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Anovel method for correcting the trajectory of spin- and fin-stabilized projectiles using pairs of impulse thrusters

located away from the center of mass is described in this paper. The impulses are generated from the detonation of a

very small quantity of explosive. By locating the impulse thrusters away from the center of mass, it is possible to

significantly increase the trajectory correction. This is explained by the fact that, in such a case, the deflection results

from the aerodynamic jump due to the projectile oscillation in addition to that of the impulses. An optimal

combination of thrusters can be achieved by considering pairs of impulses that have the double objective of

maximizing the deflection andminimizing the drag due to the oscillations. In this paper, the linear theory of ballistics

is used to develop ananalyticalmodel representing themotion of a projectile subjected to impulse thrusters. Using the

linearized equations of angular motion and considering ideal cases, the optimization scheme for using double

impulses is defined by a set of three rules. The latter are then assessed in the case of actual projectiles, using six-

degree-of-freedom computations. The course correction process for a 30-mm fin-stabilized air-defense projectile and

a standard 105-mm spin-stabilized artillery shell are presented.

Nomenclature

A = projectile reference area; �d2=4, m2

a = angular deflection of trajectory, rad
CD = drag coefficient
CD2 = square-yaw drag coefficient
CL� = lift force coefficient
CMp� = Magnus moment coefficient
CMq = pitching damping moment coefficient
CM� = pitching moment coefficient
CNp� = Magnus force coefficient
d = projectile reference caliber, m
Ix = projectile axial moment of inertia, kg �m2

Iy = projectile transverse moment of inertia, kg �m2

J = impulse vector due to thruster, N � s
JD2

= impulse vector due to quadratic-yaw drag force,
N � s

JL = impulse vector due to lift force, N � s
JY = impulse vector due to Magnus force, N � s
KS0, KF0 = initial amplitude of slow and fast epicyclic yaw

arm, rad
lCJ = distance from center of mass to location of applied

impulse, cal (positive toward nose, negative toward
boattail)

m = projectile mass, kg
p = projectile axial spin, s�1

s = distance traveled along flight path, cal
V = projectile velocity, m � s�1
� = pitch angle, rad

�� = total incidence angle, rad
� = yaw angle, rad
�S, �F = slow and fast arm damping rate, cal�1

� = complex incidence
�0 = initial yaw, rad
�00 = initial yaw rate, rad/cal
� = air density, kg=m3

� = orientation of vectors defined in pitch-yaw plane,
rad

�0S, �
0
F = slow and fast arm turning rate, rad/cal

I. Introduction

T HIS work had for an objective the development of a better
understanding of the use of impulsers onfin- and spin-stabilized

projectiles and their impact on the aerodynamics of these ammu-
nitions. The Guided Supersonic Projectile (GSP) project is focused
on the guidance and control of a medium-caliber fin-stabilized shell
designed for short-range air-defense engagements (see [1–3]). The
Artillery Precision Guided Munition project investigates the
guidance of conventional spin-stabilized 105-mm artillery shells.
The impulse thrusters consist of small detonators that generate a high
force for a very short period of time. The impulse thrusters differ
significantly from the more conventional jet thrusters, in that the
impulse is created by the detonation of explosivematerial as opposed
to accelerating a gas through a nozzle. The impulsers or impulse
thrusters are being developed and manufactured in house. The
thrusters will be mounted inside the projectile at a specific axial
location in a ringlike fashion. They will be used to divert the
projectile laterally.

Considering the use of Dirac lateral impulses as a promising
technique to control both fin- and spin-stabilized shells, Wey and
Corriveau have developed an analytical model as a first approach to
assess the performance of the course correction [4].

Research and development on the use of thrusters or reaction jets
to improve the precision of fin-stabilized projectiles, such as missiles
and rockets, has been going on for decades. Over the years, a
significant amount of research was performed to understand the
interaction of the reaction jets with the projectile external flow, as
demonstrated by Champigny and Lacau [5]. Furthermore, several
investigators studied the loads caused by lateral pulse jets on a
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projectile body. Brandeis and Gill [6] performed an experimental
study on the effect of a lateral jet on the forces and moments on a
supersonic missile.

For spin-stabilized projectiles, the use of impulsers is not as
common, so the technology is still very much in the development
phase. Horwath and Barnych [7] presented a concept of a low-cost
course correction (LCCC) technique applied to a 40-mm projectile
that makes use of impulsers. Magnotti et al. [8] tested similar LCCC
fuses on an experimental mortar projectile. Flight-path corrections of
up to 6.0 mils were obtained using an impulse of 2.6 Ns.

Research on the impact of thrusters or impulsers on the flight
dynamics of spinning projectiles is very scarce in the open literature.
Using the projectile linear theory, Cooper [9] has analytically shown
that the effect of an impulse on a spinning projectile produced an
additive contribution to the usual aerodynamic jump of the free-flight
projectile with no applied impulse. Burchett et al. [10] developed
closed-form expressions for the swerving motion of a dual-spin
projectile in atmospheric flight under the action of lateral pulse jets.
For nonrolling projectiles, Guidos and Cooper [11] extended the
existing analytical theory for quantifying the free-flight motion to
include the effect of a simple lateral impulse applied during flight.
Ollerenshaw and Costello [12] explained in detail the swerve
response of fin- and spin-stabilized projectiles subjected to a control
force. A good understanding of such swerve response is fundamental
to implementing the pairing technique presented in the current paper.

Research and development are currently ongoing in order to
increase the magnitude of the impulse generated by thrusters and to
reduce the size of these devices. An example of such work is that of
English et al. [13], who developed a high-power short-duration
microelectromechanical-systems-sized gas generator actuator for
spinning projectiles.

The objective of this study consisted of developing a control
scheme for the control of projectiles using pairs of impulse thrusters.
In the first part of the paper, the concept of impulse pairing to
achieve effective control of a spin- and fin-stabilized projectile is
introduced. The theoretical background of the pairing method is
explained in the case of ideal projectiles. Three basic rules are
presented to ensure successful pairing of impulse thrusters to
maximize lateral corrections.

The second part of the paper presents the results from six-degree-
of-freedom (6-DOF) computations applied to the actual parameters
of a generic 105-mm artillery shell and a medium-caliber air-defense
projectile, which is called the 30-mm fin-stabilized GSP shell.
Comparedwith the analytical results presented inWey andCorriveau
[4], 6-DOF computations take into account the variations in the
projectile velocity and aerodynamic coefficients during the flight.
These simulations serve to validate the use of the impulse pairing
process as a viable projectile control alternative.

II. Analytical Model

Using the linear theory of ballistics, an analytical model was
developed in order to predict the projectile angular motion and
velocity resulting from the activation of thrusters. In developing the
model, the following hypotheses were made: the total incidence of
the projectile is small (i.e., tan �� < 0:1), the magnitude of the
projectile velocity is constant, and the aerodynamic coefficients and
the inertial parameters of the projectile are constant.

A. Angular Motion Equation

Neglecting the steady-state yaw due to gravity, introducing the
effect of the impulse and shifting the origin of the flight path to the
impulse location (s� 0), the epicyclic pitching and yawing motion
of a projectile can be represented by the following differential
equation (McCoy [14]):

�00 � �H � iP��0 � �M � iPT��� �00��s� (1)

where �� �� i� is the complex incidence, and the superscript
prime denotes differentiation with respect to the flight path s. The

variable ��s� is the Dirac function. The coefficients H, P,M, and T
are defined as follows:

H � �Ad
2m

�
CL� � CD �

md2

Iy
CMq

�
(2)

P� Ix
Iy

pd

V
(3)

M � �Ad
3

2Iy
CM�

(4)

T � �Ad
2m

�
CL� �

md2

Ix
CMp�

�
(5)

Figure 1 shows that the complex incidence angle is the plane
projection of the total angle of attack. As the projectile travels along
the trajectory, the complex incidence traces out a series of loops in the
pitch-yaw plane, which is normal to the velocity vector. In Fig. 1, �� is
the total incidence angle.

Figure 2 depicts the notations of the complex incidence, either in
terms of pitch and yaw or in terms of magnitude k�k and phase
angle �.

B. Complex Incidence Motion

The solution to Eq. (1) is givenby the sumof the slow and fast arms
(denoted S and F, respectively) of the epicyclic motion as follows:

�� KF0
e��Fs�i��

0
F
s��F0 �� � KS0e

��Ss�i��0Ss��S0 �� (6)

The solution is valid for s > 0. For s < 0, the complex incidence �
equals zero. This motion of the two arms is depicted in Fig. 3. In
Eq. (6), �0F and �

0
S are the fast and slow arm turning rates, whereas �F

and �S are the fast and slow arm damping exponents. These are
defined as follows:

Fig. 1 Complex incidence in pitch-yaw plane.

β

α

yaw

pitch 

ξ = α + iβ = ||ξ ||eiφ

phase angle φ ||ξ || = αα

Fig. 2 Complex incidence.
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�0F � 1
2
�P�

�������������������
P2 � 4M
p

� (7)

�0S � 1
2
�P�

�������������������
P2 � 4M
p

� (8)

�F ��
1

2

�
H � P�2T �H��������������������

P2 � 4M
p

�
(9)

�S ��
1

2

�
H � P�2T �H��������������������

P2 � 4M
p

�
(10)

Neglecting the damping exponents, which are an order of
magnitude smaller than the turning rates, the initial amplitudes and
phase angles of the fast and slow arms are defined by the initial
conditions of the yaw motion as follows:

KF0
ei�F0 �� i�

0
0 � �0S�0
�0F � �0S

(11)

KS0e
i�S0 � i�

0
0 � �0F�0
�0F � �0S

(12)

C. Initial Conditions

The initial conditions of the motion are determined by the lateral
Dirac impulse J that is defined in the pitch-yaw frame by its
amplitude and its phase angle as follows:

J� kJkei�J (13)

J is applied at LJ calibers from the center of mass. Note that the
same motion can be triggered using two opposite locations of the
impulse, as shown in Fig. 4.

In Eqs. (11) and (12), the initial incidence of the projectile
following an impulse thruster detonation of magnitude J and orien-
tation �J can be estimated from the ratio of the impulse momentum
and the projectile momentum:

�0 �
1

mV
Jei�J (14)

The initial yaw rate can be obtained from a balance of the angular
momentum:

�00 �
LJd

2

IyV
Jei�J (15)

In supersonicmode, �0 can be neglected. Thus, �
0
0 is themain cause

of the angular motion (unless LJ ! 0, but this case is not taken into
consideration here).

D. Analytical Solution for Aerodynamically Induced Impulses

Using the analytically derived equation for the complex incidence
[Eq. (6)], the complex deflection velocity VLe

i�VL or the lift impulse
JL due to the lift force L resulting from the yawing motion can be
computed as

JL �mVLei�VL �
Z 1
0

L�t� dt�
Z 1
0

L�s� d
V

ds

�
Z 1
0

�
1

2
�AV2CL��

�
d

V
ds� 1

2
�AVdCL�

Z 1
0

� ds (16)

The difference between �J and �VL is the included angle between
the axes defined by J and JL. It can reach a few degrees for a standard
artillery shell, whereas it is only a fraction of a degree for fin-
stabilized shell. Thus, the vectors J and JL are roughly aligned along
the same axis, either in the same direction or in opposite directions.
Similarly, the loss of velocity VD2

due to the additional drag D2

resulting from the yaw motion can be defined as

JD2
�mVD2

�
Z 1
0

D2�t� dt�
Z 1
0

D2�s�
d

V
ds

�
Z 1
0

�
1

2
�AV2CD2

j�j2
�
d

V
ds� 1

2
�AVdCD2

Z 1
0

j�j2 ds (17)

assuming that CD � CD0
� CD2

j�j2. It should be noted that the
complex incidence of squared �2 is used only to calculate the
additional drag arising from the angular motion of the projectile
following the activation of an impulser.

The impulse resulting from the Magnus force may be significant
for spin-stabilized shells. It is simply defined as a function of the lift
impulse as follows:

JY � i
CYp�
CL�

pd

V
JL (18)

Using Eq. (6) and assuming that �F < 0 and �S < 0, the definite
integrals of � and �2 can be determined. The definite integral � and

j�j2 � � �� in Eqs. (16) and (17) are given by

Z 1
0

� ds��
KF0

ei�F0

�F � i�0F
�
KS0e

i�S0

�S � i�0S
(19)

Z 1
0

j�j2 ds��
K2
F0

2�F
�
K2
S0

2�S

�
2KF0

KS0 ���F��S�cos��F0
��S0�� ��0F ��0S� sin��F0

��S0��
��F��S�2���0F ��0S�2

(20)

Equations (16–20) constitute the full analytical solution of the
aerodynamic impulses caused by the angular motion. They are valid
for both spin- and fin-stabilized projectiles. In Eqs. (11) and (12), the

β

α

ξ

Slow arm

KF Fast arm

F′

Sφ′

KS

φ

Fig. 3 Geometry of epicyclic pitching and yawing motions.

J

ξ ′
0

ξ ′

LJ > 0

LJ < 0

J

β

α

Fig. 4 Initiation of angular motion.
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initial yaw �0 could have been set to zero in order to simplify the
integration process in Eqs. (19) and (20). However, in order to
maintain generality, it was left in the equations.

E. Simplified Solution for Lift Impulse

Substituting Eq. (19) in Eq. (16), the lift impulse or aerodynamic
jump can be rewritten as

JL ��
1

2
�AVdCL�

�
KF0

ei�F0

�F � i�0F
�
KS0e

i�S0

�S � i�0S

�
(21)

or

JL ��
1

2
�AVdCL�

��
�F � i�0F
�2F � �02F

�
KF0

ei�F0 �
�
�S � i�0S
�2S � �02S

�
KS0e

i�S0

�

(22)

As mentioned by McCoy [15], the damping exponents are, in
general, between one and two orders of magnitude smaller than the
epicyclic turning rates. Thus, a very decent approximation to Eq. (21)
can be written as follows:

JL � i
1

2
�AVdCL�

�
KF0

�0F
ei�F0 �

KS0
�0S
ei�S0

�
(23)

Substituting Eqs. (11) and (12) into Eq. (23), one obtains

JL � i
1

2
�AVdCL�

�
�i�00 � �0S�0
�0F��0F � �0S�

� i�00 � �0F�0
�0S��0F � �0S�

�
(24)

Now, M� �0F�0S � �F, �S � ��Ad3=2Iy�CM� 	 �0F�0S, and P�
�0F � �0S. Substituting these in Eq. (24), the following simplified
expression for the lift impulse is obtained:

JL � i
1

2
�AVdCL�

�
�i�00 � P�0

M

�
(25)

or

JL � V
Iy
d2
CL�
CM�

�iP�0 � �00� (26)

In Eq. (26), the initial yaw �0 is usually very small, since the
thruster impulse is much smaller than the projectile total momentum
in Eq. (14). It can therefore be neglected in Eq. (26). Assuming that �00
is the major cause of the forced epicyclic motion, the relation
between the lift impulse JL and the thruster impulse J can be derived
by substituting Eq. (15) into Eq. (26). This yields the following
relationship between J and JL:

JL ��JLJ
CL�
CM�

ei��J (27)

where ��J is the included angle between the axes defined by J and
JL. If �

0
0 is the major cause of the forced epicyclic motion, ��J is a

few degrees for a standard artillery shell and a fraction of a degree for
fin-stabilized projectiles. Thus, neglecting the phase shift��, JL and
J have the same direction for fin-stabilized projectiles (CM� < 0),
whereas JL and J have opposite directions for spin-stabilized
projectiles (CM� > 0). This basic result is illustrated in Figs. 5 and 6.
Figure 5 depicts the angular motion of a slowly rolling fin-stabilized
shell (spin� 20 Hz) assuming an upward initial condition. The
resulting lift impulse is also oriented upward. Figure 6 depicts the
angular motion of a spin-stabilized shell (spin� 200 Hz) assuming
an upward initial condition. The resulting lift impulse is oriented
downward due to the gyroscopic effect. The side (Magnus) impulse
JY is shifted by 90
 to the left of JL.

F. Angular Motion Equation for Paired Impulses

The angular motion induced by a pair of impulses can be modeled
analytically as well. Considering two Dirac impulses J1 and J2
engaged at travel distances s1 and s2, both impulse vectors are normal

to the projectile axis and are applied at LJ1 and LJ2 calibers from the
center ofmass.Within the frame of the linearized equation of angular
motion, the resulting complex angle is simply defined as �� �1 � �2,
where �1 and �2 are phase-shifted epicyclic motions having the same
frequencies but different initial conditions. The variables �1 and �2
are generated by thefirst and second impulse, respectively.As before,
neglecting the steady-state yawdue to the gravity and introducing the
effect of the impulse, the epicyclic pitching and yawing motions of a
projectile can be represented by the following differential equation:

�00 � �H � iP��0 � �M � iPT��� �001��s � s1� � �002��s � s2�
(28)

where �001 and �
0
02 are the initial yaw rates generated by the first and

second impulse, respectively. The solution to Eq. (28), the complex
incidence, can be broken down into three parts as follows:

��s < s1� � �1 � �2 � 0 (29)

��s1 < s < s2� � �1 � �001
e��f�i�

0
f
��s1�s� � e��s�i�0s��s1�s�
i��0f � �0s�

(30)

��s1 < s < s2� � �1 � �2 � �001
e��f�i�

0
f
��s1�s� � e��s�i�0s��s1�s�
i��0f � �0s�

� �002
e��f�i�

0
f
��s2�s� � e��s�i�0s��s2�s�
i��0f � �0s�

(31)

β

α

JL

∆φ ∼ 0.1º

ξ 0
′ξ 0
′

Fig. 5 Angular motion of a fin-stabilized projectile.

α

JL

∆φ ∼ 1º

JY

ξ 0
′ξ 0
′

Fig. 6 Angular motion of a spin-stabilized projectile.
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III. Optimization Technique Using Paired Impulses

To optimize the use of impulse on spin- and fin-stabilized projec-
tiles, a projectile of mass m traveling at velocity V is considered. A
Dirac impulse J is engaged at some travel distances. The impulse
vector is normal to the projectile axis and is applied either aft or
forward of the center of gravity. This event forces the oscillation of
the projectile, which yields three impulses due to the aerodynamic
forces, as shown in Fig. 7: two transverse impulses JL and JY due to
the action of the lift andMagnus forces and one axial impulse JD2 due
to the squared-yaw component of the drag force. Assuming a
constant velocity V, the total angular deflection of the trajectory is
then simply given by

a� kJ� JL � JYk
mV

(32)

In the following subsections, rules will be established to properly
pair impulse thrusters in order to achieve a maximum trajectory
correctionwhileminimizing the range lost due to the drag induced by
the angular motion.

A. Rule 1: Impulse Axial Location Relative to Center of Mass

Tomaximize the angular deflection, the sumof the impulse J� JL
must be maximized in Eq. (32). This can be achieved if the thruster
impulse J and the resulting lift impulse JL are aligned in the same
direction. For a spin-stabilized shell, this condition is met if the
impulse thrusters are fired behind the center of mass, as shown in
Fig. 8. This can be demonstrated physically by looking at Fig. 9. In
this figure, a thruster is triggered on the port side of the projectile,
resulting in a rightward-pointing impulse J. This impulse initiates the
angular motion of the projectile. The resulting initial yaw rate �00 and
the initial angularmotion of the projectile are to the left. However, the
gyroscopic response rapidly pitches up the nose of the projectile and,

eventually, the resulting yawmotion is primarily oriented to the right
of the projectile. Therefore, the net lift impulse JL is oriented in the
same direction as the thruster impulse to the right, as shown in Fig. 9.
For a fin-stabilized projectile, there is no gyroscopic response.
Therefore, the thrustersmust be located forward of the center ofmass
for the lift impulse to be in the same direction as the thruster impulse,
as illustrated in Fig. 10.

Rule 1 can now be defined in order to maximize J� JL (i.e., J
must have the same direction than JL): Jmust be applied ahead of the
center of mass for fin-stabilized projectiles (LJ > 0 and CM� < 0),
whereas J must be applied behind the center of mass for spin-
stabilized projectiles (LJ < 0 and CM� > 0).

B. Rule 2: Angular Orientation of Second Impulse Relative
to First One

Tomaximize the trajectory deflection and minimize the additional
drag due to the forced oscillation, impulses can be paired. Consider
two Dirac impulses J1 and J2 that are engaged at travel distances s1
and s2. Both impulse vectors are normal to the projectile axis and are
applied at LJ1 and LJ2 calibers from the center of mass. Within the
frame of the linearized equation of the angular motion, the resulting
complex angle is simply defined as �� �1 � �2, where �1 and �2 are
phase-shifted epicyclic motions having the same frequencies but
different initial conditions, as shown in Fig. 11. Under the
assumption of linearity, the total deflection angle is

a� kJ1 � J1L � J1Y � J2 � J2L � J2Yk
mV

(33)

where transverse impulse JL imparted by the lift force is then
given by

JL �
1

2
�AVdCL�

�Z 1
s1

�1 ds�
Z 1
s2

�2 ds

�
� J1L � J2L (34)

The angle � is independent of s1 and s2, since the transverse
impulse in Eq. (34) is also independent of the impulse triggering
location. It only depends on the orientation of each vector. This leads
to rule 2, which can be stated as follows: the transverse impulse is a
maximum if J1 and J2 have the samedirection (same roll orientation),
assuming that the distances LJ1 and LJ2 both satisfy rule 1.

C. Rule 3: Timing Between Two Impulses

The second impulse should ideally stop the angular motion
triggered by the first one and therefore limit the range lost due to the
drag impulse. The additional drag impulse is defined by

Fig. 7 Forces due to total incidence ��.

Fig. 8 Spin-stabilized projectile: J applied behind center of mass.

JL

L
J

< 
0 

 

J

JL

J
β

α

)(0′ξ )(0′ξ

0
ξ ′

0
ξ ′

Fig. 9 Effect of an impulse on projectile angular motion.

Fig. 10 Fin-stabilized projectile: J applied ahead of center of mass.

J1
J2

ξ1 ξ2

s1 s2

total incidence

Fig. 11 Phase-shifted epicyclic motions.
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JD2
� 1

2
�AVdCD2

�Z
s2

s1

�21 ds�
Z 1
s2

��1 � �2�2 ds
�

(35)

Note that if J2 is applied when �1 has already returned to zero (i.e.,
s2 � s1), then �1 and �2 do not interact and the resulting drag impulse
resumes to

JD2�0 �
1

2
�AVdCD2

�Z 1
s1

�21 ds�
Z 1
s2

�22 ds

�
(36)

Minimizing JD2
consists of finding out the amplitude of J2 and the

minimal value of s2 so that the definite integral from s2 to 1 in
Eq. (35) is zero: the second impulse should ideally stop the motion
triggered by the first one. Thus, �1 and �2 should have the same
amplitudes and be in opposite phase. For simplicity, wewill examine
here the ideal motions for which �0 can be neglected and have equal
damping factors (i.e., �F � �S). In this case, the epicyclic motions
periodically pass through zero, because the fast and slow arms
always have the same length. The motions are strictly opposed if the
following conditions are met:

�1�s2 � s1� � �2�0� � 0 (37)

�01�s2 � s1� � ��02�0� (38)

where the origin of each angular motion has been shifted to the
respective impulse location along the flight path. Equation (37)
yields the first constraint:

s2 � s1 �
2k�

�0F � �0S
(39)

where k is an integer greater than zero. Thus, the traveled distance
between the two impulses is a multiple of the cycle of the total yaw.
Using Eq. (6) to determine the closed-form derivative of � for the
ideal case, Eq. (38) determines J2 and adds two constraints on s2:

J2LJ2 � J1LJ1e�F�s2�s1� (40)

s2 � s1 �
�2kS � 1��

�0S
� �2kF � 1��

�0F
(41)

where kS and kF are integers. Equation (40) takes into account the
damping factor of the motion, whichmight actually be ignored when
dealing with the actual impulse thrusters. Note that Eq. (40) is
consistent with rule 2, since it implies that J1 and J2 are aligned.

Minimizing s2 in Eq. (41) requires distinguishing betweenfin- and
spin-stabilized projectiles. With regard to fin-stabilized projectiles,
we have �0S ���0F < 0. This case simply yields kS ��1, kF � 0,
and k� 1, which minimizes s2. As far as spin-stabilized projectiles
are concerned, we have �0F > �

0
S > 0. In this case, making kS � 0 to

minimize s2, Eq. (41) requires that �0F � �2kF � 1��0S. Assuming
that this ideal condition is satisfied (which is not true for real shells),
Eq. (39) is obviously satisfied if

k� kF �
1

2

�
�0F
�0S
� 1

�
(42)

Figure 12 shows the effect of paired impulses in the case of an ideal
motion. This example illustrates the case of a generic spin-stabilized
projectile for which k� 4.

The ideal result described by Eq. (42) can be extended to real
projectiles. The optimal distance (s2 � s1) traveled along the
trajectory between the two impulses is defined by rule 3:

s2 � s1 � k
2�

�0F � �0S
(43)

k� nearest integer to
sign��0S�

2

�
�0F
�0S
� 1

�
(44)

Equation (44) is valid for bothfin- and spin-stabilized shells: k� 1
for fin-stabilized projectiles (regardless of spin), and k > 1 for spin-
stabilized projectiles (depending on spin).

Equation (44) accounts for two conditions: themain condition is to
trigger the second impulse at a minimum angle of attack, as defined
by Eq. (37), and the subordinate condition is to shift the second
impulse so that the angular motion is stopped or reduced to a large
extent, as defined by Eq. (38).

IV. Results and Discussion

The results of the trajectory deflection caused by a pair of
lateral impulses are examined in this section for both a spin- and a
fin-stabilized projectiles: a standard 105-mm artillery shell and the
French–German Research Institute of Saint-Louis (ISL) air-defense
30-mmfin-stabilizedGSP shell. Comparisons between the analytical
model predictions and 6-DOF simulations are made.

A. Guided Supersonic Projectile 30-Millimeter

Fin-Stabilized Projectile

The ISL GSP is a 30-mm fin-stabilized projectile designed to
increase the effectiveness of air-defense guns against maneuvering
targets. The ISLGSP shell is described in [1–3]. Figure 13 displays a
sketch of the shell. The inertial and aerodynamic features of the
projectile are summarized in Table 1.

The parameters defining a pair of impulses are listed in Table 2,
and the deflection resulting from those are presented in Table 3.
Table 4 summarizes the performance or scores of the paired impulse
control.

The angular motion resulting from the pair of impulses is
described by Figs. 14 and 15. These figures show that the angular
motion is almost stopped by the second impulse. The latter is reduced
by 35%with respect to the first impulse, taking into account the high
damping factor of the angular motion.

The differences between the analytical results described in Table 3
and the corresponding 6-DOF results are negligible. As far as the
maximum angle of attack (Fig. 14) and the total deviation velocity
(Fig. 16) are concerned, the discrepancy is less than 1%. The
variation of the aerodynamic coefficients due to the change in the

β

α

)( 21 s′ξ

)( 22 s β

α

)( 21 s′ξ

J1

J2

total incidence

s1 s2
)( 22 s′ξ )( 22 s

Fig. 12 Pairing of two impulses to stop projectile angular motion.

Fig. 13 Sketch of GSP shell.
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projectile velocity can be obviously neglected over the time interval
between the two impulses.

B. 105-Millimeter Spin-Stabilized Artillery Projectile

The baseline spin-stabilized projectile configuration used for this
project is shown in Fig. 17. It consists of a 105-mm M1 artillery
projectile. The nominal projectile weight is 15.0 kg, and its length is
494 mm. The muzzle velocity of the projectile was taken to be
506 m=s, which is essentially that obtained when launched from the
LG1 MK2 Howitzer. The spin rate of the projectile was set at
1682 rad=s. The inertial and aerodynamic features of the projectile
are summarized in Table 5.

The parameters defining a pair of impulses are listed in Table 6,
and the deflection resulting from those are presented in Table 7.
Table 8 summarizes the performance or scores of the paired impulse
control.

Table 3 Deflection results

Parameter Value Definition

��max 13.3
 Maximum angle of attack
VJ 4:67 m=s Lateral velocity imparted by control

impulses J1 � J2 (i.e., without lift)
VL 21:46 m=s Lateral velocity imparted by lift force
�� 0.1
 Phase shift between VJ and VL
VY 0 m=s Lateral velocity imparted by side force
a 25.6 mrad Total deflection, as defined by Eq. (33)
VD2 6:70 m=s Minimized loss of velocity due to JD2,

as defined by Eq. (35)
VD2�0 19:32 m=s Loss of velocity due to JD2�0, as defined

by Eq. (36)

Table 4 Scores of control

Parameter Value Definition

L score 4.59 Lift score �gain� � VL=VJ
The higher, the better

D score 0.35 Drag score �reduction� � VD2=VD2�0
The lower, the better
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6-DOF Model
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Fig. 16 Deviation velocity (GSP shell).

Fig. 17 105-mm M1 artillery projectile together with the projectile

rocket ordinance design and analysis system (PRODAS) model used for

simulation.

Table 1 Parameters of GSP shell (Mach 3.0)

Parameter Value

d 0.030 m
m 0.707 kg
Ix 8:71e � 5 kg �m2

Iy 5:04e � 3 kg �m2

p 105 rad=s
CD0 0.21
CD2 13.10
CL� 7.64
CM� �4:08
CMq �300
CNp� 0
CMp� 0

Table 2 Parameters of impulse control

Parameter Value Definition

J1 2:0 N � s J1 is directed upward along pitch axis
LJ �2:5 cal Located ahead of center of mass
k 1 As defined by Eq. (44)

s2 � s1 1021 cal As defined by Eq. (39)
J2 1:3 N � s As defined by Eq. (40) with LJ2 � LJ1 � LJ

t2 � t1 30.0 ms Time shift between two impulses
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Fig. 14 Total angle of attack (GSP shell).
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Fig. 15 Pitch versus yaw (GSP shell).
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The angular motion resulting from the pair of impulses is
described by Figs. 18 and 19. These figures show that the angular
motion is almost stopped by the second impulse. The latter is reduced
by 20%with respect to the first impulse, taking into account the high
damping factor of the angular motion.

To show the viability of the analytical method at predicting the
motion of a spin-stabilized projectile subjected to a pair of impulses,
analytical and 6-DOF computations were performed for the generic
105-mm M1 artillery projectile.

Comparisons of the incidence variation with range for both the
analytical method and the 6-DOF simulation show that there is a
slight discrepancy of about 0.1
 (Fig. 20). However, it can be shown
that this difference essentially corresponds to the yaw of repose,
which is not taken into account in the analytical solution.
Furthermore, a complete aerodynamic model was used for the
6-DOF simulation, whereas only constant coefficients were used for

the analytical computations. Other than that, the analytical model
predicts the angular motion of the projectile very well.

In Fig. 21, the variation of the lateral velocity imparted by the
thruster as a function of range is shown for the 6-DOF simulation and
the analytical calculations. For reasons mentioned previously, small
discrepancies can be observed. However, the final lateral velocity
immediately following the second velocity is predicted quite well.

Table 5 Parameters of 105-mm artillery shell

(Mach 1.5)

Parameter Value

d 0.105 m
m 15.05 kg
Ix 2:369e � 2 kg �m2

Iy 2:190e � 1 kg �m2

p 1950 rad=s
CD0 0.375
CD2 7.7
CL� 2.12
CM� 3.6
CMq �8:5
CNp� �0:40
CMp� 0.20

Table 6 Parameters of impulse control

Parameter Value Definition

J1 10:0 N � s J1 is directed rightward along yaw axis
LJ �0:5 cal Located aft of center of mass
k 8 As defined by Eq. (44)

s2 � s1 1293 cal As defined by Eq. (39)
J2 8:0 N � s As defined by Eq. (40) with LJ2 � LJ1 � LJ

t2 � t1 270 ms Time shift between two impulses

Table 7 Deflection results

Parameter Value Definition

��max 1.5
 Maximum angle of attack
VJ 1:2 m=s Lateral velocity imparted by control impulses

J1 � J2 (i.e., without lift)
VL 0:4 m=s Lateral velocity imparted by lift force
�� 9.5
 Phase shift between VJ and VL
VY 0:027 m=s Lateral velocity imparted by side force
a 3.0 mrad Total deflection, as defined by Eq. (33)
VD2 0:05 m=s Minimized loss of velocity due to JD2, as

defined by Eq. (35)
VD2�0 0:16 m=s Loss of velocity due to JD2�0, as defined by

Eq. (36)

Table 8 Scores of control

Parameter Value Definition

L score 0.33 Lift score �gain� � VL=VJ
The higher, the better

D score 0.31 Drag score �reduction� � VD2=VD2�0
The lower, the better
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Fig. 19 Pitch versus yaw variation following detonation of 10 Ns

impulse thruster J1 and 7.83 Ns impulse thruster J2.
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impulse thruster J1 and 7.83 Ns impulse thruster J2.
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V. Conclusions

A novel method for correcting the trajectory of fin- or spin-
stabilized projectiles using pairs of impulse thrusters was described
in this report. By locating the impulse thrusters off the center ofmass,
it is possible to significantly increase the deflection of the flight path.
This is explained by the fact that the deflection results from the
aerodynamic jump due to the projectile oscillation in addition to the
control impulses. To benefit from the added drift correction obtained
by locating the thrusters off the center of mass and to avoid the added
drag generated by the induced pitching and yawing motions, an
optimal combination of the thrusters can be achieved by considering
a pair of impulses, which has the double objective of maximizing the
deflection and minimizing the drag due to the oscillation. Using the
linearized equation of the angular motion and considering ideal
cases, the optimization scheme was mathematically defined in the
form of three simple rules. Using two test cases, it was shown that the
correction technique is very effective for fin-stabilized projectiles,
because the aerodynamic jump is maximized. On the contrary, the
technique is not that effective regarding spin-stabilized projectiles. In
this case, using thrusters located at the center of mass is less complex
with only a small loss of effectiveness. The model developed as part
of this project is expected to be useful to guided weapon control
designers in providing simple rules and equations that can be applied
to maximize course corrections of both fin- and spin-stabilized
projectiles.
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