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Abstract 

This report provides a technical description of the module urbanSOURCE, which is an 
operational implementation of an innovative sensor-driven modeling paradigm for source 
reconstruction. This module permits the rapid and robust estimation of the parameters of 
an unknown source, using a finite number of noisy concentration measurements obtained 
from a sensor array. The problem is solved using a Bayesian probabilistic inferential frame­
work in which Bayesian probability theory is used to formulate the posterior distribution 
for the source parameters. Three different model equations have been formulated for the 
likelihood function, leading to three different models for the posterior distribution of the 
source parameters. The application of the methodology implemented in urbanSOURCE is 
illustrated using real dispersion data obtained from two examples (Joint Urban 2003 field 
experiment in Oklahoma City and European Tracer Experiment) involving contaminant 
dispersion in highly disturbed flows over urban and complex environments , where the ide­
alizations of horizontal homogeneity and/ or temporal stationarity in the flow cannot be 
applied to simplify the problem. 
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Resume 

Le present rapport donne une description technique du module urbanSOURCE, lequel est 
une mise en application operationnelle d'un paradigme novateur de modelisation deter­
minee par des capteurs pour la reconstruction de sources. Ce module permet d 'obtenir une 
evaluation rapide et robuste des parametres d'une source inconnue, au moyen d'un nombre 
determine de mesures de concentration de bruit obtenues a l'aide d 'un reseau de capteurs. 
Le probleme est resolu grace a !'utilisation d 'un cadre inferentiel de probabilites bayesiennes 
dans lequel la theorie des probabilites bayesiennes est utilisee afin d'etablir la distribution 
a posteriori pour les parametres sources. Trois equations de modeles ont ete formulees 
pour la fonction de vraisemblance, et se sont soldees par trois modeles pour la distribu­
tion a posteriori des parametres sources. L'application de la methode mise en oeuvre dans 
le module urbanSOURCE est illustree a l'aide des donnees de dispersion reelles tirees de 
deux exemples (experience sur le terrain Joint Urban 2003 a Oklahoma City et experience 
europeenne sur les traceurs [European Tracer Experiment]) portant sur la dispersion de 
contaminants dans des ecoulements tres perturbes en milieux urbains complexes, dans les­
quels les idealisations de l'homogeneite horizontale etjou de la stationnarite temporelle dans 
l'coulement ne peuvent pas etre utilisees pour simplifier le probleme. 
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Executive summary 

An Operational Implementation of a CBRN Sensor-Driven 
Modeling Paradigm for Stochastic Event Reconstruction 

E. Yee; DRDC Suffield TR 201 0-070; Defence R&D Canada- Suffield; May 2010. 

Background: Atmospheric dispersion modeling is important to public security as it pro­
vides emergency managers and responders with predictions for plume direction, coverage 
and lethality required to direct efforts for managing the consequences of a toxic agent release. 
However, before plume dispersion modeling can be applied, a knowledge of the characteris­
tics of the toxic release (e.g., location , emission rate, time of release) is required. A critical 
capability gap in current emergency and retrospective management efforts, directed at ter­
rorist incidents involving the clandestine release of a chemical , biological, radiological or 
nuclear ( CBRN) agent into the atmosphere, is the ability to determine the characteristics 
of the unknown source following the detection of the event by a network of CBRN sensors 
(source reconstruction problem). 

Principal results: Research conducted over the past four years on addressing the dif­
ficult source reconstruction problem has matured to the point that the results can be 
transitioned into an operational capability that can be inserted into a CBRN battlespace. 
In consequence, an operational implementation of an innovative sensor-driven modeling 
paradigm for source reconstruction has been realized in the form of a software module ur­
banSOURCE. This module permits the rapid and robust estimation of the parameters of 
an unknown source, using a finite number of noisy concentration measurements obtained 
from a CBRN sensor array. The methodology implemented in urbanSOURCE has been suc­
cessfully validated using concentration data measured in a real urban environment (Joint 
Urban 2003 field experiment conducted in Oklahoma City, Oklahoma) involving transport 
and dispersion of an agent on an urban-industrial complex scale and in a complex terrain 
environment (European Tracer Experiment) involving transport and dispersion of an agent 
on a continental scale. 

Significance of results: The operational implementation of a source reconstruction ca­
pability in urbanSOURCE will enable the rapid estimation of an unknown source term 
associated with a covert (clandestine) release of a CBRN agent, using the available con­
centration data measured in real-time by a sensor network, followed by an accurate and 
timely prediction of the agent's spread and deposition required for making more informed 
decisions for mitigation of the consequences of the toxic release. The capability provided 
by urbanSOURCE provides the inextricable linkage of CBRN sensor data with advanced 
models for atmospheric dispersion (and, more particularly, for urban dispersion), leading 
potentially to significant improvements in the situational awareness in the battlespace. 

Future work: The next step is to integrate urbanSOURCE as an operational capability for 
source reconstruction into the integrative multiscale urban modeling system implemented in 
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the computational infrastructure at a government operations facility (Environmental Emer­
gency Response Section at Canadian Meteorological Centre). To complete the sensor-driven 
modeling paradigm, the system needs to be interfaced with information (warning and re­
porting) systems for automated data acquisition from CBRN sensors. The incorporation 
of this capability into a government operations facility will give it the key-enabling tools 
to provide a 'whole-of-government' (comprehensive) single authoritative source for expert 
quality-assured sensor-driven CBRN hazard predictions and concomitant decision-support 
aids, which will form the basis for making significantly improved decisions for responding 
to and mitigating hazardous release incidents. These products can be used by emergency 
managers, planners and first responders (civil and military) in various federal, provincial 
and municipal agencies for informed response decision making in both domestic and inter­
national operations, as well as for support of major events of national and international 
significance [e.g., Vancouver Winter Olympics, Group of Eight (GS) and Twenty (G20) 
Summits , Francophonie Summit]. 
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Somma ire 

An Operational Implementation of a CBRN Sensor-Driven 
Modeling Paradigm for Stochastic Event Reconstruction 

E. Yee; DRDC Suffield TR 2010-070; R & D pour Ia defense Canada- Suffield; mai 
2010. 

Contexte : La modelisation de la dispersion atmospherique est importante pour la securite 
publique, car elle donne aux gestionnaires des mesures d'urgence et aux intervenants d'ur­
gence des previsions sur la direction, la couverture et la letalite des panaches , previsions 
necessaires pour orienter la gestion des consequences d'un rejet d'agents toxiques. Toute­
fois, avant d'appliquer la modelisation de la dispersion de panache, il faut connaitre les 
caracteristiques du rejet toxique (p. ex., !'emplacement , le taux d'emissions et l'heure du 
rejet). Une lacune tres importante en matiere de capacite liee aux efforts actuels de gestion 
retrospective et d'urgences, visant les incidents terroristes associes au rejet clandestin dans 
!'atmosphere d'agents chimiques, biologiques, radiologiques ou nucleaires (CBRN), est la 
capacite de determiner les caracteristiques d'une source inconnue apres la detection d'un 
evenement par un reseau de capteurs CBRN (probleme de reconstruction de la source). 

Resultats principaux : Les recherches effectuees au cours des quatre dernieres annees sur 
la resolution du probleme difficile de reconstruction de sources ont evolue au point ou il est 
possible de convertir les resultats en une capacite operationnelle, laquelle peut etre inseree 
dans un espace de bataille CBRN. En consequence, une mise en application operationnelle 
d 'un paradigme novateur de modelisation determinee par des capteurs pour la reconstruc­
tion de sources a ete realisee sous la forme du module logiciel urbanSOURCE. Ce module 
permet d'obtenir une evaluation rapide et robuste des parametres d'une source inconnue, 
au moyen d'un nombre determine de mesures de concentration de bruit obtenues a l'aide 
d'un reseau de capteurs. La methode mise en oeuvre dans le module urbanSOURCE a ete 
validee avec succes a l'aide des donnees de concentration mesurees dans un environnement 
urbain reel (experience sur le terrain Joint Urban 2003 effectuee a Oklahoma City, Okla­
homa), qui comprend le transport et la dispersion d'un agent a une echelle complexe urbaine 
industrielle, et un environnement de terrain complexe (European Tracer Experiment), qui 
comprend sur le transport et la dispersion d'un agent a l'echelle continentale. 

Portee des resultats : La mise en application operationnelle d'une capacite de reconstruc­
tion de sources dans le module urbanSOURCE permettra d'evaluer rapidement un terme 
source inconnu associe a un rejet secret (clandestin) d'un agent CBRN, a l'aide des donnees 
disponibles sur les concentrations mesurees en temps reel par un reseau de capteurs, sui­
vie d'une prediction precise et au bon moment de la dispersion et du depot d'agents qui 
est necessaire a la prise de decisions mieux eclairees en vue d'attenuer les consequences 
des rejets toxiques. La capacite fournie par le module urbanSOURCE permet !'obtention 
de liens inextricables entre les donnees des capteurs CBRN et celles des modeles avances 
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pour la dispersion atmospherique (et, en particulier, pour la dispersion urbaine), et pourrait 
ameliorer grandement la connaissance de la situation dans l'espace de bataille. 

Perspectives d'avenir: La prochaine etape consiste a integrer le module urbanSOURCE, 
en tant que capacite operationnelle pour la reconstruction de sources, au systeme de model­
isation urbaine multi echelle integre mis en oeuvre dans !'infrastructure informatique d 'une 
installation dediee aux operations gouvernementales (Division de la reponse aux urgences 
environnementales du Centre meteorologique canadien). Pour completer le paradigme de 
modelisation determinee par des capteurs, il faut interfacer le systeme avec les systemes 
d'informations (avertissement et signalement) aux fins d'acquisition automatisee de donnees 
provenant des capteurs CBRN. L'integration de cette capacite a une installation dediee aux 
operations gouvernementales donnera a cette derniere les principaux outils d'appui en vue 
de fournir une source unique autorisee "pour l'ensemble du gouvernement " (exhaustive) 
pour les previsions de dangers CBRN determinees par des capteurs dont la qualite est 
validee par des experts et les aides concomitantes a la decision, qui formeront la base 
des ameliorations importantes a la prise de decisions en vue de repondre aux incidents de 
dispersion de produits dangereux et de les limiter. Ces produits peuvent etre utilises par 
les gestionnaires des mesures d 'urgence, les planificateurs et les premiers repondants ( civils 
et militaires) de divers organismes federaux, provinciaux et municipaux aux fins de prise 
de decisions eclairees tant dans les operations nationales que les operations internationales, 
ainsi que l'appui des principaux evenements qui ont une importance sur le plan national 
et international (p. ex. : Jeux olympiques d'hiver de Vancouver, le Sommet du Groupe des 
huit [GS], le Sommet du Groupe des vingt [G20] et le Sommet de la Francophonie). 
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1 Introduction 
1.1 Background 

The environmental and toxicological impact of the mean transport and turbulent diffu­
sion of contaminants released into the atmosphere has become increasingly important in 
recent years. Considerable interest has been focused on the prediction of mean concen­
tration levels downwind of contaminant sources in the turbulent atmospheric boundary 
layer. Consequently, atmospheric transport and diffusion models have played an important 
role in emergency response systems for toxic releases and have been used in calculating 
the transport, diffusion, and deposition of hazardous chemical, biological, radiological or 
nuclear ( CBRN) materials released (either accidentally or deliberately) into the turbulent 
atmospheric boundary layer over relatively smooth and horizontally homogeneous surfaces. 

Military and civilian (government and commercial) emergency response models commonly 
use standard Gaussian plume or puff models [1], which employ semi-empirical relationships 
for plume or puff growth with the mean wind and turbulence fields obtained either from 
similarity theory or from the use of simple diagnostic wind fields constructed from the 
interpolation and/or extrapolation of sparse observational data. The advantages of these 
approaches for wind flow specification are their simplicity, general applicability in simple 
atmospheric conditions, and, most importantly, their limited computational requirements. 
While this approach is useful for a landscape that is relatively flat and unobstructed, it is 
wholly inadequate for surface-atmosphere interactions over "complex" surfaces (viz., most 
of the real world) such as cities and other built-up areas. 

As the fraction of the world's population that lives in cities grows, it is becoming increasingly 
important to address the urgent problem of the assessment of hazards caused by the release 
of potentially harmful materials into the urban environment. Should such a release of a 
noxious contaminant occur- perhaps as a result of a deliberate release using a CBRN agent 
or an accidental spillage of a toxic industrial material- it is important to be able to predict 
the transport and dispersion of the plume or cloud of potentially hazardous material as it 
evolves in the urban canopy where human habitation is concentrated. 

It should be noted that the development of models for urban dispersion is very compli­
cated owing to the fact that the urban environment is characterized by extremely diverse 
length and time scales and complex geometries and interfaces. In particular, a typical ur­
ban canopy consists of a large collection of buildings and other obstacles (e.g., cars lining a 
street, treed areas in city green spaces, etc.) that are aggregated into complex structures. 
When this rough surface interacts with the atmospheric flow within and above it, the highly 
disturbed flow field can become extremely complex, exhibiting various flow features such 
as curved mean streamlines, large velocity gradients, sharp velocity discontinuities, flow 
separations and reattachments, cavity regions, recirculation zones, and strongly inhomo­
geneous turbulence. Understanding the complex flow of the wind through and above the 
urban environment and the dispersion of contaminants released into that flow is both nec­
essary and important. In view of this , we require physically-based urban wind models 
that can predict the complex spatial-temporal pattern of urban wind statistics required to 
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"drive" models for the dispersion of contaminants within the street network of an urban 
environment (where it is venting of street canyons that is important for determination of 
the contaminant concentrations). 

The United States Government Accountability Office (GAO) recently conducted a review of 
various models used by federal agencies to predict the transport and dispersion of terrorist­
related and accidental releases of CBRN materials in urban areas [2]. Based on that review, 
it was concluded that "evaluations and field testing of plume models developed for urban 
areas show variable predictions in urban environments" and that "federal agencies' models 
to track the atmospheric release of CBRN materials have major limitations in urban areas" . 
In addition to these deficiencies, the GAO report also cautioned the reader that using 
predictions of non-urban plume models for CBRN events in urban areas "are limited in 
their ability to accurately predict the path of a plume and the extent of contamination in 
urban environments". 

This identified capability gap (which has been generally acknowledged by various dispersion 
modeling experts) was the motivation for the development of an advanced emergency re­
sponse system for CBRN hazard prediction and assessment for the urban environment 
sponsored by Chemical, Biological, Radiological-Nuclear and Explosives Research and 
Technology Initiative (CRTI) under Project 02-0093RD entitled "An Advanced Emergency 
Response System for CBRN Hazard Prediction and Assessment for the Urban Environ­
ment". The principal objective of this project was to develop an advanced, fully validated, 
state-of-the-science modeling system for the prediction of urban flow (i.e., turbulent flow 
through cities) and the concomitant problem of the modeling of the dispersion of CBRN 
agents released into these complex flows. This system allows the dispersion of CBRN ma­
terials to be modeled over a vast range of length scales at the appropriate resolution for 
each scale: namely, in the near field (up to about 2 km) where dispersion is governed by the 
micro-scale regime of the planetary boundary layer; to the intermediate field between about 
2 and 20 km where dispersion is governed by the local or meso-1 scale; through the far field 
covering the range from about 20-200 km (meso-,6 scale) and from about 200-2000 km 
(meso-a scale) which correspond to dispersion at the regional scale; and, finally out to the 
very far field encompassing scales greater than about 2000 km corresponding to dispersion 
on the large (synoptic and global) scales. 

The multiscale modeling system for emergency response developed in CRTI Project 02-
0093RD consists of five major components shown in the schematic diagram of Figure 1. 
These five components can be described briefly as follows. Component 1 involves the 
development of models to predict the mean flow and turbulence in the urban complex at the 
microscale (from the building and street scale up to a length scale of about 2 km). Two kinds 
of models have been developed for this purpose: namely, high-resolution building-aware 
models for urban flow where buildings are explicitly resolved; and, virtual building models 
for urban flow where groups of buildings are represented simply in terms of a distributed 
drag force. The resulting flow solver is known as urbanSTREAM and provides predictions 
of the high-resolution wind and turbulence fields in an arbitrary urban environment using 
a Reynolds-averaged Navier-Stokes (RANS) approach. 
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CRTI-02-0093RD 

Component 2 Component 5 (whole system validation) 

urban GEM/LAM 
Component 4 

Component 3 urbanLS 
Component 1 urbanEU 

urban STREAM 

Figure 1: Relationships between various components of CRTI Project 02-0093RD. 

Component 2 involves the inclusion of the effects of urban land use and land cover on 
the subgrid scales of a mesoscale meteorological model through an urban parameterization. 
This parameterization is required to account properly for the area-averaged effects of form 
drag, increased turbulence production, heating and surface energy budget modifications due 
to the presence of buildings/obstacles and consequences of land use and land cover within 
the urban environment. The resulting "urbanized" large-scale environmental flow model is 
known as urbanGEM/LAM (derived from Global Environmental Multiscale or GEM model, 
and its limited area version GEM/LAM model). Component 3 involves coupling the urban 
microscale flow models developed in Component 1 with the "urbanized" large-scale environ­
mental flow model developed in Component 2. The interface between the urban microscale 
flow model urbanSTREAM and the "urbanized" GEM/LAM model is demanding in that 
the information transfer between the two models must honor physical conservation laws, 
mutually satisfy mathematical boundary conditions, and preserve numerical accuracy, even 
though the corresponding meshes might differ in structure, resolution, and discretization 
methodology. 

Component 4 involves using the mean flow and turbulence predicted by the multiscale flow 
model developed in Component 3 to "drive" either an Eulerian or a Lagrangian stochastic 
(LS) source-oriented model for the prediction of urban dispersion of CBRN agents. The 
source-oriented Eulerian model for urban dispersion , known as urbanEU, is based on the nu­
merical solution of a K-theory advection-diffusion equation. The source-oriented LS model 
for urban dispersion , known as urbanLS, computes the forward trajectories of "marked" 
fluid parcels released from a transient or continuous source and are "driven" using the 
full three-dimensional building-resolving wind field provided by urbanSTREAM. Finally, 
Component 5 involves a validation of the multiscale modeling system for both the urban 
flow and dispersion components. For a more detailed technical description of the various 
components developed under CRTI Project 02-0093RD, the reader is referred to references 
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3-6. 

The next major step is to transition the integrative multiscale urban modeling system de­
scribed briefly above towards the status of an operational system that is fully functional 
within a government operations facility. To achieve this objective, CRTI Project 07-0196TD 
entitled "Towards an Operational Urban Modeling System for CBRN Emergency Response 
and Preparedness", involving a collaborative model development effort by Defence R&D 
Canada- Suffield and Environment Canada, was approved in 2007. The primary objec­
tive of this project is to transition the state-of-the-science urban flow/dispersion modeling 
system, developed under CRTI project 02-0093RD, towards the status of a functional op­
erational system at Environment Canada's Environmental Emergency Response Section 
(EC-EERS). 

The proposed system will provide EC-EERS with the key-enabling technology to demon­
strate its capability as a primary national reach-back and support centre for CBRN pre­
planning, real-time emergency response, and post-incident assessment in Canada. The suc­
cessful completion of CRTI Project 07-0196TD will provide EC-EERS with the science and 
technology (S&T) that will allow them to function as the primary Federal source of expert 
quality-assured CBRN dispersion predictions and concomitant decision-support aids that 
can be used by federal, provincial and municipal agencies and emergency planners and first 
responders (civilian and military) for informed response decision making for mission sup­
port in both domestic and international operations, as well as for support to major events of 
national and international significance (e.g. , Vancouver Winter Olympics in 2010). Further­
more, this development is in direct alignment with Defence R&D Canada's S&T Functional 
Planning Guidance in the defence and security domain to "build a reusable major events 
security capability" and "to provide a rigorous foundation for national defence and security 
emerging concepts and doctrine" . 

To achieve the objectives of CRTI Project 07-0196TD, the effort will be directed to three ma­
jor areas: namely, (1) advanced modeling capability; (2) infrastructure for the development 
of supporting data and tools required for the operational system; and , (3) demonstration of 
the operational system. The first area of the project involves providing significant improve­
ments to the multiscale urban modeling system exhibited in Figure 1. This effort is focused 
specifically on the following areas: improvements to the urban parameterization scheme 
in the urbanGEM/LAM model; incorporation of thermal effects in the building-resolving 
urbanSTREAM model; and, development of techniques for the fusion of CBRN sensor data 
with model predictions for source reconstruction. The second area concerns the acquisi­
tion and development of the datasets and functionalities required to transition the urban 
modeling system to a fully operational demonstration status. This requires provision of 
supporting databases such as urban building and morphology data over all major Canadian 
cities, databases of population distribution, hazard material source characteristics for var­
ious CBRN release modes (e.g., improvised dispersion devices, sprayers, etc.), and CBRN 
material and toxicological properties. Finally, the third area of the project involves demon­
strating and exercising the operational system for a number of CBRN scenarios in various 
major Canadian cities, including participation in various national-to-local exercises (e.g., 
support for Vancouver Winter Olympics) and improving the modeling system products 
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through user feedback from the first-responder community. 

A series of reports and user's guides describing the work conducted on the three major 
areas of CRTI Project 07-0196TD will be prepared as the effort progresses. The primary 
objective of this report is to describe the present status (and, more specifically, the tech­
nical formulation) of the ongoing model development conducted under one aspect of the 
advanced modeling capability area of the project: namely, the development of an innova­
tive sensor-driven modeling paradigm for source reconstruction (viz., the determination of 
the characteristics of an unknown source following event detection by a network of CBRN 
detectors). 

1.2 Motivation 

An increasingly capable sensing technology for concentration measurements of contaminants 
(such as CBRN agents) released into the turbulent atmosphere, either accidentally or delib­
erately, has fostered interest in exploiting this information for detection, identification and 
reconstruction of pollutant (contaminant) sources responsible for the observed concentra­
tion. A principal impediment and critical capability gap in current emergency management 
efforts, directed at terrorist incidents involving a covert (clandestine) release of a CBRN 
agent in a densely populated urban centre, is the determination of the unknown source 
characteristics following event detection by a (usually limited) network of CBRN detectors. 
A sensor array may indicate that a putative release has occurred, but without knowledge 
of the unknown source characteristics of the release necessary to perform a transport and 
dispersion calculation, the event detection provides no more useful information than a fail­
ure indicator light. The fusing of sensor data with atmospheric transport and dispersion 
modeling will lead to a greatly improved situational awareness in the battlespace and result 
in a significantly enhanced common operating picture required for informed CBRN response 
decision making. 

This perspective underpins the deployment by the Department of Homeland Security of ( al­
beit sparse) arrays of biological agent sensors in 31 cities across the United States in order 
to provide detection, warning and reporting of a covert bioterrorism event (with plans to 
expand to 120 as part of the BioWatch program [7]). The BioWatch program has provided 
the impetus for recent research efforts directed towards a solution of the source reconstruc­
tion problem for inferring the location and emission rate of the source of contamination 
associated with a clandestine release of a possible biological warfare agent. Certainly, 
determination of the characteristics of the unknown source is perhaps the most critical 
information required by emergency responders for the delineation of hazard zones (toxic 
corridors) resulting from the contaminant release and for implementation of an appropriate 
mitigation strategy (e.g., identification of exposed individuals, formulation of decisions for 
prophylatic treatment in the case of biological agents) required to counter the CBRN agent 
release. Further motivation is provided by a network of 40 radiological detectors that has 
been set up as a verification tool for the Comprehensive Test Ban Treaty (CTBT) in order 
to provide world-wide monitoring of radioactive noble gases that could be used potentially 
for source localization and characterization of a clandestine nuclear test [8, 9]. 
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CRTI-02-0093RD 

Component 2 Component 5 (whole system validation) 

urban GEM/LAM 
Component 4 

Component 3 urbanLS 
Component 1 urbanEU 

I 

urban STREAM I 
I 
I 

~ 

urban SOURCE fool--
urbanBLS 
urbanAEU 

CRTI-07 -0196TD 
I 

Figure 2: Relationships of the urbanSOURCE module to the various components developed 
in CRTI Project 02-0093RD. 

In view of this, one major objective of CRTI Project 07-0196TD is to provide robust soft­
ware that integrates CBRN sensor measurements with atmospheric (and more particularly 
urban) dispersion models to determine the initial source characteristics, which would allow 
a subsequent timely prediction of the agent dispersal in the atmospheric (urban) environ­
ment to enable informed decisions to be made on how best to respond to and mitigate the 
consequences of the putative agent release. To this end , we have developed a software mod­
ule named urbanSOURCE which implements a Bayesian probabilistic inferential framework 
for source reconstruction. The relationship of this module to the various components de­
veloped in CRTI-02-0093RD is summarized in Figure 2. The source-receptor relationship 
required in urbanSOURCE can in principle be obtained by using either the source-oriented 
Eulerian or LS dispersion models urbanEU or urbanLS, respectively. However, for the 
Bayesian inversion of concentration data to be practical, fast and efficient techniques are 
required for the determination of the source-receptor relationship when the sensor concen­
tration at a fixed receptor is of principal interest for a range of different emission scenarios 
(as is the case for source reconstruction). In consequence, we have developed specialized 
versions of urbanEU and urbanLS for use with urbanSOURCE; namely, we have imple­
mented a receptor-oriented Eulerian dispersion model urbanAEU and a receptor-oriented 
LS dispersion model urbanBLS. These models are simply the adjoint representations of 
the source-receptor relationships embodied in the source-oriented models urbanEU and 
urbanLS, respectively (with more details provided in Section 2). 
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The science and technology that underpins the implementation of urbanSOURCE is based 
on an innovative Bayesian inferential methodology that is used in conjunction with the 
adjoint method for representation of the source-receptor relationship. Over the past three 
years, this methodology for source reconstruction has been formulated, developed and re­
fined by Yee [10-15], Keats [10], Yee et al. [17, 18] and Keats et al. [19, 20] for the determi­
nation of unknown parameters of single or multiple sources for dispersion of conservative 
and non-conservative scalars in simple (level, unobstructed terrain) and complex (e.g., ur­
ban terrain, complex terrain on continental scales) environments. The Bayesian framework 
provides the proper method to deal with incomplete and noisy concentration data in the 
source reconstruction problem, and furthermore permits the rigorous determination of the 
uncertainty in the inference of the source parameters, hence extending the potential of the 
methodology as a tool for quantitative source reconstruction. 

2 Dispersion modeling for source reconstruction 

To apply Bayesian probability theory to source reconstruction, we need to relate the hy­
potheses of interest about the (unknown) source distribution (e.g., the source distribution 
is localized at a specific location and is continuously releasing material at a given emission 
rate) to the available concentration data measured by the array of sensors. This requires 
the calculation of a modeled (predicted) mean concentration C. Towards this objective, 
we need to specify a source-receptor relationship (or, atmospheric dispersion model) that 
encodes how the source parameter hypotheses are related to the concentration data. More 
specifically, the source-receptor relationship is a mapping MsR from the hypothesis space 
'H of source distributions to the sample space sN of concentration data so MsR : 'H ----+ sN, 
where N is the number of concentration data. 

Let the concentration at a spatial location x = (x , y , z) and at timet be denoted C(x, t). 
The mean concentration "seen" by a sensor corresponds to an average of C(x,t) over the 
sensor volume and sampling time and is given by 

(1) 

where h(x, tlxr, tr) is the spatial-temporal filtering function for the sensor located at Xr at 
time tn and D x [0, T] corresponds to a space-time volume that contains the source and the 
receptors (sensors). The spatial-temporal filtering function his constrained as follows: 

(2) 

Note that in Eq. (1), we can express the mean concentration C(xn tr) "seen" by a sensor 
as the inner (or scalar) product (C, h) of the mean concentration C and sensor response 
function h. 

In principle, a source-oriented approach can be used to characterize the mapping noted 
above. For example, the source-oriented Eulerian dispersion model urbanEU solves an 
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advection-diffusion equation of the form 

8C - + U · VC- \7 · (KVC) = S 
at 

(3) 

for C(x,t) forward in time for a given contaminant source density function S = S(x, t), 
following which Eq. (1) can be used to determine the modeled mean concentration seen 
by a sensor at Xr at time tr as the inner product (C, h). In Eq. (3), U = U(x, t) is the 
(Eulerian) mean velocity field in the flow domain and K is a turbulent diffusivity used to 
model the turbulent scalar fluxes. 

Alternatively, the source-oriented LS dispersion model urbanLS can be used to obtain 
C ( x ,t). In this approach, C is estimated from the statistical characteristics of particle 
trajectories modeled using the following stochastic differential equation [21]: 

dX(t) 

dV(t) 

V(t) dt, 

a(X(t), V(t) , t) dt + ( CoE(X(t) , t)) 112 dW(t) , (4) 

where X(t) = (Xi(t)) = (X1(t),X2(t),X3(t)) and V(t) = (Vi(t)) = (V1(t), V2(t), V3(t)) are 
the (Lagrangian) position and velocity, respectively, of a "marked" fluid element (or, parti­
cle) at time t (marked by the source as the fluid element passes through it at some earlier 
timet'), so (X, V) determines the state of the fluid particle at any timet after its initial re­
lease from the source distributionS. In Eq. (4), Co is the Kolmogorov "universal" constant 
(associated with the Kolmogorov similarity hypothesis for the form of the second-order La­
grangian velocity structure function in the inertial subrange); E is the mean dissipation rate 
of turbulence kinetic energy; dW(t) = (dWi(t)) = (dW1(t), dW2(t), dW3(t)) are the incre­
ments of a vector-valued (three-dimensional) Wiener process; and a= (ai) = (a1, a2, a3) is 
the drift coefficient vector (or, more precisely, the conditional mean acceleration vector). 

Unfortunately, the source-oriented approach is computationally expensive for use in a 
Bayesian inferential procedure for source reconstruction, since sampling from the poste­
rior distribution of the source parameters will potentially involve consideration of a large 
number of source parameter hypotheses. Each one of these hypotheses requires the solution 
either of an advection-diffusion equation for the Eulerian description, or of a stochastic dif­
ferential equation for the Lagrangian description of atmospheric diffusion. In other words, 
each new release scenario defined by a source parameter hypothesis will define a different 
source density function S, with the consequence that either Eqs. (3) or (4) will need to 
be solved once for each source parameter hypothesis. This is highly computer intensive, 
as the simulation-based Bayesian inference procedure requires a large number of forward 
calculations of the mean concentration to be performed, each of which can potentially take 
several minutes on a modern personal computer. 

In view of this, it is more computationally efficient to apply a receptor-oriented approach for 
representation of the source-receptor relationship for use in the Bayesian inference scheme. 
To this end, the modeled mean concentration C(xn tr) can be computed using the following 
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dual system representation: 

tr J dto J dxoC*(xo,tolxntr)S(xo,to) = (C*,S)(xr,tr), (5) 
0 v 

where C* ( xo, to I Xr, tr) is the adjunct (or dual) concentration at space-time point ( xo, to) 
associated with the concentration data at location Xr at time tr (with to :::; tr). A comparison 
of Eqs. (1) and (5) implies the duality relationship (C, h) = (C*, S) between C and C* 
through the source functions h and S. Moreover, C* is uniquely defined in the sense that 
it is explicitly constructed so that it verifies this duality relationship. 

In general, the adjunct concentration C* can be obtained in the Eulerian description from 
the solution of the adjoint of an advection-diffusion equation with the "source" term h 
(space-time filtering imposed by the sensor) as follows: 

8C* * ( *) -at - U · \7 C - \7 · K\7 C = h. (6) 

Equation (6) is the key result underpinning the receptor-oriented Eulerian dispersion model 
urbanAEU (see Figure 2). In the receptor-oriented approach, Eq. (6) is solved backwards 
in time for a given receptor, and the concentration 'seen' by the sensor at this receptor can 
be calculated directly using Eq. (5) once the source distribution S has been specified [3]. 
It should be noted that the computations can be repeated for any source distribution S to 
obtain the concentration at the given receptor without having to re-solve Eq. (6) for C*. 
In consequence, the receptor-oriented approach is ideally suited for source reconstruction 
using Bayesian inference. 

Equivalently, in the Lagrangian description, the adjunct field C* can be determined using 
a backward-time Lagrangian trajectory model, defined as the solution to the following 
stochastic differential equation (with dt' > 0): 

Vb(t') dt', 

ab(Xb(t') , Vb(t') , t') dt' + (CoE(Xb(t'), t')) 112 dW(t'), (7) 

where at any given time t', (Xb, Vb) is a point in the phase space along the backward 
trajectory of the "marked" fluid element (here assumed to be marked or tagged as a fluid 
particle which at time tr passed through the spatial volume of the detector at location 
Xr). This result is the fundamental equation underpinning the receptor-oriented LS model 
urbanBLS (see Figure 2). In this receptor-oriented approach, "marked" fluid elements with 
final space-time coordinates (xJ,tJ) are sampled from a space-time density function that 
is proportional to the (prescribed) spatial-temporal filtering function h(x', t'lxn tr) at a 
receptor space-time location ( Xr, tr). The backward-time Lagrangian trajectories ( t' < t f) 
of these "marked" fluid elements, which emanate from the receptor space-time volume and 
move towards the source (so, t' ----+ t' - dt' with dt' > 0), are determined in accordance to 
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Eq. (7) and the displacement statistics of these "marked" fluid elements can be used to 
compute C *(x', t'lxn tr) (which is interpreted here as a function of x' and t'). 

It can be shown ([21], [22]) that C * obtained from Eq. (7) for a detector with the filtering 
function hand C obtained from Eq. (1) for a release from the source density S, are exactly 
consistent with the duality relationship (C,h) = (C*,S) provided: (1) yb in Eq. (7) is 
related to V in Eq. (4) as Vb(t) = V(t) ; and, (2) ab in Eq. (7) is related to a in Eq. (4) as 

b 8 
ai(x, u , t) = ai(x, u , t)- CoE(x, t)~ lnPE(u), 

UUi 
(8) 

where PE(u) is the background Eulerian velocity PDF, which in urbanBLS is assumed to 
have a Gaussian form [5]. 

3 Model for concentration observations 

The models described above provide predictions for the "ideal" mean concentration seen by 
a sensor at the receptor space-time point ( Xr, tr). The actual concentration data measured 
by the sensor will not usually agree with the concentration predicted by the model owing to 
the "noise" process imposed on both the measured and predicted concentration data, which 
by its very nature is expected to possess a very complicated structure. To this purpose, 
it is assumed that the actual concentration data available from the network of sensors are 
measured at a finite number of sensor locations and at a finite number of time points at each 
sensor location. The actual concentration datum di,j(i) acquired by the sensor at receptor 

location Xri and at time t~Y (i = 1, 2, ... , Nd and j = 1, 2, ... , N? ), where Nd is the number 

of sensors and N?) is the number of time samples measured at the i-th sensor) is assumed 

to be the sum of a modeled mean concentration signal C(xri, t~Y; 8) and "noise" ei,j(i), so 

d · - C(x t (i) · 8) + e · i J·( ,) - ri' r · ' i J· (,)' , J , 
(9) 

where 8 is an appropriate parameter vector describing the source distribution S; and, 
C(xr, tr ; 8) is the modeled mean concentration at location Xr and time tn determined in 
accordance to Eq. (5) for a source distribution characterized by parameter vector 8. For 
simplicity of notation, the variables in Eq. (9) which are indexed or labelled by ( i, j (i) ) 
will be ordered in some regular and convenient manner (e.g., lexicographic ordering) and 

this collection will be indexed by J (J = 1, 2, ... , N , with N = I:~1 N? ) being the total 
number of measured concentration data). Then, we can write the observation model as 
follows: 

J = 1, 2, ... , N, (10) 

where C J(G) = C(xri, t~Y; 8). In Eq. (10), eJ is a noise term representing the discrepancy 
between the measured concentration dJ and the predicted concentration C J( 8). 

In general, eJ consists of errors (e.g, input, stochastic, and measurement) and any real 
signal in the data that cannot be explained by the model. The random error eJ can be split 
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into four terms as discussed by Rao [23], so 

(11) 

The first term r8) of the error corresponds to model error arising from uncertainties in 
the representation of various physical processes in the dispersion model used to predict the 
mean concentration. The second term ry}2l describes the input error arising from uncer­
tainties in the values of empirical parameters and/ or specification of the input meteorology 

(initial and boundary conditions) used by the dispersion model. The third term ry}3l of 
the error is the stochastic uncertainty arising from the turbulent nature of the atmosphere, 
which gives rise naturally to random concentration fluctuations in hazardous gas releases 
([24],[25],[26]). Finally, ry}4l describes the noise inherent in the sensor (essentially measure­
ment or instrument error). Note that ry(ll and ry( 2) are sources of error that affect the 
predicted (model) concentration, whereas ry(3) and ry(4) are sources of error that affect the 
measured concentration. All four sources of error contribute to the expected discrepancy 
between the measured and predicted concentration. 

Rao [23] discusses the nature of these four types of error with respect to characterization 
of uncertainties in atmospheric dispersion models, and provides a comprehensive review 
of sensitivity and/or uncertainty analysis methods that have been used to quantify and 
reduce them. In this paper, all the various error contributions to the noise term are simply 
lumped together and denoted by eJ [see Eqs. (10) and (11)]. It is assumed that the observer 
does not have a detailed knowledge of the probability distribution of the noise (aggregate 
error), other than that the observer has an estimate (perhaps crude) for the expected scale 
of variation of the noise. More specifically, it is assumed that the noise scale parameter 
associated with eJ (aggregate error of the J-th concentration observation) is provided in 
the form of a (finite) variance o} 

To complete the specification of the source-receptor relationship, we need to consider a 
functional form for the source density function S. In this paper, we consider a transient 
point source located at Xs with source on and off times Tb and Te, respectively, between 
which the source is releasing contaminant at a constant emission rate Q, so 

S(x, t) = Q8(x- xs) [ U(t- Tb)- U(t- Te) J, (12) 

where 8(·) and U(·) are the Dirac delta and Heaviside unit step functions, respectively. It 
is convenient to define 8 = (x 8 , Tb, Te, Q) as the collection of source parameters for the 
source distribution given by Eq. (12). This source model has a number of important special 
cases. For example, defining f:J.t = Te- Tb and taking the limit as f:J.t----+ 0 in Eq. (12), then 
Te ----+ n = Ts and we recover an instantaneous point source released at Xs at time Ts. Also, 
for a continuous point source, Tb ----+ -oo and Te ----+ oo and the only relevant parameters for 
this case are x 8 and Q. 

With the formulation above, the problem of source reconstruction reduces to the follow­
ing: given the observed vector of concentration data D = (d1, d2, ... , dN ), the objective 
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is to estimate 8. The problem of estimating 8 will be addressed using Bayesian proba­
bility theory which defines probability not as a frequency of occurrence but rather, as a 
reasonable degree of belief. The underlying basis of Bayesian probability theory provides a 
rigorous mathematical framework for making inferences about the source parameters and, 
as a consequence, provides a rigorous basis for quantifying the uncertainties in the esti­
mated source parameters. The foundations of probability theory when interpreted as a 
quantitative theory of inference is summarized in the next section. 

4 Probability theory as logic 

The assessment of uncertainty, which is of fundamental importance to quantitative science, 
can be dealt with rigorously using probability calculus. The rules for this calculus can be 
derived fully starting with the formulation of a small number of desiderata for a theory 
of plausibility as first provided by Cox [27], with an eloquent description of the complete 
development given by Jaynes [28] in his definitive treatise.l This theory can be interpreted 
as the extension of Aristotelian deductive logic to cases where there is uncertainty, and is 
based on three basic desiderata: namely, (1) degrees of plausibility are represented by real 
numbers ; (2) qualitative consistency with common sense so that the resulting theory will 
reduce properly to the rules for Aristotelian deductive logic in cases where the propositions 
are either certainly true or certainly false ; and, (3) internal consistency in the sense that 
two different methods of calculation permitted by the theory give the same result. 

These desiderata imply two "axioms" for the theory of plausibility (or, probability) ; namely, 
the sum rule 

P(HII) + P( H II) = 1, (13) 

and the product rule 

P(H, DII) = P(HII)P(DIH, I) = P(DII)P(HID, I) , (14) 

where P( ·) denotes the real number measure of the plausibility (probability) of a proposition 
or hypothesis. These are simply the ordinary rules of probability calculus and imply every 
allowed (consistent) plausibility theory must be mathematically equivalent to probability 
theory, or else inconsistent (no other calculus is admissible for inference with the above 
mentioned desiderata). In probability theory as logic, a probability is reinterpreted to 
represent a state of knowledge, rather than a state of nature. Equation (14) can be re­
arranged immediately to give Bayes' theorem: 

P(HID I) = P(HII)P(DIH, I). 
' P(DII) 

(15) 

In Eqs. (13) and (14) , H , D , and I denote propositions which for our application have the 
following explicit meanings: I denotes the background (contextual) information that defines 

1 Interestingly, Jaynes [28] has remarked that the article by Cox [27] is "the most important advance in 
the conceptual (as opposed to purely mathematical) formulation of probability theory since Laplace". 
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the source reconstruction problem; D denotes the concentration data made available by the 
array of sensors; and, H denotes a hypothesis about the (unknown) source distribution 
(e.g., the location of a source lies in a particular region of space and its emission rate 
assumes values in a particular range). The probability P(HII) is a measure of the degree 
to which proposition H is supported by the information embodied in proposition I, with 
" I " denoting "conditional upon". Finally, H and H, D denote "not H" and "H and D", 
respectively. 

With this interpretation of H, D and I, the terms in Bayes' theorem of Eq. (15) are 
as follows. Firstly, P(HII) is the prior probability for a hypothesis H about the source 
predicated on the contextual information specified by I and encodes all the prior information 
about the source before receipt of the concentration data D. Secondly, P(DIH, I) is the 
likelihood function and is the probability that we observe the concentration data D when H 
is known. Thirdly, P(DII) is referred to as the evidence and in our case here (which deals 
with parameter estimation) is simply a normalization constant and need not be considered 
further. Finally, P(HID, I) is the posterior probability for the hypothesis H about the 
source in light of the new information introduced through the newly acquired concentration 
data D. 

5 Prior, likelihood, and posterior 

Given the background in Section 4, the goal is to compute the joint posterior probability 
density function (PDF) for the source parameters 8, which in accordance to Eq. (15) can 
be recast in the following form: 

(8ID I) = p(8II)p(DI8, I) 
P ' p(DII) ' 

(16) 

where we have made the following identifications: (1) P(HII) = P(8II) = p(8II) d8; (2) 
P(DIH, I) = P(DI8, I) = p(DI8, I) dD; (3) P(DII) = P(DII) = p(DII) dD; and, (4) 
P(HID, I) = P(8ID, I) = p(8ID, I) d8. It is implicitly assumed that all probability mea­
sure admit a probability density function (so, for example, the prior can be represented 
either through the probability measure P(8II) or its associated probability density func­
tion p(8II), etc.). All the terms in Eq. (16) are to be interpreted given the background 
information I (e.g., background meteorology, source-receptor relationship, etc.). 

To compute the joint posterior PDF of the parameters p(8ID, I), we need to evaluate three 
terms in Eq. (16); namely, the prior PDF p(8II), the likelihood function p(DI8, I), and the 
evidence (also, frequently referred to as the prior predictive or marginal likelihood) p(DII). 
It should be noted that for the parameter estimation problem considered in this report, the 
evidence p(DII) is independent of 8 and simply plays the role of a normalization constant, 
which can be ignored. In consequence, if the posterior PDF is normalized at the end of the 
calculation, we get simply 

p(8ID, I) ex p(8II)p(DI8, I). (17) 

The specification of the posterior PDF for the source parameters 8 now reduces to the 
assignment of the prior PDF p(8II) and the likelihood function p(DI8, I). 
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5.1 Assignment of prior probability 

Let us consider the assignment of the prior PDF p(GII). To this purpose, we assume the 
logical independence of the various source parameters. This assumption implies simply that 
knowing the Xs location of the source tells us nothing about the Ys and Zs location of the 
source, knowing the location of the source tells us nothing about the source's emission rate 
or when it was turned on/ off, etc. In other words , there is no physical reason why the 
various source parameters Xs, n, Te, and Q are correlated. As a consequence, the prior 
PDF p(GII) may be factored (by repeated application of the product rule of probability 
calculus) to obtain 

(18) 

In words , the joint prior PDF of the source parameters is the product of the prior PDFs 
for the individual parameters. 

Each of the component prior PDFs in Eq. (18) for the individual source parameters can be 
assigned by stating what is known about them. The prior PDF for the source location x 8 

will be assigned a uniform distribution over some large region D c JR3 : 

(19) 

where V(D) is the volume of the region D and IIA(x) denotes the indicator function for a 
set A (viz. , IIA(x) = 1 if x E A and IIA(x) = 0 if x tf_ A). 

It is assumed that the emission rate Q has an a priori upper bound Qmax · No additional 
prior information on Q is assumed and a uniform prior PDF is assigned to the emission 
rate: 

(20) 

Finally, the prior PDFs for the source on n and source off Te times must be assigned. To 
this purpose, the prior distributions for Tb and Te are assigned uniform distributions with 
the following forms: 

(21) 

and 
(22) 

Here, T max is an upper bound on the time at which the source was turned on or off. Different 
upper bounds can be chosen for n and Te in the prior PDFs of Eqs. (21) and (22) , but 
for the formulation in this report we simply used a common upper bound for the source on 
and off times (with effectively no loss in generality). Note that the time that the source 
is turned off must necessarily occur after it has been turned on , and this information is 
encoded in the form of the prior PDF for Te given by Eq. (22) , where the distribution is 
seen to be conditioned on n. 
With these assignments for the component prior PDFs, the joint prior PDF for 8 given by 
Eq. (18) assumes the following explicit form: 

p(GII) = llv(x s) . ][(O,Qmax) (Q) . ][(O,Tmax) (n) . ][(Tb ,Tmax) (Te). (23) 
V(D) Qmax Tmax (Tmax - Tb) 
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5.2 Assignment of likelihood function 

Next, let us consider the assignment of a functional form for the likelihood function p(DI8, I). 
The likelihood function is equivalent to the direct probability for the concentration data D , 
given the source parameters 8. In urbanSOURCE, three different model equations for the 
likelihood function have been implemented. 

In the absence of a detailed knowledge of the noise distribution eJ [cf. Eq. (11)], other 
than that it has a finite variance (}}, the application of the principle of maximum entropy 
[28] informs us that a Gaussian distribution is the most conservative choice for the direct 
probability of the data D (or, equivalently, of the noise e = ( e1, e2, ... , eN)). The entropy 
of the PDF of the noise is a measure of its information content (viz., it is the asymptotic 
measure of the size of the basic support set of the distribution or 'volume' occupied by the 
sensibly probable noise values). The principle of maximum entropy is applied to ensure that 
the PDF representing our 'state of information' about the noise values does not encapsulate 
unwarranted assumptions (e.g., about higher-order moments of the noise which are not 
available). Choosing a distribution for the noise that provides the largest support set 
permitted by the information allows the largest range of possible variations in the noise 
values consistent with the available information (implying the most conservative estimates 
for these values). 

From these considerations, the first model for the likelihood function has the following form 
[in light of Eq. (10)]: 

Model 1 

p(DIG,I) = p(DIG , ~ ' I) = N ~ exp (-~x2 (8)) ' 
IlJ= l 27WJ 2 

(24) 

where 
N - 2 

x2(e) = L (dJ-~J(e)) 
J=l J 

(25) 

In Eq. (24), the notation for the likelihood function was adjusted to include the standard 
deviation for the noise ~ = ( (}1 , (}2 , ... , (}N) in the conditioning to emphasize the fact that 
{ (} J }:f=1 are assumed to be known quantities. 

As mentioned previously, the noise term eJ in Eq. (10) is extremely complicated, ansmg 
as such from a superposition of input , model, stochastic and measurement errors. In con­
sequence, reliable estimates for (} J ( J = 1, 2, ... , N) are difficult to obtain in practical 
applications. In view of this, let us denote by SJ the quoted estimate of the standard de­
viation for the noise term eJ for which the true (but unknown) standard deviation is (}J. 

Now, let us characterize the uncertainty in the specification of the standard deviation of eJ 

with an inverse gamma distribution of the following form: 

J = 1, 2, ... , N , (26) 
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where r(x) denotes the gamma function and a and (3 are scale and shape parameters , 
respectively, that define the inverse gamma distribution. 2 Again , the parameters a and (3 
have been added to the PDF of the noise uncertainty in Eq. (26) to indicate that the values 
for these parameters are assumed to be known. 

In view of Eq. (26) , the true but unknown standard deviations !JJ of eJ that appear in 
Eq. (24) can be treated as nuisance parameters and eliminated by using the product and 
sum rules of probability calculus to give 

p(DIG, s, a, (3 , I) j p(DIG, ~, I)p(~ls, a, (3 , I) d~ 

J N a f3 ( 8J) 2f3 ( 82) 1 
p(DIG, ~,I) g r(2(3) !JJ exp -a(}~ !JJ d~, (27) 

where s = (81 , 82 , ... , 8N) are the estimated standard deviations for the noise (e1, e2, ... , eN ) 
and d~ = d!J1d!J2 ... d!JN . Now, substituting the form for p(DI8, ~'I) from Eqs. (24) and 
(25) into Eq. (27) and performing the integration with respect to ~ (a process known as 
marginalization) , we obtain the second model for the likelihood function: 

Model 2 

(28) 

The second model for the likelihood function given by Eq. (28) depends explicitly on the hy­
perparameters a and (3 for which values need to be assigned. In urbanSOURCE, the values 
of a and (3 are assigned as a= 1r -

1 (default value) and (3 = 1. The assignment (3 = 1 results 
in a very heavy-tailed distribution for p( !J JI8J, a, (3 , I) which allows significant deviations of 
the noise uncertainty from the quoted value of 8J (provided by the user). Indeed , with the 
choice (3 = 1, the variance associated with p(!J JI8J , a , (3, I) in Eq. (26) becomes infinite. The 
heavy tail of the distribution is chosen to account for possibly significant under-estimations 
of the actual uncertainty (viz. , the quoted uncertainty 8J « !JJ). This could arise from 
inconsistencies in the model concentration predictions owing to structural model error or to 
'outliers ' in the measured concentration data owing to either measurement error or perhaps 
distortion of the measured concentration data due to some unrecognized spurious source. 

With a fixed value of (3 = 1, the parameter a is related to the bias in the estimation of !J J 

using 8J. The choice a= 1 implies that (!JJ ) = 8J and would code for our belief that the 
estimates 8J of the standard deviations of eJ are unbiased. The specification a > 1 codes 
for an expected negative bias in the user's estimates for the actual uncertainties !J J (viz. , 
8J < (!JJ)). Finally, the choice a < 1 encodes for an expected positive bias in the user's 
estimates for the actual uncertainties !JJ (viz., 8J > (!JJ)). In urbanSOURCE, the value for 

2 Note that the inverse gamma distribution forO" J has mean (O" J ) = a 112 
SJ /(2(3- 1) and variance Var[O" J] = 

as} / (2 (2(3- 1)2 ((3- 1)). Furthermore, the mode of the distribution is ( O" J )mo de = (2a/(1 + 2(3) )1
/

2 
SJ. 
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a is user selected, but if the user does not provide the program with a value for a a default 
value of a = Jr- 1 is used. This particular choice of a results in a mode for the distribution 
of !JJ at (!JJ)mode ~ 0.46SJ. 

The third model for the likelihood function is based on a modified lognormal distribution 
for the noise eJ suggested by Senocak et al. [29]: 

p(DIG, !J, v, I) fi, ( ll{d, ~o} (dJ) exp( -vC J(e)) + ll{d,>o)(dJ) 

( 1- exp( -VCJ(G))) ( (logdJ -logCJ(8))
2
)) 

x e~ , 
v'2ndJ!J 2!J

2 
(29) 

where the dependence on the hyperparameters v and !J has been made explicit in the 
likelihood function. The parameter !J

2 is the standard deviation of the difference between 
the logarithm of the measured concentration and the logarithm of the modeled (predicted) 
concentration. The likelihood function requires knowing !J, which is usually not available 
in practical applications. In view of this, we treat !J as a nuisance parameter and eliminate 
it using the process of marginalization. To that purpose, we need to assign a prior PDF 
for !J, p(!JII). To achieve this objective, we recognize that the standard deviation is a 
scale parameter and that the completely uninformative prior PDF for a scale parameter is 
Jeffrey's prior [30] p(!Jji) IX !J -

1
. Strictly speaking, Jeffrey's prior is an improper prior in 

the sense that it is not normalizable over the domain of definition (0, oo). Nevertheless, the 
use of Jeffrey's prior for p(!JII) is harmless because the exponential cutoff in the lognormal 
distribution is so sharp that its use here results always in convergent integrals. In view of 
this, we can marginalize the nuisance parameter !J by multiplying the part of p(DI8, !J, v, I) 
in Eq. (29) with IT{dJ>o}(dJ) by p(!Jji) IX !J -

1 and integrating with respect to !J to get3 

Model 3 

p(DIG, v, I) IX 100 

p(DIG, !J, v,I)p(!Jji) d!J 

No 

IX IJ exp( -vC J' (8)) x 
J'= 1 

(30) 

where N 0 and N > are the number of zero and non-zero concentration observations, respec­
tively (N = N 0 + N > ) ; the product of terms over J' includes all concentration observations 
for which dJ = 0; and, the product of terms over J" (as well as the sum of terms over J) 
includes all concentrations for which dJ > 0. 

Finally, a choice for the hyperparameter v in Eq. (30) needs to be made. To this purpose, 
we follow Senocak et al. [29] and fix v as v = log(2)/Cth, where Cth is the threshold 

3 A simple change of variables transforms the integral into the standard form for a gamma integral. 
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concentration for the sensor. With this choice for v, the concentration in a plume or cloud 
is detected with a probability of exp( -vC J) = 1/2 when the predicted concentration C J 

at the sensor is equal to the threshold concentration Cth· 

5.3 Posterior probability 

The posterior PDF of the source parameters 8, p(GID, I), can be determined by application 
of Bayes' rule of Eq. (17) with reference to the prior PDF for the 8 given by Eq. (23) and 
the three models for the likelihood function given by Eqs. (24), (28) and (30). This gives 
the following three model equations for the posterior PDF of 8: 

Model 1 

p(GID, I) p(GID, c;, I) ex p(GII)p(DIG, c;, I) 

Model 2 

Model 3 

p(GID, I) 

ex 
llv(xs) ][(O,Qmax) ( Q) ][(O,Tmax) (Tb) ][(Tb,Tmax)(Te) 
V('D) Qmax Tmax (Tmax- n) 

1 ( lt(dJ-CJ(8))'). x exp - -
TI~=l v'2if(J J 2 J=l (} J ' 

p(GID, I) p(GID, s, a, (3, I) ex p(GII)p(DIG, s, a, (3, I) 

ex 
llv(xs) ][(O,Qmax) ( Q) ][(O,Tmax) (Tb) ][(Tb,Tmax)(Te) 
V('D) Qmax Tmax (Tmax- Tb) 

X 
fi 2a~(3 1 

J=l v'2ifsJ [a+ (dJ- CJ(8)) 2 /(2s}) ] ~+ l/2 

p(GID, v, I) ex p(GII)p(DIG, v, I) 

ex llv(xs) . ll(O,Qmax)(Q) . ll(o,Tmax)(n) 

V('D) Qmax Tmax 

][(Tb,Tmax)(Te) 
(Tmax- n) 

No 

x IJ exp(-vCJ'(8)) x 
J' =l 

(31) 

(32) 

. (33) 

In Eqs. (31), (32) and (33), the new parameters on which the models for the posterior 
distribution depend have been explicitly added after the vertical bar "I" (viz., each model 
for the posterior distribution is conditioned upon the new parameters). 
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Figure 3: Bayesian inference scheme implemented in urbanSOURCE. 

The posterior PDF p(GID , I) embodies the state of information about the source parame­
ters given the prior information about these parameters encoded in the prior PDF p(GII) 
and the newly acquired concentration data D, which modulates our prior belief about 8 
through the likelihood function p(DI8, I). The numerical values of 8 indexes a continuous 
sequence of hypotheses about the unknown source distribution, and the posterior proba­
bility p(GID , I)dG ranks the plausibility of these hypotheses. Low values of the posterior 
probability indicate that the numerical value of 8 is improbable (viz. , the particular source 
distribution described bye is implausible) , whereas high values indicate high plausibility 
for the hypothesis. Furthermore, p(GID , I) allows us to estimate all the interesting statistics 
about the source parameters 8 (more about this in the next section). 

To summarize, urbanSOURCE computes the three models for the posterior PDF p(GID , I) 
given in Eqs. (31) , (32) and (33). The components that make up urbanSOURCE are de­
picted in Figure 3. In particular, the predicted (model) concentration CJ (J = 1, 2, ... , N) 
needed to determine the likelihood function are computed using Eq. (5) , in which the dual 
(adjoint) concentration fields C* are determined using either urbanAEU (for an Eulerian 
description of the dispersion) or urbanBLS (for a Lagrangian description of the dispersion). 
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The relationship between urbanSOURCE and either urbanAEU or urbanBLS is depicted in 
Figure 2. Finally, the user must provide to urbanSOURCE the concentration measurements 
dJ (J = 1, 2, ... , N), as well as the actual standard deviations !JJ (J = 1, 2, ... , N) in the 
noise process (for Model 1) that define the expected discrepancy between the measured and 
predicted concentrations or, if these are not known, estimates for the standard deviations 
SJ (J = 1, 2, ... , N) in the noise process (for Model 2). Note that Model 3 does not require 
the user to input information on the expected uncertainties (either actual or estimated) 
arising from the noise process. 

6 Summary statistics for source parameters 

The posterior distribution for 8 provides the full solution for the source reconstruction 
problem. Inferences on the values of the source parameters are based on this posterior 
distribution. The posterior distribution may be summarized by various statistics of interest 
such as the posterior mean of each source parameter, say fh (which can be an emission rate 
Q, or source location x 8 , or time at which the source was turned on (off) Tb (Te)): 

(34) 

where£[·] denotes mathematical expectation. Alternatively, rather than using the posterior 
mean 8 as the "best" estimate for the source parameter vector 8 , one can use also the 
maximum a posteriori (MAP) estimate of 8 which is defined simply as the mode of the 
posterior distribution: 

G M AP = argmax p(GID, I). 
8 

(35) 

A measure of the uncertainty in the estimate of fh can be obtained using the posterior 
standard deviation !J(fh): 

£[ (ei - ei)2 ID l 

j (ei - ei)2
p(8ID, I) dG. (36) 

Alternatively, a p% credible [or, highest posterior density (HPD)] interval that contains the 
source parameter ()i with p% probability, with the lower and upper bounds of the interval 
specified such that the probability density within the interval is everywhere larger than that 
outside it , can be used as a measure of the uncertainty in the determination of ()i · 

In general, Bayesian probability theory never advocates the minimization, maximization, 
or optimization of any objective or cost function. This is in sharp contrast to the under­
lying basis for the application of regularization procedures for source reconstruction (see, 
Thomson et al. [31] and Allen et al. [32], among others) which attempt to find an "opti­
mal" solution by setting a balance between the importance of quality (regularization) and 
of fitting the data, with sometimes arbitrary choices for the functional used to represent 
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the regularization in the problem. Rather, the rules of Bayesian probability theory demand 
that we sum or integrate over unknown quantities, so that the effect is to average over 
all plausible values of these quantities. The underlying philosophy of Bayesian probability 
theory for source reconstruction is to find and explore all regions in the hypothesis space (of 
source distribution models) of reasonably large plausibility, and not simply to find the high­
est point of maximum posterior probability. This procedure allows a rigorous assessment 
of the uncertainty in our inferences of the source parameters. 

In addition to the summary statistics for the source parameters (e.g., posterior mean, 
posterior standard deviation, p% HPD or credible intervals), urbanSOURCE computes two 
other quantities of interest; namely, (1) the Bayesian evidence Z and (2) the information 
gain DKL· The Bayesian evidence Z is simply the normalization constant Z = p(DII) for 
the posterior distribution p(GID , I); viz., 

Z = p(DII) = j p(GII)p(DIG, I) dG. (37) 

It it noted that the Bayesian evidence Z (with units of inverse data) can be interpreted as the 
likelihood of obtaining the given concentration data D , given the background (contextual) 
information I. The Bayesian evidence is important in the model selection problem, allowing 
different model assumptions to be compared through ratios of evidence values (or, Bayes 
factors) [28]. 

The information gain DKL is a quantitative measure of the gain in information content 
(about the unknown source distribution) obtained from the receipt of the concentration data 
D from the sensor array, resulting from the updating of our state of knowledge concerning 
the unknown sourceS (encoded as 8) from that encoded in the prior distribution p(GII) 
to that encoded in the posterior distribution p(GID, I). This information gain (amount of 
useful information about 8 embodied in D) is given by the Kullback-Leibler divergence 
DKL defined as follows (Cover and Thomas [33]): 

J (p(GID, I)) 
DKL = log p(GII) p(GID, I) dG. (38) 

The Kullback-Leibler divergence defined in Eq. (38) is simply the negative of the entropy 
(negentropy) of the posterior relative to the prior and, as such, is the information gain 
provided by the receipt of the concentration data D. More specifically, the information 
gain "compresses" the posterior relative to the prior so that DKL can simply be interpreted 
as the logarithm of the volumetric factor by which the prior has been compressed to become 
the posterior (the greater this compression, the greater is the information gain provided by 
the concentration data). 

In urbanSOURCE, the integrals required in the Bayesian calculations (either in the compu­
tation of the various marginal posterior PDFs for the source parameters or in the calcula­
tions of the various summary statistics for the parameters and of Z and DKL) are evaluated 
numerically. The program computes the natural logarithm of the posterior PDF for the 
source parameter, the reason being that most computers cannot express the large dynamic 
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range expected in the values of the posterior PDF as one samples the allowable domain of 
definition for e. 

7 Application 

In this section, we illustrate the application of urbanSOURCE for source reconstruction 
using two examples. The two examples use real dispersion data sets obtained from the 
Joint Urban 2003 (JU2003) experiment involving the dispersion of a tracer on an urban­
industrial complex scale and from the European Tracer Experiment (ETEX) involving the 
dispersion of a tracer on a continental scale. 

7.1 Joint Urban 2003 

The Joint Urban 2003 (JU2003) experiment was an extensive cooperative urban study that 
was conducted in Oklahoma City, Oklahoma during the period from 28 June 28 to 31 July 
31 2003 [34]. The principal objective of JU2003 was to obtain high-quality meteorological 
and tracer data sets for urban flow and dispersion in a real city environment on a range of 
scales: namely, from the building (or street) scale encompassing a few buildings or a single 
street canyon to the neighborhood scale encompassing many city blocks in the central 
business district (CBD) of Oklahoma City, and finally to the urban scale encompassing 
the entire CBD and a suburban area several kilometers from downtown Oklahoma City. 
Furthermore, JU2003 included also measurements of indoor flow and dispersion in four 
buildings in the CBD, which were coordinated and conducted in conjunction with the 
outdoor field experiments in order to obtain deeper insights into the physical mechanisms 
involved in indoor-outdoor exchange rates. 

For JU2003, a large number of meteorological measurements in Oklahoma City were under­
taken, including detailed measurements of mean wind and turbulence characteristics in the 
urban canopy and boundary layer obtained with both remote sensing instruments (Doppler 
sodars and lidars, radar profilers) and fast-response in-situ meteorological sensors (sonic 
anemometers, infrared thermometers). Additionally, tracer bag samplers were used to mea­
sure mean concentration data obtained from the release of a sulfur hexafluoride (SF6) tracer 
in downtown Oklahoma City at three different locations. Ten intensive observation periods 
(lOPs) were undertaken in JU2003, during each of which there were three 30-min (contin­
uous) tracer gas releases. The tracer gas from these releases was sampled in and around 
downtown Oklahoma City on a regular CBD grid and as far downwind as four kilometers 
from the release along various sampling arcs. 

To illustrate the application of urbanSOURCE, we used concentration data dJ obtained 
from the second continuous 30-min release of SF6 in IOP-9, which occurred during the 
period 06:00-06:30 UTC (01:00-01:30 CDT) on 28 July 2003. The dissemination point 
for this experiment was located on the south side of Park Avenue (latitude 35.4687° N, 
longitude 97.5156° W) with a near-surface release height of 1.9 m. The constant gas release 
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rate for this experiment was 2.0 g s- 1 . The highly disturbed mean wind and turbulence fields 
needed for the calculation of C* were obtained using urbanSTREAM, which implements 
a Reynolds-averaged Navier-Stokes approach with a two equation k-E turbulence closure 
(where k is turbulence kinetic energy, and E is viscous dissipation) [3]. 

The modeling domain used for the computation of the disturbed wind statistics and for 
calculation of C* is shown in Figure 4. The extent of the modeling domain was 1, 934.25 m x 
3, 610.6 m x 800.0 m in the x- (or, W-E), y- (or, S-N) and z- (or, vertical) directions, 
respectively, which covers the CBD of Oklahoma City and the surrounding environs. The 
southwest corner (or, origin) of the modeling domain (see Figure 4) is at the following 
coordinates in the Universal Transverse Mercator (UTM) coordinate system4 : zone = 14, 
xo = 633,683 UTM easting and Yo = 3, 923, 940 UTM northing (or, equivalently, in the 
geodetic coordinate system this location is 35.449959° N and -97.52694° E). 

The internal coordinate system used in urbanSTREAM is shown in Figure 4, where the 
southwest corner of the modeling region is chosen as the origin (0, 0) in the x-y (horizontal) 
plane. All distances shown here have been normalized by a reference length scale which is 
chosen in this case to be Aref = 644.75 m. Hence, in this internal coordinate system, the 
northeast corner of the modeling region is referenced as (3, 5.6). A proper subset within this 
modeling region is chosen as the region in which buildings will be explicitly resolved in the 
flow simulation; for this example, this rectangular building-aware region (644. 75 m x 709.23 
m) has its southwest corner at (1, 2.5) and its northeast corner at (2, 3.6). In the portion 
of the modeling region lying outside the building-aware region, all buildings are treated as 
virtual and their effects on the flow are modeled using a distributed drag force representation 
in the mean momentum equations. Figure 4 also shows that the location of the tracer source 
(blue dot) was at (xs, Ys) = (1.5537, 3.2506) (in the normalized local coordinate system used 
by the model) or at (xs , Ys) = (1001. 7, 2095. 7) m (in the un-normalized coordinate system). 
In other words, the source was located 1001.7 m east and 2095.7 m north of the origin (0, 0) 
shown in Figure 4. 

A mesh of 99 x 139 x 69 grid lines in the x-, y-, and z-directions , respectively, was used to 
accommodate all the necessary geometrical details. The interior building-aware region was 
covered with a fine calculation grid of 55 x 100 x 69 grid lines to better approximate the 
building features in this region. The fine grid used for the building-aware region contains 
379,500 nodes, whereas the entire computational domain was covered with a mesh of 945,509 
nodes. The grid lines were preferentially concentrated near the solid surfaces (ground, 
building rooftops and walls) where the gradients in the flow properties are expected to 
be greatest, and the spacing between the grid lines was gently stretched with increasing 
distance from the solid surfaces. 

The velocity statistics, computed over the computational domain shown in Figure 4, were 
used in urbanAEU to calculate C* for a number of tracer bag samplers located in the 
domain. In urbanAEU, the turbulent diffusivity K is obtained from the turbulent (eddy) 

4 The UTM easting coordinate reported here is referenced relative to the central meridian of the zone. 
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Figure 4: The computational domain used for the prediction of the disturbed wind statistics 
in the CBD of Oklahoma City, as well as for computation of C*. The location of the source 
is indicated using a blue dot and lies near the centre of the computational domain. 

viscosity (predicted by urbanSTREAM) in combination with a turbulent Schmidt number 
Set ~ 0.63 in the following manner: K = vtfSct [cf. Eq. (6)]. Now, we use C* and 
concentration data dJ obtained from the bag samplers in urbanSOURCE to reconstruct 
the (assumed here to be unknown) source characteristics. Because we are dealing with a 
continuous source, the only relevant parameters here are the source location x 8 and the 
emission rate Q. Furthermore, since we are dealing with near-surface sources with Zs ~ 0, 
the only relevant unknown location parameters for the unknown source are its W-E (xs) and 
S-N (Ys) positions (relative to the fixed origin (0, 0) of the computational domain displayed 
in Figure 4) . 

We consider three different cases involving the use of different numbers of detectors in the 
array for source inversion. In the tracer field experiment from which the concentration data 
were extracted, the prevailing winds for the experiment were from the south at about 6.8 
m s- 1 at 50 metres above ground level at the southern edge of the computational domain 
shown in Figure 4. For each of the cases used to test the source inversion, the parameters 
that define the prior distribution p(8II) [cf. Eq. (23)] are chosen as follows: Qmax = 10.0 g 
s- \ and, D = [0.0, 1934.25] m x [0.0, 3610.6] m (or, equivalently, D = [0.0, 3.0] x [0.0, 5.6] 
in the normalized local coordinate system used by urbanSTREAM) providing the prior 
bounds on the source location in the (x, y)-plane. Recall that the (x, y) coordinate system 
used here is chosen as shown in Figure 4. Finally, for Model 2, the hyperparameter a was 
set to the default value (in urbanSOURCE) of a = Jr -

1 . 
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Figure 5: Case 1: source reconstruction using 18 detectors. The solid blue dot shows the 
location of the source. The filled solid green squares mark the location of the detectors in 
the CBD (of Oklahoma City) that were used for source reconstruction. 

7.1.1 Case 1: 18 detectors 

In case 1, the detectors used for the source reconstruction algorithm are shown in Figure 5. 
As can be seen from this figure, this case involves the use of 18 detectors in the array for 
source inversion. The reconstruction of the source parameters for this case was undertaken 
using all three models for the posterior distribution [cf. Eqs. (31), (32) and (33)]. In 
Model 1, the standard deviations !J J of the expected discrepancies between the measured 
concentrations dJ and the predicted concentrations C J (accounting for input , model and 
measurement errors) were obtained from a previous model validation study [3] undertaken 
to evaluate the predictive accuracy of urbanEU / urbanAEU. In contrast, for Model 2, only 
very crude (and certainly incorrect) estimates s J for the uncertainties !J J were used ; namely, 
the estimates of the uncertainties for the two largest values of the measured concentration 
were simply set to be equal to 10% of the measured concentration and the estimates of 
the uncertainties for all other values of the measured concentration were set to be equal to 
25% of the measured concentration. Recall that for Model 2, our poor knowledge of the 
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Figure 6: The marginal joint posterior PDF of source location p(xs, Ysi D , I) [upper left 
panel}, the marginal posterior PDF of W -E source location p(xsi D , I) [upper right panel}, 
the marginal posterior PDF of S-N source location P(Ysi D , I) {lower left panel}, and the 
marginal posterior PDF of the emission rate p(QI D , I) {lower right panel} obtained from 
Model 1 for source reconstruction using 18 concentration detectors. All PDFs have been 
normalized by their maximum value p0 . The true source location is indicated using the red 
dot in the upper left panel. 

uncertainties !J J (embodied in the estimates SJ) is explicitly accounted for by incorporating 
a distribution for the true (but unknown) uncertainties. 

The posterior distribution p(8ID , I) was directly evaluated using urbanSOURCE. There­
sulting marginal joint posterior PDF for the source location (xs, Ys), the marginal posterior 
PDF for t he W-E coordinate Xs of the source location, the marginal posterior PDF for t he 
S-N coordinate Ys of the source location, and the marginal posterior PDF of the emission 
rate Q are shown in Figure 6 for Model 1. Furthermore, the posterior mean , MAP estimate, 
posterior standard deviation, and lower and upper bounds for the 97.5% HPD interval of 
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the source parameters (xs, Ys, Q) are summarized in Table 1. 

Comparing the estimated values of the source parameters with the actual values of the 
source parameters, it is seen that the algorithm using Model 1 has enabled the recovery 
of the true parameters to within the stated errors. In particular, the actual location of 
the source was correctly estimated in this case to within a one standard deviation interval, 
with the S-N (Ys) position of the source determined with an accuracy (±2.7 m) that was 
about ten times greater than the accuracy (±27.5 m) for the determination of the W-E 
(xs) position of the source. Finally, Table 1 indicates that the information gain obtained 
from the concentration D (and from our knowledge of the uncertainty in this data) was 
found to be DKL = 13.6 natural units (nits), implying that the information contained in 
the concentration data allowed the "posterior volume" of the hypothesis space (volume of 
hypothesis space of reasonably large plausibility after receipt of the concentration data) to 
decrease by a factor of exp(DKL) ~ 8.1 x 105 relative to the "prior volume" of the hypothesis 
space (volume of hypothesis space of reasonably large plausibility before the receipt of the 
concentration data). 

The marginal posterior PDFs for the source location and emission rate using Model 2 with 
the 18 concentration detectors (shown in Figure 5) are presented in Figure 7. In addition, 
various summary statistics for the source parameters obtained from the marginal posterior 
PDFs in Figure 7 are summarized in Table 2. A comparison of Figure 6 with Figure 7 shows 
that the "characteristic widths" of the marginal posterior PDFs for the source location 
and emission rate obtained from Model 2 are broader than those obtained from Model 1 
(implying a greater uncertainty in the recovery of the source parameters). Nevertheless, 
the estimates for the source parameters obtained using Model 2 are still very good - the 
best estimates (based on the posterior mean) for the Xs and Ys locations of the source were 
1003.0±42.9 m and 2108.7±25.1 m, respectively, and for the emission rate Q was 1.83±0.18 
g s- 1 (with accuracy estimates at one standard deviation). Again, the location and emission 
rate of the source was correctly estimated using Model 2 to within a one standard deviation 
interval. However, the uncertainties in the determination of X 8 , Ys and Q using Model 2 

Table 1: The posterior mean, maximum a posteriori (MAP) estimate, posterior standard 
deviation , and lower and upper bounds of the 97.5% HPD interval of the parameters Xs 
(m), Ys (m), and Q (g s- 1) obtained for Modell using 18 concentration detectors for source 
inversion. The information gain DKL (measured in natural units or nits) obtained from the 
concentration data is summarized in the last row of the table. 

Parameter Mean MAP Standard Deviation 97.5% HPD Actual 
X 8 (m) 1003.8 1024.2 27.5 (950.8, 1048.7) 1001.7 

Ys (m) 2095.8 2094.7 2.7 (2094. 7, 2102.5) 2095.7 
Q (g s- 1) 2.00 2.00 0.03 (1.95, 2.05) 2.00 

DKL = 13.6 nits 
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Figure 7: The marginal joint posterior PDF of source location p(xs , YsiD , I) [upper left 
panel}, the marginal posterior PDF of W-E source location p(xsiD, I) [upper right panel}, 
the marginal posterior PDF of S-N source location P(YsiD, I) {lower left panel}, and the 
marginal posterior PDF of the emission rate p(QID, I) {lower right panel} obtained from 
Model 2 for source reconstruction using 18 concentration detectors. All PDFs have been 
normalized by their maximum value p0 . The true source location is indicated using the red 
dot in the upper left panel. 

were about 1.5 , 10, and 6 times larger, respectively, than the corresponding uncertainties 
obtained using Model 1. Finally, the information gain for Model 2 was DKL = 10.7 nits , 
which is about 3 nits less than that for Model 1. 

The posterior PDFs for the source location and the emission rate for Model 3 with 18 
concentration detectors are displayed in Figure 8. As is evident by comparison of this 
figure with Figures 6 and 7, the probability distributions p(xs, YsiD, I), p(xsiD, I) and 
P(YsiD, I) do not have a typical Gaussian-like form with the maxima located (approximately 
or better) at the actual source location; rather, the posterior distributions for the source 
location for Model 3 is multimodal, exhibiting a cluster of peaks (modes) that are centred 
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Table 2: The posterior mean, maximum a posteriori (MAP) estimate, posterior standard 
deviation , and lower and upper bounds of the 97.5% HPD interval of the parameters Xs 

(m) , Ys (m) , and Q (g s- 1) obtained for Model 2 using 18 concentration detectors for source 
inversion. The information gain DKL (measured in natural units or nits) obtained from the 
concentration data is summarized in the last row of the table. 

Parameter Mean MAP Standard Deviation 97.5% HPD Actual 
X 8 (m) 1003.0 1032.4 42.9 (934.4, 1089.5) 1001.7 
Ys (m) 2108.7 2149.4 25.1 (2094. 7, 2180. 7) 2095.7 

Q (g s- 1) 1.83 1.85 0.18 (1.15, 2.15) 2.00 

DKL = 10.7 nits 

(approximately or better) at the actual source location. Furthermore, it is seen that the 
posterior PDF for emission rate for Model 3 is bimodal in form - there is a maximum 
(mode) at 2.00 g s- 1 that coincides with the true emission rate and a secondary maximum 
(mode) at about 3.5 g s- 1. 

Table 3 summarizes the posterior mean, MAP estimate, posterior standard deviation, and 
lower and upper bounds for the 97.5% HPD interval of the source parameters obtained by 
numerical integration of the posterior PDF calculated from Model 3. From this information, 
we see that the parameters of the unknown source have been characterized to a reasonable 
accuracy, although it is seen that the precision in the determination of the source parameters 
using Model3 is worse than that of Models 1 and 2. This should not be too surprising owing 
to the fact that Model 3 for the posterior distribution of 8 does not contain information on 
either the actual (as in Model 1) or estimated (as in Model 2) uncertainties (input, model 
and measurement) associated with each concentration datum dJ (J = 1, 2, ... , N). 

For Model 3, the location of the source was estimated to be Xs = 992.8 ± 51.7 m, Ys 
1985.5 ± 159.0 m and Q = 2.69 ± 0. 77 g s- 1 (with precision estimates at one standard devi­
ation). Although the precision in the determination of Xs is comparable to that in Model 2, 
the precision of the estimates of Ys and Q are about 6 and 4 times worse, respectively, than 
those obtained in Model 2. Obviously, even crude estimates for the uncertainties associated 
with the concentration (measured and predicted) is advantageous for the source reconstruc­
tion. However, in spite of the poorer estimates in the source parameters when compared to 
Model 2, the larger uncertainty bounds obtained for Model 3 nevertheless ensure that all 
the source parameters are correctly estimated to within one standard deviation interval. 

Finally, for Model 3, the information gain provided by the concentration data D was found 
to be only DKL = 8.6 nits, which is about 5 and 2 nits less information gain than obtained 
using Models 1 and 2 for source reconstruction , respectively. The difference in information 
gain here resides in the concentration data uncertainties used in Models 1 and 2. 
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Figure 8: The marginal joint posterior PDF of source location p(xs, Ysi D , I) [upper left 
panel}, the marginal posterior PDF of W -E source location p(xsi D , I) [upper right panel}, 
the marginal posterior PDF of S-N source location P(Ysi D , I) {lower left panel}, and the 
marginal posterior PDF of the emission rate p(QI D , I) {lower right panel} obtained from 
Model 3 for source reconstruction using 18 concentration detectors. All PDFs have been 
normalized by their maximum value p0 . The true source location is indicated using the red 
dot in the upper left panel. 

Table 3: The posterior mean, maximum a posteriori (MAP) estimate, posterior standard 
deviation , and lower and upper bounds of the 97.5% HPD interval of the parameters Xs 

(m) , Ys (m) , and Q (g s- 1) obtained for Model 3 using 18 concentration detectors for source 
inversion. The information gain DKL (measured in natural units or nits) obtained from the 
concentration data is summarized in the last row of the table. 

Parameter Mean MAP Standard Deviation 97.5% HPD Actual 
X 8 (m) 992.8 926.3 51.7 (893.6, 1097. 7) 1001.7 
Ys (m) 1985.5 2094.7 159.0 (1813.4, 2188.5) 2095.7 

Q (g s- 1) 2.69 2.00 0.77 (1.40, 4.3) 2.00 

DKL = 8.6 nits 
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Figure 9: Case 2: source reconstruction using 9 detectors. The solid blue dot shows the 
location of the source. The filled solid green squares mark the location of the detectors in 
the CBD (of Oklahoma City) that were used for source reconstruction. 

7.1.2 Case 2: 9 detectors 

To further test the source reconstruction algorithm, we use only 9 concentration data (a 
subset that consisted of only 50% of the data used in Case 1). The locations of the bag sam­
plers which provided the 9 concentration data are displayed in Figure 9. As in Case 1, the 
source reconstruction was undertaken using all three models for the posterior distribution 
p(GID , I) [cf. Eqs. (31), (32) and (33)]. 

Figures 10, 11 and 12 shows the joint marginal posterior distribution for (xs, Ys), as well 
as the marginal posterior distributions for X 8 , Ys , and Q obtained for Case 2 using Models 
1, 2 and 3, respectively, for p(GI D , I). In addition, summary statistics (posterior mean , 
MAP estimate, posterior standard deviation, lower and upper bounds of the 97.5% HPD 
intervals) for the source parameters as well as the information gain DKL of Models 1, 2, 
and 3 are tabulated in Tables 4, 5 and 6, respectively. 

Even with only 9 concentration detectors , it is seen (cf. Figure 10 and Table 4) that the 
source location and emission rate have been determined with very good accuracy using 
Model 1. The mean and standard deviation estimates of X 8 , Ys and Q using Model 1 (for 
which accurate estimates of the uncertainties !J J are assumed to be available) are as follows: 
X8 = 1005.1 ± 26.9 m, Ys = 2097.8 ± 12.2 m and Q = 1.99 ± 0.04 g s- 1 . Note that the 
estimates are very comparable to those obtained using Modell in Case 1 with 18 detectors. 
The largest difference lies in the uncertainty in the determination of Ys· In particular, 
using the 9 detectors shown in Figure 9 rather than 18 detectors displayed in Figure 5, the 
precision in the determination of Ys has decreased by a factor of about 4.5. 

Using only crude estimates for the uncertainties in the concentration data results in a 
deterioration in estimates for the source parameters , as can be seen by comparison of the 
results of the source reconstruction for Model 2 ( cf. Figure 11 and Table 5) with those for 
Model 1 (cf. Figure 10 and Table 4). Note that although the source parameter estimates 
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Figure 10: The marginal joint posterior PDF of source location p(xs, Ysi D , I) [upper left 
panel}, the marginal posterior PDF of W-E source location p(xsi D , I) [upper right panel}, 
the marginal posterior PDF of S-N source location P(Ysi D , I) {lower left panel}, and the 
marginal posterior PDF of the emission rate p(QI D , I) {lower right panel} obtained from 
Model 1 for source reconstruction using 9 concentration detectors. All PDFs have been 
normalized by their maximum value p0 . The true source location is indicated using the red 
dot in the upper left panel. 

Table 4: The posterior mean, maximum a posteriori (MAP) estimate, posterior standard 
deviation , and lower and upper bounds of the 97.5% HPD interval of the parameters Xs 

(m) , Ys (m) , and Q (g s- 1) obtained for Model 1 using 9 concentration detectors for source 
inversion. The information gain DKL (measured in natural units or nits) obtained from the 
concentration data is summarized in the last row of the table. 

Parameter Mean MAP Standard Deviation 97.5% HPD Actual 

X 8 (m) 1005.1 1016.0 26.9 (950.8, 1048.7) 1001.7 
Ys (m) 2097.8 2094.7 12.2 (2094.7, 2157.2) 2095.7 

Q (g s- 1) 1.99 2.00 0.04 (1.85, 2.05) 2.00 

DKL = 13.2 nits 
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Figure 11: The marginal joint posterior PDF of source location p(xs, Ysi D , I) [upper left 
panel}, the marginal posterior PDF of W-E source location p(xsi D , I) [upper right panel}, 
the marginal posterior PDF of S-N source location P(Ysi D , I) {lower left panel}, and the 
marginal posterior PDF of the emission rate p(QI D , I) {lower right panel} obtained from 
Model 2 for source reconstruction using 9 concentration detectors. All PDFs have been 
normalized by their maximum value p0 . The true source location is indicated using the red 
dot in the upper left panel. 

Table 5: The posterior mean, maximum a posteriori (MAP) estimate, posterior standard 
deviation , and lower and upper bounds of the 97.5% HPD interval of the parameters Xs 

(m) , Ys (m) , and Q (g s- 1) obtained for Model 2 using 9 concentration detectors for source 
inversion. The information gain DKL (measured in natural units or nits) obtained from the 
concentration data is summarized in the last row of the table. 

Parameter Mean MAP Standard Deviation 97.5% HPD Actual 

X 8 (m) 1058.9 1065.0 47.5 (942.6, 1122.1) 1001.7 
Ys (m) 2105 .9 2102 .5 103.5 (2071.3, 2172.9) 2095.7 

Q (g s- 1) 1.68 1.3 0.38 (1.25, 2.10) 2.00 

DKL = 12.1 nits 
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Figure 12: The marginal joint posterior PDF of source location p(xs, Ysi D , I) [upper left 
panel}, the marginal posterior PDF of W-E source location p(xsi D , I) [upper right panel}, 
the marginal posterior PDF of S-N source location P(Ysi D , I) {lower left panel}, and the 
marginal posterior PDF of the emission rate p(QI D , I) {lower right panel} obtained from 
Model 3 for source reconstruction using 9 concentration detectors. All PDFs have been 
normalized by their maximum value p0 . The true source location is indicated using the red 
dot in the upper left panel. 

Table 6: The posterior mean, maximum a posteriori (MAP) estimate, posterior standard 
deviation , and lower and upper bounds of the 97.5% HPD interval of the parameters Xs 

(m) , Ys (m) , and Q (g s- 1) obtained for Model 3 using 9 concentration detectors for source 
inversion. The information gain DKL (measured in natural units or nits) obtained from the 
concentration data is summarized in the last row of the table. 

Parameter Mean MAP Standard Deviation 97.5% HPD Actual 

X 8 (m) 1055.7 1065.0 54.6 (934.4, 1138.5) 1001.7 
Ys (m) 1617.8 2102.5 632.4 (246.1, 2204.1) 2095.7 

Q(gs- 1) 3.68 1.65 2.36 (1.15, 9.10) 2.00 

DKL = 5.7 nits 

34 DRDC Suffield TR 2010-070 



..... N 

Figure 13: Case 3: source reconstruction using 4 detectors. The solid blue dot shows the 
location of the source. The filled solid green squares mark the location of the detectors in 
the CBD (of Oklahoma City) that were used for source reconstruction. 

for Model 2 are still quite good, the uncertainties in the determination of X 8 , Ys and Q are 
larger than those for Model 1 by roughly factors of 1.8, 8.5 and 10, respectively. 

As in Case 1, the estimated values of the source parameters are generally quite poorly 
determined using Model 3 with only 9 concentration detectors. In this example, only the 
W-E location Xs of the source is relatively well determined: Xs = 1055.7±54.6 m. However, 
the information is not sufficient to estimate the S-N location Ys and emission rate Q with 
good precision. Indeed, the mean and standard deviation estimates of Ys and Q provided by 
Model 3 in this example are Ys = 1617.8 ± 632.4 m and Q = 3.68 ± 2.36 g s- 1 . The absolute 
percentage discrepancies between the true and estimated values of Ys and Q are 23% and 
84%, respectively, but the quoted uncertainty bounds here are nevertheless large enough to 
ensure that the estimated values for these source parameters have been adequately recovered 
to within the stated errors. Once more, it can be seen that information concerning expected 
uncertainties in the measured and predicted concentration (even when crudely specified as 
in Model 2) are useful for improving the accuracy and precision of the source reconstruction. 

7.1.3 Case 3: 4 detectors 

In case 3, the detectors used for the source reconstruction algorithm are shown in Figure 13. 
As can be seen from this figure, this difficult case involves the use of only 4 detectors 
for the source inversion (a subset that represents less than 25% of the detectors used in 
case 1). The problem is made more difficult by the fact that only one of the detectors 
lies at or near the plume centreline. The source reconstruction was undertaken in this 
case using all three models for the posterior distribution p(8ID, I). The results for the 
source reconstruction in the form of marginal posterior PDFs for the source parameters are 
summarized in Figures 14, 15 and 16 for Models 1, 2 and 3, respectively. The summary 
statistics for X 8 , Ys and Q obtained from the marginal posterior PDFs which include the 
posterior mean, MAP estimate (or posterior mode), posterior standard deviation, and the 
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Figure 14: The marginal joint posterior PDF of source location p(xs, Ysi D , I) [upper left 
panel}, the marginal posterior PDF of W-E source location p(xsi D , I) [upper right panel}, 
the marginal posterior PDF of S-N source location P(Ysi D , I) {lower left panel}, and the 
marginal posterior PDF of the emission rate p(QI D , I) {lower right panel} obtained from 
Model 1 for source reconstruction using 4 concentration detectors. All PDFs have been 
normalized by their maximum value p0 . The true source location is indicated using the red 
dot in the upper left panel. 

Table 7: The posterior mean, maximum a posteriori (MAP) estimate, posterior standard 
deviation, and lower and upper bounds of the 97.5% HPD interval of the parameters Xs 

(m), Ys (m), and Q (g s- 1) obtained for Model 1 using 4 concentration detectors for source 
inversion. The information gain DKL (measured in natural units or nits) obtained from the 
concentration data is summarized in the last row of the table. 

Parameter Mean MAP Standard Deviation 97.5% HPD Actual 
X 8 (m) 1058.4 1089.5 59.4 (910.0, 1138.5) 1001.7 
Ys (m) 1988.4 2102 .5 395.0 (1618.0, 2274.5) 2095.7 

Q (g s- 1) 1.54 1.3 0.41 (0.35 , 2.45) 2.00 

DKL = 10.1 nits 
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Figure 15: The marginal joint posterior PDF of source location p(xs, Ysi D , I) [upper left 
panel}, the marginal posterior PDF of W-E source location p(xsi D , I) [upper right panel}, 
the marginal posterior PDF of S-N source location P(Ysi D , I) {lower left panel}, and the 
marginal posterior PDF of the emission rate p(QI D , I) {lower right panel} obtained from 
Model 2 for source reconstruction using 4 concentration detectors. All PDFs have been 
normalized by their maximum value p0 . The true source location is indicated using the red 
dot in the upper left panel. 

Table 8: The posterior mean, maximum a posteriori (MAP) estimate, posterior standard 
deviation , and lower and upper bounds of the 97.5% HPD interval of the parameters Xs 

(m) , Ys (m) , and Q (g s- 1) obtained for Model 2 using 4 concentration detectors for source 
inversion. The information gain DKL (measured in natural units or nits) obtained from the 
concentration data is summarized in the last row of the table. 

Parameter Mean MAP Standard Deviation 97.5% HPD Actual 
X 8 (m) 1100.0 1105.8 28.7 (1032.3, 1154.8) 1001.7 
Ys (m) 1858.8 2172.9 567.0 (556.9, 2211.9) 2095.7 

Q (g s- 1) 2.54 1.25 2.61 (0.75, 10.0) 2.00 

DKL = 9.4 nits 
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Figure 16: The marginal joint posterior PDF of source location p(xs, Ysi D , I) [upper left 
panel}, the marginal posterior PDF of W-E source location p(xsi D , I) [upper right panel}, 
the marginal posterior PDF of S-N source location P(Ysi D , I) {lower left panel}, and the 
marginal posterior PDF of the emission rate p(QI D , I) {lower right panel} obtained from 
Model 3 for source reconstruction using 4 concentration detectors. All PDFs have been 
normalized by their maximum value p0 . The true source location is indicated using the red 
dot in the upper left panel. 

Table 9: The posterior mean, maximum a posteriori (MAP) estimate, posterior standard 
deviation , and lower and upper bounds of the 97.5% HPD interval of the parameters Xs 

(m) , Ys (m) , and Q (g s- 1) obtained for Model 3 using 4 concentration detectors for source 
inversion . The information gain DKL (measured in natural units or nits) obtained from the 
concentration data is summarized in the last row of the table. 

Parameter Mean MAP Standard Deviation 97.5% HPD Actual 
X 8 (m) 1081.5 1105.8 52.3 (926.3, 1171.1) 1001.7 
Ys (m) 1387.5 2172.9 690.8 (82.5 , 2211.9) 2095.7 

Q(g s- 1) 4.94 1.20 3.21 (0.85 , 10.0) 2.00 

DKL = 5.6 nits 
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lower and upper 97.5% HPD intervals are tabulated in Tables 7, 8 and 9, respectively. 

Note that the marginal posterior PDFs for the source parameters for Model 1 using only 4 
concentration data (exhibited in Figure 14) has a much more jagged appearance than those 
for Model 1 shown in Figures 6 and 10 (which correspond to using 18 and 9 concentration 
data, respectively, for the source reconstruction). In the two latter cases, the posterior 
PDFs are smooth and unimodal. Even with only 4 concentration data used for the source 
reconstruction, the marginal posterior PDFs for the source location (xs, Ys) in Figure 14 do 
peak at roughly the true location of the source. From Table 7, the source location Xs and 
Ys are estimated to be X8 = 1058.4 ± 59.4 m and Ys = 1988.4 ± 395.0 m, respectively, at 
one standard deviation, the true location being (xs , Ys) = (1001. 7, 2095. 7) m. The marginal 
PDFs of the source location have well-defined peaks which give MAP estimates for the Xs 
and Ys source locations as 1089.5 m and 2102.5 m, respectively. In this case, the MAP 
estimate for Xs is comparable to the posterior mean estimate for X8 , but the MAP estimate 
for Ys is better than that provided by the posterior mean. 

Interestingly, the marginal posterior PDF for the emission rate in this case (see Figure 14) 
is bimodal: there is a primary peak (mode) at about 1.3 g s- 1 and a secondary peak (mode) 
at about 2.0 g s- 1 (corresponding to the true value of the emission rate). The emission rate 
is estimated to be 1.54 ± 0.42 g s- 1 at one standard deviation, which is correctly estimates 
the actual emission rate to within two standard deviations. The MAP estimate for the 
emission rate in this example is 1.3 g s- 1 and is perhaps less useful than the posterior 
mean, as the MAP estimate here is somewhat unrepresentative of an important portion of 
the posterior probability (viz., of the secondary mode that lies near 2.0 g s- 1 ). 

A perusal of Figure 11 shows that the marginal posterior PDFs for the source parameters 
for Model 2 using 4 concentration data for the source reconstruction are smooth with 
well-defined peaks. In this example, the source parameters X 8 , Ys and Q are estimated 
to be 1100.0 ± 28.7 m, 1858.8 ± 557.0 m and 2.54 ± 2.6 g s- 1 , respectively (see Table 8). 
These estimates for the source parameters are quite reasonable and correspond to absolute 
percentage deviations from the actual values of about 9.8%, 11.3% and 30%, respectively. 
However, note that the uncertainties in the determination of Ys and Q are large. Although 
the estimate for the Xs location of the source differed from the actual Xs location by less 
than 10%, the estimation of the posterior standard deviation appears to be slightly too 
small with the result that a three standard deviation interval about the posterior mean 
for Xs does not contain the true value for X8 • It appears that for this example, the crude 
estimates s J we used for the uncertainties !J J are too small generally, and the distribution 
(inverse gamma) for the true (but unknown) uncertainties did not fully compensate for this 
under-estimation. This led to a small under-estimation of the posterior uncertainty for X 8 , 

although the posterior uncertainties for Ys and Q appear to be adequate. 

For Model 3 applied to the case of 4 concentration data, the marginal posterior PDFs for 
the source parameters are quite similar to those obtained for Model 2 ( cf. Figures 15 and 
16). However, we note that the marginal posterior PDFs for Model3 are "wider" than those 
for Model 2, implying a greater uncertainty in the determination of the source parameters. 
Indeed, the source location (xs, Ys) and emission rate Q were estimated from Model 3 to be 
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X8 = 1081.5±52.3 m, Ys = 1387.5±690.8 m and Q = 4.94±3.21 g s- 1 , respectively (cf. Ta­
ble 9). The precision estimates are at one standard deviation. Note that the uncertainty in 
the determination of Ys and Q are very large in this example, implying the information in 
the problem only serves to weakly constrain these two parameters. Furthermore, the large 
uncertainty in the determination of the location of the source in the alongwind direction 
(which is aligned approximately with the Ys coordinate axis since the prevailing winds were 
southerly) impacts the determination of the emission rate. In consequence, the emission 
rate is poorly determined in this example. With very few concentration data available for 
the source reconstruction, information about the expected uncertainty in this data is im­
portant and can result in significantly improved estimates for the source parameters (e.g., 
cf. Figures 14 and 15 with Figure 16). In the comparison of the three models for the pos­
terior distribution, the parameter estimates obtained from Model 1 (which assumes that 
accurate or very good estimates for the uncertainty (} J are available) should be considered 
as a lower bound on the estimated uncertainties. The actual parameter estimates obtained 
from any given concentration data set will essentially never be better than these estimates, 
and will almost certainly be worse when Models 2 and 3 are used (in the case where there 
are only crude or no estimates available for (} J). 

The information gain provided by the concentration data D was found to be DKL = 10.1 
nits for Modell (cf. Table 7) , but only 5.6 nits for Model 3 (cf. Table 9). Viewed in another 
way, the information available for the source reconstruction for Model 1 (embodied in the 
good estimates for the uncertainty (} J) provided 4.5 nits of additional information over that 
available in Model 3, and this information allowed the "posterior volume" in the hypothesis 
space for Model 1 to be reduced by a factor of exp(4.5) ~ 90 relative to the "posterior 
volume" in the hypothesis space for Model 3. Note that even a crude estimate for (} J used 
in Model 2 leads to an information gain of almost 4 nits relative to that in Model 3. 

7.2 European Tracer Experiment 

The European Tracer Experiment (ETEX) was a major field study designed to test the 
predictive accuracy of models for simulating the long-range transport and dispersion of 
a pollutant for real-time application [35]. The dispersion experiment was conducted on 
23 October 1994 and involved the release of per-fluoromethyl-cyclohexane (PMCH) as the 
tracer. The release site for the experiment was Monterfil in Brittany, France which is located 
at the following geodetic coordinates: 48.058° N and -2.0083° E. The tracer was released 
at a constant rate of Q = 28.73 kg h - 1 over a duration of 11.83 h with the start of the 
release occurring at 16:00 UTC 23 October 1994 (Tb) and the end of the release occurring at 
03:50 UTC 24 October 1994 (Te)· In the release, a strong west to southwesterly flow (driven 
on a synoptic scale by a cold front over central Europe) was advecting the tracer from the 
release site towards the network of samplers. PMCH concentrations were measured at 168 
ground-based sampling sites located in 17 European countries. Air samplers at each of these 
sites monitored the concentration for 90 h after the start of the release with each measured 
concentration sample corresponding to a 3-h averaging time. Typically, the sampling was 
initiated just before the expected arrival time of the tracer cloud at each station. A total 
of 5,040 concentration samples were obtained. 
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Figure 17: Locations of the 10 sampling stations (shown by the filled blue squares) from 
ETEX used for the source reconstruction. The release location of the PMCH tracer source 
was at geodetic coordinates of 48.05SO Nand -2.0083° E, which was approximately 35 km 
west of Rennes, at Monterfil, in Brittany, France (demarcated by the filled red circle). 

For the purposes of source reconstruction, we used 35 of these concentration samples ex­
tracted from 10 sampling sites located in France, Germany and the Czech Republic with 
the following station codes: F02, F19, F21, D10, D13, D19, D34, D44, D45, and CR04. 
The locations of these 10 sampling sites relative to the location of the source are shown 
in Figure 17. The meteorological fields required to determine C* were obtained from the 
Global Environmental Multiscale (GEM) model [36] executed in a regional configuration 
with a core resolution of 0.14° over Europe. The GEM model produced a series of 3 h 
and 6 h forecasts over the period of time corresponding to the ETEX release, with the 
initialization of the model coming from the Canadian Meteorological Centre (CMC) global 
data assimilation system. The C* fields used in the Bayesian inference methodology for 
source reconstruction were computed on a polar stereographic 229 x 229 grid over Europe 
(including the United Kingdom) with a 15-km mesh length. These C* fields were obtained 
using the backward Lagrangian stochastic model given by Eq. (7), which was driven with 
the input meteorology provided by the GEM model. 

For this example, the unknown source is treated as a transient source that is described by 
5 parameters; namely, e = (xs , Ys, Tb, Te, Q) where Xs and Ys are the geodetic coordinates 
(latitude and longitude, respectively) of the source location, n and Te are the activation 
(source-on) and deactivation (source-off) times of the source, and Q is the source emission 
rate. The marginal posterior PDFs of the source parameters are summarized in Figures 18, 
19 and 20 for Models 1, 2 and 3, respectively. The summary statistics for X 8 , Ys, Tb, Te, 
and Q obtained from the marginal posterior PDFs which include the posterior mean, MAP 
estimate (or posterior mode), and posterior standard deviation are tabulated in Tables 10, 
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Figure 18: The marginal joint posterior PDF of source location p(xs, YsiD, I) [upper left 
panel}, the marginal posterior PDF of the source-on (activation) time p(TbiD, I) [upper 
right panel}, the marginal posterior PDF of the source-off (deactivation) time p(TeiD , I) 
{lower left panel}, and the marginal posterior PDF of the emission rate p(QID,I) {lower 
right panel} obtained from Model 1 for source reconstruction using 35 concentration data 
from ETEX. All PDFs have been normalized by their maximum value p0 . The true source 
location is indicated using the red dot in the upper left panel. 

Table 10: The posterior mean, maximum a posteriori (MAP) estimate, and posterior stan­
dard deviation of the parameters X 8 (

0 N) , Ys (0 E) , Tb (h) , Te (h) , and Q (kg h- 1) obtained 
for Model 1 using 35 concentration data from ETEX. The activation (n) and deactivation 
(Te) times are referenced relative to an arbitrary time origin. 

Parameter Mean MAP Standard Deviation Actual 
X 8 (

0 N) 47.95 48.29 0.91 48.058 
Ys (0 E) -2.83 -2.63 0.94 -2.0083 
Tb (h) 0.47 0.25 0.26 1.0 
Te (h) 13.06 20.0 5.39 12.83 

Q (kg h- 1) 25.95 26.0 0.855 28.73 
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Figure 19: The marginal joint posterior PDF of source location p(xs, YsiD, I) [upper left 
panel}, the marginal posterior PDF of the source-on (activation) time p(TbiD, I) [upper 
right panel}, the marginal posterior PDF of the source-off (deactivation) time p(TeiD , I) 
{lower left panel}, and the marginal posterior PDF of the emission rate p(QID,I) {lower 
right panel} obtained from Model 2 for source reconstruction using 35 concentration data 
from ETEX. All PDFs have been normalized by their maximum value p0 . The true source 
location is indicated using the red dot in the upper left panel. 

Table 11: The posterior mean, maximum a posteriori (MAP) estimate, and posterior stan­
dard deviation of the parameters X 8 (

0 N) , Ys (0 E) , Tb (h) , Te (h) , and Q (kg h- 1) obtained 
for Model 2 using 35 concentration data from ETEX. The activation (n) and deactivation 
(Te) times are referenced relative to an arbitrary time origin. 

Parameter Mean MAP Standard Deviation Actual 
X 8 (

0 N) 48.20 48.17 0.21 48.058 
Ys (0 E) -2.48 -2.59 0.72 -2.0083 
Tb (h) 1.30 0.25 1.17 1.0 
Te (h) 15.42 20.0 2.83 12.83 

Q (kg h- 1) 21.81 21.0 3.05 28.73 
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Figure 20: The marginal joint posterior PDF of source location p(xs, YsiD, I) [upper left 
panel}, the marginal posterior PDF of the source-on (activation) time p(TbiD, I) [upper 
right panel}, the marginal posterior PDF of the source-off (deactivation) time p(TeiD , I) 
{lower left panel}, and the marginal posterior PDF of the emission rate p(QID,I) {lower 
right panel} obtained from Model 3 for source reconstruction using 35 concentration data 
from ETEX. All PDFs have been normalized by their maximum value p0 . The true source 
location is indicated using the red dot in the upper left panel. 

Table 12: The posterior mean, maximum a posteriori (MAP) estimate, and posterior stan­
dard deviation of the parameters X 8 (

0 N) , Ys (0 E) , Tb (h) , Te (h) , and Q (kg h- 1) obtained 
for Model 3 using 35 concentration data from ETEX. The activation (n) and deactivation 
(Te) times are referenced relative to an arbitrary time origin. 

Parameter Mean MAP Standard Deviation Actual 
X 8 (

0 N) 48.15 48.13 0.058 48.058 
Ys (0 E) -2.36 -1.99 0.38 -2.0083 
Tb (h) 0.86 0.25 0.54 1.0 
Te (h) 15.94 20.0 2.65 12.83 

Q (kg h- 1) 24.96 22.5 6.08 28.73 
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11 and 12, respectively. 

For the case ofModel1 (see Figure 18 and Table 10), the location of the source was estimated 
to be at latitudinal and longitudinal coordinates of 47.95° ± 0.91° N and -2.83° ± 0.94° 
E, respectively; and, the emission rate was estimated to be 25.95 ± 0.855 kg h- 1 (with 
precision estimates at one standard deviation). The actual location of the source was 
correctly estimated to within a one standard deviation interval; and, the emission rate was 
correctly determined to within a three standard deviation interval. The (marginal) posterior 
distributions of the source activation n and deactivation Te times yielded the following 
estimates: 0.468 ± 0.257 h and 13.06 ± 5.39 h, respectively. These times are referenced with 
respect to an arbitrary time origin, which in this case was chosen to be one hour before 
the start of the release (the latter of which occurred at 16:00 UTC 23 October 1994). Note 
that the concentration data used for the source determination here only weakly constrains 
the source deactivation time which was estimated with a large uncertainty. In particular, a 
perusal of the posterior PDF of Te [cf. Figure 18(c)] shows that it has a multimodal form ­
this feature seems to suggest that the model and measurement uncertainty (encoded in (} J 

for Model 1) has been under-estimated in this case, causing the reconstruction to interpret 
"noise" as signal and resulting in the possible multimodal form for p(Tei D , I). 

In view of the fact that the actual uncertainties appear to have been under-estimated, the 
source reconstruction using Model 2 was undertaken with the scale parameter a set to 
a = 2. Recall that specification a > 1 codes for an expected negative bias in the user's 
estimates for the actual uncertainties (viz., the user has under-estimated the magnitude of 
the true model and measurement uncertainties on average). An examination of the posterior 
distributions of the source parameters obtained using Model 2 (cf. Figure 19) shows that 
these distributions tend to be broader than those obtained using Model 1 (cf. Figure 18). 
For Model 2, the best estimates (and uncertainties at one standard deviation) of the source 
parameters based on the posterior mean are as follows: Xs = 48.20° ± 0.21° N, Ys = 

~ ~ ~ 1 
-2.48° ± 0.72° E, Tb = 1.30 ± 1.17 h, Te = 15.42 ± 2.83 h, and Q = 21.81 ± 3.05 kg h- . 
Note that the marginal distribution for Te is much smoother for Model 2 - again, it is 
seen that the information contained in the concentration data do not allow the deactivation 
time of the source to be determined with any degree of precision. Nevertheless, note that 
p(Tei D , I) increases sharply at about Te = 12.5 h suggesting that the probability that the 
source was turned off before about 12.5 h (relative to the arbitrary time origin) is small. 
However, there is a very large probability that the source was turned off after about 12.5 h, 
although the concentration data do not allow a good estimate to be obtained forTe. 

Finally, the source reconstruction using Model 3 provides the most conservative recovery 
of the source parameters (cf. Figure 20 and Table 12). The analysis based on Model 3 
yielded the following source parameter estimates expressed as posterior mean values and 
their uncertainties at one standard deviation: Xs = 48.15° ± 0.06° N, Ys = -2.36° ± 0.38° 
E, Tb = 0.86 ± 0.54 h, Te = 15.94 ± 2.65 h, and Q = 24.96 ± 6.08 kg h- 1 As can be seen, 
the recovery of the parameters for the source is very good. All the source parameters have 
been correctly determined to within a one standard deviation interval (approximately or 
better). 
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8 Conclusions 

In this report, a technical description of urbanSOURCE is provided. The module ur­
banSOURCE is an operational implementation of a sensor-driven modeling paradigm for 
source reconstruction: namely, the determination of the parameters that define an unknown 
source, given a finite number of noisy concentration measurements obtained from a network 
of CBRN sensors. To this purpose, we have formulated a Bayesian inferential scheme for the 
joint determination of the parameters of an unknown source. In particular, three different 
model equations have been formulated for the likelihood function leading to three different 
models for the posterior PDF of the source parameters. These models reflect three dif­
ferent states of knowledge regarding the uncertainties in the concentration (measured and 
predicted) used for the source reconstruction (which must necessarily include the contri­
butions to the expected discrepancy between the measured concentration dJ and predicted 
concentration C J arising from the effects of the input, model, stochastic and measurement 
errors). 

We have illustrated the application of urbanSOURCE to source reconstruction in a complex 
environment; namely, for contaminant transport and dispersion in an urban environment 
(JU2003) and in a complex terrain environment (ETEX) involving highly disturbed mean 
wind and turbulence fields exhibiting a significant degree of spatial inhomogeneity and/ or 
temporal non-stationarity (viz., unsteadiness in the mean wind and turbulence). To this 
purpose, the posterior PDFs of the source parameters for a localized (idealized here as a 
point) source were inferred using actual measured concentration data from the JU2003 field 
experiment in Oklahoma City and from the European Tracer Experiment over continental 
Europe. 

The methodology implemented in urbanSOURCE has been successfully applied to estimate 
the parameters for a continuous source and their associated uncertainties for three different 
cases corresponding to a particular field trial in JU2003. These three cases involved the use 
of 18, 9 and 4 concentration data in the source reconstruction. In addition, the methodology 
was applied to reconstruction of the parameters of a transient source using 35 concentration 
data obtained from 10 sampling sites in ETEX. For each of these examples/ cases , the 
reconstruction was undertaken using the three different models for the posterior distribution 
of the source parameters. It is shown that the parameters (e.g., location , emission rate, 
source-on and source-off times) that characterize the source (either continuous or transient) 
have been recovered correctly. Finally, the methodology provides a rigorous determination 
of the uncertainty (e.g., standard deviation, credible intervals) in the inference of the source 
parameters (allowing both the accuracy and precision in the source parameter estimation 
to be assessed). 

The next step is to integrate urbanSOURCE as an operational capability for source re­
construction into the integrative multiscale urban modeling system implemented in the 
computational infrastructure at a government operations facility (Environmental Emer­
gency Response Section at Canadian Meteorological Centre). This will involve interfacing 
urbanSOURCE with the modules urbanAEU and urbanBLS that are used to compute the 
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adjunct concentration field C*, required for the rapid calculation of the likelihood function 
in urbanSOURCE. Finally, to complete the sensor-driven modeling paradigm, the capabil­
ity needs to be interfaced with information (warning and reporting) systems for automated 
data acquisition from CBRN sensors in the field of operations. This linkage will allow the 
mutual optimization of CBRN sensor data and models , enabling the rapid estimation of 
unknown source terms from sensor data followed by an accurate prediction of the transport , 
dispersion and fate of the toxic agent. 
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