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Optical Algorithm for Cloud Shadow 
Detection Over Water 

Ruhul Amin, Richard Gould, Weilin Hou, Robert Arnone, and Zhongping Lee 

Abstract—The application of ocean color product retrieval al- 
gorithms for pixels containing cloud shadows leads to erroneous 
results. Thus, shadows are an important scene type that should 
be identified and excluded from the set of clear-sky pixels. In this 
paper, we present an optical cloud shadow-detection technique 
called the Cloud Shadow Detection Index (CSDI). This approach is 
for homogeneous water bodies such as deep waters where shadow 
detection is very challenging due to the relatively small differences 
in the brightness values of the shadows and neighboring sunlit or 
some other regions. The CSDI technique is developed based on the 
small differences between the total radiances reaching the sensor 
from the shadowed and neighboring sunlit regions of similar op- 
tical properties by amplifying the differences through integrating 
the spectra of the two regions. The Integrated Value (IV) is then 
normalized by the mean of the IVs within a spatial adaptive 
sliding box where atmospheric and marine optical properties are 
assumed homogeneous. Assuming that the true color and the 
IV images represent accurate shadow locations, the results were 
visually compared. The CSDI images agree reasonably well with 
the corresponding true color and the IV images over open ocean. 
Also, the shape of the cloud shadow particularly for the isolated 
cloud closely follows that of the cloud, as expected, reconfirming 
the potential of the CSDI technique. 

Index Terms—Hyperspectral imagery, ocean color, optical algo- 
rithm, remote sensing, shadow detection. 

I. INTRODUCTION 

SPECTRAL information collected by optical satellite sen- 
sors can provide important information for various global 

remote sensing applications. However, clouds cause a serious 
problem for these sensors, particularly over humid tropical 
regions. Throughout the year, about two-thirds of the Earth's 
surface is always covered by clouds [1]. The problem for the 
optical sensor is that clouds not only conceal the ground but 
also cast shadows, and these shadows also occur in the observed 
images along with the clouds. Unlike airborne imaging where 
shadows can be minimized by flying at certain times during 

Manuscript received July 1,2011; revised January 25,2012; accepted June 4, 
2012. Date of publication July 25, 2012; date of current version January 17, 
2013. This work was supported by the U.S. Naval Research Laboratory Pro- 
gram Element PE0602435N "Realizing the Naval Scientific Return of HICO." 

R. Amin, R. Gould, W. Hou, and R. Arnone are with Code 7333, U.S. Naval 
Research Laboratory, Stennis Space Center, MS 39529 USA (e-mail: ruhul. 
amin@nrlssc.navy.mil; gould@nrlssc.navy.mil; wilin.hou@nrlssc.navy.mil; 
arnone@nrlssc.navy.mil). 

Z. Lee is with the Department of Environmental, Earth and Ocean Sciences, 
University of Massachusetts, Boston, MA 02125 USA (e-mail: zhongping. 
Iee@umb.edu). 

Digital Object Identifier 10.1 109AXJRS.2012.2204267 

the day, low-Earth-orbit satellite-based sensors are limited to 
acquiring images at fixed times of the day. If the solar elevation 
is low at the time, then the presence of shadow will be unavoid- 
able. The main problem caused by shadows is either a reduction 
or total loss of information in an image [2]. Since ocean color 
algorithms are developed for water pixels illuminated by both 
direct solar irradiance and sky light, the radiance values in 
shadow pixels lead to the corruption of biophysical parameters 
derived from those pixels. Cloud shadow can produce errors of 
30%-40% in the observed reflectance from the affected pixels 
over lands [3]. Similar errors can be expected over waters as 
well, although such studies have never been conducted. Since 
ocean color products are retrieved based on the assumption that 
the remote sensing reflectances are accurate, a small inaccuracy 
in the reflectance can lead to significant errors in the retrieved 
products. In particular, since most of the product retrieval 
algorithms are band ratio algorithms, a small disproportionate 
alteration in the spectral reflectance amplitude can change the 
band ratios considerably and, hence, the retrieved products [4], 
[5]. However, cloud shadow detection in ocean color scene can 
be important and beneficial. For example, the cloud shadowed 
pixel (pixel illuminated by only skylight photons since direct 
photons are removed by the cloud) in combination with the 
neighboring sunlit pixel (pixel illuminated by both direct so- 
lar and skylight photons) of similar optical properties can be 
used to remove atmospheric effects from these scenes [6]-[8]. 
The neighboring sunlit pixel then can be used as known re- 
flectance targets for validation of the sensor calibration and 
atmospheric corrections [6], [8]. Cloud shadow is important for 
many other reasons as well. For example, cloud shadow can 
impact mesoscale atmospheric circulations that lead to major 
convective storm systems [9], [10]. Furthermore, cloud shadow 
can also be used to estimate both cloud base [11], [12] and 
cloud-top height [13] which are still a challenge to estimate 
reliably from space [14]. 

There are numerous algorithms for cloud detection 
[14]—[24]. However, relatively few cloud shadow-detection al- 
gorithms [23]-[30] have appeared in the literature even though 
accurate detection of cloud shadow is important for many 
atmospheric and terrestrial applications [3], [9], [10]. Most of 
the shadow detection techniques described in the literature deal 
with shadows over land [3], [23]-[29]. Few attempts have been 
made to detect shadows specifically over water [16], [31], while 
shadow detection over water is becoming significant as the 
spatial resolutions of the ocean color sensors are getting finer. 
This is because the small-scale shadow features appear in the 
acquired images. 
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The locations of shadows in the image depend on cloud ele- 
vation and the incidence angle of the sunlight at that time. The 
cloud shadow location can be determined by the means of geo- 
metrical calculations if the spatial location of cloud, i.e., cloud- 
top and cloud-bottom heights, and the sun and satellite positions 
are known. However, geometry-based approaches [25], [26] 
have challenging issues besides requiring too much CPU to run 
operationally [16], [31]. The main issue for geometry-based 
approach is the estimation of cloud vertical height which is 
required to determine the relative shadow location. Normally, 
thermal channels can be used to estimate the cloud-top height 
[IS]. However, it is still a challenge to determine the cloud- 
bottom height without cloud profiling measurements [32]. The 
solar reflective bands cannot provide information about the 
cloud-top height, and the cloud-bottom information cannot 
be reliably estimated from passive solar-thermal data either 
[33]. To determine accurate shadow location, both heights are 
important particularly for isolated clouds. In any event, many 
ocean color sensors such as the Sea-viewing Wide Field-of- 
view Sensor do not have necessary channels to estimate cloud 
vertical heights. Therefore, in order to identify the shadow 
locations from these sensors, we need an algorithm that uses 
visible channels since these channels are always present on the 
ocean color sensors. 

It can be easy to identify the cloud regions simply by 
using brightness thresholds, but it is difficult to identify the 
shadow regions this way because their brightness values can 
be very close to those of their neighbors or some other re- 
gions. Distinguishing shadows over water bodies based on 
spectral reflectance shape and amplitude information is also 
very difficult or possibly even impossible [34]. Shadows over 
water pixels do not have any specific spectral features while 
the brightness varies with atmospheric conditions and imaging 
geometry. Therefore, the brightness or the spectral shape alone 
may not be appropriate for shadow detection. However, bright- 
ness values from shadow and close-by sunlit regions over water 
can provide a great deal of information if a small portion of 
the image (where optical properties of water and atmosphere 
are uniform) is examined at a time. This is because the water- 
leaving radiance over sunlit pixels results from both direct and 
diffuse solar irradiance, while the water-leaving radiance over 
shadowed pixels results from only diffuse solar irradiance. The 
path radiance from the shadowed pixel to the sensor is also 
slightly lower, depending on how much of the atmospheric path 
radiance is shadowed. Therefore, the total radiance at the top of 
the atmosphere measured over the shadowed pixels is slightly 
lower compared to the adjacent sunlit pixels. Assuming that the 
optical properties of water and atmosphere are homogeneous 
around shadowed and adjacent sunlit regions, examining the 
radiance difference among these small uniform regions together 
enables us to separate the shadowed regions. 

In this paper, we propose a cloud shadow-detection technique 
for optical imageries acquired over water by satellite/airborne 
sensors. This technique does not require any angular infor- 
mation (viewing or solar) or any estimation of cloud vertical 
heights. It is entirely based on measurements in the optical 
channels. To our knowledge, it is the first optical cloud shadow- 
detection technique over water. 

n. DATA 

The Hyperspectral Imager for the Coastal Ocean (HICO) has 
been operating aboard the International Space Station (ISS) 
since installation on September 24, 2009 [35], [36]. HICO 
provides hyperspectral images at 100-m resolution optimized 
for the coastal ocean. It collects radiance at 128 contiguous 
spectral channels from 350-1070-nm range. However, it is 
most sensitive in the spectral wavelengths ranging from 400 to 
900 nm, which are the most utilized spectral region for ocean 
color studies. Each HICO scene is roughly 50 km in width by 
200 km in length. The HICO data flow from the ISS provides a 
maximum of 15 scenes per day, and the sensor is managed by 
the U.S. Naval Research Laboratory. 

Since shadow detection becomes significant for high-spatial- 
resolution images due to the imaging of small-scale shadows, 
we test our technique using the HICO data acquired over 
various regions around the globe. HICO also has higher spectral 
resolution. Thus, the contrast between shadowed and adjacent 
sunlit regions would be higher after integrating the spectra, 
which is advantageous for the shadow detection. The Cloud 
Shadow Detection Index (CSDI) technique should also work 
for multispectral data. However, it still needs to be tested using 
relatively high spatial resolution multispectral data. 

m. BACKGROUND 

Let us assume that solar elevation is relatively low and the 
sensor is at nadir; a small compact thick cloud over water 
prevents direct solar photons from impinging on the sea surface 
and shadows a region. The water-leaving radiance from the 
shadowed region L^W(A) that reaches the sensor results from 
only skylight photons since direct photons are removed by the 
cloud. An adjacent patch of water from a sunlit region has iden- 
tical inherent optical properties to those of the shadowed region. 
Refer water-leaving radiance from the neighboring sunlit region 
as L™y(\), which results from the illuminations of both direct 
solar and skylight photons. 

The atmosphere is also assumed to be homogeneous in 
shadow and neighboring sunlit regions as they are adjacent. 
Let La represent the contribution from the atmosphere (path 
radiance due to light scattering by air molecules and aerosol 
particles) and sea-surface reflectance [7]. The total radiance 
measured at the sensor's altitude from the sunlit area can be 
expressed as 

L?*(\) = La(\) + t(\)L'*>(\) (1) 

where t(X) represents the diffuse transmittance of the atmo- 
sphere for the water-leaving radiance. 

The total radiance measured at the sensor's altitude over the 
shadowed region can be expressed similarly with some differ- 
ences in the path radiance and diffuse transmittance expected. 
The path radiance from the shadowed region should be lower, 
since part of the viewing path to the shadowed region is also 
shadowed. Therefore, it should produce less path radiance, 
depending on how much of the atmosphere is shadowed [8]. 
The apparent path transmittance of the water-leaving radiance 
from the shadowed region may be slightly higher since the 
adjacent areas of the scene are generally brighter, so the 
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apparent transmittance of the viewing path to the shadow will 
be enhanced by photons reflected from the bright portion of the 
image and scattered into the field of view of the sensor [8]. 

The total radiance measured over the shadowed region can 
be expressed as 

L?"(\) = La(\)-ALa(\)+(t(\)+At(\))L*"(\).      (2) 

The A term represents the perturbations due to the differences 
in illuminations between the sunlit and shadowed regions. 

The water-leaving radiance can be expressed as two parts: 
one part caused by the backscattering of the diffuse skylight and 
the other part caused by the backscattering of the direct solar 
beam. For the sunlit and shadowed regions, the water-leaving 
radiance can be expressed asL^(A) = L™y

ky(A) + L"JiT{\) 
and L^w(A) = L$ry(A), respectively, since L$rr(A) = 0, 
where L™?ky(\) and L^r(A) represent the water-leaving ra- 
diances caused by diffuse skylight and direct solar beam in the 
sunlit region, respectively. L^y (A) and L^d

w
r (A) represent the 

water-leaving radiances caused by diffuse skylight and direct 
solar beam in the shadowed region, respectively. 

The diffuse irradiance incident on the shadow area and that 
incident on the close-by sunlit area are unequal because scatter- 
ing from cloud may increase the diffuse irradiance incident on 
the neighboring sunlit region [8]. According to [8], L™y

y(A) 
can be expressed as L"Jky(\) = L$?y(A) + AL$Ty(A). 

Based on the aforementioned analysis, it can be expected that 
the water-leaving radiance from the shadowed pixel (L^W(A)) 
reaching the satellite sensor is lower than the water-leaving 
radiance from the neighboring sunlit pixels (L™y(A)). Here, 
we are assuming that the optical properties of the water in the 
two regions are the same since they are adjacent. Also, the 
path radiance from the shadowed pixel is slightly lower since 
part of the atmosphere is also shadowed. A shadowed portion 
of the atmosphere must produce less path radiance, depending 
on how much of the atmosphere is shadowed, while we are 
assuming that the atmosphere is nearly uniform. Thus, the total 
radiance measured over the shadowed pixel is lower than that 
measured over the neighboring sunlit pixel. The uncalibrated 
raw digital counts of the shadowed pixel will also be lower than 
those of the neighboring sunlit pixel since they are adjacent and 
the sunlit region is brighter. An example of this is shown in 
Fig. 1 (c), where the red spectra represent Lf1* (A) and the green 
spectra represent the adjacent L]ny(X) taken from a HICO 
image acquired over Guam Island on November 11,2009. It can 
be seen clearly that the adjacent sunlit pixel has higher digital 
counts (green spectra) than the shadowed pixel (red spectra) due 
to the differences in illuminations. 

IV. DEVELOPMENT OF THE CSDI 

Although the spectral radiance amplitude of the shadowed 
region is slightly lower than that of the neighboring sunlit re- 
gion, this difference is relatively small. Furthermore, because of 
different path radiances and water-leaving radiances, the mea- 
sured radiance from some other sunlit region may be exactly 
the same with or sometimes even lower than the radiance of the 
shadowed spectra [see Fig. 1(c)]. This indicates that the spectral 
shape or amplitude alone is not adequate to separate the two 

Fig. 1. (Top left) (a) MCO true color image (November 11,2009) over Guam. 
(Top right) (b) Corresponding IV image, where clouds and lands are shown in 
white and the shadowed regions are shown in slightly cooler color compared to 
the surrounding sunlit regions. (Bottom) (c) Top-of-the-atmosphere radiance 
spectra from (red) shadowed, (green) adjacent sunlit, and (blue) far sunlit 
regions. The red, green, and blue arrows show the locations of the radiance 
spectra of the shadowed, adjacent sunlit, and far sunlit pixels, respectively, on 
the IV image. The spectrum from the shadowed pixel is very similar to the 
spectrum from the far sunlit pixel. Sometimes, the shadowed spectrum can even 
be higher than the spectrum from some other sunlit regions. This indicates that 
spectral profile alone is not adequate to separate the shadowed regions for an 
entire image. 

regions for an entire image. However, the spectral amplitude 
can help us separate the two regions if a small portion of the 
image is examined at a time. The proposed shadow detection 
technique works in two steps. First, it amplifies the contrast 
between the shadowed and neighboring sunlit regions by taking 
advantage of the small differences in the spectral amplitudes, 
particularly in the blue-green region of the spectra [Fig. 1(c)]. 
To amplify the contrast of the two regions, we introduce an 
index called the Integrated Value (TV), which is defined as 

IV 

MJU n 

/ 

600 nm 

Lt(X)dX. (3) 

400 nm 

Even though the IV index allows visual separation of the two 
regions to an observer, IV itself is not adequate to separate 
based on a threshold. This is because the IV index from a 
shadowed region can be very close to, or even higher than, the 
rV index of some other sunlit region. This can be seen in the IV 
image in Fig. 1(b), where clouds and lands are shown in white 
while shadows are shown in slightly cooler color compared to 
the neighboring sunlit regions. 

To separate the shadowed and sunlit pixels using a constant 
threshold, we normalize the IV index of the pixel under inves- 
tigation, by the mean of the IV indices within a spatial adaptive 
sliding box (ASB) centered on this pixel. This is the second step 
of our technique, where we examine small portion (the ASB) 
of the image at a time and normalize the image adaptively. The 
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adaptive normalization allows us to use a constant threshold for 
the entire image to separate the two regions. The selection of 
ASB size is explained after (4). 

Based on the optical characteristics of the water and atmo- 
sphere in the shadowed and neighboring sunlit regions, we 
define a cloud shadow-detection technique called the CSDI as 

IVC CSDI = 
(IVASB) 

(4) 

where IVC represents the IV index of the pixel (the central pixel 
of the ASB) which needs to be classified as a shadowed or 
sunlit pixel. The (/VASB) represents the spatial mean of the 
rv indices within the selected ASB of this pixel. This process 
should be repeated for all pixels that need to be classified 
as shadowed or sunlit pixel. Note that, before applying the 
CSDI, cloud needs to be removed properly or spurious results 
can be expected since homogeneity within the ASB will not 
hold true. Additionally, the CSDI might break down in turbid 
coastal waters since water or even the atmosphere may not be 
homogeneous within the ASB. Thus, the CSDI is mainly for 
deep waters, where atmospheric and marine optical properties 
can be assumed homogeneous within the ASB. 

The ASB needs to be selected carefully so that it only 
contains shadowed and sunlit pixels or only sunlit pixels. This 
is because the goal here is to make the denominator of CSDI 
(4) larger than the numerator for the shadowed pixels and vice 
versa for the sunlit pixels. Since the water and atmosphere are 
homogeneous within the ASB, the IV indices of the sunlit pixels 
will be close to each other, and they would be much higher than 
the IV indices of the neighboring shadowed pixels. Thus, if the 
selected ASB contains only sunlit pixels and the pixel under 
examination is also a sunlit pixel, the CSDI value for this pixel 
would be around one since the mean of the ASB [denominator 
of (4)] and the IV index [numerator of (4)] would be about the 
same. If the ASB contains both shadowed and sunlit pixels and 
the pixel under examination is a sunlit pixel, the CSDI value 
will be greater than one since the mean of the ASB will be 
slightly lower than the IV index of the pixel under examination. 
On the other hand, if the pixel under examination happens to 
be a shadowed pixel, the CSDI value would be less than one 
since the IV index of this shadowed pixel would be smaller 
than the mean of the ASB. Now, if the ASB contains only 
shadowed pixels, it can be problematic since the CSDI value 
will be around one, like the case of only sunlit pixels. They 
will be classified as sunlit pixels if the CSDI threshold is put 
less than one. That is why it is important to select the ASB in 
such a way that it is bigger than the shadowed region. This can 
be achieved by using the cloud size information since cloud is 
generally larger than the shadow and relatively easy to detect, 
even when using simplistic brightness thresholds. 

V RESULTS AND DISCUSSION 

The CSDI technique uses the top-of-atmosphere radiance 
measured in raw digital counts, which does not require con- 
verting the data to radiance units. This can be advantageous 
for sensors with low radiometric accuracy. For example, the 
Hyperion sensor has a radiometric accuracy of only ±5% in the 
measured Lt. Such uncertainty in the Lt may cause a 50% error 

in /. „ by the standard-atmospheric-correction approach even 
with a perfect atmospheric model [7]. Detecting cloud shadows 
from raw digital counts will enable us to correct for the atmo- 
sphere using the cloud shadow atmospheric correction [7] from 
raw digital counts. Hence, the imperfect radiometric accuracy 
of those sensors can be overcome [7]. Furthermore, the cloud 
shadow atmospheric correction can also be automated [37]. 

The CSDI images were created using different ASBs (32 x 
32 to 128 x 128) and the raw digital counts of the selected 
HICO images. Various thresholds were tested to separate the 
shadowed regions for multiple images. Separated shadowed 
regions were then visually compared with the corresponding 
true color and IV images. We used the true color and the 
rV images as the ground truth since shadows can be seen in 
both visually and, also, no other optical method is available 
to identify shadows over water. The IV image, however, is 
superior over the true color image since it integrates the spectra 
from 400 to 600 nm for each pixel. Because of the integration, 
the small differences in the spectral amplitudes between the 
two regions add up, amplifying the contrast significantly. For 
example, HICO has 35 channels in this spectral range. Thus, the 
HICO rV image shows a shadowed region that is much better 
than the corresponding true color image which only uses three 
channels. We compare the CSDI images with the corresponding 
true color and IV images. Our visual inspection shows that 
CSDI <= 0.95 is too low to detect relatively thin part of 
the shadows while CSDI => 0.97 is a little high and gives 
a false signal (a false signal increases with increasing CSDI 
threshold values). An example is shown in Fig. 2 (September 
26, 2010, HICO image acquired over Pagan Island; an image 
size of 285 x 400 pixels; 128 x 128 ASB), where the IV image 
[Fig. 2(a)] is assumed to represent the true shadowed regions. A 
false shadowed region is detected [red circle in Fig. 2(d)] when 
CSDI is set as <= 0.97, with the error rectified when CSDI 
is set as <= 0.96 [Fig. 2(c)]. However, it can also be seen in 
the black-circled region that the CSDI <= 0.97 detects thin 
shadows or shadow edge pixels slightly better than CSDI <= 
0.96. On the other hand, CSDI <= 0.95 is too low to detect 
relatively thin part of the shadows. The green circle shows a 
region where CSDI <= 0.95 [Fig. 2(b)] fails to detect part of 
the shadow while CSDI <= 0.96 or CSDI <= 0.97 detects 
it. Our visual inspection of a group of images shows that the 
overall performance of CSDI <= 0.96 is the optimal setting 
to minimize false signals while maximizing shadow region 
detection on HICO images. The threshold may need to be tuned 
for other hyperspectral or multispectral sensors. 

As mentioned before, the clouds need to be removed before 
applying the CSDI. A band ratio between HICO band 35 
(548 nm) and band 70 (748 nm) was used to flag the clouds. 
Using the proposed threshold (CSDI <= 0.96), an analysis of 
the ASB size was performed on the selected HICO images. The 
result is shown in Fig. 3, where the horizontal axis represents 
the ASB sizes (8 represents 8 x 8, 16 represents 16 x 16, 32 
represents 32 x 32, 64 represents 64 x 64, and 128 represents 
128 x 128 pixels) and the vertical axis represents the total 
percentage of the shadowed pixels in each image detected with 
different ASBs. These data were collected around the Virgin 
Islands on December 20, 2009, around Samoa on October 
2, 2010, around Guam on November 11, 2009, and around 
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Fig. 2. H1CO image acquired over Pagan Island on September 26,2010. (a) IV image (an image size of 285 x 400 pixels) where clouds are shown in white while 
the shadows are shown in slightly cooler color compared to the surrounding sunlit regions. Images (b), (c), and (d) are the corresponding CSDI images (created 
using a constant 128 x 128 ASB) with different CSDI thresholds (CSDI <= 0.95, CSDI <= 0.96, and CSDI <= 0.97, respectively), where clouds are 
shown in white, sunlit regions are shown in blue, and the shadows are shown in red. The black circle shows a region where CSDI <= 0.97 performs a little bit 
better on thin shadow detection while the red circle shows a region where it gives a false signal. The green circle shows a region where CSDI <= 0.95 does not 
detect part of the shadow while CSDI <= 0.96 and CSDI <= 0.97 detect it. The overall performance of CSDI <= 0.96 is the optimal setting to minimize 
false signals while maximizing shadow region detection. 

TABLE  I 
PERCENTAGE OF PIXELS IDENTIFIED AS CLOUD, SHADOW, AND SUNLIT 

DUE TO DIFFERENT CLOUD MASK1NGS FOR THE IMAGE SHOWN IN PLG. 2 

i: 

>^i- 

3 
X 

_L 

AM Mn 

Fig. 3. Size of the ASB versus the total percentage of the shadowed pixels in 
the images shown in Figs. 4 and S. The (red and magenta) solid lines are for 
smaller shadows (from Fig. 4), while the (blue and green) dotted lines are for 
larger shadows (from Fig. 5). A 32 x 32 ASB appears to be adequate for the 
smaller shadows, but a larger ASB is required for the larger shadows. A larger 
ASB has little impact on the smaller shadow detection, as can be seen in the red 
and magenta lines which change little from 32 x 32 ASB to 128 x 128 ASB. 

Northern Mariana Pagan on September 26,2010. Virgin Islands 
and Samoa have relatively smaller shadows, while Guam and 
Pagan have relatively larger shadows. It is obvious in Fig. 2 
that 8x8 and 16x16 ASBs are too small to detect most of the 
shadowed pixels. A 32 x 32 ASB appears to be reasonable for 

Cloud 
masking 

Percentage of 
shadow 
pixels 

Percentage of 
sunlit pixels 

Percentage of 
cloud pixels 

Under 5.11 82.02 12.87 
Proper 4.38 79.05 16.57 
Over 2.52 65.36 32.12 

the smaller shadows (Virgin Islands and Samoa), while a larger 
ASB is required for the larger shadows (Guam and Pagan). 
Visual inspection of the CSDI images with the corresponding 
true color and IV images shows that the shadowed pixels 
detected even with smaller ASBs such as 8 x 8 or 16 x 16 
are in fact from the true shadowed regions. However, smaller 
ASBs only detect smaller portions of the shadows. On the 
other hand, larger ASBs have little impact on smaller shadows, 
as can be seen in Fig. 3 (red and magenta lines), where the 
percentage of the total shadowed pixels in the images does not 
change significantly from ASB size ranging from 32 x 32 to 
128 x 128. Therefore, it might be advantageous to employ a 
large constant ASB based on the largest cloud size of an image 
and use that constant ASB for the entire image rather than an 
adaptive one that is based on regions of the image. 
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Fig. 4. Examples of relatively smaller cloud shadow detection using the CSDI technique. (Left panel) H1CO image acquired over Virgin Islands on December 
20, 2009 (an image size of 270 x 400 pixels), (a) True color image, (b) Corresponding IV image, (c) Corresponding CSDI image. (Right panel) HICO image 
acquired over Samoa on October 2,2010 (an image size of 260 x 260 pixels), (d) True color image, (e) Corresponding IV image, (f) Corresponding CSDI image. 
The clouds are shown in white on both CSDI and IV images, the shadows are shown in red on the CSDI images and in slightly cooler color on the IV image, and 
the sunlit regions are shown in blue on the CSDI images and in warmer color on the IV images. The true color, IV, and CSDI images agree pretty well. The cloud 
shadows are clearly seen in red structures adjacent to the white clouds on the CSDI images. The shape of the cloud shadow particularly for the isolated cloud 
closely follows that of the cloud, as expected. 

Proper cloud masking is necessary for the CSDI approach to 
perform well. Table I shows the impact of the cloud masking 
on the image shown in Fig. 2. This analysis was performed 
using the proposed CSDI threshold (CSDI <= 0.96) and a 128 
x 128 ASB since these two parameters gave the best results. 
A band ratio between HICO band 35 (548 nm) and band 70 
(748 nm) was used for the cloud masking where the ratio less 
than or equal to 3 masks the cloud properly while 2.8 and 3.2 
undermasks and overmasks the cloud, respectively. When cloud 

is masked properly, the detected shadow and sunlit regions 
agree very well with the corresponding red green blue and IV 
images. However, when cloud is undermasked, homogeneity 
within the ASB does not hold true around cloud regions since 
unmasked cloud has significantly higher radiance than the sunlit 
or shadow pixels. Thus, false results can be expected, as can be 
seen in Table I, where true shadow pixels are 4.38% of the total 
pixels but, because of the undermasking of the cloud, 5.11% of 
the pixels are identified as shadowed pixels. On the other hand, 
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Fig. 5. Examples of relatively larger cloud shadow detection using the CSDI technique. (Left panel) HICO image acquired over Pagan on September 26, 2010 
(an image sire of 380 x 635 pixels), (a) True color image, (b) Corresponding IV image, (c) Corresponding CSDI image. (Right panel) HICO image acquired over 
Guam on November 11,2009 (an image size of 275 x 275 pixels), (d) True color image, (e) Corresponding IV image. (f) Corresponding CSDI image. The clouds 
are shown in white on both CSDI and IV images, the shadows are shown in red on the CSDI images and in slightly cooler color on the IV images, and the sunny 
regions are shown in blue on the CSDI image and in slightly warmer color on the IV images. The true color, IV, and CSDI images agree pretty well. The cloud 
shadows are clearly seen in red structures adjacent to the white clouds on the CSDI images. The shape of the cloud shadow particularly for the isolated cloud 
closely follows that of the cloud, as expected. 

if cloud is overmasked, CSDI identifies only 2.52% of the pixels 
as shadowed pixels. This is because the rest of the shadowed 
pixels are removed with the cloud masking. However, those 
2.52% pixels are from the true shadow region. There is no 
false detection with the overmasking of the cloud, unlike the 
undermasking, but only portions of the shadows are detected. 
This is because homogeneity within the ASB remains true with 
overmasking of the cloud. 

Examples of shadow detection with the CSDI method are 
shown in Figs. 4 and 5. Since larger ASBs have little impact 
on smaller shadows and works better for larger shadows, a 
128 x 128 ASB was chosen for these images (Figs. 4 and 
5). Fig. 4 (left panel) shows the HICO image acquired over 
Virgin Islands on December 20, 2009 (an image size of 270 
x 400 pixels), where Fig. 4(a) shows the true color image, 
Fig. 4(b) shows the corresponding TV image, and Fig. 4(c) 
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shows the corresponding CSDI image. The right panel of Fig. 4 
is another HICO image acquired over Samoa on October 2, 
2010 (an image size of 260 x 260 pixels), where Fig. 4(d) 
shows the true color image, Fig. 4(e) shows the corresponding 
IV image, and Fig. 4(0 shows the corresponding CSDI image. 
Similarly, Fig. 5 left panel shows a HICO image acquired over 
Pagan on September 26, 2010 (an image size of 380 x 635 
pixels), where Fig. 5(a) shows the true color image, Fig. 5(b) 
shows the corresponding IV image, and Fig. 5(c) shows the 
corresponding CSDI image. The right panel of Fig. 5 shows one 
more HICO image acquired over Guam on November 11,2009 
(an image size of 275 x 275 pixels), where Fig. 5(d) shows the 
true color image, Fig. 5(e) shows the corresponding IV image, 
and Fig. 5(f) shows the corresponding CSDI image. The clouds 
are shown in white on both CSDI and IV images, while the 
shadows are shown in red on the CSDI images and in slightly 
cooler color compared to the neighboring sunlit region on the 
IV images. The sunlit regions are shown in blue on the CSDI 
images and in slightly warmer color compared to the adjacent 
shadowed regions on the IV images. The true color, IV, and 
CSDI images agree reasonably well in both Figs. 4 and 5. The 
cloud shadows are clearly seen in red structures adjacent to the 
white clouds on the CSDI images. Also, the shape of the cloud 
shadow particularly for the isolated cloud closely follows that 
of the cloud, as expected, which reconfirms the potential of the 
CSDI method. 

The CSDI method has several advantages over geometry- 
based [25], [26] or reflectance-threshold-based techniques [16]. 
It does not require any thermal or short-wave infrared channels 
which are not always present on ocean color sensors. The CSDI 
method is entirely based on visible channels, the most important 
spectral region for ocean color studies, which always exist 
on ocean color sensors. Although angular (solar and viewing) 
information can be acquired from the satellite sensors, it is still 
a challenge to estimate cloud vertical height accurately from 
satellite sensors. Some sensors, such as the Moderate Reso- 
lution Imaging Spectroradiometer, can estimate cloud vertical 
height; however, they are not very reliable [33]. Nonetheless, 
most ocean color sensors do not have the capability to esti- 
mate cloud vertical heights. Thus, a geometry-based approach 
is not appropriate for these sensors. On the other hand, the 
CSDI method does not require any estimation of cloud vertical 
heights or even any angular information. It is based on the 
top-of-the-atmosphere readings of the spaceborne or airborne 
sensors. Since it is based on the true measurement without any 
estimation, the detected shadow locations are more precise. 
Furthermore, the CSDI is relatively easy to use and should 
be faster than the geometry-based approach since it requires 
less computation. Moreover, since the CSDI method uses the 
top-of-atmosphere radiance measured in raw digital counts, the 
method will still work well even with the sensors with high 
radiometric calibration errors, unlike the reflectance-threshold- 
based methods [16]. 

The CSDI cloud shadow-detection approach has some draw- 
backs. It cannot detect shadows in the edge pixels of the 
acquired satellite images, since an ASB cannot be selected 
centered on these pixels. However, an observer can use the IV 
image to visually identify the shadows in those pixels, since 

shadow pixels appear slightly dimmer in the IV image than 
the neighboring sunlit pixels, as can be seen in Fig. 4(b) and 
(e) and Fig. 5(b) and (e). The CSDI may also give spurious 
results in nonhomogeneous turbid or shallow waters, since 
nonhomogeneity within the ASB may increase or decrease the 
mean values [denominator of (4)]. Thus, the CSDI method is 
not intended for use in nonhomogeneous waters. However, like 
the edge pixels, the IV image can be used to visually identify 
the shadow regions in those waters. 

VI. CONCLUSION 

A cloud shadow-detection technique (CSDI) has been devel- 
oped and applied to HICO data collected from various locations 
to isolate shadowed pixels. The shapes of the clouds and cloud 
shadows observed in the CSDI images closely resemble those 
of clouds and cloud shadows in the corresponding true color 
and rv images. The agreement between the true color, IV, and 
CSDI images is very reasonable over open ocean. This suggests 
the potential of the cloud shadow detection using the proposed 
technique which only uses the top-of-the-atmosphere optical 
readings of the spaceborne or airborne imagers. Although the 
proposed CSDI threshold works reasonably well on the selected 
HICO images, further studies are necessary to fine tune the 
threshold and the selection of optimal ASB size based on image 
scene content for automated processing. 
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