features that have proven to be useful from a more

practical point of view: it makes use of the estimated variance for each detector’s count

92



Table 13. Default spectrum functions file line designators.

Line Number Description Value Used
1 Header (80 characters) Default Function
2 Form of default spectrum, Units of energy 2,1
3 DV, number of bins, max energy 2 2x 47 2x 10.00E+00
4 Energy bin edge, bin magnitude 1.000E-08 2x 0.0E+00 ...

rate in the unfolding process, appropriately weighting the data from each detector.

The algorithm leads to a solution spectrum that is always a non-negative function

and can be written in closed form [41]. The default spectrum file layout is outlined

in Table 13.

The ‘form of the default spectrum’ as specified in line 02 of the default spectrum

file can be defined by several values as outlined in Table 14. The default spectrum

defined for this unfolding was defined as fluence rate per bin since it was concentrated

around the thermal and 2.45 MeV energy regions. Record 04 is repeated for each bin

edge and bin.

Option Description
1 dφ/dE
2 Fluence rate per bin
3 (E dφ)/dE

Table 14. Available options for specifying the ‘form of the default spectrum’.

The Algorithm.

The MAXED algorithm used in MXD FC33 is a maximum entropy algorithm

which can be described in terms of a set of input parameters, a set of output param-

eters and the equations relating these quantities [42]. In practice, the algorithm is

formulated in discrete terms with n energy bins that are labeled with index i. As-
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suming m detectors that we label with index k, a set of admissible spectra are defined

using two restrictions:

Nk + εk =
∑
i

Rkifi (46)

and

∑
k

ε2k
σ2
k

= Ω, (47)

where:

Nk is the measurement,

εk is the difference between the measured and predicted value for detector k,

Rki is the response function for detector k,

fi is the solution spectrum,

σj is the estimated standard uncertainty and

Ω is a parameter set by the user to obtain a specific Chi-squared value.

Equation (46) is an integral equation that relates the measurement to the detec-

tor’s response function and the neutron spectrum, allowing for a measurement error.

Equation (47) is a constraint for handling the εk and assumes that the Chi-squared

statistic of the solution is equal to a value determined a priori by the user. From the

array of admissible spectra, the ideal response is one that maximizes the entropy S

of the distribution:

S = −
∑
i

[
filn

(
fi

fDEFi

)
+ fDEFi − fi

]
, (48)

where fDEFi is the default spectrum that contains the a priori information. The

maximization of S with constraints given by Equations (46) and (47) is equivalent to
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maximization of a potential function Z(λk) with respect to a set of m parameters λk

[43]. The solution spectrum fi and the solution for εk can be written in terms of λk:

fi = fDEFi exp

[
−
∑
k

λkRki

]
(49)

and

εk =
λkσ

2
k

2

(
4Ω∑

j(λjσj)
2

)1/2

. (50)

To find the values of λk that maximize Z, the simulated annealing algorithm for

the few-channel case is applicable here. The algorithm requires the input of Nk, σk,

fDEFi , Rki and Ω and calculates output parameters λk. Since the maximum entropy

solution can be written in closed form, one can use Equations (46-49) to calculate

the effect of small changes in the input parameters [40]. Any change in the input

parameters will lead to a change in the output parameters λk, which in turn will lead

to a change in the fi and the εk calculated from Equations (48) and (49).

5.3 Unfolded Spectrum- Final Results

To obtain an unfolded spectrum, it is first necessary to compile a library of re-

sponse functions. 22 Geant4 simulations of 1.0×107 neutrons were run in order to

span the entire applicable energy range with a resolution of 0.5 MeV from 0→5 MeV.

The library of functions is plotted and shown in Fig. 49; two plots were used because

of the wide range in energies covered. The functions were applied in the MAXED

format previously described with a specified energy resolution of 0.5 MeV. A higher

resolution spectrum would have been possible, however, only at the cost of the statis-

tics. An under-defined solution is only made possible because of the maximum entropy

application of MAXED.

After applying the MAXED software and unfolding the spectrometer data from
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Figure 49. Library of response functions as a result of running 22 Geant4 simulations,
each with 1.0×107 neutrons. Fig. A (top) is the first set of 11 functions showing 1-11
of 22. The first two functions (red and green) do not appear in the figure because
neutrons of this energy are primarily stopped by the cadmium and do not register
many counts. Fig. B. (bottom) is the second set of 11 functions showing 12-22 of 22.
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Figure 50. Fig. A (top) shows the unfolded energy spectrum using MAXED and
the experimental spectrum shown in Fig. 47. The unfolding was accomplished using
a library of response functions derived from multiple Geant4 simulations (shown in
Fig. 49). The peak above 4 MeV is a result of the unfounded peak in layer 08 of
the experimental data. With the exception of the >4 MeV peak, the histogram is
concentrated between 2→3 MeV, as expected. Fig. B. (bottom) shows the unfolded
energy spectrum using MAXED and the experimental spectrum shown in Fig. 47. The
unfolding was accomplished using a library of response functions derived from multiple
Geant4 simulations (shown in Fig. 49). This unfolding is identical to that of Fig. A
(above) with the exception of the ‘weight’ of importance placed on layer 08. Layer 08
was essentially disregarded in the unfolding procedure, yielding an energy spectrum
that would be expected from the mono-energetic D+D neutron source.
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Figure 51. Unfolded energy spectra of the D+D neutron source located at AFIT
building 194 as determined by the aforementioned spectrometer. The top figure shows
the spectrum from the experimental spectrometer data of the fourth commissioning
run with a 95% error applied to layer 08 in order to discount the unexplained peak in
counts and the bottom figure shows the uncorrected data from the same run.

the final commissioning run (#4), the spectrum shown in Fig. 50A (top) resulted.

Looking carefully, it is evident that there is a peak on the far right side of the figure.

This peak is a result of the count increase in layer 08 of the final commissioning run.

This increase in counts has not been accounted for in the simulations or otherwise;

it is likely a result of a physical phenomenon such as neutrons reflecting within the

cadmium case of back wall of the D+D shielding and being detected in the back layer

of the spectrometer. To disregard this peak, the layer 08 value was input into the

unfolding code with 95% uncertainty resulting in a new unfolded spectrum shown in

Fig. 50B (bottom).
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This spectrum looks much more like the expected spectrum (a mono-energetic

peak at 2.45MeV). Figure 51 shows a comparison of the two unfolded spectra. The

top figure represents the data of the corrected spectrum and the bottom figure repre-

sents the data of the uncorrected spectrum. Interpolating amidst the two figures, the

energy of the peak is between the 2 → 2.5 MeV energy bin and the 2.5 → 3.0 MeV

energy bin, which is appropriate considering the actual energy is ≈2.45 MeV. The

Chi-squared value of the corrected spectrum to that of a 2.45 MeV mono-energetic

peak is 0.374/D.O.F., indicating that the mono-energetic peak shown in Fig. 50B is

statistically probable and should not be rejected as a possible source spectra. Chi-

squared statistics are used because the unfolding problem is essentially under-defined;

there are many solutions that can potentially fit the response library. Each identi-

fiable source must be modeled in order to provide the necessary response libraries

for the unfolding algorithm. In the case of a poly-energetic source, which was the

next endeavor with the spectrometer, the experimental spectrum must be unfolded

against a library of known responses (the poly-energetic source must be modeled).

If the spectrometer were to be used to identify an unknown source of neutrons, the

experimental spectrum would be collected and unfolded against a variety of known

libraries. After unfolding against each of the known libraries, the neutron spectra

with the best statistical fit to the experimental spectrum will be assumed to be the

source of the neutrons, assuming the statistics are within the acceptable range of the

Chi-squared test.

The problem of identifying poly-energetic neutron sources is explored in the next

section. The same eight-layer spectrometer is used to identify an un-shielded PuBe

source at a range of ∼1 meter.
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Figure 52. Typical neutron energy spectrum of a Plutonium-Beryllium spontaneous
fission/(α,n) neutron source [1].

5.4 Post-Commissioning Spectrometer Tests

This section explores the applicability of the eight-layer spectrometer to iden-

tify poly-energetic neutrons sources. The ability to identify more-complex neutron

signatures is pertinent for the use of the spectrometer in Department of Homeland

Security applications where a primary goal in the organization is to differentiate neu-

trons emitted from varying SNMs and neutrons that exist as a result of the cosmic

background. A minimalistic approach has been taken to identify the neutron sources

with a spectrometer consisting of only eight layers. This provides only eight data

points to the unfolding algorithm, which is used to determine the probability that an

experimentally derived spectrum matches the spectrum of a known SNM.

Testing the spectrometer with a poly-energetic neutron signature was accom-
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Figure 53. PuBe testing results using the eight-layer spectrometer. The spectrum was
created following 52 hours of data collection with the 4888 mCi source placed at a
distance of eight inches from the front face of the spectrometer (which was surrounded
by a 1 mm cadmium shell). The experimental results appear to match the simulation
results well with an adjusted R-squared value of 0.8842 and the total counts vary-
ing by only 2.37 %. Additionally, the crests and troughs of the two curves align in
corresponding detectors.

plished with an un-shielded PuBe source in the basement of building 470. The re-

sponse library created for the D+D commissioning tests is still applicable to this

scenario since the spectrometer was not modified; the energy range of the library,

however was expanded to 10 MeV (up from 5 MeV) in order to cover the majority of

neutrons ejected from the PuBe source. The neutron energy spectrum of the PuBe

source is shown in Fig. 52. The spectrum was obtained using foil activation and

contains neutrons that are both spontaneously fissioned from the 239Pu (although

minimal) and as a result of the (α,n) reaction via [44]:
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Figure 54. MAXED was used to unfold the spectrometer’s eight point data into a
neutron spectrum using the libraries shown in Fig. 49 (extended to 10 MeV). The
default spectrum, shown in blue, is the input spectrum of the PuBe source, in which
MAXED tried to fit the output spectrum to, which is shown in red. The resultant Chi-
squared value is 0.9622/D.O.F., which corresponds to a chance probability of 0.3266.

4
2He +9

4 Be −→12
6 C +1

0 n. (51)

The PuBe source used for testing had a born-on date of 23 June 1960 and an initial

activity of 4895 mCi. With the large half-life (T1/2) of ≈24,100 years [44], the activity

during testing was approximately the same as the original at 4888 mCi. The closest

point of the PuBe source was placed eight inches from the front-face of detector 01

in the spectrometer and the experimental setup was identical to the commissioning

test setup shown previously in Fig. 39. After 52 hours (26 hours with each half)

of data collection with the source, the results were analyzed and plotted against the

Geant4 simulations; this plot is shown in Fig. 53. The two curves appear to follow

the same trend, with the crests and troughs matching in corresponding detectors and
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Figure 55. Typical neutron energy spectrum of a californium-252 (252Cf) spontaneous
fission neutron source [2].

an R-squared value between the experimental and simulation data of 0.8842. The

peaks of the two curves were not aligned in this plot; instead, the data was scaled

to maximize the R-squared value. By scaling the simulation results, the resultant

difference in counts between the two curves is only 2.37 %. The error bars depict

only the counting error (
√
n) and do not take into account the instrumentation and

discrimination error as this was not quantified.

Preparing MAXED, the input files were updated to depict the spectrum of the

PuBe source (Fig. 52), the libraries were updated to range from 0 → 10 MeV and

the experimental data was logged; execution of the program resulted in Fig. 54.

Using only eight data points, the unfolded spectrum identifies that the source of

neutrons is on the same order of magnitude as the default PuBe spectrum. Whether

this accuracy is acceptable or not depends on the application of the spectrometer.

The Chi-squared value of the output spectrum (the unfolded spectrum) to that of
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Figure 56. MAXED was used to unfold the spectrometer’s eight point data into a
neutron spectrum using the libraries shown in Fig. 49 (extended to 10 MeV). The
default spectrum, shown in blue, is the input spectrum of the D+D neutron generator,
in which MAXED tried to fit the output spectrum to, shown in red. The resultant Chi-
squared value is 1.910/D.O.F., which corresponds to a chance probability of 0.1669.

the default spectrum is 0.9622/D.O.F., which corresponds to a chance-probability of

0.3266. The name ‘chance-probability’ in this case is a bit deceiving, it is essentially

the probability that the deviation between the experimental and expected spectra is

a result of only chance. In radiation detection problems, this is often an acceptable

fit as values between 0.05 and 0.95 are typically deemed adequate; however, when

trying to identify a specific SNM which has a neutron spectrum on the same order of

magnitude as PuBe, this would not be sufficient. As shown in Fig. 54, the unfolding

favors neutrons from 5.5 → 10 MeV.

Fortunately, identifying specific SNM does not necessarily require that the un-

folded spectrum exactly fit the source spectrum. Using the minimalistic approach
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Figure 57. MAXED was used to unfold the spectrometer’s eight point data into a
neutron spectrum using the libraries shown in Fig. 49 (extended to 10 MeV). The
default spectrum, shown in blue, is the input spectrum of the Cf-252 source, in which
MAXED tried to fit the output spectrum to, shown in red. The resultant Chi-squared
value is 1.032/D.O.F., which corresponds to a chance probability of 0.3096.

taken here, it is not likely that the exact spectrum will be de-convoluted with only

eight data points. MAXED was used to unfold the spectrometer data against several

different default spectra to analyze which of the source spectra resulted in the best

statistical fit. Since the D+D neutron spectrum was already formatted into MAXED,

this spectrum was used in addition to the common californium-252 (252Cf) sponta-

neous fission neutron spectrum. The 252Cf spectrum is shown in Fig. 55. The first

unfold was accomplished against the D+D mono-energetic neutron spectrum and the

results are shown in Fig. 56. Again, the output spectrum is shown in blue. The un-

folding algorithm appears to have gotten the best statistical fit with a peak at 4→ 5.0

MeV, however the Chi-squared value of the output spectrum is almost double that of
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the PuBe spectrum at 1.910/D.O.F. The next unfold was against the 252Cf spectrum

and the results are shown in Fig. 57. The resultant output spectrum is similar to that

of the PuBe output spectrum in that the peak is dominant between 5.5 → 8.0 MeV,

and much of the data is within an order of magnitude. The Chi-squared value of the

252Cf output spectrum is 1.032/D.O.F. While the PuBe source does indeed have the

best statistical fit of the three cases evaluated herein, the fits of both the PuBe and

the 252Cf are within 7% and cannot be differentiated with certainty. If the sources

were not labeled, one may be able to use the eight-layer spectrometer to identify a

source based on statistics and accurate response libraries; however, this would likely

come with many ‘false identifications’. The results of the unfolding comparison are

shown in Table 15.

Table 15. Unfolding results using eight-layer spectrometer data against three different
default spectrums.

Default Spectrum χ2/ D.O.F. Chance-Probability
PuBe 0.9622 0.3266
D+D 1.910 0.1669
252Cf 1.032 0.3096

Looking back up to Fig. 53, even though the plot has been scaled to maximize the

R-squared value, not one of the experimental data points fall within the error limits

of the simulated data points. Many of the features of the source neutrons are lost

when the minimalistic approach is taken. This problem would likely be solved using

a spectrometer with more layers, however the detection problem often comes down to

determining the accuracy that is necessary to resolve the energy, type, speed, mass,

etc. of the intended particle. In a deployable situation where the device size matters,

the minimalistic approach is often desirable; however there are trade-offs and, in this

case, the energy resolution of the neutron energy spectrum is severely limited.
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VI. Conclusions

The results of this research appear to be promising; 2.45 MeV mono-energetic

neutrons have been identified successfully after unfolding experimental data produced

by an eight-layer spectrometer consisting of alternating layers of paraffin wax and

LiF thin-film semiconductor neutron detectors. The materials used to produce the

spectrometer are all fairly inexpensive and the spectrometer itself is both durable

and portable. The LiF detectors used in the spectrometer construction are robust

and have been shown to achieve neutron detection efficiencies upwards of 25% while

readily discriminating against background γ-ray radiation [18].

In order to determine the field applicability of the spectrometer, an attempt was

made to show that the spectrometer can achieve enough resolution to differentiate

common SNM neutron signatures with sufficient accuracy. Following poly-energetic

PuBe source testing, it is not likely that the eight-layer spectrometer will be adequate

for identifying SNM with signatures within an order of magnitude. The eight-layer

spectrometer was able to statistically differentiate the PuBe source from both a Cf-252

and D+D neutron source, however the unfolded spectra were only accurate within an

order of magnitude. The MAXED fits between the PuBe unfolded spectra and the Cf-

252 unfolded spectra varied by only 7%. The ability to differentiate the different SNM

signatures with confidence at large stand-off distances is paramount because of the

background neutron radiation and moderation/reflection occurring in the atmosphere.

Further studies should be conducted with a spectrometer of more layers (12, 16, 32,

etc.) to determine the point at which the common SNMs can be identified with low

uncertainties; this may also involve incorporating many detectors on each layer of the

spectrometer for an increased detection efficiency and better counting statistics.

Thin-film semiconductor detectors are state of the art with respect to neutron de-

tection and offer several benefits for homeland security applications. Semiconductor
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Figure 58. Hex design for the improved pixelation and symmetry of the neutron spec-
trometer. The future design will have built-in preamplifiers to simplify the electronics.

detectors offer the advantage of being small in size as opposed to BF3 tubes (which

can extend to meters in length), do not contain pressurized gases, do not require

high voltages and in some cases, they can operate on the intrinsic built-in voltage

and do not require an external voltage at all. Several materials have been proposed

for use as a neutron converter film; the converter materials are either coated on the

semiconductor as a film or packed into perforations. Lithium fluoride was used for

this research because of the higher-energy reaction products (2.055 and 2.73 MeV),

allowing for a thicker neutron conversion layer and simplifying the process for dis-

criminating against background radiation. One disadvantage of lithium, compared

to both boron and gadolinium is the lower thermal neutron detection cross section

(detection efficiency). This decrease in efficiency is a disadvantage indeed, however,

it can be compensated for by using multi-layer detectors.

As with most radiation problems, simulations play an important role in validating

108



a physical model. Geant4 simulations were used throughout this research to model

the response of neutrons as they interact and penetrate through the eight-layer spec-

trometer. The simulations helped not only to guide in the optimized thickness of

moderating material, but also in developing the response library vital to the MAXED

unfolding algorithm. A useful application of the model was also revealed using the

visualization macro to view the particles as they were tracked through the geome-

try of the spectrometer; if modeled correctly, areas of reflection/interaction can be

foreseen, potentially aiding in the troubleshooting and optimizing of the device.

Future designs have been proposed to improve pixelation of the detectors within

the layers of the spectrometer. Hex-shaped features allow for a maximum number

of pixels on the improved wafers while achieving good symmetry and low detection

dead-space. Features like this can allow the spectrometer to be used not only for

neutron energy analysis, but can provide directional information as well. The design

shown in Fig. 58 is currently being built by S.M.A.R.T. Laboratories and incor-

porates built-in pre-amplifiers. Other proposals to improve the spectrometer design

include optimizing moderator thickness to tailor the spectrometer to a specific energy,

increasing the number of layers and even using variable moderator thicknesses from

layer-to-layer to concentrate the energy resolution in a specific range.
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VII. Appendix A- Additional Plots

This appendix includes additional plots not presented in the body of the report.

Several tests were performed with the LiF detectors and with the spectrometer that

provided supporting information in order to guide the research to its resultant path.

Some of the plots are more informative than others and very little formatting has

been accomplished.
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Detector_12_20120620.Spe

Figure 59. A 12 hour test with binary detector 12 in the graphite pile at FS-7. Total
counts can be found by integrating the area under the curve over a specific range. This
is the type of signal that will be output by the new devices currently being fabricated
by S.M.A.R.T. Laboratories. This type of device is easy to work with because of the
binary output signal, the device simply needs to be calibrated for efficiency differences
from device-to-device (or pixel-to-pixel).
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Detector_12_20120627.Spe

Figure 60. A 12 hour test with binary detector 12 (1m wire as opposed to a 3m wire
in Fig. 59) in the graphite pile at FS-7. The first peak was reduced as a result of using
a shorter lead wire from the actual detector, this is potentially a result of less noise
pick-up from the extended length of cable.
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Detector_12_20120628.Spe

Figure 61. A 12 hour test with binary detector 12 (1m cable length) in the graphite
pile at FS-7, wrapped in Cd. This test was useful to determine how the detector reacts
to the thermal neutron flux. The trough stayed approximately stable at channel 300,
whereas the magnitude of the primary peak decreased two orders of magnitude. This
reduction in signal is a result of the thermal neutron flux.
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Detector_04_20120629.Spe

Figure 62. 12 hour test of detector 04 in the graphite pile at FS-7, without Cd. Not
all of the tests gave elegant results. It took several runs to get the instrumentation
configured. Many of the expected features are still evident in the plot.
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Figure 63. 12 hour test of detector 04 in the graphite pile, with Cd. Comparing this
figure to Fig. 62, the reduction in signal (two orders of magnitude), is proof that the
detectors have a good response to thermal neutrons.
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Detector_04_20120705.Spe

Figure 64. 12 hour test of detector 04 in the graphite pile, without Cd and with a
Co-60 source for evaluation of γ-ray response. Again, comparing this figure to Fig.
62 shows how the detector response changes as a result of exposure to a Co-60 γ-ray
source. There is very little change in signal past the discrimination point.
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CADMIUM DIFFERENCE

Figure 65. Detector 04’s response to the thermal neutrons. Test was conducted over
a 12 hour period in FS-7 of the graphite pile. This figure is a result of taking the
difference between Fig. 62 and Fig. 63. It is apparent that the bulk of the original
signal is a result of the thermal neutron flux.
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GAMMA DIFFERENCE

Figure 66. Detector 04’s response to the Co-60 γ-rays. Test was conducted over a 12
hours period in FS-7 of the graphite pile. The signal is essentially just noise, except
for the addition to the first 100 channels.
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12 HR, STANDARD TEST

12 HR, CO−60

Figure 67. Two tests conducted with detector 06 removed and isolated from the
graphite pile. The first test was conducted with the Co-60 source present and the
second was performed with the source removed. The blue line represents only back-
ground and the green line represents the Co-60 source present. Test was conducted for
12 hours.
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GAMMA DIFFERENCE

Figure 68. Gamma-ray response of detector 06. The detector was isolated from the
graphite pile for the duration of the test. This figure is a result of subtracting the blue
line from the green line in Fig. 67. The signal from the γ-rays is evident in only the
first 100 channels.
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12 HR

Figure 69. Results of 12 hour test conducted in the thermal neutron pile with detector
#04. Amplification was set at 100x and the detector was in position FS-7. This is how
the signal looks when not smoothed using the Savitzky-Golay smoothing method.
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12 HR, CO−60

12 HR, BACKGROUND

12 HR, SR−85

Figure 70. Results of 12 hour γ-ray sensitivity test. Three separate runs were con-
ducted: one for background, one with a Sr-85 source and one with a Co-60 source.
Detectors #01, 04, 06 and 08 were used with an amplification setting of 100x. A
definitive response to the γ-rays is witnessed in the semiconductor, however the ef-
fects are evident only below channel 500. This allows for easy discrimination from the
Li+neutron reaction products.
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VIII. Appendix B- Foil Activation Physics

The foil activation process that was used to determine the thermal neutron flux of

the graphite pile in the basement of building 470 on WPAFB starts with the reaction

of a neutron and indium nucleus:

115
49 In + n→116

49 In.

This unstable nucleus decays via β− emission. The change in radioactive nuclei, as a

result of the neutron irradiation, is given by:

dN
′

dt
= φthNσact − λN

′
.

N
′

is the number of radioactive nuclei present,

t is the time [sec],

φ is the thermal neutron flux [cm−2-sec−1],

N is the number of target nuclei in the sample,

σact is the activation cross section and

λ is the decay constant [sec−1].

When a sample is irradiated to saturation, dN
′
/dt approaches zero. As the num-

ber of radioactive nuclei stabilizes, the rate of activation is equal to the rate of decay:

As = λN
′

s = φthNσact.

N
′
s is the number of radioactive nuclei at saturation. From this relationship, if As can

be measured while N and σact are calculated, then φth can be determined from known

information [32]. Upon taking several corrections into account, indium foil activation
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was used in 2009 by J.D Daniel and S.R. McHale [32] to determine that the thermal

neutron flux at position FS-7 is 2664 cm−2-sec−1 with an anticipated increase of ≈

2% per year.
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and the thickness of the adjacent moderating materials. The simulated spectrometer response was compared to that
obtained experimentally with mono-energetic neutrons from a D+D neutron generator. The commissioning tests of the
spectrometer reveal that the energy of a mono-energetic neutron source can be identified to within ±1 MeV. Following
the commissioning tests, the spectrometer was used to characterize the poly-energetic neutron spectrum of a
plutonium-beryllium neutron source.
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