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Olof Runborg
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Abstract

We develop fast numerical methods for solving rate equations that de-
scribe the population densities of chemical species or atomic states. The
rate equations are very stiff nonlinear ordinary differential equations, with
essentially one slow time scale and a large range of fast scales. We consider
implicit multistep and one-step methods. They require the solution of a
nonlinear system of equations in each time step with a Newton method.
To reduce the cost of this, we use approximations or prefactorization of
the Jacobian matrix. Different approximation strategies are explored.
The importance of exact discrete conservation is highlighted, leading to
an approach where the Jacobian is truncated to banded form and re-
maining off-diagonal elements are adjusted by a weight that depends on
the elements in the full Jacobian. The prefactorization approach uses a
QZ decomposition of the leading part of the Jacobian, and a separate
treatment of a rank one part. Numerical experiments indicate that these
methods give accurate results at a low computational cost.
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1 Background

This project started out with PIs Prof. Heinz-Otto Kreiss and Dr. Jon Tegner
at KTH Royal Institute of Technology. In June 2011 it was transferred to Prof.
Olof Runborg, also KTH. On the Air Force side, Dr. Jean-Luc Cambier has
been the main investigator.

2 Introduction

The main objective of this project is to investigate fast numerical methods
for solving ordinary differential equations (ODEs) with strongly varying time
scales. The application of the methods is in the solution of rate equations for
the population densities of chemical species or atomic states. This in turn is
a key part in the simulation of complex reactive fluid dynamics, where a huge
number of instances of the rate equations need to be solved.

For a system with N atomic states the ODEs are of the form

dX

dt
= (M0 + yM1 + y2M2)X, y = zTX, Mj ∈ RN+1×N+1,

where z is a fixed vector and X ∈ RN+1 contains the population densities of
the atomic states and ions.

The rate equations are very stiff ODEs with essentially one slow time scale
and many fast scales. The gap between them is large, but the range of the fast
scales is also large; see the example in Figure 2, where the a typical solution
and the eigenvalues of the Jacobian of the right hand side are plotted. This fact
makes these ODEs very difficult to solve numerically.

The huge stiffness ratio of the rate equations precludes the use of standard
explicit time-stepping methods. It implies a severe stability requirement that
leads to a complexity of O(N2λlarge) for a system of N states, where λlarge is the
largest eigenvalue of the Jacobian. The alternative is to use implicit methods,
which have no stability requirements and give better complexity. One can choose
the time step based on the smallest eigenvalue λsmall but a nonlinear system of
equation must be solved in each time step. Since the matrices are full, the
dependence on N in the complexity is therefore worse; the cost is O(N3λsmall).
A third possible approach would be explicit “multiscale” time-stepping methods,
such as Chebyshev methods [1, 7], heterogeneous multiscale methods (HMM)
[3], projective integration methods [4, 5] and flow averaging methods [9]. These
have much lower complexity than standard explicit methods, but require a clear
separation between the bulk of the scales and a few fast scales. This is not the
scale structure of the rate equations, however, which makes the methods less
suitable.

Instead we have explored implicit multistep methods where the nonlinear
system of equations is solved using approximations or prefactorization of the
Jacobian matrix. The methods then becomes less expensive, with a complexity
of only O(N2λsmall). The approximation is based on the fact that the Jacobian is

3
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strongly diagonally dominant and can be well approximated by a banded matrix.
It must be done carefully, however. In particular we find that the discrete
conservation of the solver must be upheld exactly also for the approximated
solver. Prefactorization cannot be done by a simple LU decomposition since the
ODE is nonlinear, but by treating a rank one part of the Jacobian separately,
we only need to consider a system of the type (A + yB)X = b for fixed A,B
but varying y. This can be solved fast for any y if we precompute the QZ
factorization of A and B.

We also consider one step implicit Runge–Kutta methods for the equations.
Approximation and prefactorization cannot be used in the same straightforward
way in these methods, however.

This report is organized as follows. In Section 3 the physical model is
explained and the governing equations are derived. Some properties of the
equations and their consequences for numerical approximation are presented in
Section 4. Implicit methods with an approximate Jacobian are discussed in Sec-
tion 5, while the precomputation strategy using QZ-factorization is described
in Section 6. In Section 7 one-step methods are explored. The report concludes
with Section 8 where a summary of the results is given together with an outlook
on future challenges.

3 Physical Model and Assumptions

We consider a simple atomic system (atomic hydrogen) with N electronic states,
with a population number density xn (n = 0 . . . N − 1). The ionized state
has a number density x+ and the density of free electrons is xe. By charge
conservation, we have:

xe =
∑
q

zqxq (1)

where the summation runs over all atomic states; thus, zq ≡ 0 for q = 0, . . . N−1,
since the bound electronic states ofH are neutral, and z+ ≡ 1 since the hydrogen
ion has a unit charge. Charge conservation thus allows us to express one variable
(xe) in terms of the atomic states via (1). Using chemical element conservation,
it is also possible to eliminate one other variable (e.g. x+); for a total initial
number of atoms NH , we have

∑
q xq = NH = constant, leaving only N − 1

independent variables. However, it is often preferable to keep all variables in
the system of equations, with the understanding that some eigenvalues may be
zero, expressing the conservation properties of the collisional-radiative kinetic
equations.

The complete set of number densities of electronic levels of both neutral
and ionized atoms form an Atomic State Density Function (ASDF) which can
be expressed in the form of a vector X = {xq, q = 0, . . . N}. The rates of
change of these population densities are given by three physical processes: a)
collisional bound-bound transitions, i.e. excitations and de-excitations; b) colli-
sional bound-free, i.e. ionization and recombination; c) radiative bound-bound.
For the latter, we consider radiative deexcitations only, i.e. spontaneous decay

4
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of the excited states; the reverse process of radiation absorption and electronic
excitation is neglected. Note that we also have ignored radiative bound-free
transitions, i.e. radiative capture and photo-ionization. We also consider only
electron-impact collisions. Most of these assumptions and simplifications will
be relaxed in future work.

Let us first consider a bound-bound transition, for which the rate of change
of the population density for level n is of the form:

dxn
dt

= −α↑(m|n)xnxe + β↓(n|m)xmxe (2)

The first term on the right (2) describes the loss due to excitation (↑) from level
n to m, as a result of collisions between free electrons (of number density xe)
and existing states (number density xn); the second term describes the gain
due to collisional deexcitation (↓) induced by free electrons (xe), from the state
m, with number density xm. Hereafter, we will denote the indices on the rates
such that the left-most index (f | is the final state and the right index |i) is
the initial state. The second term (deexcitation) is the reverse process of the
former; if there were only two states to consider, this would be the entire rate
of change for level n. All transitions involving the state n must be counted, so
the rate of change for excitation and deexcitation alone requires us to sum-up
the right hand side of equation (2) over all levels m 6= n. Note that for the same
transition between the levels n and m, we also have:

dxm
dt

= +α↑(m|n)xnxe − β
↓
(n|m)xmxe (3)

Consider now the bound-free collisional transitions. Similarly to (2), the
rate of change of the population density for level n due to the ionization and
recombination process is:

dxn
dt

= −αi(+|n)xnxe + βr(n|+)x+x
2
e (4)

The second term on the right-hand-side depends on x2
e to indicate that two elec-

trons must be present in the initial state for collisonal recombination to occur
(one electron becomes bound, another is present to receive the energy of recom-
bination, to guarantee energy conservation). Again, conservation properties
imply that, for this transition:

dx+

dt
=
dxe
dt

= −dxn
dt

(5)

Finally, a bound-bound radiative decay leads to:

dxn
dt

= +A(m|n)xm = −dxm
dt

(6)

We can now combine all terms for the rate of change of the population
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density of a level n:

dxn
dt

= −
∑
m>n

α↑(m|n)xexn +
∑
m>n

β↓(n|m)xexm +
∑
m>n

A(n|m)xm

+
∑
m<n

α↑(n|m)xexm −
∑
m<n

β↓(m|n)xexn −
∑
m<n

A(m|n)xn (7a)

− αi(+|n)xexn + βr(n|+)x+x
2
e

This system can be written in matrix form:

dX

dt
= (M0 + xeM1 + x2

eM2) ·X (8)

The right side is non-linear (xe is a function of X) but note that the first entry
on the right is due only to the radiative rates Anm, the only purely linear
contribution to the source term, while the last term has the highest degree of
non-linearity, but is due entirely to the recombination βr(n|+)x+x

2
e, which is a

relatively slow source term.

3.1 Kinetic Rates

It is worth describing here the expressions for the kinetic rates, in order to gain
some insight into the structure of the spectrum of eigenvalues of the system (7).
Using classical collision theory and the Bohr model for the hydrogen atom, the
excitation rates are of the form [10]:

α↑(m|n) = (4πa2
0)v̄e

(
IH
kT

)2

(3fnm)ψnm (9)

where a0 is the Bohr radius, IH=13.6 eV is the Rydberg constant,

fnm =
32

3π
√

3
1
n5

1
m3

1(
1
n2 − 1

m2

)3 (10)

is the oscillator strength of the transition n−m,

v̄e =
(

8kTe
πme

)1/2

(11)

is the mean thermal electron velocity and

ψnm =
e−ξnm

ξnm
− E1(ξnm) (12)

where ξnm = Enm/kT with Enm = IH(1/n2 − 1/m2) the energy gap between
levels and E1 is the exponential integral:

E1(a) =
∫ ∞
a

e−b

b
db (13)
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At equilibrium (“Boltzmann”), the ratio of population densities is:

x∗m
x∗n
≡ Bnm(Te) =

gm
gn
e−Enm/kTe , (14)

where gn is the degeneracy of state n. The rate of change is null at this equi-
librium condition and therefore

β↓(n|m) =
gn
gm

e+ξnm · α↑(m|n) (15)

The formulation of the rate involves an exponential integral with no simple
expression; at low temperature (ξnm � 1), we can use the approximation:

E1(a) ' e−a

a

(
1− 1

a

)
(16)

This is not always the case if we consider a large number of states, as the
energy gaps Enm decrease and eventually we have ξnm ' 1, in which case a
better approximation would be:

ψ(ξnm) ' 2
5
e−ξnm

ξnm
(17)

Nevertheless, we will restrict ourselves to the approximation (16) only, in which
case:

α↑(m|n) '
[
4πa2

0 ·
32
π
√

3
· v̄e
]

e−ξnm

n5m3(n−2 −m−2)5
(18)

and

β↓(n|m) '
[
4πa2

0 ·
32
π
√

3
· v̄e
]

1
n3m5(n−2 −m−2)5

(19)

The factor in brackets is a scale of the rate of change (dx/dt) (an upper bound);
in the limit ξnm → 0 i.e. for the upper states, the rates approach that value.
Another scale is the factor IH/kT in the definition of ξnm, which will describe
how stiff the system is. If that factor is very low (high temperatures), all rates
are of the same order; at low temperatures, the exponential term dominates
and the range of time scales is increased. Note also that the system is strongly
diagonally dominant, in the sense that transitions with small change in quantum
number (m− n ' 1) have a higher rate than those with m− n� 1. In fact, a
fairly good approximation may be to consider a ladder process, i.e transitions
between neighboring states only; this approximation may not always be valid
however, when other atoms besides Hydrogen are considered, and this will be
studied further as we extend the numerical integration schemes to more complex
systems.

The ionization rate coefficient is

αi(+|n) = (4πa2
0)v̄e

(
IH
kT

)2

ψ(ξn) (20)
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where ξn = In/kT and In is the ionization potential from level n. The equi-
librium for ionization and recombination (the “Saha” equilibrium) involves a
different relation:(

x+xe
xn

)∗
≡ Sn(Te) =

g+
gn

2
(

2πmekTe
h2

) 3
2

︸ ︷︷ ︸
Ze

e−ξn (21)

where g+ is the degeneracy of the ion ground state (for atomic hydrogen,
g+ ≡ 2). The factor indentified as Ze is the partition function of the free
electrons. We cannot generally assume that the equilibrium values are the same
for both bound-bound and bound-free processes. Usually we can have Boltz-
mann equilibrium (14) without Saha equilibrium, but hardly the reverse, mostly
because it takes more energy to ionize than to excite; for the upper states close
to the ionization limit (n � 1), the difference is less significant. Using the
principle of detailed balance, the reverse (recombination) rate is:

βr(n|+) '
[

4
π

a2
0h

3

m2
ekTe

](
IH
kTe

)2

n2ψ(ξn)eξn (22)

Finally, the spontaneous emission rates from an upper level m (in sec−1)
are:

A(n|m) =
(

8π2e2

mec3

)
gn
gm

fnm (23)

For hydrogen, this is:

A(n|m) =
1.6 1010

m3n(m2 − n2)
sec−1 (24)

4 Properties of the Equations and Numerical
Considerations

As shown in (8) the simplified kinetics for a system with N atomic states for a
system of ODEs of the form

dX

dt
= (M0 + yM1 + y2M2)X, y = zTX, (25)

where X = (x0, . . . , xN ) ∈ RN+1 represents the population densities of the
various states — x0 is the density of the ground atomic state, x1, . . . xN−1 are
the densities of excited states and xN ≡ x+ is the density of ions (we have
written y ≡ xe to express a general conservation property). Moreover, z is
the fixed vector z = (0, . . . , 0, 1)T ∈ RN+1 so that y = xN . The matrices
Mj ∈ R(N+1)×(N+1) are all fixed with the following properties:

• M0 is upper triangular. The first and last columns are zero. It has a fast
decay off the diagonal and the column sums are all zero.

8
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• M1 is a full matrix, except that the last column is zero. The submatrix
(1 : N − 1, 1 : N − 1) has fast decay off the diagonal. The column sums
are all zero.

• M2 is a rank one matrix. It is zero, except for the last column, which has
sum zero.

See Figure 1 for examples. These properties follow from the physical model
described in the previous section. In particular, the zero column sums imply
the natural requirement that the total number of electrons is conserved,

Q(t) :=
N∑
j=0

xj(t) = constant.

This is easily seen by left multiplication of (25) by 1 = (1, . . . , 1)T ∈ RN+1,

dQ

dt
=

N∑
j=0

dxj
dt

=
d

dt
1T ·X = 1T (M0 + yM1 + y2M2)X = 0,

since the column sums 1TMj are zero.

4.1 Stiffness and Time Scales

The Jacobian of the right hand side in (25) is given by

J(X) = M0 + yM1 + y2M2 +M1Xz
T + 2yM2Xz

T . (26)

The eigenvalues of J(X) determine the time scales of the system. Figure 2
shows a typical example of a solution X and the eigenvalues of J(X) as a
function of time when N = 10. The coarse behavior of the system has the
timescale given by the smallest (non-zero) eigenvalue λsmall ≈ 102, while the
fastest timescales in the system are given by the largest eigenvalues λlarge ≈ 109,
initially. The large eigenvalues also change over many magnitudes within the
relevant computational time. Hence, the system is very stiff, with a stiffness
ratio λlarge/λsmall between 106 and 109 when N = 10. Furthermore, in Figure 3
one can see that λlarge grows with N , showing that the stiffness gets worse for
larger system sizes N .

4.2 Standard Explicit and Implicit Methods

Standard explicit time-stepping methods cannot be used in these extreme con-
ditions. The stability requirement would demand a time step of the order of
1/λlarge. Since the matrices Mj are full, each step would have a computational
cost of O(N2), giving the total complexity

complexity of explicit methods = O(N2λlarge).

9
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Figure 1: Log plots of element sizes for M0 and M1 when N = 50.
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(a)

(b)

Figure 2: Rate equations with 10 energy states. a) Population densities as a
function of time; b) Eigenvalues λj of Jacobian as a function of time. Note
the huge span between largest and smallest eigenvalue, and the great changes
of magnitudes of the eigenvalues over time. (The noisy data for the smallest
eigenvalue is just numerical errors; the exact Jacobian has a zero eigenvalue for
all N since its column sum is zero, see below.)
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(a)

(b)

Figure 3: Eigenvalues λj as a function of time for larger systems: N = 20 (a)
and N = 50 (b).
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Implicit methods have no stability requirements and can choose the time
step based on accuracy needs only, i.e. proportional to 1/λsmall such that it just
resolves the slow time scale. On the other hand, a nonlinear equation needs to
be solved in each time step, which in the end amounts to inverting I+αJ(X) for
some constant α. This is a full matrix since M1 is full, giving a cost of O(N3).
Thus

complexity of implicit methods = O(N3λsmall),

which is typically much smaller than for explicit methods, but can still be too
high because of the cubic dependence on N .

This is thus a particularly difficult type of ODE and solving it fast and at
low computational cost presents a great numerical challenge.

4.3 Multiscale Explicit Methods

One approach would be to find non-standard explicit time-stepping methods
to solve the rate equations efficiently, based on new multiscale approaches. In
the past ten years there has been a renewed interest in developing such explicit
methods for stiff ODE problems, for instance Chebyshev methods [1, 7], hetero-
geneous multiscale methods (HMM) [3], projective integration methods [4, 5],
and flow averaging [9]. Although there is a clear gap between the slowest time
scale and the next, beyond that there are many fast scales spread out over a
large interval. This situation is not handled well by the multiscale methods
mentioned above.

5 Implicit Methods with Approximate Jacobian

Implicit methods can be made more efficient if an approximation of the Jacobian
J(X) is employed such that I+αJ(X) can be inverted rapidly. For this approach
we consider the BDF methods, which are standard implicit multistep methods.
The first three in this family reads

X(n+1) = X(n) + ∆tF (X(n+1)) (27a)

X(n+1) =
4
3
X(n) − 1

3
X(n−1) +

2
3

∆tF (X(n+1)), (27b)

X(n+1) =
18
11
X(n) − 9

11
X(n−1) +

2
11
X(n−2) +

6
11

∆tF (X(n+1)), (27c)

where X(n) ≈ X(n∆t).
In order to solve the nonlinear system in each time step one iteration of the

Newton method (with initial guess X(n)) is employed, which is equivalent to
replacing F (X) with a local linearization, namely

F (X(n+1)) ⇒ F (X(n)) + J(X(n))(X(n+1) −X(n)). (28)
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This reduces the problem to solving a linear system in each time step, more
precisely

[I −∆tJ (n)]X(n+1) = X(n) + ∆t[F (X(n))− J (n)X(n)] (29a)

[I − 2
3

∆tJ (n)]X(n+1) =
4
3
X(n) − 1

3
X(n−1)

+
2
3

∆t[F (X(n))− J (n)X(n)] (29b)

[I − 6
11

∆tJ (n)]X(n+1) =
18
11
X(n) − 9

11
X(n−1) +

2
11
X(n−2)

+
6
11

∆t[F (X(n))− J (n)X(n)] (29c)

The main cost in each iteration is thus the O(N3) cost to invert I + αJ(X(n)).
The next largest cost is the evaluation of F (X(n)) and J(X(n)) ·X(n) which are
both O(N2) operations since M0 and M1 are full matrices. The idea here is to
approximate J(X) ≈ J̃(X) such that I + αJ̃(X) can be inverted with at most
O(N2) operations. That would give

complexity of implicit method with approximate J(X) = O(N2λsmall),

which is of course much faster than standard implicit methods. We will now
discuss different strategies for this.

Remark: To be more accurate we can make several iterations in the Newton
method. Then the above equations are solved multiple time. For instance, if we
use K iterations in the BDF1 method we would have

[I−∆tJ (n)]Yk+1 = X(n)+∆t[F (Yk)−J(Yk)Yk], Y0 = X(n), X(n+1) = YK .

5.1 Sherman–Morrison Formula for the Tail of J(X)

We split the expression for the Jacobian as

J(X) = M0 + yM1 +R(X), R(X) = y2M2 +M1Xz
T + 2yM2Xz

T , (30)

We can write M2 = mzT with m ∈ RN+1 being the last column of M2. There-
fore,

R(X) = (3y2m+M1X)zT := m̃(X)zT , (31)

is a rank one matrix. We now note that for any A we can invert A + R at the
same cost as A by using the Sherman–Morrison formula,

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
. (32)

Indeed, in order to solve
(A+R)X = b,
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we could first solve As = m̃ and Aw = b. Then, by (32), the solution X is given
as

x = (A+R)−1b = w − zTw

1 + zT s
s = w − wN

1 + sN
s,

which is just an O(N) cost once w and s have been computed. The conclusion
is that we only need to find a fast, approximate, way to invert the leading part
of I + αJ , namely I + α(M0 + yM1).

5.2 Direct Truncation of M0, M1

Since both M0 and M1 has a fast decay off the diagonal, a natural approach
to speed up their inversion would be to truncate the matrices to banded form,
with a small bandwidth, i.e. setting most of the matrices to zero, only leaving a
few non-zero diagonals untouched. We introduce the direct truncation operator

Ã = trunc(A, p) ⇒ Ãij =

{
Aij , |i− j| < p,

0, |i− j| ≥ p.

Then we let M̃j = trunc(Mj , p) and approximate

M0 + yM1 ≈ M̃0 + yM̃1.

Since I+α(M̃0+yM̃j) is a banded matrix with bandwidth p the cost of inverting
it is O(Np2). Hence, we could allow ourselves to take p ∼

√
N to have a cost

of O(N2) as we needed.
Unfortunately, the direct truncation method yields very poor results. A

typical example of a solution with directly truncated Mj is shown in Figure 4.
The sharp transition to equilibrium at around t = 0.045 is smeared out and
the equilibrium is not reached until much later. A more quantitative study of
the errors is made in Figures 5 and 6. Here the parameter K represents the
number of iterations in the Newton method when solving the nonlinear systems
of equations in each BDF time step. The error reported in these, and subsequent,
plots is the maximum componentwise relative error between the solution with
and without truncation,

error = max
j

|xj − x̃j |
|xj |

.

The final time is selected inside the transition region to equilibirum, T = 0.045.
One can see that the methods remains stable also for severe truncations (small
p) but the accuracy is not good. To come below 10% error more than 15 of the
20 diagonals must be kept in BDF1 with ∆t = 10−4, for example. For p < 10
the relative error is close to one for all method. One can note though that the
error is reduced if more iterations (larger K) or smaller time steps ∆t are used.

The underlying reason for the bad results with direct truncation has to do
with the conservation properties of the discrete approximation, which we dicsuss
next.

15
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(a)

(b)

Figure 4: Solution example with (a) and without (b) direct trunction. Param-
eters used were N = 20, ∆t = 10−5 and p = 7.
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Figure 5: Error with direct truncation as a function of the number of diagonals p
and Newton iterations K for the BDF methods. Parameters used were N = 20,
∆t = 10−4 and final time T = 0.045.
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Figure 6: Error with direct truncation as a function of the number of diagonals p
and Newton iterations K for the BDF methods. Parameters used were N = 20,
∆t = 10−5 and final time T = 0.045.
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5.3 Discrete Conservation

As mentioned above, in the exact ODE solution the total number of electrons
is conserved. In the discrete case, we define

Q(n) := 1TX(n).

Then, Q(n) is constant also for the BDF methods. For example, in BDF3,

Q(n+1) = 1TX(n+1)

=
18
11

1TX(n)− 9
11

1TX(n−1)+
2
11

1TX(n−2)+
6
11

∆t1TF (X(n+1))

=
18
11
Q(n)− 9

11
Q(n−1)+

2
11
Q(n−2),

which is a difference equation with the solution Q(n) = Q(0) for all n > 1 if
initial data is taken such that Q(−2) = Q(−1) = Q(0). Morever, exact discrete
conservation holds also for the approximate BDF methods where F is linearized.
This follows in a similar way upon noting that

1TJ(X) = 1T (M0 + yM1+y2M2+M1Xz
T +2yM2Xz

T ) = 0,

again since 1TMj = 0. Then, again

Q(n+1) = 1T [I − 6
11

∆tJ (n)]X(n+1)

=
18
11

1TX(n)− 9
11

1TX(n−1)+
2
11

1TX(n−2)+
6
11

∆t1T [F (X(n))− J (n)X(n)]

=
18
11
Q(n)− 9

11
Q(n−1) +

2
11
Q(n−2).

(Note that this holds true also if multiple iterations are used, K > 1, since it
holds for each iteration.)

However, if we directly truncate M0 and M1 as in the previous section they
no longer have exact column sum zero, 1T M̃j 6= 0 and then neither has the
approximate Jacobian. There is no longer exact discrete conservation, which
for this problem leads to bad performance of the numerical method.

5.4 Weighted Truncation of M0, M1

Given the discussion about conservation in the previous section, the methods
would be improved if the truncation is done such that the column sums of the
matrices are unaffected. This can for instance be done by re-weighting the
off-diagonal elements as follows

Ã = truncw(A, p) ⇒ Ãij =


Aii, i = j,

wjAij , 0 < |i− j| < p,

0, |i− j| ≥ p,
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where the weights are given by

wj =
Aii −

∑N
i=0Aij

Aii −
∑N
|i−j|<pAij

.

It is easy to check that 1TA = 1T Ã. We use this truncation on the full matrix1

M̃ = truncw(M0 + yM1, p).

Thus, with this truncation strategy we enforce discrete conservation and we ex-
pect a better behavior of the numerical solution. Indeed, much better results are
obtained. The corresponding result with weighted truncation for the example
in Figure 4 is shown in Figure 7. Here, the transition to equilibrium is captured
without problems. The quantitative study corresponding to Figures 5 and 6 is
shown in Figures 8 and 9. Small errors can be obtained also with moderately
sized p. For example in BDF3 with K = 1 and ∆t = 10−5 one can truncate to
just 3 diagonals and still obtain a relative error close to 1%. On the other hand,
the methods become unstable (huge relative error) for small enough p or large
enough ∆t. This seems to be different from the direct truncation. However, the
conclusions made for direct truncation about the influence of K and ∆t hold
true also for weighted truncation: larger K and smaller ∆t give smaller error.

6 Implicit Methods with Precomputation

As was shown in the previous section the main cost of a standard implicit
method is to invert the matrix I + αJ in each iteration. Via the Sherman–
Morrison formula the work is reduced to inverting the leading order matrix
I + α(M0 + yM1). Instead of using an approximation M̃0 + yM̃1 to lessen
this cost, one can precompute a factorization of the matrix. The usual LU
decomposition does not help, however, since the parameter y will be different
in every time step. Instead we use the generalized Schur factorization which
provides a simultaneous decomposition of I + αM0 and αM1.

The main theoretical result behind this approach is the generalized Schur
decomposition theorem saying that for any two N ×N matrices A and B there
are two orthogonal matrices Q and Z such that both QAZ and QBZ are upper
triangular. There is also a stable algorithm to compute these matrices: the QZ-
algorithm [6]. In our case, we find the orthogonal matrices related to I + αM0

and αM1 such that

Q(I + αM0)Z = m0, αQM1Z = m1,

where both m0 and m1 are upper triangular. Then, to solve

(I + α(M0 + yM1))x = b,

1Since the truncation operation is not linear in this case, the result is different from trun-
cating M0 and M1 individually.
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(a)

(b)

Figure 7: Solution example with (a) and without (b) weighted trunction. Pa-
rameters used were N = 20, ∆t = 10−5 and p = 7.
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Figure 8: Error with weighted truncation as a function of the number of diag-
onals p and Newton iterations K for the BDF methods. Parameters used were
N = 20, ∆t = 10−4 and final time T = 0.045.
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Figure 9: Error with weighted truncation as a function of the number of diag-
onals p and Newton iterations K for the BDF methods. Parameters used were
N = 20, ∆t = 10−5 and final time T = 0.045.
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we multiply by Q and Z from the left and right, respectively, to get

Q(I + α(M0 + yM1))ZZ∗x = Qb ⇒ (I + α(m0 + ym1))(Z∗x) = Qb.

Hence, x is obtained from

(I + α(m0 + ym1))x̃ = Qb, x = Zx̃,

where the system matrix I +α(m0 + ym1) is now upper triangular. The cost of
computing x is thus given by the cost of two matrix multiplications by orthog-
onal matrices and one linear solve with an upper triangular matrix. These all
have costs of the order N2 operations. The QZ-algorithm itself costs O(N3).
The total complexity of this approach is thus

complexity of implicit method with precomputation = O(N3 +N2λsmall).

Thus when N ≤ λsmall or when very high accuracy is needed (small ∆t) this
is as fast as the methods based on approximate Jacobians. Since there is no
approximation involved, the precomputation method is, however, more robust
and accurate.

6.1 Solution Steps

The steps to evaluate X given by

(I −∆tJ(X̃))X = b,

in the BDF methods (29) can be summarized as follows.

• Compute the generalized Schur factorization of I+αM0 and αM1 to obtain
m0, m1, Q and Z.

• Let y = X̃N and compute

m̃ = 3y2m+M1X̃,

according to (31). (Here m is the last column of M2.)

• Solve

(I + α(m0 + ym1))s̃ = Qm̃, (I + α(m0 + ym1))w̃ = Qb,

• Let s = Zs̃ and w = Zw̃.

• The solution is given by

X = w − wN
1 + sN

s.
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7 One Step Methods

In the multistep methods discussed above, initial data must be given for several
time steps, which is inconvenient for the application where the rate equations
are used; they are coupled with a CFD solver where only one data point is given
each time they need to be solved. The simplest way to get around this problem
would be to use a one-step method, which only requires one initial data. We
thus investigated the use of implicit Runge–Kutta (IRK) methods, focusing on
2-stage methods.

For an autonomous ODE X ′ = F (X) the update step from X(n) → X(n+1)

in a 2-stage IRK is defined by the parameters ak,` and bk as follows. First, find
ξ1, ξ2 such that

ξ1 = F
(
X(n) + ∆t[a11ξ1 + a12ξ2]

)
, (33a)

ξ2 = F
(
X(n) + ∆t[a21ξ1 + a22ξ2]

)
, (33b)

and, second, compute

X(n+1) = X(n) + ∆t(b1ξ1 + b2ξ2). (34)

Note that since ξ1, ξ2 appear in both the left and right hand side of (33) the
methods are implicit. As in the multistep case we therefore need to solve this
equation by Newton’s method with zero as initial guess. Upon replacing F by
its linearized version as in (28) we get(

ξ1
ξ2

)
=
(
F (X(n)) + ∆tJ(X(n))[a11ξ1 + a12ξ2]
F (X(n)) + ∆tJ(X(n))[a21ξ1 + a22ξ2]

)
,

which leads to the linear system for ξ1 and ξ2,[
I −∆t

(
a11J(X(n)) a12J(X(n))
a21J(X(n)) a22J(X(n))

)](
ξ1
ξ2

)
=
(
F (X(n))
F (X(n))

)
. (35)

This system must be solved in each time step. The solution is then used to
update X(n) as in (34).

We first tested the classical fourth order Gauss-Legendre (GL4) IRK method,
in which b1 = b2 = 1/2 and

a11 = a22 =
1
4
, a12 =

1
4
−
√

3
6
, a21 =

1
4

+
√

3
6
.

The results were not satisfactory, however. The GL4 method is very accurate
when the solution is on the slow manifold, but it is bad at damping the fast,
unresolved, modes compared to the BDF methods. This is precisely the typical
situation at the initial part of the computation. An example of this problem is
shown in Figure 10.

The underlying reason for the poor performance turned out the be that GL4
is not an L-stable method, i.e. its stability function does not decay to zero at
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(a) ∆t = 10−4 (b) ∆t = 10−5

Figure 10: Initial time evolution of two typical population densities x1, x2 in
an N = 20 system. Initial data is zero for these densities, i.e. far off the slow
manifold. The solution using BDF3 (solid lines) is satisfactory for both the large
and small time-step; it reaches the slow manifold more or less immediately, as it
should. (The true relaxation time is ca 10−6.) The solution using GL4 (dashed
lines), on the other hand, takes very long time to reach the slow manifold, even
with the small time-step. The solution with Radau Ia cannot be distinguished
from the BDF3 solution.

infinity. Instead we used the L-stable third order Radau Ia IRK method, for
which b1 = 1/4, b2 = 3/4 and

a11 = a21 =
1
4
, a12 = −1

4
, a22 =

5
12
.

In this case we obtained very good results. The solution plots corresponding to
those in Figure 10 coincide perfectly with the ones for BDF3.

7.1 Properties of the Linear System of Equations

Using Kronecker notation the system matrix in (35) can be written

I −∆tA⊗ J(X(n)), A =
(
a11 a12

a21 a22

)
,

and with the expresssions in (30) and (31) we get

I −∆tA⊗ J(X(n)) = I −∆tA⊗M0 − y∆tA⊗M1 −∆tA⊗ (m̃zT ),

where

A⊗ (m̃zT ) =
(
a11m̃
a21m̃

)(
z
0

)T
+
(
a12m̃
a22m̃

)(
0
z

)T
.

This shows that the matrix is again of the form

I + α(M0 + yM1) +R,
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where
M0 = A⊗M0, M0 = A⊗M1.

and R is now of rank two (instead of one). To treat R we therefore need
to apply the Sherman–Morrison formula twice, iteratively. The same kind of
precomputation as for multistep method can be used for the leading part I +
α(M0 + yM1).

It should be noted, however, that the matrix form is less favorable when more
iterations in the Newton method is used, i.e. when K > 1. Then the Jacobian
of F is evaluated at two different points, leading to a system matrix with two
parameters y1 and y2. The QZ approach cannot be used on this system.

Moreover, the strategy to approximate the Jacobian using truncation gives a
different sparsity pattern. Instead of a banded matrix, we get a 2×2 block struc-
tured matrix where each block is banded. Solving this fast is not as straightfor-
ward. In the tests that we have performed we have also observed that, accuracy
wise, the one-step Runge–Kutta methods are in general more sensitive to trun-
cation than the multistep BDF methods.

8 Conclusions and Future Work

We have explored implicit methods to solve the stiff rate equations. To make
the methods efficient we use an approximate Jacobian or a precomputed factor-
ization of the Jacobian.

The Jacobian is strongly diagonally dominant and can be well approximated
by a banded matrix. Implicit methods then becomes relatively inexpensive.
However, the results are sensitive to precisely how the approximation is done.
We have found that it is of vital importance to approximate the Jacobian with a
method which maintains the exact discrete conservation of the solver. By using a
weighted truncation to banded form we achieve this and obtain accurate results
at a low computational cost.

In many cases the generalized Schur factorization of the Jacobian can be
used to speed up the time stepping of the ODEs. This is a more robust and
accurate approach than approximating the Jacobian. It is preferable if the
matrix structure of the Jacobian allows it, and if the accuracy requirements
in the ODE solver is high enough so that the prefactorization cost is small
compared to the time stepping costs.

One step methods are simpler to initialize than multistep methods, which
is an advantage when the ODEs are coupled to the flow solver. Because of the
extreme stiffness of the system it is important to use L-stable one-step methods,
such as the Radau Ia implicit Runge–Kutta method. The linear system of
equations that must be solved in each time step involves the same Jacobian as
for multistep method, but it has in general a blocked matrix structure, which
means that the approximation and prefactorization strategies above must be
adapted.

The main directions for future work are:
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• Better understanding of the errors in the weighted truncation. How should
the number of diagonals and iterations in the Newton solver be chosen to
make the methods robust and accurate? Some adaptive approach may
be necessary. Here one could get ideas from dynamic sparsing techniques
for stiff ODEs [8] or methods for finding sparse preconditioners in PDE
problems [2]. In these methods a sparse approximation of the Jacobian
is found dynamically based on stability criteria for the ODE or spectral
properties of the matrices.

• Choice of implicit Runge–Kutta method. There are many options for L-
stable Runge–Kutta methods (e.g. the Rosenbrock family). These should
be explored and tested for accuracy, robustness and speed. The resulting
matrix structure for the linear system of equation is of particular concern.
Diagonal implicit Runge–Kutta methods (DIRK) could be an attractive
alternative, since the matrix structure is then block triangular.

• More complex and larger systems of rate equations with multiple species.
This leads not only to larger ODE systems, but also to different matrix
structures, for which our truncation and precomputation strategies must
be adapted.

• Dealing with extreme stiffness. For larger systems (N ≈ 100) the stiffness
ratio often exceeds 1015 which means that matrix condition numbers are
of the same order. Double precision is then not sufficient to obtain any
useful accuracy. Some alternative modeling may be necessary for these
systems, for instance approximating them by differential algebraic equa-
tions (DAE).

• Splitting methods. The complexity could potentially also be reduced by
using splitting methods for M0, M1 and M2. This would mean setting
M̃(x) = yM1 + y2M2 and do a time-stepping of the type

X̃(n) = X(n) +
∆t
2
M̃(X̃(n))X̃(n),

˜̃X(n) = X̃(n) + ∆tM0
˜̃X(n),

X(n+1) = ˜̃X(n) +
∆t
2
M̃(X(n+1))X(n+1).

This approach should be investigated. It may e.g. be revealing to study
the linear problem here, where M̃(x) := M̃(x0).
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