
                              
 

  
 
 
 
AWARD NUMBER:     W81XWH-10-1-0774 
 
  
TITLE:   Theory-Driven Models for Correcting “Fight or Flight” Imbalance in Gulf War 
Illness 
 
 
 
PRINCIPAL INVESTIGATOR:   Gordon Broderick, Ph.D. 

 
 
 
 

CONTRACTING ORGANIZATION:  University of Alberta 
      Edmonton,  Alberta, Canada  T6G 2C8 
 

 
 

REPORT DATE: September 2012 
 
 
 
 
TYPE OF REPORT:    Annual 
 
 
 
 
PREPARED FOR:   U.S. Army Medical Research and Materiel Command 
                                 Fort Detrick, Maryland  21702-5012 
             
  
 
 
DISTRIBUTION STATEMENT: Approved for Public Release;  
                                                  Distribution Unlimited 
 
 
 
 
The views, opinions and/or findings contained in this report are those of the author(s) and 
should not be construed as an official Department of the Army position, policy or decision 
unless so designated by other documentation. 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE  
1 September 2012 

2. REPORT TYPE
Annual 

3. DATES COVERED  
1 Sep 2011 – 31 Aug 2012

4. TITLE AND SUBTITLE 
 

5a. CONTRACT NUMBER 
 

Theory-Driven Models for Correcting “Fight or Flight” Imbalance in Gulf War Illness 5b. GRANT NUMBER 
W81XWH-10-1-0774 

 5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

Gordon Broderick, P.hD. 5e. TASK NUMBER 

Email:  gordon.broderick@ualberta.ca 5f. WORK UNIT NUMBER
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Alberta 
Edmonton, Alberta, Canada  T6G 2C8 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
U.S. Army Medical Research and Materiel Command  
Fort Detrick, Maryland  21702-5012  
 11. SPONSOR/MONITOR’S REPORT 

       NUMBER(S) 

12. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited 
13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
The objective of this study is to create a comprehensive engineering model of endocrine-immune interaction dynamics in order to identify (i) theoretical 
failure modes of the HPA-immune axis that align with GWI, and (ii) promising treatment strategies that exploit the regulatory dynamics of these systems 
to reset control of the HPA-immune axis to normal.  We recruited a new senior research associate, Dr. Craddock, effective January 1, 2012. Work has 
begun in earnest and we have completed a first detailed model of immune circuitry as well as a broader model describing the interplay of the HPA axis 
with the immune and sex hormone (HPG) axes in both male and female subjects. Alignment of these models was evaluated against experimental data from 
veterans (Dr. Klimas; Miami VA). The significant overlap of the latter with predicted homeostatic states is consistent with the chronic nature of this illness.  

15. SUBJECT TERMS 

GWI; Hypothalamic-pituitary-adrenal (HPA) axis 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON
USAMRMC  

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE
U UU 

73
      

19b. TELEPHONE NUMBER (include area 
code) 
 

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18 

 



 
 

 
 
 

Table of Contents 
 

 
                                                                                                                                Page 
 

 

Introduction…………………………………………………………….………..….. 4 

 

Body………………………………………………………………………………….. 4 

 

Key Research Accomplishments………………………………………….……..   8 

 

Reportable Outcomes……………………………………………………………….     9 

 

Conclusion……………………………………………………………………………  9 

 

References……………………………………………………………………………. 9 

 

Figures ….……………………………………………………………………………. 11 

 

Appendix A: Draft manuscript Craddock et al., 2012………………………… 16 

 

Appendix B: Working document Fritsch et al., 2012………………………… 50 

 

 

  
       



 4 

Introduction 
 
The hypothalamic-pituitary-adrenal (HPA) axis controls the body’s “fight or flight” response through a series 
of endocrine and immune signals directed at ensuring immediate survival and later re-establishing 
homeostasis.  Changes in the tone of this response have been observed in veterans with Gulf War Illness 
(GWI). Studies report abnormal cell proliferation, impaired function and persistent oxidative stress in 
circulating immune cells of patients. Similarly dysregulation of the HPA axis includes hypersensitivity in 
cytokine feedback as well as suppression of cortisol and neurotransmitters responsible for mediating innate 
and adaptive immunity. This is further complicated by the impact on the HPA axis of a myriad of regulatory 
interactions both within and between i) the immune system and ii) the sex-hormone axis, the hypothalamic-
pituitary-gonadal (HPG) axis. 
 
We proposed that severe physical or psychological insult to the endocrine and immune systems can 
displace these from a normal regulatory equilibrium into a compromised stable state. This state is 
characterized by a self-perpetuating inflammatory response that involves regulatory imbalance between the 
HPA, HPG and immune axes. To explore the validity of this hypothesis our objective was to create 
comprehensive engineering models of endocrine-immune interaction dynamics in order to identify (i) 
theoretical failure modes of the endocrine-immune interplay that align with GWI, and (ii) promising treatment 
strategies that exploit the naturally occurring stable points of these systems.  
 
Body. 
 
At the time of our last update we had initiated work consistent with Task 3 in the original Statement of Work 
(SOW). This analysis had focused mainly on the recovery and re-assessment of the basic differential 
equation model for the HPA axis reported in Ben-Zvi et al., 2009 [1]. We identified a number of 
shortcomings in this basic model. In particular, we assessed the natural frequencies supported by the basic 
model and found the latter did not naturally support circadian rhythm without an external forcing function. In 
addition, analysis of limited experimental data in female subjects with a closely related illness, chronic 
fatigue syndrome (CFS) [2], suggested that a linear model of the adrenal gland might be limited in terms of 
fidelity.  The apparent need for increased dynamic complexity created an important challenge to the 
continued use of conventional differential equation modeling, as significant gaps in the required parameter 
estimates exist in the literature. To circumvent this problem we critically re-assessed our approach. Rather 
than rely on questionable estimates of dynamic parameters we have shifted our approach to one that 
exploits a much larger body of information, namely known physiological and biochemical connectivity. The 
approach is inspired from circuit theory and is described below. Importantly, this approach supports the 
seamless integration of kinetic information wherever available, be it simple sequential precedence, relative 
time scale or detailed dynamics. This shift in paradigm, together with the concerted efforts of Dr. Craddock 
who joined in January of this year, has allowed us to continue moving forward on Task 3 and make 
substantial progress on Task 2, 4 and 5 of the SOW with the added help of Mr. Paul Fritsch (research 
intern).   
 
1. Re-assessment and adaptation of modeling paradigm (Task 1). The core concept of the approach 
we have used is connectivity. There is a substantial body of anatomical and biochemical data for many 
biological systems describing the connectivity between components, however data regarding the precise 
stoichiometry and kinetics of these interactions in humans is extremely limited.  Existing models rely heavily 
on animal data as a source of kinetic parameters, or adopt general order of magnitude estimates when this 
data is lacking.  To circumvent this issue and draw on this rich body of physiological and biochemical wiring 
diagrams, we have adopted the discrete logical network methodology proposed originally by Thomas et al. 
[3,4] and developed further by Mendoza and Xenarios [5]. Analysis of these networks makes it possible to 
identify the number and type (e.g. oscillatory, etc…) of resting states as well as their molecular and cellular 
profile without detailed knowledge of response dynamics.  We have used this methodology to construct 2 
complementary models at different scales. 
 
2. An integrated model of HPA-HPG-immune interaction (Task 3, Task 5).  Here we extended our 
previous analysis of HPA axis dynamics [1] by including feed-forward and feedback interactions with sex 
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hormone regulation and immune response. A circuit model was constructed that linked state variables 
across the HPA axis with hypothalamic-pituitary-gonadal (HPG) function in both men and women, as well as 
innate (IIR) and adaptive (AIR) immune response. The latter was described by the expression of specific 
subsets of cytokines. Details of this analysis are described in Appendix A in the form of a completed 
manuscript that is currently under internal review by collaborating co-authors [6]. In brief, interactions 
between the HPA, HPG and immune systems were described as a circuit model consisting of 11 state 
variable nodes where each node can assume one of three states at any point in time: -1 (inhibited), 0 
(nominal) and +1 (elevated). In this model the HPA axis was described by 5 state-variable nodes: 
corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), cortisol (CORT) and 
cytostolic glucocorticoid receptors (GRs), which unlike membrane bound receptors, dimerize (GRD). As a 
first coarse model, immune function was described in terms of innate immune response (IIR) and adaptive 
immune response (AIR). The state of activation of the IIR node was meant to capture changes in cytokines 
produced by the innate response including the pro-inflammatory cytokines interleukin (IL) 1, 6, 8 and tumor 
necrosis factor alpha (TNF-α). Also represented by the IIR node were IL-12 and IL-15, two mediators of NK 
cell function, as well as IL-23, an important inflammatory signal contributing to the Th17 response. 
Cytokines represented by the AIR node include IL-2, IL-4, IL-5, IL-13, interferon-gamma (IFN-γ), and TNF-β. 
As IL-10 is produced by both the IIR and AIR, it was represented as a separate state-variable node. HPG 
function was described by the levels of gonadotropin-releasing hormone (GnRH), of luteinizing homone (LH) 
as well as testosterone (TEST) in males (Figure 1A) and estradiol (EST) in females (Figure 1B). The effects 
of gender merit special attention. While testosterone (TEST) exhibits an inhibitory effect on all levels of the 
HPA axis, estrogen (EST) and progesterone can stimulate or suppress HPA activity depending on the 
phase of menstrual cycle.  It remains unclear whether this inhibition/stimulation of the HPA axis occurs in 
concert with the inhibition/stimulation of the HPG.  As a result, these cases were explored as separate 
alternative models of the HPA-HPG interaction in female subjects. 
 
In this formalism, the overall state of the system is described by a vector of discrete values, either -1, 0 or 
+1, expressed at each state-variable node (Eq. 1). This evolves over time and at each time step the next 
state value xi(t+1) for the ith node in the system is determined from that node’s current state as well as a set 
of balanced ternary logic statements based on the state values of the neighboring input nodes and their 
mode of action (i.e. activate or inhibit). The logic statements that determine a state transition are expressed 
as follows (Eq. 2-4):  

 
(1) 

 
 

(2) 
 

(3) 
 

(4) 
 
where the ◊, ∨, and ¬ symbols are ternary HIGH/LOW PASS, OR and NOT operators, xi j 

A is the state of the 
ith node’s jth activator, xi k I  is the state of the ith node’s kth inhibitor. Equation (2) is used when the node 
possesses both activators and inhibitors, Equation (3) when the node has only activators and Equation (4) 
when the node has only inhibitors. The number of state variables determines the total number of system-
wide states such that a model of N state variables possesses 3N states. As a result the number of total 
system-wide states increases rapidly as new state variable elements are added.   
 
These calculations were encoded into a rapid-prototyping Python script that was used to search the above-
mentioned network for stable equilibrium states.  Analysis time scaled approximately with N state variables 
as O(N2). Results of these simulations can be summarized as follows: 
 
• In a first validation of the methodology, a discrete-network equivalent of the differential equation 
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• Male subjects.  Inclusion of basic immune function and sex hormone regulation by the HPG axis with 
HPA function (HPA-GR-Immune-HPG model) in male subjects resulted in the emergence of 3 stable 
equilibrium states. Once again the first state was that of normal health. The second equilibrium state 
was characterized by low levels of ACTH and elevated expression of the glucocorticoid receptors GR1 
and GRD1. The third state corresponded to a hypercortisolic condition with high glucocorticoid receptor 
expression (GR1, GRD1) and adaptive immune activity (AIR), accompanied by a suppression of the 
HPG axis, innate immune function (IIR) and IL-10 concentration. 

• Female subjects. In the specific case of positive feedback along the HPG axis and suppressive 
interaction with the HPA axis, the HPA-GR-Immune-HPG model for female subjects (Figure 1B) 
supported 6 steady states. In addition to 3 states equivalent to those obtained for the male subjects, we 
found new steady states that corresponded to low CRH, ACTH, and CORT, with nominal immune 
function accompanied by elevated GnRH, LH/FSH, and EST. This combination occurred at each of the 
three low, nominal and high values for GRD1/GR1 expression. Note that a stable steady state 
characterized by low cortisol levels was found only for female subjects.  

• Alignment with experimental data. To validate these results the predicted steady states were first 
compared to steroid and cytokine levels recorded in male Gulf War veterans with GWI and healthy 
veterans (HCs) as part of a sister study [7] (Figure 2A). To compare against model predictions steroid 
and cytokine levels significantly higher in GWI were assigned a value of +1, significantly lower levels 
were assigned -1, and those showing no significant change were assigned 0.  Experimental cytokine 
measurements were scored and aggregated into cytokine sets. Together with hormone levels, these 
data supported experimental estmates for 5 of the 11 state variables modeled. Comparison of these 
state variables with the predicted steady state (SS2) described by low TEST, high CORT, high AIR 
values, showed a match in 3 out of 5 variables for the GWI condition (Figure 2A).  As experimental 
measures for ACTH, GR1 and GRD1 were not available, steady state SS1 and the nominal steady state 
SS0 (HC) could not be distinguished and validated separately from one another.  

 
As a much greater proportion of women than men are affected by CFS, we compared the predicted 
steady states identified with the female model to experimental data collected under two compatible 
studies [8,9]. Taken together, experimental measurements indicated that female CFS patients presented 
with high EST, hypocortisolism, and with a spectrum of altered cytokine levels. We found no agreement 
with the low EST, high CORT and high AIR steady of steady state SS2, which closely resembled the 
GWI profile.  However, there was a complete alignment in all 5 state variables between measured levels 
of endocrine-immune markers in female CFS subjects and the 3 steady states characterized by high 
EST, low CORT and nominal immune function (SS3, SS4 and SS5 in manuscript; Appendix A). 

 
 
3. A detailed model of immune circuitry (Task 2, Task 5). Based on the work of Folcik et al. (2007, 
2011) [10,11] and an extensive review of recent literature, we constructed a wiring diagram that describes 
cytokine signaling between immune cell populations using the above-mentioned methodology (Figure 3) 
[12] (see excerpts of manuscript in preparation; Appendix B). The specific cytokines supporting this model 
included interleukin (IL)-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-23, IL-27, interferon (IFN)-γ, and 
tumor necrosis factor (TNF)-α. In accordance with Folcik et al. (2011) and to improve computational 
efficiency, cytokines were grouped according to their dominant action into either a monokine (MK) or 
cytokine (CK) group. The MK groups represented the cytokines released primarily by monocytes (ie: DCs or 
dendritic cells) and the CK groups represented the cytokines released by lymphocytes (ie NK cells, Th cells, 
and CTLs). MK1 and CK1 were designed as pro-inflammatory cytokine groups, whereas MK2 and CK2 
were specified as anti-inflammatory cytokine groups. See Table 4 in appendix B for the cytokine groups 
definitions used. It should be noted that the MK2 node in the final model also represents the anti-
inflammatory dendritic cells (DC2). Since the DC2 node had only one input (Infection) and only one output 
(MK2), these 2 nodes were lumped into a single node consisting of the MK2 cytokines.  
 
In order to capture interaction with the endocrine system and allow integration into the HPA-HPG-immune 
model described in Section 1, this detailed immune model also included the hormone inputs of cortisol and 
testosterone. Cortisol typically acts to suppress NK cell activity, Th1 activity and inflammatory dendritic cell 
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(DC) activity. Conversely it has been demonstrated that the pro-inflammatory cytokines, predominantly IL-1, 
IL6, and TNF-α, generally activate the HPA axis at the hypothalamic level by inducing CRH secretion 
leading to increased release of ACTH and eventually cortisol. With regard to the male HPG axis, studies 
have shown that testosterone and other androgens exert a suppressive effect on the IL-6 gene. 
Testosterone is also reported to enhance the Th1 response and activate cytotoxic T lymphocytes (CTLs). 
Cytokines can also exert negative feedback on the male HPG axis. It has been shown that receptors for the 
pro-inflammatory cytokines, IFN-γ and TNF-α, exist on male leydig cells and act to decrease the production 
of testosterone. As well, TNF-α typically down-regulates the release of GnRH in the hypothalamus and LH 
in the pituitary gland, eventually causing a decrease in testosterone levels. As described in the model in 
Section 1, testosterone, via its androgen receptor, will inhibit activity of the HPA axis while cortisol will 
suppress the HPG axis, inhibit the effects of testosterone, and down-regulate androgen receptor 
expression. 
 
These interactions along with an updated version of the cytokine signaling network proposed by co-
investigator Folcik-Nivar have been integrated into an extended model of immune signaling complete with 
the effects of stress and sex hormones for male subjects only at this time (Figure 3). A model for female 
immune-endocrine signaling, similar in level of detail, is being constructed.  As before, a first version of this 
model for the male system was analyzed producing results that can be summarized as follows: 
 
• Stable immune response modes in male subjects. Application of this discrete dynamical analysis to 

the detailed endocrine-immune network yielded three different stable attractors. In addition to the 
normal healthy homeostatic point a first alternate attractor (SS1) was characterized by lower than 
normal levels of MK1, MK23, MK27, Th1 and DC1 activation, accompanied by higher than normal MK2, 
CK2, and Th2 activation with all other markers at nominal levels. This attractor represents an 
upregulated anti-inflammatory response since the anti-inflammatory cytokines (MK2 and CK2) and 
immune cells (Th2) are high, while all other markers remain either low or nominal. The second alternate 
attractor (SS2) was characterized by low relative levels of NK and Th1 activity, low testosterone 
combined with elevated CK1, CTLs, and cortisol with all other markers at nominal levels. This attractor 
represents a hypercortisolic and hypoandrogenic inflammatory state. 

• Alignment with experimental data.  Once again, these predicted steady states were compared with 
experimental data used in Section 1 [7-9]. The added detail made available by this model allowed for 
comparison of 8 markers instead of 5. We found in GWI that expression in 7 of the 8 clinical marker 
sets were in alignment with the hypercortisolic/ hypoandrogenic inflammatory attractor (SS2) while none 
of these supported alignment with the anti-inflammatory attractor (SS1) (Figure 4A). Comparing clinical 
CFS data to the predicted stable attractors, we found expression in 5 out of 8 clinical marker sets were 
aligned with the anti-inflammatory attractor (SS1), and 6 out of 8 clinical marker sets were in alignment 
with the hypercortisolic/hypoandrogenic inflammatory attractor (SS2) (Figure 4B). These alignments are 
best visualized with a Sammon projection of the hamming distances between the clinical data and the 
predicted model stable states (Figure 5).  

 
Collectively these simulations of known endocrine-immune circuitry support the existence alternate 
homeostatic regimes, some of which overlap substantially with observed immune and endocrine status in 
male GWI and female CFS subjects. Such overlap with naturally occurring stable regulatory regimes would 
certainly be consistent with the long-term persistence of symptoms and the chronic nature of these 
illnesses. This same characteristic may also explain why these illnesses appear in many ways resistant to 
treatment.  
 
4. Early treatment surveys (Task 6, Task 7).  Analysis of the above-mentioned regulatory signaling 
circuits not only provides information describing the stable steady states available to the system but also 
extensively describes the ensemble of transitory states that lead unequivocally to one steady state or 
another; these are said to lie within that steady state’s basin of attraction. Importantly, these subsets of 
transitory states will lead to that specific stable state independently of an individual’s immune and endocrine 
response kinetics. This guaranteed convergence to a healthy equilibrium makes them attractive as broadly 
applicable treatment destination states. In the design of minimally invasive interventions our basic paradigm 
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is therefore to identify the closest transitory state(s) that lie within the basin of attraction that ensures a 
return to normal homeostasis.  
 
Based on this paradigm we have started work on Tasks 6 and 7. A first preliminary analysis of the multi-
system model described in Craddock et al., 2012 (Appendix A) suggests that the effectiveness of a single-
agent interventions targeting the immune or endocrine systems separately would be highly dependent on 
person-to-person differences in response kinetics. A joint endocrine-immune therapy that would moderate 
free cortisol and Th1 immune activity concurrently appears much more promising if we are to deliver a 
broadly applicable treatment protocol. We are currently refining these models as well as the treatment 
search algorithm to incorporate the effects of timescale. This will make it possible to take advantage of 
saddle point states or unstable intermediate states that lie between the basins of attraction. We are 
currently investigating avenues for exploiting broad classes of kinetic scales that might make it possible to 
reduce the treatment complexity even further and tailor these interventions to patient sub-groups.  
 
5. Continuing work.  Work is ongoing on the refinement of the treatment design algorithm and a 
working document describing initial results is being assembled as a draft manuscript. Central to this is the 
implementation of changes allowing for us to extend beyond connectivity and exploit differences in time 
scale. A second major area of ongoing work involves the design of a circuit model describing mechanisms 
of neuroinflammation and neurotransmission in the brain. Each component model is being designed to 
connect seamlessly with the other modules.  
 
Timeline.  As described in the previous report dated September 30, 2011, the University of Alberta’s 
Research services Office submitted on behalf of the principal investigator a request for a one-year extension 
of the project term due to administrative delays. This request was reviewed initially by Ms. Strock and Dr. 
Phillips of the DoD (January 23, 2012) and we were asked to resubmit this request at a later date (6-8 
months before end of project term). We have since confirmed with Dr. Rebecca Fisher that this continues to 
be the correct course of action (ref. email from Dr. Fisher dated September 21, 2012). In accordance with 
Dr. Fisher’s recommendation we plan to submit a formal request for a no-cost extension in May 2013. 
 
Key Research Accomplishments. 
In keeping with the milestones described in the project submission initial efforts were directed at: 
 

• We have completed Task 1. Based on work reported previously we revised the modeling approach 
and adopted a logic circuit paradigm that allows us to draw on a much larger body of anatomical and 
biochemical knowledge while also providing the flexibility to seamlessly incorporate kinetic data 
when available. This approach was originally deployed in a high-level Python code but has recently 
been re-engineered into a highly efficient C code. This has resulted in an order of magnitude 
improvement in execution speed and memory usage. 

• We have essentially revised and completed Task 2. We completed a careful audit of the original 
Basic Immune Simulator (BIS) model and a thorough review of the most recent literature related to 
the relevant immune signaling mechanisms. Based on this we updated and translated the BIS into a 
logic circuit model and have analyzed the dynamic stability properties of this regulatory network.  

• We have made substantial progress in the central component Task 3. In this regard we have 
produced and analyzed a circuit model combining a formal representation of interactions within and 
between the HPA axis, the HPG sex hormone axis and basic components of the immune system.  

• Consistent with Task 4 we have conducted an analysis of multi-stability properties of both the broad 
HPA-HPG-immune model and the detailed BIS immune model. Based on this analysis we then 
compared the predicted equilibrium states obtained from each model with experimental immune and 
endocrine data from male and female GWI and CFS subjects. We found substantial alignment of 
GWI with stable steady states involving a hypercortisolic/ hypoandrogenic status. 

• One complete manuscript is currently undergoing final internal review and another is in the final 
stages of completion with submission expected before year’s end.  
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• We have re-assessed our approach to treatment design (Task 6, 7) and have begun a preliminary 
search based on the HPA-HPG-immune model described above. Initial results support a combined 
hormone-immune therapy.  

 
Reportable Outcomes. 
The results of these latest analyses are being presented at an upcoming closed meeting sponsored by the 
CDC and the CFIDS Association of America and held at the Cold Spring Harbor Laboratory’s Banbury 
Centre in Long Island, NY (Sep. 30 -Oct 3, 2012). The draft manuscript Craddock et al., 2012, enclosed as 
Appendix A, is completing internal review by co-authors and we expect submission to the journal PLoS 
Computational Biology before Oct. 1, 2012. Similarly we expect the working document in Appendix B, 
Fritsch et al., 2012, to be ready for submission to the same journal by year’s end. 
 
Regarding synergy with complementary research efforts, these findings were recently used in the 
preparation of an invited GWIRP Consortium Award as planned under Consortium Development Award 
GW100070 (prime institution - Wright State University).   
 
Conclusions. 
We intend to file in May 2013 a formal request for a no-cost extension of the project term due to a delayed 
start. We have carried out a major shift in paradigm that ensures greater flexibility and will support the 
necessary breadth of the project. The basic algorithmic framework for this is now in place. Both the BIS 
model of immune signaling and the basic model of the HPA axis have been audited, updated and extended 
significantly. Both models have now been translated into this new formalism. Simulations based on these 
models have shown that the illness-specific effects of gender are particularly striking. Work continues on the 
refinement of the intervention design component. Initial analyses favor the deployment of a joint hormone-
immune intervention over strategies that target these systems separately. 
 
Personnel receiving support from this award: 
 
• Travis Carddock, Ph.D., Senior Research Associate, Broderick Laboratory, University of Alberta 
• Paul Fritsch, undergraduate Honors Physiology student, Research Intern, Broderick Laboratory, 

University of Alberta 
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Figure 1. A discrete circuit model of HPA-HPG-immune interactions in male subjects (A) and female subjects 
(B) in the specific case of positive feedback along the female HPG axis and suppressive interaction with the 
HPA axis (model c in the manuscript) [6]. Green directed edges represent an up-regulation of the target by the 
source node whereas a red terminal edge represents a suppressive action. 
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Figure 2. Alignment between the stable states (SS0, SS1, SS2) predicted by the circuit model and the discrete 
expression  (e.g. elevated (+1), normal (0), or suppressed (-1)) of 5 markers in experimental data from (A) 
male GWI subjects and (B) female CFS subjects [6].  
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Figure 3. Wiring diagram for a circuit model of the immune signaling network with hormonal inputs from 
cortisol and testosterone (purple). The nodes, Stress, Infection, and Male HPG axis (grey) were necessary 
components of the program required as inputs, but they were kept consistently nominal so they would have no 
effect on the overall network as per the logical functions. Green connections indicate an activating influence 
and red connections indicate an inhibiting influence [12]. 
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Figure 4. Discretized experimental data for (A) GWI and (B) CFS compared to the two predicted alternate 
stable steady states (SS1 [black] and SS2 [grey]) [12]. 
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Figure 5. Sammon projection of the hamming distances between all five stable system states. Green circles 
represent the predicted model attractor states (SS0(HC), SS1, and SS2). Red circles represent the aggregated 
clinical data for GWI and CFS [12]. 
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Appendix A:  
 
Craddock TJA, Miller DB, Fletcher MA, Klimas NG, Broderick G. Towards an Integrative Model of 
Complex Stress-Mediated Illnesses: Gulf War Illness and Chronic Fatigue Syndrome. 2012, Under 
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Abstract 

As a key component in the body’s stress response system, the hypothalamic-pituitary-adrenal (HPA) axis 

serves to orchestrate changes across a broad range of major biological systems, and its dysfunction has 

been associated with numerous chronic diseases including Gulf War Illness (GWI) and chronic fatigue 

syndrome (CFS). Though tightly coupled with other components of endocrine and immune function, few 

models of HPA function account for these interactions. An important obstacle has been the scarcity of in 

vivo kinetic data.  Here we extend conventional models of HPA function by including feed-forward and 

feedback interaction with sex hormone regulation and immune response. This is accomplished using a 

discrete logic representation based solely on documented physiological and biochemical connectivity 

without detailed response kinetics.  A circuit model linked state variables across the HPA axis, 

hypothalamic-pituitary-gonadal (HPG) function, both in men and women, as well as innate (IIR) and 

adaptive (AIR) immune response described in terms of specific cytokine sets. Results indicated that unlike 

current models, detailed representation of glucocorticoid receptor dimerization is not required to produce 

multi-stability when immune and sex hormone regulation are considered. Inclusion of these effects resulted 

in at least two alternate homeostatic regimes. Experimental data in male GWI subjects showed alignment in 

3 of 5 endocrine-immune markers with predictions of a naturally occurring steady state. In female CFS 

subjects, the expression of all 5 endocrine-immune markers aligned with an alternate homeostatic state 

predicted by the model based on regulatory circuitry. Indeed we found that hypercortisolism may be 

inextricably linked to an imbalance in the immune response whereas hypocortisolism may be more strongly 

related to sex steroid suppression of the HPA axis and promotion of HPG function, a configuration 

seemingly available only to female subjects. Though coarse, these models may nonetheless support the 

design of simple and robust treatment avenues.  
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Author Summary 

The hypothalamic-pituitary-adrenal (HPA) axis links the brain, endocrine and immune systems of the body, 

and serves as a major regulator of the body’s response to stress including emotion, digestion, metabolism, 

sensory perception, etc….  Not surprisingly, dysregulation of the HPA axis has been associated with 

numerous chronic diseases, of which Gulf War Illness (GWI) and chronic fatigue syndrome (CFS) are two 

examples. While HPA function is inextricably linked with that of its regulatory neighbors few models account 

for these all-important interactions, as many of the key parameters needed have yet to be determined 

experimentally.  Here we extend the common models of the HPA axis by including interaction with sex 

hormone regulation and immune response. We use documented physiological and biochemical data to 

construct a connectivity network describing these systems for both men and women, and apply a discrete 

logic to represent the states of the system qualitatively without the need for kinetic parameters. Results 

indicate that this extended system can accommodate other naturally occurring persistent states in addition 

to healthy response to stress. Two of these alternate resting states align with experimental data describing 

GWI and CFS subjects.        
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1. Introduction 

The hypothalamic-pituitary-adrenal (HPA) axis, a key component in the body’s stress response system, 

serves to articulate changes in broad range of homeostatic regulators as a function of environmental cues.  

Such cues can consist of both physical stressors (injury, disease, thermal exposure) and psycho-emotional 

stressors (frustration, fear, fight or flight decisions) alike.  Instantiation of this survival program is 

accomplished through controlled modulation of the neuroendocrine and immune systems, as well as the 

sympathetic nervous systems [1-3].  Considering its function as a broad-reaching integrator of major 

biological systems, it is no surprise that numerous chronic diseases have been associated with abnormal 

regulation of the HPA axis, including major depression [4, 5], post-traumatic stress disorder (PTSD) [6-8], 

Alzheimer’s disease [9], Gulf War illness (GWI) [10-12], and chronic fatigue syndrome (CFS) [13-15].  When 

compared to non-deployed veterans, Golier et al., (2007) [10] found that symptomatic Gulf War veterans 

without psychiatric illness, as well as veterans with PTSD alone, showed significantly greater cortisol 

suppression to dexamethasone (DEX) suggesting markedly enhanced negative feedback along the HPA 

axis. Further study by these same investigators indicated that this might be due to a significantly attenuated 

ACTH response by the pituitary in veterans with GWI without PTSD compared to non-exposed subjects and 

veterans with PTSD alone [11, 12]. A similar suppression of cortisol response to DEX was found in CFS 

subjects by Van Den Eede et al. (2007) [13] with this being further exacerbated by oestrogen intake. With 

regard to HPA circadian dynamics, CFS subjects were found to exhibit significantly increased ACTH-

adrenal signaling and marginally increased inhibitory feedback when compared with control subjects and 

CFS subjects comorbid with fibromyalgia (FM) [14, 15]. Conversely the pain-dominant CFS-FM subjects 

showed significantly blunted cortisol inhibitory feedback. While evidence such as this implicates abnormal 

regulation of HPA function leading to chronic hypocortisolic and hypercortisolic states in these illnesses, it is 

not clear what causes this dysregulation.  

 

Previously we investigated the possibility that some of these pathological states may coincide with naturally 

occurring states of the regulatory system in question [16]. These backup regimes would offer alternate 

homeostatic control in crisis situations but at the cost of reduced function.  The existence of such multiple 

stable states is characteristic of systems that incorporate feed-forward and feedback mechanisms. 
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Feedforward loops in biology play the crucial role of driving rapid acute responses, while feedback loops will 

generally limit the extent of a response. Both will also drive complex dynamic behavior, including 

differentiation and periodicity [17].  Under standard conditions such systems tend to reside in a given stable 

attractor state.  Small perturbations to the system force it to depart temporarily from this state, only to be 

drawn back to the original resting state once the perturbation is removed.  If however, the perturbation is of 

significant strength and duration, the system may abandon its normal operating regime and instead be 

drawn into the basin of attraction of a new alternate resting state.  Knowledge of the system dynamics can 

allow us to map these different regimes and several mathematical models of the HPA exist  [18-26].  

However only one such model so far is known to accommodate multi-stability in the dynamic behavior of the 

HPA axis. It does so via the addition of a feed-forward mechanism involving dimerization of the 

glucocorticoid receptor (GR) complex  [27] (Figure 1).  However, this model and the majority of other models 

do not extend beyond the physiological boundaries of the HPA axis itself.  As discussed in the following 

sections, HPA activity is intertwined with the behavior of the hypothalamic-pituitary-gonadal (HPG) axis and 

the immune system, among others, and this interplay cannot be ignored when considering the number and 

nature of stationary states available to the overarching system.    

 

There is a substantial body of anatomical and biochemical data for many biological systems describing the 

connectivity between elements, the presence of recurring structural motifs and functional modules.  

However data regarding the precise stoichiometry and kinetics of these systems in humans is extremely 

limited.  Many existing models rely heavily on animal data as a source of kinetic parameters, or adopt 

general order of magnitude estimates when this data is lacking.  To circumvent this issue and draw on this 

rich body of physiological and biochemical wiring diagrams, we have adopted the discrete logical network 

methodology proposed originally by Thomas et al. [28, 29] and developed further by Mendoza and Xenarios 

[30]. The latter makes it possible to identify the number of resting states, their type as well as their 

molecular and cellular description without detailed knowledge of their response dynamics. In this work we 

use this method to extend our previous analysis of the complex dynamical behavior of the human HPA axis 

by including its regulatory interactions with the neighboring HPG axis and the immune system. Based on 

connectivity information alone, we show that multi-stability is easily obtained from these interacting systems. 
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Moreover, alternate resting states are identified that align with experimental data from our on-going studies 

of GWI and CFS.  

 

2 Methods 

2.1 A Multi-systems Model 

There is a substantial amount of physiological data describing the HPA, HPG and immune systems as 

stand-alone entities.  To a much lesser degree there also exists evidence for the mutual interactions 

between these systems.  The following sections describe the experimental evidence used to infer the 

topology of an overarching HPA-HPG-immune interaction network (Figures 1-4). 

  

2.1.1 The HPA Axis 

Activation of the HPA axis begins at the paraventricular nucleus (PVN) of the hypothalamus. Specifically, 

afferents transmitting stress related information in the brain converge on the medial parvocellular neurons of 

the PVN inducing the release of several peptides, including corticotropin-releasing hormone (CRH) and 

arginine vasopression (AVP), into the pituitary hypophysial-portal circulation.  CRH and AVP act in 

conjunction on membrane bound CRH-R1 receptors in the anterior pituitary to stimulate adrenocorticotropic 

hormone (ACTH) synthesis, and its rapid release into peripheral circulation.  ACTH circulates to the adrenal 

cortex where it acts on the membrane bound MC2-R receptor to simulate the release of glucocorticoids 

(GCs) (corticosterone in the rat and cortisol (CORT) in humans and nonhuman primates).  To regulate the 

stress response, GCs exert negative feedback at the hypothalamus and pituitary to inhibit further synthesis 

and release of CRH and ACTH, respectively [31].  This is the standard view of the HPA axis utilized in the 

majority of models (Figure 1 A).  However, as noted by Gupta et al. [27] circulating glucocorticoids act via 

cytostolic GC receptors (GRs), which, unlike membrane bound receptors, dimerize (GRD) and translocate 

into the cell nucleus upon activation to up-regulate GR synthesis and interact with other relevant 

transcription factors, or GC-sensitive genes (Figure 1 B).  As all nucleated cells possess GRs, GCs 

influence practically every system in the body.  As described below major systems affected by GCs include 

the HPG axis and immune system. 
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2.1.2 The HPG Axis 

GCs have an inhibitory effect on the HPG axis, a key component that controls development and regulation 

of the reproductive system, at all levels [32-36]. Activation of the HPG starts from brain generated pulsatile 

signals that stimulate the preoptic area of the hypothalamus to produce gonadotropin-releasing hormone 

(GnRH).  GnRH is secreted into the pituitary hypophysial portal bloodstream, which carries it to the pituitary 

gland, where it activates membrane bound GnRH-R receptors, resulting in the synthesis and secretion of 

luteinizing homone (LH) and follicle-stimulating hormone (FSH) into circulation.  These gonadotropins flow 

to the gonads where they work synergistically to promote the secretion of the sex steroids.  In males, LH 

binds to receptors on Leydig cells in the testes to stimulate the synthesis and secretion of testosterone 

(TEST).  In females, LH activates receptors on Theca cells in the ovaries to stimulate the release of 

androstenedione, which is aromatized by granulosa cells to produce estradiol (EST), and progesterone 

(PROG).  TEST negatively feeds back on the HPG to inhibit GnRH, FSH and LH secretion and synthesis 

[27].  This feedback mechanism is somewhat more complex in females where, depending on the phase of 

the female menstrual cycle, EST and PROG can exert either positive or negative feedback on the 

production and release of GnRH and the gonadotropins  [35, 37].       

 

A lesser-known aspect is that several components of the HPG axis exert reciprocal effects on the HPA axis 

 [32, 33, 35]. Thus, an interactive functional cross talk exists between the HPA and HPG axes, which cannot 

be ignored when investigating HPA axis regulation and dysfunction.  Testosterone exhibits an inhibitory 

effect on all levels of the HPA [27] (Figure 2 A), whereas EST and PROG can serve to stimulate or inhibit 

the HPA axis depending on menstrual cycle phase, or phase of life [33].  It is not clear whether the EST and 

PROG inhibition/stimulation of the HPA occurs in coordination with the inhibition/stimulation of the HPG.  As 

a result, these cases were explored as separate alternative models of the HPA-HPG interaction (Figure 2 B-

D). 

 

2.1.3 A Simplified Model of the Immune System 

While not typically considered part of the neuroendocrine system, the immune system plays a very 

important role in regulating the HPA axis.  As with the HPG axis, there exists a mutual crosstalk between 
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these two systems [38-40].  The innate immune response (IIR) is regulated by cytokines produced primarily 

by mononuclear phagocytes, such as macrophages, and dendritic cells, however they may also be 

produced by T-lymphocytes, natural-killer (NK) cells, endothelial cells or mucosal epithelial cells.  These 

cytokines include the pro-inflammatory cytokines interleukin (IL) -1, IL-6, IL-8 and tumor necrosis factor 

alpha (TNF-α), and can also include IL-12, a primary mediator of early IIR. Also included is IL-15, which 

stimulates proliferation of NK cells and effector T-lymphocytes, as well as IL-23, an important inflammatory 

signal contributing to the Th17 response against infection. Cytokines that regulate the adaptive immune 

response (AIR) come primarily from T-lymphocytes that have recognized a cell-specific antigen.  These 

include IL-2, IL-4, IL-5, IL-13, interferon-gamma (IFN-γ), and TNF-β.  IL-10, which has important anti-

inflammatory and immunosuppressive activities, is primarily produced by macrophages, but is also produced by 

T-lymphocytes, dendritic cells, neutrophils, eosinophils, mast cells, B cells, NK cells, CD8+ T cells, and all 

CD4+ T-helper cells, and is therefore considered separate from both the IIR and AIR [41].  

 

The cytokines of the IIR and AIR all serve to stimulate the HPA axis at all levels [38-40]. GCs, in turn, serve 

to suppress the synthesis and release of the pro-inflammatory cytokines of the IIR, while causing a shift 

from the inflammatory response to the anti-inflammatory response and promotion of the AIR [38, 39, 42].  In 

the simplified model used here, the effect of the key regulating cytokine IL-10 is produced primarily by IIR with 

suppressive effects on both IIR and AIR (Figure 3).   

 

2.1.4 An Integrative Model of the HPA-HPG-Immune System 

The interactions of the HPA, HPG and immune systems outlined above provide the basis for a simplified 

model that nonetheless encompasses a broad set of the major interactions that link these systems.  

Analyzing the components of this model in a piecewise fashion can highlight the involvement of each 

individual system in the resulting stable attractor states.  Piecewise combination of the above HPG and 

immune systems with the HPA involves 10 individual steps (Figures 1-4 and S6).  However, as the action of 

CORT is accompanied by up-regulation of GR synthesis all connections involving CORT can include the 

GR-GRD feed-forward mechanism.  As such, the GR-GRD feedback loop was also added piecewise to 

major components of the HPG and immune systems over 29 different steps (Figures 1-4 and S1-S9).  At 
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each step the resulting HPA axis and extended system was analyzed via a discrete state representation to 

solve for the stable states.  

 

2.2 A Discrete State Representation 

Following the methods of Thomas et al. [28, 29], and more recently Mendoza and Xenarios [30], 

connectivity network models of the neuroendocrine-immune system are represented as a discrete series of 

interconnected elements with three states: -1 (inhibited), 0 (nominal) and 1 (activated). The current state of 

all nodes in the system is described by a state vector 
!
x(t) , such that: 

(1) 

 

where x
N
(t) is the state of the Nth node of the system at time t.  The preferred state towards which the 

system evolves in the next time increment is described by the image vector 
!
x(t +1) .  The state value of the 

image vector for the ith node in the system is determined from the node’s current state and a set of balanced 

ternary logic statements based on the state values of the neighboring input nodes and their mode of action 

(i.e. activate or inhibit). The logic statements that determine a state transition are expressed as follows (Eq. 

2-4):  

 

(2) 

(3) 

(4) 

 

where the ◊, ∨, and ¬ symbols are ternary HIGH/LOW PASS, OR and NOT operators, xij
A is the state of the 

ith node’s jth activator, x
ik

I is the state of the ith node’s kth inhibitor.  The ternary operators given in Equations 

(2) through (4) are described in further detail in Supplementary Tables S1- S3. Equation (2) is used when 

the node possesses both activators and inhibitors, Equation (3) when the node has only activators and 

Equation (4) when the node has only inhibitors.  
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Applying Equations (2)-(4) to each node in the network for a given state of the system, 
!
x
m
(t) , defines the 

image vector 
!
x
m
(t +1)  for mth state of the system. With 

!
x
m
(t +1)  defined, the system may be updated 

asynchronously following the generalized logical analysis method of Thomas et al. [28, 29].  According to 

this method the ith element of the mth state vector 
!
x
m
(t)  is moved one step towards its preferred image 

!
x
m
(t +1)  (e.g. If 

!
x
m
(t)  = -1 and 

!
x
m
(t +1)  = 1, then 

!
x
i
(t) is set to 0).  Thus, for each current state of the 

system there are potentially several subsequent states towards which it may asynchronously evolve.  

 

By analyzing all possible states of the system a temporal sequence of all logical states may be discerned.  

To interpret the results each state of the system can be represented as a node in a state network.  The 

evolution from one state to a subsequent state is then represented as a directed edge between the two 

state nodes.  Representation of the system state trajectory in this fashion makes it possible to draw on the 

concepts and tools of network theory for analysis of the system dynamics.  Steady states are defined as 

those states for which the image vector is the same as the current state vector; in other words the state 

node possesses an out degree of 0.  

 

Twenty-nine different piecewise steps of the HPA axis models were analyzed to solve for stable states 

(Table S4).  The number of state variables determines the total number of system-wide states available to a 

model, such that a model of N state variables possesses 3N states.  Due to this rule the number of total 

system-wide states increases rapidly as new state variable elements are added.  An in-house Python script 

was used to analyze the state network to search for states with an out degree of 0.  Analysis time 

approximately scales with N state variables as O(N2), with minor deviations from this due to methods of 

parallelization, and other processes not directly related to the analysis.    

 

2.3 Sample Collection, Processing and Analysis 

2.3.1 CFS Cohort 

Endocrine measurements in peripheral blood mononuclear cells (PBMC) were obtained from the Wichita 

Clinical dataset [43] for a group of 39 female CFS subjects and 37 Healthy controls (HCs) screened for 
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confounding medical or psychiatric conditions. Diagnostic classification adheres to the CFS research case 

definition [44]. Collection and processing of PBMCs including microarray hybridization are found in [43].  

Ethics statements and details of subject screening, data preprocessing, normalization, outlier detection and 

false discovery correction are available in [45, 46]. 

 

Cytokine profiles were obtained from a separate study conducted at the University of Miami where CFS 

subjects were diagnosed using the International Case Definition [47, 48].  Those subjects presenting with 

additional medical and psychiatric conditions were excluded from the study, resulting in a cohort of 40 

female CFS subjects and a group of 59 healthy female control subjects.  Profiling of cytokine concentrations 

was performed in morning blood plasma samples using an enzyme-linked immuno-absorbent assay 

(ELISA)-based assay.  Ethics statements and details of subject screening, data preprocessing, 

normalization, outlier detection and false discovery correction are available in Broderick et al. [49]. 

 

2.3.2 GWI Cohort  

Cytokine profiles and endocrine measures were obtained as part of a larger ongoing study of 27 GWI and 

29 HC subjects recruited from the Miami Veterans Administration Medical Center. Subjects were male and 

ranged in age between 30 and 55. Inclusion criteria was derived from Fukuda et al. [48], and consisted in 

identifying veterans deployed to the theater of operations between August 8, 1990 and July 31, 1991, with 

one or more symptoms present after 6 months from at least 2 of the following: fatigue; mood and cognitive 

complaints; and musculoskeletal complaints. Subjects were in good health prior to 1990, and had no current 

exclusionary diagnoses [47]. Use of the Fukuda definition in GWI is supported by Collins et al. [50]. Control 

subjects consisted of gulf war era sedentary veterans and were matched to GWI subjects by age, body 

mass index (BMI) and ethnicity.  Ethics statements, methods for subject assessment, blood analysis, and 

data preprocessing, normalization, outlier detection and false discovery correction are available in Broderick 

et al. [51]. 

 

2.3.3 Statistical Analysis 
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All cohort data was normalized using a Log2 transformation. A one-tailed t-test for unequal sample sizes 

with unequal variance was used to determine if marker levels changed significantly between subject groups 

in the direction predicted by the model. Significance levels were ranked according to the null probability p 

with values less than 0.01 considered highly significant, values ranging from 0.01 to 0.05 considered 

significant, values between 0.05 and 0.10 considered marginally significant. Null probability values 

exceeding 0.10 were interpreted as non-significant. 

 

The above-mentioned experimental data made it possible to compare the expression of five markers, 

namely TEST/EST, CORT, IIR, IL-10, and AIR, in subjects from these illness groups with predictions from 

the model.  All experimental data was translated from a continuous scale to a discrete scale; steroid and 

cytokine values found to be significantly higher in patient data were assigned a discrete value of 1, while 

those found to be significantly lower were valued at -1.  Those showing no significant change were assigned 

a value of 0.  In the case of aggregate immune state variables (i.e. IIR, IL-10, and AIR) the average of the 

discrete state scores for the individual cytokines falling within each set was computed and rounded to the 

nearest integer to provide an overall discrete score. Section 2.1.3 defines the cytokines supporting each 

state variable node.  Alignment between the experimental data and model estimates was computed using 

only exact matches.  If the experimental score and model prediction for a given state variable were opposite 

one another (i.e. +1 vs. -1) or if one presented an inactive state while the other scored as active (i.e. 0 vs. 

+1 or -1) an alignment score of zero was assigned.  

 

3 Results 

3.1 Stable States in the Standard HPA Models 

Application of the discrete state representation to the stand-alone HPA model (Figure 1 A) generated 27 

system states, and failed to produce multiple stable states (Table 1).  This is consistent with previous 

ordinary differential equation based models of the stand-alone HPA axis [16-21] [21-26], which did not show 

system multi-stability.  Discrete state representation of the HPA-GR model (Figure 1 B) generated 243 

system states.  Of these, 2 system state nodes possess no outbound edges and are stable attractor steady 

states (Table 1).  In the first steady state, 
!
x(t) = (0, 0, 0, 0, 0) , all state variables assume nominal values.  In 



 29 

the second steady state, 
!
x(t) = (0,!1,!1,1,1) , state variables GRD1 and GR1 are activated while ACTH and 

CORT are depressed.  These states are consistent with the ordinary differential equation models of the 

HPA-GR system used by Gupta et al. [27] and Ben Zvi et al.  [16].  

 

3.2 The Gender Contribution 

Inclusion of the HPG axis with the stand along HPA axis (Figure 2) generated 729 system states and 

yielded only one steady state where all state variables assume nominal values (i.e. 
!
x(t) = (0, 0, 0, 0, 0, 0) ), 

except in the case of HPG model c (Table S7).  In model HPA-HPGc the inhibition of the HPA axis by the 

HPG, coupled with the positive feedback loop along the HPG produced an additional steady state, 

!
x(t) = (!1,!1,!1,1,1,1) , characterized by low CRH, ACTH and CORT, and high GnRH, LH/FSH and EST.  

 

When the HPA-GR model is coupled with the basic HPG axes 6561 system states are produced.  Two 

stable steady states are generated for HPG models a, b and d (Figures S1-S2, Table S7).  However, rather 

than reproducing the low CORT seen in the HPA-GR model, CORT is held to its nominal value while ACTH 

is low and GR1, GRD1, GnRH, LH/FSH and EST are high (i.e.
!
x(t) = (0,!1,0,1,1,1,1,1) ).  The loss of the 

hypocortisolic state results from the effect of the sex steroids on CORT.  Instead of CORT receiving only a 

single input it now receives multiple inputs, influencing its overall response. In the case of model c (HPA-

GR-HPGc) 5 steady states were obtained (Figures S2 and Table S7).  In addition to the two steady states 

obtained with HPA-GR-HPG models a, b and d, there exist 3 new steady states characterized by low CRH, 

ACTH and CORT, and high GnRH, LH/FSH and EST.  The GR1 and GRD1 values simultaneously alternate 

from low to nominal to high to give the 3 new attractor states (i.e. 
!
x(t) = (!1,!1,!1,!1,!1,1,1,1) , 

!
x(t) = (!1,!1,!1,0, 0,1,1,1) , 

!
x(t) = (!1,!1,!1,1,1,1,1,1) ).  

 

Inclusion of the GR-GRD dimerization feedback loop on the HPG axis at LH/FSH, and TEST/EST (Figures 

S3 and S4), produced 531441 system states and further increased the number of stable steady states.  

Here the addition of the GR-GRD loop generates different profiles for the four HPG models (Table S7).  

Most system states present with low ACTH with high GRD1 and GR1, or low LH/FSH with high GRD2 and 
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GR2, or low TEST/EST with high GRD3/4 and GR3/4, or with combinations of these, while all other state 

variables assume nominal values.  This set of system states is the result of sensitivity to CORT introduced 

by the GR-GRD feedback loop.  The states of the HPG-GR-HPGa model, based on the male HPG axis 

follow this regime exclusively, while the other 3 models based on the female HPG axis present with a variety 

of other states sharing a hypocortisolic characteristic.  HPA-GR-HPG-GR models b and d show this 

hypocortisolic state when the HPG axis is suppressed in a model where it would normally promote the HPA 

axis.  Model HPA-GR-HPGc however, only presents this low CORT state when the HPG axis is promoted.  

The multiplicity of system states that support a hypocortisolic condition is again due to the different 

combinations of activated or depressed GR and GRD in the regulatory network.   

 

3.3 Immune Effects 

Discrete representation of the simple immune system joined with the stand-alone HPA axis (Figure 3) 

produced 729 system states, and 2 stable steady states (Table S6): the nominal steady state (i.e. 

!
x(t) = (0, 0, 0, 0, 0, 0) ), and a hypercortisolic condition with increased AIR and depressed IIR and IL-10  (i.e. 

!
x(t) = (0, 0,1,1,!1,!1) ).  Incorporating the GRD-GR loop in the model at the ACTH state variable on the HPA 

axis (Figure S5 A) generated 6561 system states, and yielded the above 2 stable steady states where all 

immune state variables were held at nominal values, and one additional state 
!
x(t) = (0,!1,0,1,1, 0, 0, 0)  

(Table S6).  The loss of the hypocortisolic state originally found in the HPG-GR model is due to multiple 

inputs to CORT, as also seen in the HPA-GR-HPG models.  Adding the GR-GRD feedback loops to the IIR 

and the AIR (Figure S5 B) produced 531441 system states and 5 stable steady states (Table S6).  

However, the main characteristics of these states did not differ from the HPA-GR-Immune model as the 

additional states arose from the multiple combinations of activated GR5/6 and GRD5/6. 

 

3.4 An Integrative Model 

Combining the HPA axis with the HPG axis and immune system (Figure S6) produced 19683 system states. 

 For HPG models a, b and d the steady state with all state variables at nominal value was produced, as well 

as a high CORT steady state with all levels of the HPG held low, high ADAP and low IIR and IL-10.  HPA-
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HPG-Immune model c yielded one additional state beyond these, with all levels of the HPA held low, all 

levels of the HPG high, and all levels of the immune system nominal (Table S8). Adding the HPG axis and 

immune components to the HPA-GR model (Figures 4 and S7) generated 177147 system states.  HPA-GR-

Immune-HPG models a, b, and d yielded 3 steady states (see Table S8).  The first is the state with all 

variables at nominal levels, the second presents with low ACTH, high GR1 and GRD1, while the third 

corresponds to a hypercortisolic condition with high GR1, GRD1 and AIR, and a suppressed HPG axis, IIR 

and IL-10 concentration.  HPA-GR-Immune-HPG model c presented 6 steady states, including the 3 

discussed for the other models.  The remaining 3 steady states showed low CRH, ACTH, and CORT, high 

GnRH, LH/FSH, and EST, nominal values for immune variables, and GRD1/GR1 state variables that cycled 

between low, nominal and high.       

 

Previously, the addition of GR and GRD to the LH/FSH and TEST/EST variable nodes of the HPG circuit 

(Figures S8 and S9) resulted in different steady state profiles for the four different interaction models. This 

addition was investigated again with the addition of the immune system component. The HPA-GR-Immune-

HPG-GR models produced 14348907 system states.  Models a, b, and d of the HPG all produced 9 steady 

states with the same profile (Table S8), suggesting that the immune influence removes the variability 

between the models.  Three general motifs were observed. The first motif, seen in 4 of the steady states, 

presents with a nominal state for HPA and immune variables, repressed LH/FSH and/or TEST/EST and 

increased levels of the accompanying GR and GRD.  The second, which presented with nominal immune 

activation, low ACTH and high GR1 and GRD1, as well as repressed HPG nodes and increased HPG-

related GR and GRD, accounted for another 4 steady states. The final steady state supported high CORT, 

GR1 and GRD1, low HPG along with high GR2/3/4 and GRD2/3/4, high AIR, and low IL-10 and IIR. Model c 

produced these same 9 steady states plus an additional 12 conditions all sharing a single motif of low CRH, 

ACTH and CORT, high GnRH, LH/FSH and EST, and nominal immune activation (Table S8).  These 12 

steady states are the result of GR1 and GRD1 again cycling between low, nominal and high values, and the 

HPG axis GR and GRD variables cycling between low and nominal value.       

 

3.5 Clinical Indicators of the GWI Steady State 
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To validate these results the steroid and cytokine levels recorded in male Gulf War veterans with GWI and 

HCs were compared to the predicted steady states.  At rest CORT levels in GWI veterans were found 

higher than normal with marginal significance (p = 0.09), whereas TEST levels at rest were found to be 

significantly lower (p = 0.03).  The cytokines of the IIR in GWI patients were significantly decreased for IL-1a 

and 1L-1b (p = 0.05 and 0.04, respectively), and significantly increased for IL-6 and IL-8 (p = 0.03 and 0.01, 

respectively), while for the remaining majority of cytokines (IL-12p70, IL-15, IL-23 and TNF-α) there was no 

significant change (p > 0.10).  There was no significant difference in the expression of IL-10, used here as a 

mediating cytokine between the IIR and AIR state variable nodes (p = 0.36).  For the cytokines belonging to 

the AIR aggregate set, GWI veterans showed a marginally significant increase in IL-2 (p = 0.10), a 

significant increase in IFN-γ (p = 0.02), and a highly significant increase in IL-13 (p < 0.01).  IL-4, IL-5 and 

TNF-β did not show any significant changes between groups (p > 0.10). 

 

Overall, the experimental results used here indicate that male GWI subjects present with low TEST, 

hypercortisolism, and an increased expression in the majority of cytokines related to the AIR. To compare 

against model predictions steroid and cytokine values found to be significantly higher in GWI patients were 

assigned a discrete value of 1, while those found to be significantly lower were valued at -1.  Those showing 

no significant change were valued at 0.  Experimental cytokine measurements were scored and aggregated 

into cytokine sets as described above. Comparison of these state variables showed a 40% match between 

GWI experimental data and the nominal SS0(HC) stable state predicted by the HPA-Immune-HPGa 

iteration of the model. In the case the predicted steady state SS2, described by low TEST, high CORT, high 

AIR values, there was a 60% match with experimental data for the GWI condition (Figure 5).  While, the 

model shows a difference between the low ACTH, high GR1 and GRD1 steady state SS1 and the nominal 

steady state SS0(HC), the experimental markers do not allow for these states to be distinguished.  Thus, 

measured endocrine-immune profiles for GWI show a 40% match with predicted steady state SS1.          

 

3.6 Clinical Indicators of the CFS Attractor 

Comparison of endocrine marker expression for female CFS patients and HCs showed significantly lower 

levels of CORT in blood (p = 0.05), and a marginally significant increase in EST levels (p = 0.09) for the 
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fatigued group.  Among cytokines belonging to the IIR set, levels of IL-8 were significantly lower in CFS 

subjects  (p = 0.02), lower with high significance for IL-15 (p < 0.01), significantly higher for IL-1a and IL-1b 

(p = 0.04, 0.02), and higher with high significance for IL-6 and IL-12p70 (p < 0.01). IL-23 and mediating 

cytokine IL-10 showed no significant change.  Of the AIR cytokines, IL-4, IL-5 and TNF-β all showed highly 

significant elevations in expression (p < 0.01), whereas IL-13 levels were significantly lower in CFS (p = 

0.01).  IFN-γ and IL-2 showed no significant changes.  

 

Taken together, experimental measurements indicated that female CFS patients presented with high EST, 

hypocortisolism, and with a spectrum of altered cytokine levels. As in the case of GWI, the average 

concentration of all cytokines falling within state variable set was rounded to the nearest integer and 

projected onto a discrete scale. Comparison showed a 60% match between CFS experimental data and the 

nominal (SS0(HC)) stable state predicted by the HPA-Immune-HPGc iteration of the model.  There is 0% 

agreement with the low EST, high CORT and high AIR steady state SS2, which was found to closely 

resemble the GWI profile.  However, there was a 100% match between measured levels of endocrine-

immune markers in CFS subjects and the high EST, low CORT, nominal immune steady states SS3, SS4 

and SS5.  As there are no clinical markers to separate the SS3, SS4 and SS5 model states they are 

referred to collectively (Figure 6).  As with GWI, the low ACTH, high GR1 and GRD1 steady state SS1 and 

the nominal steady state SS0(HC), cannot be distinguished using the experimental data, and are also 

considered collectively.  Thus, the measured CFS endocrine-immune profile showed a 60% match with 

predicted steady state SS1.   

 

Discussion 

Multiple stable states are prime characteristics of systems displaying feedforward and feedback 

mechanisms, and play a critical part in guiding the complex dynamics observed in biology.  Modeling these 

complex systems can be quite challenging in the face of missing information regarding the stoichiometry 

and in vivo kinetics in humans, however there is an abundance of connectivity data describing the “wiring” 

of these biological circuits.  To make use of this wealth of information we have applied a discrete state 

representation to the neuroendocrine immune system based solely on biological connectivity found in the 
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literature and a set of ternary logical rules. When this approach was applied to the conventional stand-alone 

HPA axis model the discrete state representation failed to produce multistability.  This is consistent both 

with previous ordinary differential equation models [21-26] and the analysis of Thomas [29], which 

demonstrate that the presence of positive feedforward/feedback loops generates multiple stable states.  

Indeed, addition of the positive GR-GRD dimerization feedback loop generated a second stable state 

characterized by low ACTH, CORT and high GR-GRD. This is also consistent with the ordinary differential 

equation based models used by Gupta et al. [27] and Ben Zvi et al.  [16]. Interestingly, when the GR-GRD 

feedback loop is added to the HPA axis in the HPA-HPG models, the original low CORT state found by 

Gupta et al. [27] disappears.  This also occurred with the HPA-Immune model.  This is a direct result of the 

state transition logic applied to the system.   When multiple inputs determine the level of CORT all inputs 

must be low for CORT to drop, not just the level of ACTH as prescribed by Gupta et al. [27] and Ben Zvi et 

al. [16].  The hypocortisolic condition can be regained when neighboring regulatory systems are included, 

such as the female HPG axis.  Thus, in simple models the GR-GRD loop is a necessary component to 

produce mutlistability, however in more complex regulatory circuits this feedback loop becomes redundant 

and is not required to produce multiple attractor states.       

 

Gender appears to play an important role in supporting a hypocortisolic condition.  Due to the suppressive 

actions of the male gonadal system in regulating itself and the HPA axis, a low CORT state is never 

available to the male, while the ability of the female sex hormone system to be both an inhibitor and/or 

activator readily supports the presence of a hypocortisolic condition.  In the absence of the GR-GRD 

positive feedback loops on both the HPA and HPG axes, the female gonadal system is capable of 

generating a low CORT stable state, when the HPG axis inhibits the HPA axis while promoting itself.  While 

literature suggests that this is a configuration that is available to the female gonadal system during a certain 

phase of the menstrual cycle, it remains to be confirmed experimentally.  When the GR-GRD feedback loop 

is added to both the HPA and HPG axis multiple hypocortisolic states become available to the female in all 

wiring configurations save the case when the wiring is as shown for the male (i.e. the HPG inhibits both 

itself and the HPA).  Interaction with the immune system also appears to play a significant role in 

determining abnormal CORT levels.  While our models are very coarse grained in regard to the immune 
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system, they do suggest an important role for immune system feedback in sustaining hypercortisolic 

conditions.  In our models CORT exerts a suppressive action on the IIR system while promoting the AIR.  In 

turn, positive feedback by certain components of the immune system further elevates CORT levels leading 

to a hypercortisolic steady state.  While, inclusion of the GR-GRD feedback loops on the HPA and immune 

system did yield additional steady states, it did not result in any significant changes to the profile in regards 

to CORT levels. The integrative model including the HPA and HPG axes and the simple immune system 

generates a hypercortisolic state in all 4 models of the HPG axis, and a hypocortisolic state only in model c 

of the HPG axis.  The hypocortisolic states found in the HPA-GR-HPG-GR models are removed due to the 

presence of the stimulatory effects of the immune system on the HPA in all cases save for model c of the 

HPG. Again, the inclusion of the GR-GRD feedback loops on the HPA and HPG did yield additional steady 

states, but did not result in any significant changes to the system profiles.   

 

These findings suggest that hypercortisolism is inextricably linked to an imbalance in the immune response. 

This is consistent with notions that GWI may be due to a systemic imbalance in immune signaling [51-53]. 

For example, Skowera et al. measured intracellular production of cytokines in peripheral blood and found 

ongoing Th1-type immune activation in symptomatic Gulf War Veterans compared to healthy counterparts 

[52]. More recent work confirms this finding while also suggesting that this may occur in the more complex 

context of a mixed Th1:Th2 response [51].  Additionally, Whistler et al. found evidence of innate immune 

involvement with GWI subjects exhibiting impaired immune function as characterized by decreased NK 

cytotoxicity, altered gene expression associated with NK cell function, altered pro-inflammatory cytokines, 

and T-cell ratios compared to control subjects [53].  This study also found dysregulated mediators of the 

stress response (including salivary cortisol) further suggesting a connection between altered cortisol levels 

and immune imbalance in GWI subjects.  Conversely conditions involving hypocortisolism may be more 

strongly related to sex steroid suppression of the HPA axis and promotion of HPG function, a configuration 

seemingly available only to female subjects. This would suggest that the hypocortisolism seen in diseases, 

such as CFS [54-56], may be a result of the complexity afforded to the interaction between the HPA and 

HPG in female subjects, and may be an explanation for the reported prevalence of such diseases in women 

[57-62].  Indeed, these authors report that approximately 70% of observed CFS patients are women. 
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While certainly more comprehensive than their predecessors, these models remain relatively coarse 

representations of the interplay between the endocrine and immune systems. Misalignment with 

experimental data, in particular in the case of GWI, may stem from several limitations. First the discrete 

logic of the model is based on 3 states only making it impossible to distinguish between high and very high 

or low and very low. Misalignment may also be the result of missing interactions in the model regulatory 

network.  The missing interactions may be located within the immune network itself, as immune cells have a 

complex crosstalk involving multiple cytokines [63].  However, the missing interactions may also involve 

systems that are not currently modeled, such as the role of key neurotransmitters linking the brain and 

central nervous system with the HPA axis and the immune system. For example, norepinephrine and 

epinephrine stimulate the β2-adrenoreceptor-cAMP-protein kinase A pathway inhibiting the production of 

Th1/proinflammatory cytokines and stimulating the production of Th2/anti-inflammatory cytokines causing a 

selective shift from cellular to humoral immunity [64,65].  Additionally, lymphocytes express most of the 

cholinergic components found in the nervous system and may be stimulated by or release acetylcholine 

thus constituting a cholinergic system, separate from cholinergic nerves, that regulate immune function [66]. 

 Similarly, as hypocortisolic diseases do not only occur in females the inability of our model to predict 

hypocortisolic states in males is an indication that low CORT states in males may be due to finer scale 

interactions between the HPA and HPG axes, or connections to other systems, such as the brain, that are 

not modeled here.  As an example, neuropeptide Y, a molecule found in the nervous system that activates 

and stimulates the stress response, is not included in our model, but recently has been shown to play a role 

in CFS [67].  

 

The simple models presented here illustrate the importance of an integrative approach to understanding 

complex illnesses. Further refinement of the model to include more detailed description of interactions within 

and between the HPA, HPG and immune systems could extend its applicability to other illnesses as would 

the incorporation of other key systems such as the brain and central nervous systems. Yet, even with the 

coarse-grained co-regulation networks investigated we found numerous stable resting states that differ 

significantly from normal and were indicative of complex and persistent regulatory imbalances.  Findings 
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such as this support the use of an alternate model for disease, one which is not necessarily associated with 

failure of individual components, but rather with a shifts in their coordinated actions away from normal 

regulatory behavior. Response to exercise and other stressors has the potential to be very different in these 

new regulatory regimes. This is something that we have observed firsthand in our work with human GWI 

and CFS subjects [68]. As these models are based on currently documented knowledge of human 

physiology and regulatory biochemistry they are necessarily incomplete. They may nonetheless provide 

enough detail to identify simple and robust treatment avenues that would enable the body to recall its 

normal regulatory mode and naturally draw itself back into a more normal homeostasis.     
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Figure 1:  The stand-alone HPA models.  (A) HPA model. (B) HPA-GR model.  

 

Figure 2: The HPA-HPG models.  (A) HPA-HPGa. (B) HPA-HPGb.  (C) HPA-HPGc.  (D) HPA-HPGd.   

 

Figure 3:  The HPA-Immune model.   

 

Figure 4:  The HPA-GR-Immune-HPG-GR models.  (A) HPA-GR-Immune-HPGa-GR.  (B) (B) HPA-GR-

Immune-HPGc-GR. Note: HPA-GR-Immune-HPGb-GR and HPA-GR-Immune-HPGd-GR may be found in 

supplementary information Figure S7. 

 

Figure 5: Clinical indicators of the GWI attractor. Comparison of HPA-GR-Immune-HPGa model steady 

states with male GWI clinical data expressed in terms of model nodes. 

 

Figure 6: Clinical indicators of the CFS attractor. Comparison of HPA-GR-Immune-HPGc model steady 

states with female CFS clinical data expressed in terms of model nodes. 
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Table 1: Steady States of Key HPA-axis models.  White – nominal state (0); Green – high state (1); Red – 

low state (-1); Grey – N/A to the model) 
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Appendix B: 
 
Excerpts from Methods section, Tables and Figures from:  
 
Fritsch P, Craddock TJA, Smylie AL, Folcik Nivar VA, Fletcher MA, Klimas NG, de Vries G, Broderick 
G. A Study of Multiple Homeostatic Regimes in a Discrete Logic Model of Immune Signaling. 2012. In 
preparation. 
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Excerpt from Methods  

A Theoretical Immune Signaling Network 

Based on the work of Folcik et al. (2011), a wiring diagram was constructed for the interactions between 

immune cells and their cytokines [Figure 1]. Cytokines under consideration in this study include interleukin 

(IL)-1, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-13, IL-23, IL-27, interferon (IFN)-γ, and tumor necrosis 

factor (TNF)-α. Because of the great number of cytokines utilized by the immune system, some of these 

cytokines must be grouped together into a single node so as not to exceed computational limitations. In 

accordance with Folcik et al. (2011), cytokines were grouped into either a monokine (MK) or cytokine (CK) 

group. MKs represent the cytokines released primarily by the monocytes (DCs) and CKs represent the 

cytokines released by the lymphocytes (NK cells, Th cells, and CTLs). MK1 and CK1 are pro-inflammatory 

cytokine groupings, whereas MK2 and CK2 are anti-inflammatory cytokine groupings. See Table 4 for the 

cytokine groupings used. It should be noted that the MK2 node can also represent the anti-inflammatory 

dendritic cells, however, since these dendritic cells have only one input (Infection) and only one output 

(MK2), these 2 nodes can be compressed into a single node consisting of the MK2 cytokines. 

 Although most of the immune cells exhibit numerous levels of activation, since they will eventually 

convert to a state where they release the cytokines of interest, they can be condensed into a single node, 

capable of being downregulated (-1), nominal (0), or upregulated (1). For example, Th1 cells start as naïve 

germ cells, which differentiate to various levels of effector cells. Effector cells release cytokines or mature 

into memory cells. Since we are only concerned with the cytokines these cells release, a single node can 

represent all activation levels of Th1 cells. 

Even though Folcik et al. (2011) includes macrophages, Tregs, B cells, and Th17 cells in their 

model, these cells were not essential in attaining any additional or interesting stable attractor states. For 

example, B cells primarily release types of immunoglobulins (antibodies), which are not measured in the 

patient cohorts for GWI and CFS. Therefore, including B cells in this model would not enhance the potential 

alignment with the clinical data. Also, some of these cell populations included by Folcik et al. (2011) do not 

have a substantial feedback role with the majority of the immune response. For example, Th17 cells release 
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predominantly IL-17, which does not exert significant feedback on the other immune cells included in this 

model. 

Next, the hormonal inputs of cortisol and testosterone were added to the wiring diagram [Fig 2]. 

Cortisol acts to suppress NK cell activity (Bush et al., 2012), Th1 activity (Liberman et al., 2009), and 

inflammatory DC activity (Zen et al., 2011). Cortisol also has an effect on Th2 cells, but in a more indirect 

way than the other cells previously mentioned. Cortisol acts on naïve T-cells to repress both the Th1 

promoting transcription factor, T-bet, and the Th2 promoting transcription factor, GATA-3, although the 

suppressive effect on T-bet is much stronger than the suppressive effect on GATA-3. Therefore, if T-cells 

are already committed to differentiating, a Th2 favored shift in T-cell development is observed with long-

term exposure to cortisol, which can be characteristic in chronic illnesses (Liberman et al., 2009). 

Consequently, cortisol is assumed to have a promoting effect on Th2 cells.  

 It has also been demonstrated that the pro-inflammatory cytokines, predominantly IL-1, IL6, and 

TNF-α, activate the HPA axis at the hypothalamic level by inducing CRH secretion consequently leading to 

increased release of ACTH and eventually cortisol (Cutolo, 2004). 

In regards to the male HPG axis effects on the immune system, studies have shown that 

testosterone and other androgens exert a suppressive effect on the IL-6 gene, thereby decreasing its 

synthesis (Cutolo, 2004). Testosterone also acts to enhance the Th1 response and activate CTLs 

(González et al., 2010). Cytokines can also exert negative feedback on the male HPG axis. It has been 

shown that receptors for the pro-inflammatory cytokines, IFN-γ and TNF-α, exist on male leydig cells and 

act to decrease the production of testosterone. As well, TNF-α has been shown to decrease the release of 

GnRH in the hypothalamus and LH in the pituitary gland eventually causing a decrease in testosterone 

levels (Foster et al., 2003). 

 Not only is there cross talk between hormonal axes and the immune system, but also between the 

hormonal axes. For example, the HPA and the HPG axes have a negative effect on each other. It has been 

observed that testosterone, via its androgen receptor, will inhibit the higher levels of the HPA axis (Viau, 
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2002). Furthermore, cortisol has been shown to suppress the HPG axis, inhibit the effects of testosterone, 

and downregulate androgen receptor expression (Mehta and Josephs, 2010). 

From this more completely represented diagram, we can write out the image vectors, , for 

each node [Table 5]. An in-house Python script was used to analyze this state network.  

Discrete Encoding of Clinical Data 

Once the simulation returns the stable attractor states, the predicted states are compared against 

clinical data for GWI and CFS. Using a cohort of 27 GWI affected males, 17 CFS affected males, and 29 

healthy control males, cytokine levels were measured at rest in IL-12, IL-1a, IL-1b, IL-8, IL-10, IL-4, IL-6, IL-

23, IFN-γ, IL-2, TNF-α, IL-5, and IL-13. Levels of cortisol and testosterone were also measured in these 

cohorts. Note that only cytokine levels are being compared because data on cell populations was not 

available from the cohort data. Also, the node MK27 was not included in this comparison because levels of 

IL-27 were not included in this study. The log base 2 transform of this data was taken and the average value 

of these log transforms was recorded for each cohort. A one tailed t-test was performed to ascertain 

whether there is a significant increase or decrease in cytokine or hormone levels between healthy controls 

and GWI or CFS men. Ternary values are assigned to each cytokine based on their p-values. If the relative 

levels of cytokines in GWI or CFS patients are found to be insignificantly different from those recorded in the 

healthy control (p-value>0.10), a ternary value of 0 is assigned in order to match the model’s ternary 

system. If the relative levels of cytokines in GWI or CFS patients are found to be significantly different from 

those recorded in the healthy control (p-value 0.10), a ternary value of -1 or 1 is assigned based on the 

relative difference between the log transformed means of GWI or CFS patients’ cytokines/hormones and 

healthy controls’ cytokines/hormones. For instance, if the log transformed mean of the GWI/CFS patients’ 

cytokines/hormones is higher than the log transformed mean of the healthy controls’ cytokines/hormones 

and significance is found (p-value 0.10), then a value of 1 is assigned to that node. As well, if the log 

transformed mean of the GWI/CFS patients’ cytokines/hormones is lower than the log transformed mean of 

the healthy controls’ cytokines/hormones and significance is found (p-value 0.10), then a value of -1 is 

assigned to that node [this data is summarized in table 6 for GWI and in table 7 for CFS]. Since groups of 

! 

"

! 

"

! 

"
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cytokines are modeled instead of individual cytokines (ie MK1, MK2, CK1, and CK2), the ternary values 

represented by the individual cytokines must be aggregated into one ternary value representing the groups 

of cytokines. Taking the average of the ternary values for each cytokine or hormone within the grouped 

nodes and then rounding that value to the nearest integer represents the overall ternary value for that node 

in the model [Table 8]. These numbers are used for comparison between clinical data and the predicted 

values of the model.  
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Figure Captions 

Figure 1: Wiring Diagram of the interactions between innate cells (yellow), adaptive cells (orange), and the 

cytokines they produce (blue). The Infection node (grey) is a necessary component of the program, but was 

kept consistently nominal so it would have no effect on the overall network as per the logical function. Green 

connections indicate an activating influence and red connections indicate an inhibiting influence. 

Figure 2: Wiring Diagram for the immune network with hormonal inputs from cortisol and testosterone 

(purple). The nodes, Stress, Infection, and Male HPG axis (grey) were necessary components of the 

program required as inputs, but they were kept consistently nominal so they would have no effect on the 

overall network as per the logical functions. Green connections indicate an activating influence and red 

connections indicate an inhibiting influence. 

Figure 3: Steady state 1 (SS1) as predicted by the simulation. Baseline refers to a value of 0, above 

baseline refers to a value of 1, and below baseline refers to a value of -1. 

Figure 4: Steady State 2 (SS2) as predicted by the simulation. Baseline refers to a value of 0, above 

baseline refers to a value of 1, and below baseline refers to a value of -1. 

Figure 5: Discretized clinical data for GWI compared to the two predicted diseased attractor states (SS1 

[black] and SS2 [grey]). 

Figure 6: Discretized clinical data for CFS compared to the two predicted diseased attractor states (SS1 

[black] and SS2 [grey]). 

Figure 7: Sammon projection of the hamming distances between all five states. Green dots represent the 

predicted model attractor states (SS0(HC), SS1, and SS2). Red dots represent the aggregated clinical data 

for GWI and CFS. Axes represent the aggregated ternary (-1, 0, 1) scores 1 and 2 defined such that the 

observed Cartesian distances between the points in 2 dimensional space is the same as the hamming 

distances between the points in 5 dimensional space. 
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Table 1: Ternary HIGH/LOW PASS operator 

B 
A B 

-1 0 1 

-1 0 0 -1 

0 0 0 -1 A 

1 1 1 0 

 

Table 2: Ternary OR operator 

B A B 

 -1 0 1 

-1 -1 0 1 

0 0 0 1 A 

1 1 1 1 

 

Table 3: Ternary NOT operator 

A A 

-1 1 

0 0 

1 -1 
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Table 4: Aggregated cytokine groupings from Folcik et al. (2011). 

Node Title (Grouping) Cytokines Included 

MK1 IL-12, IL-1, and IL-8 

MK2 IL-10 and IL-4 

MK6 IL-6 

MK23 IL-23 

MK27 IL-27 

CK1 IFN-γ, IL-2, and TNF-α 

CK2 IL-4, IL-5, and IL-13 
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Table 5: Image vector equations for each node in the system shown in figure 2 including references. 

 

 Node Image Vector Reference 

MK1  Folcik et al. (2011) 

MK2 (DC2)  Sia (2005) 

MK6  Folcik et al. (2011), Cutolo 
(2004) 

MK23  Folcik et al. (2011) 

MK27  Folcik et al. (2011) 

CK1  Folcik et al. (2011) 

CK2  Folcik et al. (2011) 

NKs  Folcik et al. (2011), Bush 
et al. (2012) 

CTLs  Folcik et al. (2011), 
Gonzalez et al. (2010) 

Th1  

                       

Folcik et al. (2011), 
Gonzalez et al. (2010), 
Sia (2005), Diehl and 
Rincon (2002), O'Garra et 
al. (2004), Liberman et al. 
(2009) 

Th2  

                        

Folcik et al. (2011), Sia 
(2005), Liberman et al. 
(2009), Kamiya et al. 
(2011), Sia (2005) 

DC1  

                         

Folcik et al. (2011), Zen et 
al. (2011) 

 

CORT  Cutolo (2004), Viau 
(2002) 

TEST  Foster et al. (2003), 
Mehta and Josephs 
(2010) 

! 

MK(t +1) = (DC1(t))

! 

MK2(t +1) = (Th2(t))

! 

MK6(t +1) = (DC1(t))"(TEST(t))

! 

MK23(t +1) = (DC1(t))

! 

MK27(t +1) = (DC1(t))

! 

CK1(t +1) = (NKs(t)"CTLs(t)"Th1(t))

! 

CK2(t +1) = (Th2(t))

! 

NKs(t +1) = (MK27(t))"(CORT(t))

! 

CTLs(t +1) = (MK1(t)"CK1(t)"TEST(t))

! 

Th1(t +1) = (MK1(t)"MK27(t)"TEST(t))#(MK2(t)"

! 

MK6(t)"CK2(t)"CORT(t))

! 

Th2(t +1) = (MK2(t)"MK6(t)"CK2(t)"CORT(t))#

! 

(MK27(t)"CK1(t))

! 

DC1(t +1) = (MK23(t)"MK27(t)"CK1(t))#(MK2(t)"

! 

CORT(t))

! 

CORT(t +1) = (MK1(t)"MK6(t)"CK1(t))#(TEST(t))

! 

TEST(t +1) =¬(CK1(t)"CORT(t))
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Table 6: Statistical significance of the one-tailed t-test performed between healthy control (HC) cytokines 

and hormones versus GWI cytokines and hormones. Assigned ternary values are also listed.  

Cytokine/ 

Hormone 

Average HC 

Log Transform 

Average GWI 

Log Transform 

p-value Assigned 
Ternary Value 

IL-12 2.15 1.68 0.22 0 

IL-1a 2.94 2.21 0.053 -1 

IL-1b 4.06 3.21 0.035 -1 

IL-8 2.46 3.85 0.010 1 

IL-10 3.14 3.00 0.36 0 

IL-4 1.71 1.57 0.38 0 

IL-6 2.26 3.10 0.033 1 

IL-23 6.70 7.69 0.11 0 

IFN-γ  1.68 3.22 0.022 1 

IL-2 2.13 2.92 0.10 1 

TNF-α  2.95 3.12 0.38 0 

IL-5 2.22 2.69 0.20 0 

IL-13 1.40 2.61 0.0022 1 

Cortisol -3.09 -2.58 0.094 1 

Testosterone 8.81 8.48 0.033 -1 

Free 
Testosterone 

6.07 5.92 0.17 0 
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Table 7: Statistical significance of the one-tailed t-test performed between healthy control (HC) cytokines 

and hormones versus CFS cytokines and hormones. Assigned ternary values are also listed. 

Cytokine/ 

Hormone 

Average HC 

Log Transform 

Average CFS 
Log Transform 

p-value Assigned 
Ternary Value 

IL-12 2.15 1.96 0.41 0 

IL-1a 2.94 2.25 0.19 0 

IL-1b 4.06 4.01 0.46 0 

IL-8 2.46 3.62 0.067 1 

IL-10 3.14 3.60 0.14 0 

IL-4 1.71 2.42 0.26 0 

IL-6 2.26 2.12 0.40 0 

IL-23 6.70 8.37 0.029 1 

IFN-γ  1.68 2.69 0.22 0 

IL-2 2.13 4.26 0.0026 1 

TNF-α  2.95 3.49 0.23 0 

IL-5 2.22 1.59 0.18 0 

IL-13 1.40 1.90 0.13 0 

Cortisol -3.09 -1.75 0.0086 1 

Testosterone 8.81 8.52 0.074 -1 

Free 
Testosterone 

6.07 5.12 0.033 -1 
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Table 8: Average of the assigned ternary values in tables 6 and 7 within their designated model groupings 

for clinical data in GWI and CFS. 

Model Cytokine/Hormone GWI CFS 

MK1 0 0 

MK2 0 0 

MK6 1 0 

MK23 0 1 

CK1 1 0 

CK2 0 0 

CORT 1 1 

TEST -1 -1 
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Figure 1 
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Figure 2 
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Figure 3 

 

 

MK1  MK23 MK27  Th1  DC1 

St
at
e 

Node 

SS1 



 70 

Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

 

 

 

 

 

 


