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Summary of the Project: This project aims at designing sensing
systems in bacteria E. coli by employing and re-engineering oo/ —
components from natural sensing systems. As shown in Figure 1,
any such sensing system must have a detector, a transmission L

system, and a computation element, which produces a visible .
output. The transmission system usually involves covalent
modification cycles such as phosphorylation (the MAPK g
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cascades), while the computation element usually involves gene
expression. The properties that we look for in a sensing system signal transmission machinery is usually
are (a) high sensitivity to the presence of molecules to be sensed performed by networks of covalent

Figure 1: Natural Sensing System. In a cell, the

and (b) fast response time so that the visible output is displayed modification cycles. The signal processing
with minimal delay with respect to when the environmental machinery (computation) is performed by
molecule appeared. genetic circuits.

Sensing through gene expression

We assembled the following circuit as a candidate sensing device composed of gene expression
parts.

.......................................................

gfp

atcé s .

Load :

Fig 2. Sensing system composed of two transcriptional components and a reporter system (gfp). Signaling molecule atc is the input
to be sensed and Lacl protein responds to it by increasing when atc increases. The measured output is gfp, which decreases when
atc increases. The “load” represents downstream processing systems that take Lacl as an input. This system was assembled in E. coli
cells in medium copy-number plasmids pACYC.
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We characterized both the steady state transfer curve and the dynamic response of this system
depending on whether the downstream processing (load) devices were present or not. This study
is crucial to understand the effects of retroactivity from downstream processing systems on the
biosensor performance. In fact, any biosensor will work when connected to downstream
processing systems. Therefore, it is important to understand how its behavior characterized in
isolation (without the downstream processing systems) is affected by the connection to its
downstream clients.

Steady state transfer curve
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Fig 3. Loaded systems have a higher apparent dissociation coefficient with no change in the Hill coefficient. (A) Simulations show
that the load increases the apparent dissociation coefficient of the response to the transcriptional component without changing the
Hill coefficient. (B) Experimental data showing an increase of 30% on the apparent dissociation constant with no significant change
in the Hill coefficient. Experimental data was fitted using non-linear regression on a repression-type Hill function model. The
dissociation constant went from 1.08+0.02uM in the isolated system to 1.38+0.03uM in the loaded system. The Hill coefficient
identified was 9.7+1.3 for the isolated system and 9.1+1.5 for the loaded system.

Figure 3 shows that the point of half maximal response of the sensor shifts to higher values. That
is, in order to obtain the same response in the output, a higher input stimulation must be applied
when the output of the sensor is used by other processes. This finding is crucial for designing
biosensors that have a desired detection level. Only knowing the difference between the red and
the black curve we can establish the sensing threshold for the device. This threshold will be
much higher when we know that the sensor output is being used by other processes.

Dynamic Response to sudden input stimuli

Figure 4 shows that when the input stimulus is suddenly applied, the sensor presents a large
delay in responding when the sensor output is connected to downstream clients. This is
obviously undesirable because a sensor output is always going to be used by downstream clients.
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Fig4. Load slows the response to induction by up to 40% in this circuit. (A) Simulation of the model in Figure 1 illustrates the effect
of retroactivity on the dynamic response to addition of input. Note that load appears to cause a stronger lag earlier on the induction.
The units in this simulation are nondimensionalized. Parameters used in this simulation are given in the supplementary information.
(B) Experimental results show a good agreement with our model for transcriptional retroactivity. Upon the addition of 1.9uM atc,
the average half-life of GFP (50% elimination) post-induction goes from 8542 to 122+14min (43% change). (C) The slower response in
the early stages of induction, can be quantified by comparing the delay at different elimination levels. The time it takes to remove
20% of the GFP presents a delay of 40min, slightly higher than the 37min delay due to load in the half-life value. (D) Higher levels of
atc can decrease the half-life, but the delay caused by the load persists and as such pre-compensation strategies to avoid
retroactivity may not work.

In contrast with the decrease of performance in steady state, this decreased performance in the
dynamic response cannot be compensated in any way. It can be fixed only through the design of
insulation devices, which use high gain feedback to perform reliably independently of
downstream processes. This is what we are currently investigating in the new MIT grant.

Dynamic Response to sudden removal of input stimuli

While connection to downstream clients causes a degrade in the performance of the sensor
response to sudden appearance of input stimuli, it causes an improvement in performance for the
response to sudden removal of input stimulus. In fact, the response of the connected system
(loaded) becomes faster. That is, the sensor detects earlier a decrease of the input stimulus when
its output is used by downstream clients. This is shown in Figure 5.

Since a connected sensor performs worse in responding to sudden appearance of input stimuli
and better in responding to sudden removal of input stimuli, the fundamental question arises of
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Fig 5. Load generates a faster response to removal of the input stimulation. (A) Simulation of the model from Figure 1 illustrates the
effect of retroactivity on the dynamic response to removal of input stimulus. Note that the model predicts a decrease in the lag
early. (B) Experimental results validate the results predicted by the model by showing that there is a consistent lag of 50min in the
response to removal of inducer from cultures pre-induced with 3uM atc for 400min. The time to reach 50% of the steady-state level
post-wash went down from 403+9min in the isolated system to 355+15min in the loaded system. (C) This column plot shows that

the increase in the speed response occurs mainly in the early stages. The gap between isolated and loaded systems in the time to
reach 20% and 50%of the steady-state are similar.

how we can optimize the sensor performance both in response to application and removal of
input stimuli and independently of whether the sensor output is being used by downstream
clients. This fundamental question is being addressed in the new MIT grant. An overview of this
problem, the proposed solution, and the current status is included in the next section here.

Sensing through covalent modification

In the new MIT grant, we are designing and fabricating a semi-synthetic transmission system
based on a phosphorylation cycle in E. coli. Specifically, Figure 6 shows the semi-synthetic
transmission system based on phosphorylation. Specifically, the input signal is given by small
signaling molecule aTc and the output is the phosphorylated NRII protein that is a transcription
factor activating the gInA promoter. This output is measured indirectly by the fluorescent
reporter superfolder GFP-lite, which fluoresces in green. The E. coli strain in which this is
implemented is the 3.300LG strain, which is a double mutant of NRI and NRII in the 3.300
strain, so to prevent interference with the circuit behavior. Ideally, this system should provide a
fast and sensitive GFP response to any change of the input stimulus atc, independently of



whether the output of this device is being used by downstream clients. In our earlier theoretical
work, we have shown that this feature is guaranteed if the cycle has sufficiently high
amplification and feedback gains. This can, in turn, be guaranteed if the amounts of substrate
NRI and phosphatase NRII are sufficiently large. Hence (see Figure 6), we have placed the NRI
and NRII phosphatase under the control of a constitutive promoter and a promoter inducible
through IPTG, respectively. Increasing the amount of IPTG increases the amount of phosphatase,
which increases the strength of the negative feedback. This allows us to tune the strength of the
feedback gain, which is a key to attain a fast and reliable response to input stimuli, which is
robust to the retroactivity from downstream clients that use NRI phosphorylated as an input.
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Fig 6. Implementation of a semi-synthetic transmission system based on phosphorylation in E. coli. The phosphorylation cycle is

given by the NRI-NRIp (phosphorylated) cycle.

We successfully fabricated this system in pACYC plasmid and placed the load (gIinA and ginK
promoters) on pUC plasmid. We followed the bio-brick standard assembly procedure and
followed a sequential cloning strategy. We specifically cloned one piece at the time in pACYC,
sequenced the product, and performed functional testing to check the phenotype. All tests
performed at each step of the construction process were successful. The final circuit genetic map

is shown in Figure 7.
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Fig 7. On the left, we show the restriction sites that were used to clone each of the components shown in Figure 6. On the right, we
show a gel showing the length of the DNA segments obtained after restriction of the circuit on the left with each of the restriction
enzymes indicated. The length of the various inserts matches the expected one. This, along with the several sequencing that we
have done, shows that the circuit is correct.
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