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Modeling With Emphasis
on Ship Hydrodynamics
This paper presents our approach for the computation of free-surface/rigid-body inter-
action phenomena with emphasis on ship hydrodynamics. We adopt the level set
approach to capture the free-surface. The rigid body is described using six-degree-of-
freedom equations of motion. An interface-tracking method is used to handle the
interface between the moving rigid body and the fluid domain. An Arbitrary
Lagrangian–Eulerian version of the residual-based variational multiscale formulation
for the Navier–Stokes and level set equations is employed in order to accommodate the
fluid domain motion. The free-surface/rigid body problem is formulated and solved in a
fully coupled fashion. The numerical results illustrate the accuracy and robustness of
the proposed approach. [DOI: 10.1115/1.4005072]

1 Introduction

Accurate prediction of wave loading on vessels and their motion
motions necessitates the development of a simulation framework
that involves free-surface flow and fluid-structure interaction (FSI)
(see, for example, Ref. [1]). The simulation framework must be
such that it is able to keep track of two types of interfaces: the air-
water interface and the fluid-structure interface.

Depending on flow conditions, the free-surface motion may be
smooth or violent, with wave breaking and other topological
changes. As a result, the use of an interface-capturing method (see
Ref. [2] for the terminology) is a convenient and practical choice
for the proposed application. In this work, we make use of the
level-set method to handle free-surface flow (see Refs. [3–5]). In
the proposed methodology, the boundary between the two fluids is
described implicitly as a zero level set of a scalar function defined
in the problem domain. The subdomains corresponding to nega-
tive and positive values of the level set function are those occu-
pied by air and water, respectively. The level set function is
simultaneously a signed-distance function, meaning its magnitude
at a point in 3D space is the distance from that point to the air-
water interface, and its sign determines if the point is in the water
or air domain. The signed distance property of the scalar function
is not necessary in general; however, it has several accuracy bene-
fits, as discussed in Ref. [6].

Simulating interaction of free-surface flow with moving and de-
formable structures requires additional computational technology
that is able to track the interface between the structure and the sur-
rounding air-water medium. Therefore, the Mixed Interface-
Tracking/Interface-Capturing Technique (MITICT) is used to
track the fluid-structure interface and to capture the air-water
interface. The MITICT [7] was introduced primarily for fluid-
object interactions with multiple fluids. The MITICT was success-

fully tested in Ref. [8], where the interface-tracking technique
used was a space-time formulation [9,10], and the interface-
capturing method was the Edge-Tracked Interface Locator Tech-
nique (ETILT) [7]. It was also tested in Ref. [11] by using a mov-
ing Lagrangian interface technique [12] for interface tracking and
the ETILT for interface capturing. The interface-tracking tech-
nique used in the MITICT can also be the Arbitrary Lagrangian-
Eulerian (ALE) method [13], which is employed in this work. In
this paper we assume that the structures are complex-geometry six
degree-of-freedom (6DOF) rigid objects. The extension to flexible
structures will be pursued in future work.

The paper is outlined as follows. In Sec. 2, we present the gov-
erning equations of free-surface flow. In Sec. 3, we present our
discrete free-surface formulation, which includes the Residual-
based Variational Multiscale formulation (RBVMS) in ALE form,
weak enforcement of essential boundary conditions, re-distancing,
and restoration of the global fluid mass balance. The free-surface
formulation is essentially that developed in Refs. [14,15]. In this
section, we also present our rigid body dynamics and mesh motion
formulations. In Sec. 4, we present our time integration method
and solution strategy for the coupled problem. We advocate that
the fluid and level set solutions are handled in a fully-coupled
fashion, which significantly increases the robustness of the pro-
posed methodology. We also present a novel time integration
strategy for the rigid body equations, where the rotation matrix
becomes an additional problem unknown that is integrated in time
along with the displacement and rotational degrees of freedom. In
Sec. 5, we present two numerical examples. The first one is the
well-known MARIN dam break problem [14–18], which is a free-
surface flow without fluid-object interaction. The problem is used
to illustrate the effect of the penalty parameter in the level set re-
distancing equations and the effect of using a strongly coupled
Navier-Stokes/level set convection formulation. The second
example consists of a DTMB 5415 Navy combatant at lab scale in
head waves of large amplitude, which illustrates direct
applicability of the proposed methodology to ship hydrodynamics
simulations.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received March 22, 2011; final manu-
script received May 15, 2011; published online December 13, 2011. Assoc. Editor:
Tayfun E. Tezduyar.
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2 Governing Equations of the Free-Surface Air-Water

Modeling

In this section, we summarize the governing differential equa-
tions of free-surface flow on a moving spatial domain. Let
Xt 2 Rd; d ¼ 2; 3 denote the combined air-water domain at cur-
rent time t and let Ct be its boundary. The domain Xt is decom-
posed into the water and air subdomains, Xw

t and Xa
t , respectively,

and Caw
t denotes the boundary between the air and water subdo-

mains. See Fig. 1 for an illustration.
In this work we make use of the level set method to capture the

air-water interface (see, e.g., Refs. [3–5]).
For this, we introduce a scalar function /(x, t) and define:

Xa
t ¼ fx /j ðx; tÞ < 0; 8x 2 Xtg (1)

Xw
t ¼ fx /j ðx; tÞ > 0; 8x 2 Xtg (2)

Caw
t ¼ fx /j ðx; tÞ ¼ 0; 8x 2 Xtg (3)

In our modeling framework, the air and water domains will be dis-
tinguished by assigning the corresponding values to the fluid den-
sity and viscosity. Namely, we assume that the density, q, of the
two-fluid air-water medium is given by:

q ¼ qwHð/Þ þ qað1� Hð/ÞÞ (4)

where qw and qa are the densities of water and air, respectively,
and H(/) is the Heaviside function given by

Hð/Þ ¼ 0 if / < 0

1 if / > 0

�
(5)

Likewise, the combined dynamic viscosity, l, is given by:

l ¼ lwHð/Þ þ lað1� Hð/ÞÞ (6)

where lw and la are the dynamic viscosities of water and air,
respectively.

With this definition of the fluid material parameters, the
Navier–Stokes equations of incompressible flow in the arbitrary
Lagrangian–Eulerian (ALE) description take the form of:

q
@u

@t

����
x̂

þðu� ûÞ � rxu� f

� �
�rx � r ¼ 0 (7)

rx � u ¼ 0 (8)

where the fluid Cauchy stress, r, is defined as:

rðu; pÞ ¼ �pIþ 2lrs
xu (9)

u and p are the fluid velocity and pressure, f is the body force per
unit mass, û is the velocity of the fluid domain, and rs is a sym-
metric gradient. In Eq. (7), the partial time derivative is taken

with respect to a referential coordinate x̂ held fixed. In Eqs. (7)
and (8) the space derivatives are taken with respect to the current
configuration spatial coordinates denoted by x. We note that the
fluid domain velocity is assumed to be completely independent of
the velocity of the fluid material particles.

We assume that the air-water interface is moving with the
fluid material particles, which we model by means of an addi-
tional convection equation for the level set / in the ALE
description:

@/
@t

����
x̂

þðu� ûÞ � rx/ ¼ 0 (10)

The above equations, with the associated boundary conditions
constitute an air-water free surface formulation on a moving do-
main Xt at the continuous level.

3 Discrete Formulation

3.1 Discrete Formulation of the Two-Fluid Problem. We
discretize the Navier-Stokes and level set equations using the re-
sidual-based variational multi-scale (RBVMS) formulation. The
RBVMS formulation was originally proposed in Ref. [19] and
applied to a variety of situations involving fluid flow and fluid-
structure interaction [20–28]. For a thorough derivation of the
RBVMS formulation the reader is referred to these publications.
The RBVMS formulation for free-surface flow was also devel-
oped in [14,15,18].

Let Vh denote the discrete solution space for the velocity-pres-
sure-level set triple {uh, ph, /h} and let Wh denote the discrete
weighting space for the linear momentum, continuity and level
set equations {wh, qh, gh}. The RBVMS formulation of the
free-surface equations on a moving domain may be stated as: Find
{u

h, ph, /h} 2Vh such that 8 {w
h, qh, gh} 2Wh:

ð
Xt

wh � q @uh

@t

����
x̂

þ uh � ûh
� �

� rxuh � f

� �
dX

þ
ð

Xt

rxwh : r uh; ph
� �

dX�
ð
ðChÞt

wh � dhC

þ
ð

Xt

qhrx � uhdX

þ
ð

Xt

sM uh � ûh
� �

� rxwh þrxqh

q

� �
� rM uh; ph

� �
dX

þ
ð

Xt

qsCrx � whrC uh; ph
� �

dX

�
ð

Xt

sMwh � rM uh; ph
� �

� rxuh
� �

dX

�
ð

Xt

rxwh

q
: sMrM uh; ph

� �� �
� sMrM uh; ph

� �� �
dX

þ
ð

Xt

gh @/h

@t

����
x̂

þ uh � ûh
� �

� rx/
h

� �
dX

þ
ð

Xt

s/ uh � ûh
� �

� rxg
h @/h

@t

����
x̂

þ uh � ûh
� �

� rx/
h

� �
dX ¼ 0

(11)

In Eq. (11) all the integrals are taken element-wise, rM(uh, ph) and
rC(uh, ph) are the element-level residuals of the momentum and
continuity equations given by the following:

rMðu; pÞ ¼ q
@u

@t

����
x̂

þ ðu� ûÞ � rxu� f

� �
�rx � rðu; pÞ (12)

Fig. 1 The fluid spatial domain decomposed into the water
and air subdomains denoted by Xw

t and Xa
t , respectively. The

air-water interface is denoted by Caw
t .
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rcðu; pÞ ¼ rx � u (13)

and the s0s are the stabilization parameters discussed in the sequel.
In the presence of solid walls, (e.g., the ship hull), it is benefi-

cial to augment the coupled weak formulation given by Eq. (11)
with additional terms that give rise to weak enforcement of
essential boundary conditions. In this case, the left-hand side of
Eq. (11) is augmented with the following terms:

�
ð
ðCgÞt

wh � r uh; ph
� �

ndC

�
ð
ðCgÞt

2lrxwhnþ qhn
� �

� uh � ug

� �
dC

�
ð
ðCgÞ�t

wh � uh � ûh
� �

� n
� �

uh � ug

� �
dC

þ
ð
ðCgÞt

sBwh � uh � ug

� �
dC

(14)

where ug is the prescribed fluid velocity on ðCgÞt, the Dirichlet
portion of the fluid domain boundary, and ðCgÞ�t denotes the
“inflow” part of ðCgÞt. We refer the readers to Refs. [22,23,29] for
the derivation and discussion of weak boundary conditions for the
equations of fluid mechanics. sB is the boundary stabilization or
penalty parameter.

For flows at very high Reynolds number, as well as for pure
convection, the RBVMS framework alone may not be sufficiently
robust. In this case, additional discontinuity-capturing terms may
be added to the left-hand side of Eq. (11)

þ
ð

Xt

rxwhjnsrs
xuhdX (15)

þ
ð

Xt

rxg
hjlsrx/

hdX (16)

where jns and jls are tensor-valued, residual-based, discontinuity-
capturing viscosities.

The density and viscosity of the two-fluid system in the discrete
setting are computed as:

q ¼ qwHeð/hÞ þ qað1� Heð/hÞÞ (17)

l ¼ lwHeð/hÞ þ lað1� Heð/hÞÞ (18)

where He is the regularized Heaviside function. In this work, we
take:

Heð/Þ ¼
0 if / � �e
1

2
1þ /

e
þ 1

p
sin

/p
e

� �� �
if /j j < e

1 if / � e

8><
>: (19)

where e � O(h) defines the interface width between the air and
water subdomains. Note that e! 0 as the mesh is refined.

Regularization of the Heaviside function places the requirement
on the level set function /h to maintain the signed distance prop-
erty. This means that the value of /h at a point x at time t is the
perpendicular distance of that point to the air-water interface Caw

t .
In the water domain, the distance takes on a positive value, while
in the air domain it is negative. To enforce the signed distance
property of the level set function, we define /h

d such that:

rx/
h
d

�� �� ¼ 1 in Xt (20)

/h
d ¼ 0 on Caw

t (21)

in a weak sense. Equation (20) is the Eikonal partial differential
equation subject to the interior constraint given by Eq. (21). To

satisfy Eqs. (20)–(21), we introduce a “pseudo-time” variable ~t and
integrate the following semi-discrete variational equation in
pseudo-time: Given /h(x, t), find /h

d 2 Vh
s , such that 8gh 2 Wh

s :

ð
Xt

gh @/h
d

@~t
þ a � rx/

h
d � Seð/hÞ

� �
dX

þ
ð

Xt

s/d
a � rxg

h @/h
d

@~t
þ a � rx/

h
d � Seð/hÞ

� �
dX ¼ 0 (22)

where

a ¼ Seð/hÞ rx/
h
d

rx/
h
d

�� �� (23)

and

Seð/Þ ¼ 2Heð/Þ � 1 (24)

are an effective “convection” velocity and a regularized sign func-
tion, respectively.

The formulation given by Eq. (22) is the SUPG method [30]
applied to the Eikonal equation. At the steady state, the above
problem produces a new level set field /d with the signed distance
property and zero level set coincident with that of /. This re-
distancing approach was first proposed in Ref. [4], and employed
in Refs. [5,14,15] for finite element computations of free surface
phenomena.

To prevent excessive motions of the air-water interface during
the re-distancing procedure, we recommend adding a penalty term
to the left-hand side of Eq. (22) of the form:

þ
ð

Xt

ghkpenH0eð/
hÞð/h

d � /hÞdX (25)

In the above penalty term, the constant parameter kpen is multi-
plied by H0eð/h

dÞ, which scales as 1/h in the interface layer render-
ing the equations dimensionally consistent. Furthermore, H0eð/

h
dÞ

is identically zero away from the interface; hence the term is only
active where it is necessary. In Sec. 5.1.1, the importance of this
term will be clearly demonstrated.

Both convection and re-distancing of the level set may result in
the loss or gain of the total fluid mass. The amount of mass deficit
depends on many factors. One is more likely to significantly upset
the mass balance on a coarse problem mesh than on a fine problem
mesh. Significant mass loss or gain may also occur when the dis-
crete equations are integrated for a long time period. In this case,
seemingly minor mass errors for a given time step may compound
into a large mass error at the end of the computation. As a result,
a mass correction procedure is necessary. We begin with a global
mass balance law for a moving domain, which reads:

d

dt

ð
Xt

qdXþ
ð

Ct

qðu� ûÞ � ndC ¼ 0 (26)

We integrate Eq. (26) in time over the time step (tn, tnþ1) and ap-
proximate the term corresponding to the boundary integral using a
midpoint rule to obtain:

ð
Xnþ1

qnþ1dX�
ð

Xn

qndX

þ Dtn

ð
Cnþ1=2

qnþ1=2ðunþ1=2 � ûnþ1=2Þ � nnþ1=2dC ¼ 0 (27)

which is a time discrete version of the mass balance equation. To
ensure mass balance at tnþ1, we perturb the newly re-distanced
level set function /d

h by a global constant such that Eq. (27) is

Journal of Applied Mechanics JANUARY 2012, Vol. 79 / 010905-3



satisfied for the regularized fluid density q given by Eq. (17). This
procedure ensures the global mass balance at every time step. To
achieve mass balance also in a local sense, a procedure proposed
in Ref. [14] may be employed instead.

3.1.1 Computation of Mesh-Dependent Parameters. To
define the method parameters that depend on the mesh size, we
first define the element metric tensor as:

G ¼ @n
T

@x

@n
@x

(28)

where x and n are the coordinates of the physical element and its
parametric counterpart, respectively.

The RBVMS formulation parameters sM, sC and s/ in Eq. (11)
are defined as (see Ref. [27])

sM ¼ ð
4

Dt2
þ ðuh � ûhÞ �Gðuh � ûhÞ þ CI

l
q

� �2

G : GÞ�1=2
(29)

sC ¼ ðtrGsMÞ�1
(30)

s/ ¼
4

Dt2
þ uh � ûh
� �

�G uh � ûh
� �� ��1=2

(31)

where CI is the constant emanating from the element-wise inverse
estimate (see Ref. [31]). The stabilization parameter s/d

in
Eq. (22) is given by:

s/d
¼ 4

D~t2
þ a �Ga

� ��1=2

(32)

The penalty parameter in the weak Dirichlet BC formulation sB is
given by (see Ref. [22])

sB ¼ Cb
I l

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n �Gn
p

(33)

where Cb
I is a constant emanating from the boundary inverse

estimate. An alternative definition of sB that is based on the wall
function ideas may be found in Ref. [23].

The discontinuity capturing parameters in Eqs. (15)–(16) are
given by:

jns ¼ Cns

rMðuh; phÞ
�� ��
uref

ffiffiffiffiffiffiffiffiffiffiffiffi
G : G
p I

jls ¼ Cls

@/h

@t

���
x̂
þðuh � ûhÞ � rx/

h
��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rx/
h �Grx/

h
q I

(34)

where Cns and Cls are positive constants and uref is a reference value
of flow speed (e.g., magnitude of inflow velocity). Note that the
discontinuity-capturing parameters are residual-based and isotropic.
jns is a modified version of the YZ–b discontinuity capturing pro-
posed in Refs. [32,33] corresponding to b¼ 2, which is the least in-
trusive definition. The definition of jls corresponds to the CAU
discontinuity capturing proposed in Ref. [34], and may also be
obtained by setting b¼ 1 in the scalar version of the YZ–b disconti-
nuity capturing method. Alternative definitions of discontinuity-
capturing terms, which are not residual based, can be found in Ref.
[35] in the context of incompressible flows and in Ref. [36] in the
context of incompressible flows with thermal coupling.

Finally, we define the local interface half-width e as:

e ¼ a
rx/

h
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx/

h �Grx/
h

q (35)

where a is an integer parameter corresponding to the number of
elements used across the air-water interface. This definition of e is

used to regularize the fluid density and viscosity in Eqs.
(17)–(18). The structure of Eq. (35) gives the interface half-width
in the direction of rx/

h, which is orthogonal to the interface, as
desired.

Note that all the mesh-dependent parameters are defined in
terms of the element metric tensor G, which automatically
accounts for element topology. Alternative definitions of stabiliza-
tion and discontinuity-capturing parameters are possible and may
be found in Refs. [26,33,37–39].

3.2 Rigid Body Dynamics Formulation. We begin with the
definition of the rigid body kinematics. Let X0 denote the refer-
ence configuration of the rigid object and let Xt denote its current
configuration. Let X denote the reference configuration coordi-
nates of the rigid body and let x denote the current configuration
coordinates of the rigid body. The rigid body kinematics is
composed of translation and rotational motions and may be
summarized as:

x ¼ QðX� X0Þ þ X0 þ d0 (36)

where Q is a rotation matrix, X0 is a center of mass, and d0 is the
displacement of the mass center. From Eq. (36) we obtain the
rigid body displacement and velocity fields as:

d ¼ ðQ� IÞðX� X0Þ þ d0 (37)

and

_d ¼ _QðX� X0Þ þ _d0 (38)

respectively.
Let x0¼X0þ d0 denote the rigid body center of mass in the

current configuration. Substituting Eq. (36) in Eq. (38), the veloc-
ity field may be expressed in terms of current coordinates as:

_d ¼ _QQ�1 x� x0ð Þ þ _d0 ¼ X x� x0ð Þ þ _d0 (39)

where

X ¼ _QQ�1 ¼
0 �x3 x2

x3 0 �x1

�x2 x1 0

2
4

3
5 (40)

is a skew-symmetric tensor of angular velocities. Note that, from
Eq. (40),

_Q ¼ XQ (41)

which is a key relationship that we will employ in what follows.
Since X is skew-symmetric, it has the axial vector x given by:

x ¼
x1

x2

x3

2
4

3
5 (42)

and the rigid body velocity field given by Eq. (39) may also be
written as:

_d ¼ x� x� x0ð Þ þ _d0 (43)

In 3D, the translational velocities, _d0, and rotational velocities, x,
are the six degrees-of-freedom that define the kinematics of rigid
body motion.

The dynamics of the rigid body is governed by the equations of
balance of global linear and angular momentum, namely,
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d

dt

ð
X

q _ddX ¼ F (44)

d

dt

ð
X

x� x0ð Þ � q _ddX ¼M (45)

where F and M are the global force and moment vectors acting on
a rigid body and defined by

F ¼ mgþ
ð

Ci

h dC (46)

M ¼
ð

Ci

x� x0ð Þ � h dC (47)

m ¼
Ð
Xt

qdX is the mass of the object, g is the gravity vector, and
h is the traction vector exerted on the object by an external me-
dium. In this case, h is the fluid traction vector.

Introducing the rigid body kinematics into the linear and angu-
lar momentum balance equations, we obtain the following system
of six ordinary differential equations,

d

dt
ðm _d0Þ ¼ F (48)

d

dt
ðJtxÞ ¼M (49)

where Jt is the inertia tensor in the current configuration given by

Jt ¼ QJ0QT (50)

with J0 being the inertia tensor in the reference configuration
defined as

J0 ¼
ð

X0

q X� X0ð Þ � X� X0ð ÞI dX�
ð

X0

q X� X0ð Þ

� X� X0ð ÞdX (51)

Note that J0 is a function of the reference configuration quantities
only, and may be computed once and for all for a given rigid object.

3.3 Motion of the Fluid Domain. In the MITICT framework,
while the air-water interface is captured on the mesh that does not
conform to it, the fluid-rigid object interface is tracked with a con-
forming mesh. For this, the computed rigid object displacement
and velocity (see Eqs. (37) and (38)) are imposed as boundary con-
ditions for the motion of the fluid domain mesh. The fluid mesh dis-
placement in the interior of the fluid domain is found using the
equations of linear elastostatics: Find dh(t) such that 8ŵh

ð
Xi

r~xŵh2lhrs
~x d̂

hðtÞ � d̂
hð~tÞ


 �
dX

þ
ð

Xi

r~x � ŵhkhr~x � d̂
hðtÞ � d̂

hð~tÞ

 �

dX ¼ 0 (52)

In Eq. (52) d̂
hð~tÞ and X~t are the mesh displacement and mesh con-

figuration at ~t < t, both considered known. In practice, we take X~t

to be the configuration at the previous time step. This renders the
mesh motion problem linear in the unknown displacement vari-
able d

h(t). Also in Eq. (52) lh and kh are the mesh Lamé parame-
ters chosen to be:

lh ¼ Eh
m

2ð1þ vmÞ
(53)

kh ¼ vmEh
m

ð1þ vmÞð1� 2vmÞ
(54)

where Eh
m, the mesh Young’s modulus, is given by:

Eh
m ¼ EmJ�1

xn (55)

Jxn is the Jacobian determinant of the isoparametric element map-
ping, and Em and vm are the constant, user-prescribed nominal
mesh Young’s modulus and Poisson ratio. We typically take
Em¼ 1 and vm¼ 0.3. The above procedure represents the so-called
Jacobian stiffening method (see Ref. [40]), which preserves good
mesh quality in the simulation. In particular, the small elements,
which are usually placed near the fluid-object interface, become
“stiffer” and are less likely to deform as much as the larger ele-
ments, which are typically placed in the areas where the solution
is not expected to exhibit complex behavior.

4 Time Integration of the Free-Surface Fluid-Object

Interaction Equations

In this section we present our time integration algorithm for the
coupled free-surface fluid-object interaction problem. We make
use of the generalized-a time integration method (see Refs.
[41,42]) for the free-surface and mesh motion equations. The rigid
body equations are integrated with a midpoint method. The latter
choice will become clear in the sequel.

The generalize-a method applied to the coupled free-surface
fluid-object interaction problem may be recast in the form of a
three-stage predictor-multicorector algorithm as follows.

Given un, _un, pn, the fluid velocity, its time derivative, and pressure

nodal degrees of freedom, respectively, /n, _/n, the level set and its

time derivative nodal degrees of freedom, respectively, ðd0Þn, ð _d0Þn,
xn, Qn, the rigid body center of mass displacement and velocity,

angular velocity, and the rotation matrix, respectively, and d̂n; ûn; _̂un

the mesh displacement, velocity and acceleration nodal degrees of
freedom, respectively, at time level tn, find the corresponding quanti-
ties at time level tnþ1 by executing the following stages:

Predictor stage. Initialize:

unþ1;ð0Þ ¼ un

_unþ1;ð0Þ ¼
c� 1

c
_un

pnþ1;ð0Þ ¼ pn

/nþ1;ð0Þ ¼ /n

_/nþ1;ð0Þ ¼
c� 1

c
_/n

ûnþ1;ð0Þ ¼ ûn

_̂unþ1;ð0Þ ¼
c� 1

c
_̂un

d̂nþ1;ð0Þ ¼ d̂n þ Dtûn þ
Dt2

2
ðð1� 2bÞ _̂un þ 2b _̂unþ1;ð0ÞÞ

The subscript 0 on the left-hand side quantities is the iteration
index, which is set to 0 at the predictor stage.

Multicorrector stage. Repeat the following iterations for
l¼ 1,2...lmax, where l is the iteration index and lmax is the maximum
allowable number of nonlinear iterations set for this time step:

1. (a) Evaluate iterates at the intermediate time levels as:

unþaf ;ðlÞ ¼ un þ af unþ1;ðl�1Þ � un

� �
_unþaf ;ðlÞ ¼ _un þ amð _unþ1;ðl�1Þ � _unÞ
/nþaf ;ðlÞ ¼ /n þ af ð/nþ1;ðl�1Þ � /nÞ
_/nþam ;ðlÞ ¼ _/n þ amð _/nþ1;ðl�1Þ � _/nÞ
dnþaf ;ðlÞ ¼ dn þ af ðdnþ1;ðl�1Þ � dnÞ
_dnþaf ;ðlÞ ¼ _dn þ amð _dnþ1;ðl�1Þ � _dnÞ

(56)
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(b) Use the intermediate solutions to assemble Rmom, Rcon, and
R

ls, the discrete residuals of the momentum, continuity and
level-set equations, and the corresponding matrices of the linear
equation system,

@Rmom

@ _unþ1

D _uþ @Rmom

@pnþ1

Dpþ @Rmom

@ _/nþ1

D _/ ¼ �R
mom

ðlÞ

@Rcon

@ _unþ1

D _uþ @Rcon

@pnþ1

Dpþ @Rcon

@ _/nþ1

D _/ ¼ �Rcon
ðlÞ

@Rls

@ _unþ1

D _uþ @Rls

@ _/nþ1

D _/ ¼ �Rls
ðlÞ

Solve this linear system using a preconditioned GMRES algorithm
(see Ref. [43]) to a specified tolerance. We note that the left-hand
side matrix couples the fluid and level set degrees of freedom.
This strong coupling between the fluid and level set equations allows
us to use larger time step sizes without the risk of encountering an
instability associated with staggered approaches in which the fluid
solve is followed by a level set solve.
(c) Update the fluid and level set solution as:

_unþ1;ðlÞ ¼ _unþ1;ðlÞ þ D _u

unþ1;ðlÞ ¼ unþ1;ðlÞ þ cDtD _u

pnþ1;ðlÞ ¼ pnþ1;ðlÞ þ Dp

_/nþ1;ðlÞ ¼ _/nþ1;ðlÞ þ D _/

/nþ1;ðlÞ ¼ /nþ1;ðlÞ þ cDtD _/

(57)

2 (a) Evaluate the updated fluid solution at the half-step as:

unþ1
2;ðlÞ ¼

1

2
un þ unþ1;ðlÞ
� �

_unþ1
2;ðlÞ ¼

1

2
_un þ _unþ1;ðlÞ
� �

/nþ1
2;ðlÞ ¼

1

2
/n þ /nþ1;ðlÞ


 �

_/nþ1
2
;ðlÞ ¼

1

2
_/n þ _/nþ1;ðlÞ


 �

d̂nþ1
2
;ðlÞ ¼

1

2
d̂n þ d̂nþ1;ðlÞ
� �

ûnþ1
2
;ðlÞ ¼

1

2
ûn þ ûnþ1;ðlÞ
� �

(58)

(b) Use the half-step fluid solution to assemble the Fnþ1/2 and
M

nþ1/2, force and moment load on the rigid object, respectively,
using Eqs. (46) and (47). Using these loads, we solve the follow-
ing discrete rigid body equations for (d0)nþ1,(l), ð _d0Þnþ1;ðlÞ,
xnþ1,(l), and Qnþ1,(l):

m
ð _d0Þnþ1;ðlÞ � ð _d0Þn

Dt
¼ Fnþ1

2 (59)

ðd0Þnþ1;ðlÞ � d0Þn
Dt

¼ 1

2
ð _d0Þnþ1;ðlÞ þ ð _d0Þn

 �

(60)

Jnþ1;ðlÞxnþ1;ðlÞ � Jnxn

Dt
¼Mnþ1

2 (61)

Qnþ1;ðlÞ �Qn

Dt
¼ 1

4
Xnþ1;ðlÞ þXnÞ Qnþ1;ðlÞ þ Qn


 �

(62)

where Eq. (50) is used to evaluate the inertia tensor Jnþ1,(l) as:

Jnþ1;ðlÞ ¼ Qnþ1;ðlÞJ0QT
nþ1;ðlÞ (63)

Note that Eqs. (61)–(63) are nonlinear and coupled, requiring iter-
ation. We solve Eq. (61) first, where we lag the inertia tensor. We
solve Eq. (62) next and use the new rotation matrix to update the
inertia tensor in Eq. (63). This procedure gives convergence in a
few iterations. The readers should keep in mind that these iteration
are very inexpensive.

3. (a) Given the displacement of the rigid object, use it to set
the boundary conditions for the fluid mesh motion problem as:

d̂nþ1;ðlÞ ¼ Qnþ1;ðlÞ � I

 �

ðX� X0Þ þ ðd0Þnþ1;ðlÞ (64)

(b) Evaluate the intermediate time level mesh displacement as:

d̂nþaf ;ðlÞ ¼ d̂n þ af ðd̂nþ1;ðl�1Þ � d̂nÞ (65)

(c) Use the intermediate mesh displacement solution to assem-
ble Rmesh, the discrete residual of the mesh motion problem,
and the corresponding left-hand side matrix of the linear equa-
tion system:

@Rmesh

@ _̂unþ1

D _̂u ¼ �Rmesh
ðlÞ (66)

Fig. 2 Dam break with obstacle. Problem setup.
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Solve this linear system using a preconditioned Conjugate
Gradient algorithm to a specified tolerance.

(d) Update the mesh motion solution as:

_̂unþ1;ðlÞ ¼ _̂unþ1;ðlÞ þ D _̂u

ûnþ1;ðlÞ ¼ ûnþ1;ðlÞ þ cDtD _̂u

d̂
nþ1;ðlÞ ¼ d̂nþ1;ðlÞ þ bDt2D _̂u

(67)

Level Set Correction Stage. Re-distance the level set field accord-
ing to Eq. (22) and correct for mass deficit according to Eq. (27).

This completes the time step, at which point the time step coun-
ter is incremented and we go back to the predictor stage.

Remark. Our rigid body time integration algorithm amounts
to applying the midpoint rule to Eqs. (48) and (49) as well as
Eq. (41). That is, the rotation matrix Q is not explicitly computed
from the rotation angles, but is carried as a separate problem
unknown. The choice of the midpoint time integration for Eq. (41)
results in the following remarkable property: if QT

n Qn
¼ QnQT

n ¼ I then QT
nþ1Qnþ1 ¼ Qnþ1QT

nþ1 ¼ I: That is, once ini-

tialized as a proper rotation matrix, Q remains a proper rotation
matrix during the entire simulation. This result is due to Ref. [44].

5 Numerical Results

In this section, we present two numerical examples. The first
one is the well-known MARIN dam break problem [14–17],
which is a free-surface flow without fluid-object interaction. The
problem is solved on a fixed mesh and is used to illustrate the
effect of the penalty term in the re-distancing step given by
Eq. (25). This problem is also used to compare a fully-coupled
versus staggered approach to level set convection. The second
example makes use of a DTMB 5415 Navy combatant at lab scale
in head waves of large amplitude.

5.1 Dam Break With Obstacle. The problem consists of a
1.22 m� 1 m� 0.55 m column of water, initially at rest, that
collapses under the action of gravity and impacts a stationary
object. The computational domain is a rectangular box with
dimensions 3.22 m� 1 m� 1 m. The object has dimensions

Fig. 3 Dam break with obstacle. Snapshots of the water subdomain colored by
the fluid speed at t 5 2.0 s. Top: solution without penalty. Bottom: solution with
kpen 5 1.

Fig. 4 Dam break with obstacle. Time series of the pressure at four locations on
the obstacle (see Fig. 2). Very close correlation with experimental data is obtained.
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0.161 m� 0.161 m� 0.403 m and is placed at the back end of the
tank. The problem setup is shown in Fig. 2. Experiments for this
test case were performed at the Maritime Research Institute
Netherlands (MARIN), and the data is often used to validate free-
surface software for marine engineering applications.

In Refs. [14,15] we computed this test case with linear hexahe-
dral and quadratic NURBS and reported very good correlation
between experimental and computational results. In this paper, we
employ linear tetrahedral elements and use the MARIN example
to assess the influence of the penalty parameter in the re-
distancing equations, and illustrate the increased robustness of the
direct coupling between the fluid flow and level set equations.

5.1.1 Influence of Penalty in the Re-Distancing. Simulations
with two different penalty parameters, kpen¼ 0, kpen¼ 1, are per-
formed on a mesh consisting of 344,401 tetrahedral elements and
60,797 nodes. The simulation was run until T¼ 6.0 s with a time
step of Dt¼ 0.01. Snapshots of the solution for both simulations
are shown in Fig. 3. At t¼ 2.0 s, the water has already hit the ob-
stacle and rebounded off the back wall of the tank to form a break-
ing wave. The case with penalty shows a crisp resolution of the
air-water interface and is correctly predicting the formation of a
breaking wave. The no-penalty case, however, produced an over-
diffuse interface and; as a result, it is unable to predict wave
breaking. This example clearly illustrates the fact that the regular-
ized sign function given by Eq. (24) is not a sufficient mechanism
by itself to keep the interface intact during re-distancing.

Figure 4 shows the pressure history on four different locations
on the obstacle. The simulated results correlate quite well with the
experiments for such a coarse discretization.

5.1.2 Fully-Coupled Versus Staggered Fluid-Level Set
Simulations. Here we solve a MARIN dam break problem using
the solution strategy presented in Sec. 4 and compare it with the
solution strategy we presented in Refs. [14,15]. The latter decou-
ples the Navier-Stokes and level set convection equations and per-
forms one convection step, which includes re-distancing and mass
correction, at the end of the time step. This methodology is com-
monly used in free surface computations reported in the literature.
For this test, we reduce the mesh size to 103 251 tetrahedral ele-
ments and 19 071 nodes. We increase the time step size to
Dt¼ 0.025 and compute the problem until T¼ 12.5 s. By this
time, the fluid solution should be well on its way to a steady result.
Figure 5 shows the fluid solution at t¼ 12.5 s, the final time. The
fully coupled strategy gives a physical, near steady-state result,
while the staggered case predicts large-magnitude sloshing, which
is unphysical. This is due to the large time step size that triggers
an instability in the simulations. This example illustrates the dan-
ger of using staggered methods with time step sizes that exceed

the stability limits of the formulation and lead to seemingly con-
vergent, yet completely unphysical results.

5.2 Ship in Head Sea. Here we simulate the DTMB 5415
Navy combatant at lab scale. This ship has been investigated by
other researchers, both experimentally and computationally (see
Refs. [45–47]). The length of the ship hull is 5.72 m. The ship
mass, center of gravity and inertia tensor are computed by mesh-
ing the ship interior and performing a direct computation. The
total ship volume is 1.366 m3. The ship mass is equal to 532.3 kg.
It is obtained by multiplying the volume of the ship below the
water line by the constant water density. The center of gravity and
the inertia tensor are computed assuming the ship’s effective den-
sity (i.e., the ship mass divided by its total volume), which results
in

X0 ¼
2:761m

0

0:280m

2
4

3
5 (68)

and

I ¼
7:256E� 2 2:69E� 7 5:35E� 2

2:69E� 7 2:89 �2:44E� 8

5:35E� 2 �2:44E� 8 2:91

2
4

3
5kg m2 (69)

respectively.

Fig. 5 Dam break with obstacle. Snapshots of the water sub-
domain colored by the fluid speed at t 5 12.5 s. Top: fully
coupled simulation. Bottom: staggered simulation. For the cho-
sen time step size, the coupled simulation produces a physical,
near steady-state result, while the staggered approach gives
unphysical, large-magnitude sloshing.

Fig. 6 DTMB 5415 in head sea. Snapshots of the ship negotiat-
ing high-amplitude waves. The water surface is colored by the
fluid speed.
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Fig. 7 DTMB 5415 in head sea. Time history of ship motion.

Fig. 8 DTMB 5415 in head sea. Time history of forces and moments acting on the ship.
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We compute the ship in head waves, meaning the waves that
travel in the direction opposite to that of the ship. We assume that
the ship speed is Uin¼ 1.873 m/s, which gives the Froude number
of 0.25 based on the ship length.

We make use of the linear Airy waves [48] to prescribe inlet
boundary conditions. The Airy waves may be derived using poten-
tial theory, and are specified as follows: Given, the wave ampli-
tude, wave length and water depth, Aw¼ 0.2 m, Lw¼ 5.72 m and
h¼ 3.49 m, respectively, we compute k¼ 2p/Lw, the angular

wavenumber, x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gktanhðkhÞ;

p
the wave phase speed, and

Av ¼ xAw
sinhðkhÞ, the velocity amplitude. With these definitions, the

Airy waves are given by:

u ¼ Av coshðkzÞ cosðkx� xtÞ þ Uin (70)

v ¼ 0 (71)

w ¼ Av sinhðkzÞ sinðkx� xtÞ (72)

/ ¼ Ax cosðkx� xtÞ þ h� z (73)

where u¼ (u,v,w) is the fluid velocity vector and the air-water
interface in the hydrostatic configuration is assumed to be located
at z¼ 0.

In the continuum setting, the fluid traction vector h is defined
as:

h ¼ pn� 2lrsu � n (74)

In the discrete setting, in the presence of weakly-enforced bound-
ary conditions, basic conservation arguments (see Ref.[49]) lead
to the following definition of the traction vector

h ¼ phn� 2lrsuh � nþ sBðuh � _dÞ (75)

We use this definition of h for the computation of global force and
moment vectors (see Eqs. (46) and (47)) acting on the ship hull.

The simulation was performed on a mesh consisting of
6 285 445 linear tetrahedral elements and 1 059 174 nodes. The
simulation took 5000 time steps at a fixed time step size of
Dt¼ 0.0025 s. The ship was allowed to move vertically, to pitch
and to roll, while the rest of the rigid body DOFs were
constrained.

Figure 6 shows the snapshots of the ship negotiating high-
amplitude waves. The bottom part of Fig. 6 shows the ship par-
tially submerged in water, which is a result of the oncoming wave
hitting the bow of the ship. In this case, near the bow, the free sur-
face experiences topological changes, which necessitates the use
of an interface-capturing method for this class of problems.

The time history of the ship motion is given in Fig. 7. Although
the prescribed Airy waves only have a single frequency, multiple
frequencies are present in the ship’s response. Note that the ship
develops a low-amplitude, chaotic rolling motion.

Figure 8(a) shows the time history of the thrust force necessary
to maintain the ship moving forward at constant speed. The time
history of the forces and moments in the unconstrained directions
are shown in Figs. 8(b)–(d).

6 Conclusions

A free surface-rigid-body interaction modeling approach is pre-
sented using the MITICT approach, in which the air-water inter-
face is handled by means of an interface-capturing level set
method, and the fluid-rigid body interface is handled with an
interface-tracking ALE method. The RBVMS formulation is used
for the fluid mechanics and level set equations. Weak enforcement
of essential boundary conditions is employed on all no-slip
surfaces for better approximation of thin fluid boundary layers.
The rigid-body time integration algorithm is proposed where a
separate time evolution equation is solved for the rotation matrix,
which becomes an additional problem unknown. The use of the

midpoint time integration algorithm for the rotation matrix results
in the exact discrete preservation of its orthonormal property, a
result that is due to Ref. [44]. In the proposed methodology, the
strong coupling between the fluid and level set equations at the
Newton iteration level allows us to robustly march in time by
using larger time-steps than in the more usual staggered (or split
operator) methods. We also illustrate the importance of the pen-
alty parameter in the level set re-distancing equations for the pres-
ervation of the sharpness of the air-water interface.

In future work, we plan to enhance the structural modeling in
our framework by also considering elastic bodies. We likewise
plan to simulate ships at larger spatial scales, and look at other
applications, such as modeling of offshore wind turbines.
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