
Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to the Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

2/11/2013 Final Report 3/1/2009 to 11/30/2012

Detecting Hidden Communications Protocols

FA9550-09-1-0173

Richard R Brooks

Clemson University
PO Box 340915
Clemson, SC 29634-0915

Air Force Office of Scientific Research/RSL
875 North Randolph Street
Suite 325, Room 3112
Arlington, VA 22203-1768
Dr. Robert Herklotz AFRL-OSR-VA-TR-2013-0084

Distribution A: Approved for Public Release

The work funded by the grant is structured in three parts: We analyzed the vulnerability of the current generation anonymity tools to
traffic analysis attacks. We specifically concentrate on SSH security and The Onion Router (Tor) anonymity tools. Our analysis used
deterministic hidden Markov models (HMMs). We used traffic timing data to analyze one of the most sophisticated and popular
types of cybercrime tools – botnet. We presented two botnet detection methods: centralized botnet traffic detection using HMMs and
probabilistic context-free grammars (PCFGs) for centralized and P2P botnet traffic detection. Finally, a hybrid network security
scheme that combines the advantages of widely deployed security technologies (intrusion detection systems (IDS) and honeypots)
was proposed. The scheduling problem of the security system was modeled as an average decentralized partially observable Markov
decision process (DEC-POMDP) and solved using our nonlinear programming (NLP)-based solution method.

U U U U

Reset

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year
and be Year 2000 compliant, e.g. 30-06-1998;
xx-06-1998; xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's
thesis, progress, quarterly, research, special, group
study, etc.

3. DATES COVERED. Indicate the time during
which the work was performed and the report was
written, e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996;
May - Nov 1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume
number and part number, if applicable. On classified
documents, enter the title classification in
parentheses.

5a. CONTRACT NUMBER. Enter all contract
numbers as they appear in the report, e.g.
F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the
report, e.g. 61101A.

5d. PROJECT NUMBER. Enter all project numbers
as they appear in the report, e.g. 1F665702D1257;
ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report.
The form of entry is the last name, first name, middle
initial, and additional qualifiers separated by commas,
e.g. Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned
by the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21-PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and
monitoring the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the
report. If additional limitations/ restrictions or special
markings are indicated, follow agency authorization
procedures, e.g. RD/FRD, PROPIN, ITAR, etc. Include
copyright information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition
number, etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases
identifying major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the
top and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the
abstract. Enter UU (Unclassified Unlimited) or SAR
(Same as Report). An entry in this block is necessary if
the abstract is to be limited.

Standard Form 298 Back (Rev. 8/98)

AFOSR Final Report

Richard R. Brooks

February 11, 2013

Chapter 1

Introduction

This document is the final report for the Detecting Hidden Communications Protocols AFOSR grant with

R. R. Brooks form Clemson University as PI. The work funded by the grant is structured in three parts:

I. We analyzed the vulnerability of the current generation anonymity tools to traffic analysis attacks. We

specifically concentrate on SSH security and The Onion Router (Tor) anonymity tools. Our analysis

used deterministic hidden Markov models (HMMs).

II. We used traffic timing data to analyze one of the most sophisticated and popular types of cybercrime

tools – botnet. We presented two botnet detection methods: centralized botnet traffic detection

using HMMs and probabilistic context-free grammars (PCFGs) for centralized and P2P botnet traffic

detection.

III. Finally, a hybrid network security scheme that combines the advantages of widely deployed security

technologies (intrusion detection systems (IDS) and honeypots) was proposed. The scheduling problem

of the security system was modeled as an average decentralized partially observable Markov decision

process (DEC-POMDP) and solved using our nonlinear programming (NLP)-based solution method.

Four demonstrations were implemented. The first analyzed timing patterns in SSH data streams. We

were able to establish sets of discrete time intervals that we could use to infer HMMs of network traffic

patterns. Using our HMM statistical hypothesis extensions, we were able to reliably determine the language

being typed interactively. Our HMM approach was shown to be able to learn models of network protocols

tunneled through encrypted pipes and identify when the protocol is being used.

1

The second demonstration used timing patterns to break Tor anonymity. Inter-packet delays were col-

lected and used to infer HMMs. We applied a model confidence test [33] to check if the inferred model is

representative of the underlying process. By restricting the communication protocol model to the subset of

the HMM that was statistically significant, we were able to infer a HMM that was a faithful representation

of the underlying protocol. If we monitored two points on the network used by the same Tor session, we

were able to identify that they used the same protocol. If we further traced the protocol’s path through the

Markov model at the two points, it becomes clear that the two points are instances of the same protocol.

In the third demonstration, we used our HMM inference and detection approaches for centralized botnet

traffic detection. In this application, we also applied traffic timing analysis, because inter-packet timings

of botnets relate to underlying botnet behaviors. Therefore, we used HMMs for automated network traffic

analysis to detect C&C communications of centralized botnets. We focused on Zeus botnets (Zbots), one of

the largest HTTP-based botnets. Once HMMs were inferred, they were used to detect the botnet communi-

cations traffic. Using the HMMs confidence intervals approach [6], we detected whether or not a sequence of

traffic data is botnet traffic. Experimental results on traffic data collected on real-world botnets show that

this approach can dependably distinguish botnet traffic from normal traffic.

To avoid the single-point failure disadvantage of the centralized structure, hierarchical botnet uses P2P

techniques [1,2,22]. In the last demonstration, we attempted to apply stochastic grammars to P2P hierarchi-

cal botnet traffic detection. We first constructed hierarchical P2P botnet using Clemson campus computer

cloud (Palmetto cloud). Using the HMM detection approach, we found that HMMs can not detect recursive

patterns in simulated P2P botnet traffic timings. Therefore, we applied (probabilistic context-free grammars)

PCFGs detection approach. The experiment results show that PCFGs have accurate detection rates.

2

Chapter 2

Demonstrations

2.1 Timing Side Channel Analysis for Language Detection in Se-

cure Shell (SSH) Tunneled Session

If interactive SSH is used, then timing analysis can determine which language is being used. To illustrate

this, we set up an experiment where text was transmitted through an SSH tunnel with the sequence of

inter-keystroke delays following statistics collected during previous research [15,16]. We then used the zero-

knowledge HMM inference algorithm [26] to construct a HMM consistent with the language structure. The

inter-keystroke time delays for the two languages differ due to a variety of factors including, but not limited

to:

• keyboard layout

• character/ key-pair frequencies due to language

• muscle memory

• respective grammars

The constructed HMM was used to identify if English and/or Italian is present in text sent through the

encrypted pipe. When the text was transmitted, timing data is monitored. These values corresponded to

HMM transitions, which were used to compute steady-state probabilities. This allowed us to determine how

well the text timing statistics fit the language patterns, in this case, Italian/English. The degree of similarity

was measured using confidence intervals [6]. This process is detailed in Figure 2.1.

3

Figure 2.1: Language Data-Flow

2.1.1 Zero-Knowledge HMM Inference

Traditionally, the Baum-Welch algorithm is used to infer the state transition matrix of a Markov model

and symbol output probabilities associated with the states, given an initial Markov model and a sequence

of symbolic output values [23]. To construct a HMM without a priori structural information, we use the

causal-state splitting reconstruction (CSSR) algorithm [27, 28, 31], which derives the HMM state structure

4

and transition matrix from available data samples. CSSR finds statistically significant groupings of the

training data that correspond to HMM states. This is accomplished by analyzing the conditional next

symbol probabilities for a data window that slides over the training data. This data window increases

gradually from a size of two to an a priori known maximum window size L. The state structure of the HMM

is inferred from the symbol groupings of length L by adding those states to the model that lower system

entropy [29, 30].

Except for the training data, the only initial information required to construct the HMM using CSSR

is the parameter L, which expresses the maximum number of symbols that are statistically relevant to the

next symbol in the sequence. We extend CSSR so that we determine parameter L with no prior knowledge

and therefore derive minimum entropy HMMs with no a priori information.

To find the correct string length L, we check to see that the HMM inferred using CSSR with string

length L is consistent with the model structure inferred using string length L. We verify the consistency of

the models by seeing if their interpretation of the symbolic dataset output χ by the process being analyzed

is consistent. If we use the notation GL to represent the HMM inferred with parameter L. Starting from

L = 2, we calculate the mappings of states to symbols for GL and those of GL+1 respectively. For each

state in GL paired with each state in GL+1, we determine how many times they agreed on the mapping of

symbols to states. Since there is no clear start state, we keep the largest value mL, which measures how

similar state machines GL and GL+1 are. If two HMMs assign the symbols in the training data to the same

states, then their interpretations are identical. The process repeats with increasing values of L producing a

new machine and value mL with each iteration. As L increases, the CSSR algorithm monotonically improves

the ability of the HMM GL to explain the training data. As the HMMs asymptotically approach the true

structure of the process that produced the data, the amount of agreement between GL and GL+1 increases.

When the correct value of L is found, there is no new information to be gained by using L+1. At this point,

the mapping of symbols to states will remain stable (i.e. mL = mL+1 = mL+2 = · · ·) and the process can

terminate.

The resulted algorithm is referred to as zero-knowledge HMM inference algorithm and detailed in [26].

In contrast to other techniques, our CSSR extensions create a minimum entropy model without any prior

knowledge of the underlying state structure. We tested our results using models where we are certain of the

value of L which is necessary for finding the true state structure of the input process.

5

2.1.2 English and Italian Detection

Our language structure HMMs were inferred from key-stroke data [15, 16] collected from native speakers of

English and Italian using their native keyboards. We extracted the keystroke dynamics of each language.

If there was no value for any key-pair, the neighbor list of the destination key was consulted. Since the

overlaps are too large to effectively distinguish between key-pairs, a clustering approach [11] was used to

find distinct classes of key-pairs. Our clustering approach gave us 10 distinct key-pair clusters for English.

Italian only had 4 clusters. We used the approach from [33] to determine both the significance of the models

and the volume of data necessary for creating a significant model. For the Italian data, a reconstruction

with a string length L = 3 was possible. We could only use L = 1 for the English data because creating a

significant model for L = 1 would have required a training set of over 11 million key-pairs. Our training sets

had approximately 1.1 million key-pairs.

Training data for HMM construction were collected from Project Gutenberg. Recent, (1900 or later),

texts were taken and preprocessed to remove case and special characters. The zero-knowledge approach

from [26] was used to extract HMMs from the training set. The resulting HMMs are shown in Figures 2.2

and 2.3.

Figure 2.2: English HMM (10 states, 100 transitions)

Using window-size calculations from [24], we found the minimum string length needed to differentiate

between the two models, with a 95% true-positive rate, was 77 symbols [25]. A set of 800 English and Italian

6

Figure 2.3: Italian HMM (64 states, 253 transitions)

windows were chosen to use for testing. We used the test data to determine the ability of the English and

Italian models to detect the language being used in interactive SSH sessions. The testing data was sent

through interactive SSH v2 connections. The detection routine used our English and Italian HMMs with

the confidence interval (CI) detection criteria [6]. The detection results are shown in Figure 2.4, 2.5, 2.6 and

2.7. In conclusion, the test was successful: using a threshold of 0.0% with the Italian HMM and 89.0% with

the English HMM it is possible to detect the presence of either language in a given sample string. That is, if

the CI analysis shows that more than 89.0% of the behavior of the English HMM is exhibited by the string,

it is English with a 5% false positive rate. This detection was performed in real-time and can be done from

a third node as well as the packet contents were not needed, merely the delays between them.

2.2 Detecting Protocols Tunneled through Tor

In this work, we applied statistical methods in pattern recognition to test the privacy capabilities of a very

popular anonymity tool known as The Onion Routing network (Tor) [9]. Since Tor is a low-latency system,

we applied timing analysis on Tor traffic.

2.2.1 Experiment Setup

A private Tor network shown in Figure 2.8 was implemented on standalone network. Custom client and

server programs were set up to communicate through this network. The client would connect to the server

7

Figure 2.4: English ROC – 95% CI

Figure 2.5: Italian ROC – 95% CI

and just listen. The server, once the client had connected, would send data packets to the client based on

a preloaded HMM. The model used by the server is depicted in Figure 2.9. The server randomly selected a

starting state. To send each packet, a transition was taken from the current state. If there was more than

one possible outgoing transition, the transition was chosen randomly, weighted on the probability of each

transition. Most importantly, the time between sending each packet depends on the symbol of the transition.

Each symbol was assigned a specified time delay in milliseconds and the server waited that amount of time

before sending the packet to the client.

We used the zero-knowledge HMM inference algorithm [26] to infer the HMM the server uses by collecting

8

Figure 2.6: English ROC – 95% CI – Statistics

Figure 2.7: Italian ROC – 95% CI – Statistics

the inter-packet timings on the client. The inter-packet time delays, preserved by Tor, were symbolized into

ranges and used to construct the models. Using the zero-knowledge HMM inference [26] algorithm, we created

HMMs of network processes tunneled through Tor. We followed the process described by the flowchart in

Figure 2.10 to reconstruct the HMM.

9

Figure 2.8: Private Tor Network

0

43

21

A(0.5)

C(1.0)

B(0.5)

C(1.0)

Z(1.0)
Y(1.0)

Figure 2.9: HMM Representation of the communication protocol

Figure 2.10: Flowchart summarizing the model construction process

10

2.2.2 Model Reconstruction

Figure 2.11 shows the HMM constructed for the first 200,000 packets. The model confidence test [33] was

then run on the model and showed that the required amount of data kept increasing with each set. This

was due to the noise (circuit failures and packet drops, etc) of the Tor connection. These glitches caused

the packet to arrive later than it should have. All of these events were very low probability and caused the

confidence test to increase the amount of data required.

To handle rare transitions and maintain model confidence, we used a threshold on asymptotic state

probabilities to prune them out [9]. Following the pruning process, the model in Figure 2.12 results with a

significance level of 0.01 (or 1%). By equivalent transformation, it turned out that, the model in Figure 2.12

is essentially the same as the original model in Figure 2.9. As a result, we have successfully inferred the

client the protocol used by the server by eavesdropping on the client.

2.2.3 Protocol Detection

After the construction of training models, detection is performed using confidence intervals approach for

HMMs [6]. New test data can be fed through a model to determine the intervals and estimate how well the

data matches the model. If a match is found, the state sequence, or path, can be used to uniquely describe

the data with respect to the model. By comparing these paths, Tor users can be identified. Packet data

from any two computers using the Tor network can be matched to a model and their state sequences can be

compared to give a statistical likelihood that the two systems are actually communicating together over Tor.

We perform experiments on our private Tor network to validate this. Results shows that communicating

systems could be identified with a 95% accuracy in our test scenario.

Our detection procedures can be use to break Tor anonymity by matching the timing data of network

streams of two or more systems. It is unique from more traditional approaches because they do not rely on

maximum likelihood to select the best match out of a set. We only need test data and a single model to

determine a statistical measure of how well that model represents the data. For path matching in the Tor

attack, we only need two systems both using Tor to tell if they are communicating together or with another

party. The adversary does not need to be a global observer. The attack can also be performed in real-time

provided that a matching model had already been constructed.

11

S0

S8

A(0.5)

S9

Z(0.0)

S33

B(0.5)

S35

Y(0.0)S1

Z(0.0)

S4

C(1.0)

S21

Y(0.0)

S22

A(0.0)

S6

C(0.88)

S37

A(0.12)

S3

Y(0.0)

S18

C(1.0)

S48

A(0.0)

S13

Z(0.0)

S38

B(0.0)

S14

A(0.04)

S19

Z(0.04)

S20

C(0.93)

S2

Y(0.11)

S10

Z(0.06)

S12

B(0.41)

S43

A(0.43)

S11

Y(0.07)

A(0.11)

Z(0.07)C(0.64)

S42

B(0.11)

Z(0.33)

S5

Y(0.17)

C(0.5)

Y(0.03)

C(0.94)A(0.03)

C(1.0)

C(0.5)

B(0.5)

C(0.5)

S17

Y(0.5)

S26

Y(1.0)

S7

Y(0.98)

S40

Z(0.02)

C(0.9)A(0.03)

S44

B(0.07)

S41

Z(0.8)

S47

A(0.2)

B(0.67)

A(0.17)

Y(0.17)

C(1.0)

Z(0.0)

S16

Y(1.0)

S27

B(0.0)

S32

B(0.5)

S34

A(0.5)

S45

Z(0.0)

S36

Y(0.0)

Z(0.02)

B(0.57)

S46

A(0.41)

Y(1.0)

Z(0.84)

Y(0.16)

B(0.51)

A(0.47)Z(0.01)

C(1.0)A(0.0)

Z(0.0)

B(0.0)

S50

Y(0.0)

C(1.0)

A(0.0)Y(0.0)

S23

Z(0.0)

S24

B(0.0)

C(1.0)

S29

Z(0.25)

S30

Y(0.75)

Y(0.95)

S31

B(0.05)

Z(0.56)

C(0.44)

Z(1.0)

Y(0.0)

Z(1.0)

S28

Z(1.0)

Z(0.11)B(0.44) A(0.44)

B(0.45)

A(0.35)

Z(0.08) Y(0.11)

S15

A(1.0)

A(0.13)

C(0.84)

S49

Z(0.03)

B(0.5)

A(0.25)C(0.25)

A(0.8)

B(0.2)

A(0.67)

B(0.33)

B(1.0)

Y(0.2)

B(0.4)

A(0.4)

Y(1.0)

Y(1.0)

S25

Y(1.0)

S51

C(1.0)

Z(0.07)

C(0.93)

Z(1.0)

S52

B(1.0)

S39

Z(1.0)

Z(1.0)

B(1.0)

Z(1.0)

Figure 2.11: Model that is reconstructed from first 200,000 packets of captured data

12

4

10

67

3

25

A(0.5) B(0.5)

C(1.0)

Z(1.0)

Y(1.0)

A(0.5) B(0.5)

C(1.0)C(1.0)

C(1.0)

Figure 2.12: Result after pruning low-probability states and transitions

2.2.4 Piercing the Cloud And Marking the Onion: Removing the Anonymity

of the Tor Network

In this work, we extend previous work done on removing anonymity from Tor. We explore previous techniques

for removing Tor’s anonymity developed on a private Tor network, and attempt to reproduce these results

on the global public network [3].

We first tried to replicate previous work on the global Tor network. We design multiple paths through

the network, so as to prevent any observer from being able to recognize a user based on the time delays

between packets. The idea is that multiple paths distort the timing data so as to stop the attacker from

recognizing the target. From experiment result, we find that this design is unable to be carried over to the

public network. This is mainly due to the level of jitter on the public network overwhelming our earlier

method for compromising Tor’s anonymity. This method also fails to be able to analyze the noise differences

between the different paths in the two and three path tests.

We develop a new method for compromising Tor’s anonymity by using a clustering algorithm to analyze

the data that we gathered via a side channel timing attack. Since the noise from the global Tor network

overrides any observable results, we use neural network as a clustering method to find different symbols in

the timing data. It finds data clusters that can be recognized despite the jitter in the global network. We

then use the recognizable timing patterns to build HMMs. Using these models we are able to recognize

network traffic patterns and reduce Tor’s anonymity.

We then establish the multiple paths through global Tor to prevent our side channel attack. Because

13

the paths don’t contain the same nodes, the packet delays are different. This successfully counters our side

channel attack and restores Tor anonymity.

2.3 Centralized Botnet Detection

2.3.1 Zbot Traffic

We used our zero-knowledge HMM inference and detection approaches for centralized botnet traffic detection.

We focus on Zeus botnets (Zbots) [2], one of the largest HTTP-based botnets. Every Zbot has a centralized

C&C server and the communication between the C&C server and bots uses HTTP. Figure 2.13 shows the

communication between the bot and the C&C server.

Figure 2.13: Botnet C&C communication

In this application, we also applied traffic timing analysis. Inter-packet delays of botnets relate to com-

mand execution time, idling time, contact period and other botnet activities, and therefore are a consequence

of botnet behaviors. Sudden changes in communication delays may affect inter-packet timings, however, by

checking model significance during HMM inference we remove the influence of this noise [?, 24]. Model sig-

nificance also ensures enough data is used to incorporate complete behaviors of bots. Furthermore, different

bots of the same botnet will have similar communication patterns. Therefore, we use HMMs to deduce

patterns in inter-packet delays, and apply inferred models to detect similar botnet traffic.

2.3.2 Zbot Detection

We used HMM approaches to detect Zbot traffic. The detection process is described in Figure 2.14. We set

up a standalone Zeus botnet to collect traffic data [20]. With the collected training data, we inferred the

HMM in Figure 2.15. This HMM is statistically significant according to the model confidence test [?].

14

Figure 2.14: Botnet traffic detection

Figure 2.15: HMM of the wild Zbot

Both real-world normal and testing botnet traffic data were then sent to the botnet HMM for detection.

Using the confidence interval approach, we obtain the detection ROC curve in 2.16a. With the optimal

threshold ([0, 0.667]), our approach gave 94:7% true positive rate and a 0.7% false positive rate. We also

compare our results with the autocorrelation approach in [14], which detects botnet traffic based on spatial-

temporal correlation of timing data in a local network. While their work checks the periodicity of the traffic

data, our approach checks underlying behaviors of the botnet. As shown in Figure 2.16b, our approach is

more accurate in detection.

2.4 P2P Botnet Traffic Detection

To avoid the single-point failure disadvantage of the centralized structure, hierarchical botnet uses P2P

techniques, in which a C&C server is set up to control a tree-structured computer network. We applied PCFG

to P2P hierarchical botnet traffic detection. We first tested our approach with two simulated hierarchical

botnets [20] and got the detection result in Figure 2.17. With a high true positive rate and a low false

15

(a) (b)

Figure 2.16: Detection ROC curves: (a) Zbot HMM detection ROC curve (95% CI); (b) Autocorrelation
detection ROC curve

positive rate, we can dependably detect hierarchical botnet traffic using our detection approach.

Figure 2.17: Simulated botnets detection results

We then applied PCFG to detect real-world P2P botnet traffic. We got a trace of traffic from Storm

botnet [13], one of the known P2P botnets. At one point, it accounted for 8% of all malware on Windows

systems. In a Storm botnet, the communications between bots may have similar or equivalent probability

distributions for malicious actions. Based on this analysis, we developed productions that explains Storm

botnet traffic patterns. We also used inter-packet timing delays as traffic patterns for Storm botnet. For

P2P botnets, inter-packet timings relate to malicious action timings, publicizing periods and other botnet

activity characteristics. In our application, since Storm traffic uses P2P, we are only interested in timings of

UDP packets. With this CFG, we can build a LALR parser to parse the symbolized traffic data sets. After

symbolization, we parse the training data sets to estimate a PCFG. Using the χ2 test, we detect whether

a data set matches the estimated PCFG. If a data set matches the PCFG, we conclude that this data set

generated by the Storm botnet. Using the χ2 critical value as a threshold and varying it, we plot the ROC

curve for detection. The curve is shown in Figure 2.18. It has optimal detection rate 100% TP rate and 0%

FP rate. Therefore, by using ROC curves, we can dependably distinguish Storm botnet traffic from normal

background traffic.

16

Figure 2.18: Storm botnet traffic detection ROC curve

2.5 Distributed Scheduling for Hybrid Security Scheme Combin-

ing IDS and Honeypot

New, flexible and adaptive security schemes are needed to cope with emerging security threats. We proposed

a hybrid network security scheme including host-based intrusion detection systems (HIDSs) and honeypots

scattered throughout the network. A honeypot is an activity-based network security system, which makes it

the logical supplement of the passive detection policies used by IDSs. Since the overhead introduced by the

security measures cannot be neglected, device scheduling is needed to balance between security performance

and resource consumption. We presented a fully distributed control scheme with the adoption of partially

observable Markov decision process (POMDP). This makes our scheme generic and flexible.

2.5.1 System Model

Intrusion detection and system emulation consume a large amount of energy and other resources, including

memory, processor usage and disk storage. Thus we need to balance security performance and the resource

cost by scheduling IDS and honeypot activities. The scheduling problem was modeled as a discrete-time

process. Assume a local area network (LAN) is equipped with K−H HIDSs and H honeypots. Without loss

of generality, we also assume the network topology is static. An example network is shown in Figure 2.19.

Suppose each HIDS can operate in three modes: monitor, prevention and sleep. The energy consump-

tion level of these three actions decreases successively. Similarly, the action space of a deployed honeypot

can be specified as monitor, analysis and sleep. Further analysis will be carried out if traffic anomalies

are detected. Let S(k)(t) denote the state of an arbitrary device k (HIDS or honeypot) at time t, we as-

17

Client workstation

Client workstation

Low-interaction

honeypot

Low-interaction

honeypot

IDS file server

Firewall

Router

HIDS appliance

IDS file server

Switch

Figure 2.19: Example distributed hybrid security scheme combining HIDSs with honeypots.

sume S(k)(t) = 〈X(i)(t), Y (k)(t)〉, where X(k)(t) represents the security condition and Y (k)(t) represents the

resource consumption level.

Each HIDS only monitors the machine it resides on, ignoring the rest of the network. As a decentralized

control scheme, the decision to activate a certain security device is based on its local security condition.

An intrusion alarm does not necessarily mean there is an attack, and vice versa. Intrusion detection can

make two types of errors: false positive (FP) and false negative (FN). Since the goal of intrusion detection

is to precisely differentiate the intrusions from legitimate behaviors, both errors are significant performance

indexes of IDSs and have been embodied in the observation probabilities.

In addition, the local state of each host in the network is closely related to the security posture of the

entire network. For instance, the activation of a honeypot will positively impact the network’s operation and

security by distracting adversaries away from the valuable resources in the LAN, and accordingly will mitigate

the threat posed to the rest of the network. From the preceding analysis, we selected the decentralized

POMDP (DEC-POMDP) to model the scheduling for the distributed system.

18

2.5.2 NLP-based Solution of the DEC-POMDP

The scheduling model for the hybrid system is modeled as a DEC-POMDP. Thus, we need to augment the

POMDP solution method in Equation (3.1) to situations of multiple controllers. The solution of a DEC-

POMDP consists of a set of policy graphs, one for each agent. Accordingly, the goal is to optimize a set of

finite state controllers (FSC). The formal representation of the NLP-based solution of DEC-POMDPs is:

For variables: πnsa and g(k)(nk, ok
′, nk

′, ak
′), where g(k)(nk, ok

′, nk
′, ak

′) = xk(n
′, a′)yk(n, o

′, n′)

maximize
∑

n

∑

s∈S

∑

a∈A

πnsa · r(s, a
K)

Subject to:

For ∀s′ ∈ S, ∀n ∈ △, ∀a′ ∈ AK ,

πn′s′a′ =
∑

o∈OK

∑

s∈S

∑

a∈AK

{πnsa

∑

o′∈OK

P (s, a, s′)Q(a, s′, o′)
∏

k

g(i)(nk, ok
′, nk

′, ak
′)},

∀nk ∈ N (k), ∀ok
′ ∈ O,

∑

nk
′

∑

ak
′∈A

g(k)(nk, ok
′, nk

′, ak
′) = 1, for k = 1, 2, · · · ,K

(2.1)

The optimal solution to the NLP in (2.1) provides an optimal set of FSCs of the given size. The solution

representation owes its availability to one critical factor: each agent behaves independently. That is, all the

policy graphs are independent from each other.

19

Chapter 3

Research Findings

3.1 Inferring Statistically Significant HMMs

We consider the zero-knowledge HMM inference algorith [26] that constructs minimum entropy HMMs

directly from a sequence of observations. If an insufficient amount of observation data is used to generate

the HMM, the model will not represent the underlying process. Current methods assume that observations

completely represent the underlying process. It is often the case that the training data size is not large

enough to adequately capture all statistical dependencies in the system. It is therefore important to know

the statistical significance level for that the constructed model representing the underlying process, not only

the training set.

3.1.1 Model Confidence

The CSSR algorithm [30], as well as its improved algorithm [26], generates deterministic HMMs with each

transition uniquely specified by an output symbol, also known as an observation. When these models are

dynamically constructed from observations, two questions are raised:

• Does the model match the observations? and

• Are we confident that the model and observations represent the actual underlying process?

The first question refers to the model fidelity, which measures the agreement between the inferred model

and the training data; the second question refers to the model confidence, which means the degree to which

a model represents the underlying process that generates the training data. In this work, we address the

20

second problem. As shown in Figure 3.1, an underlying process is observed over some time interval, creating

an ordered sequence of observations. The observations are used to construct a minimum entropy HMM [30].

A lot of research has been devoted to the analysis of model fidelity. Model confidence, in contrast, is a

topic previously lacking in other analyses. In the model fidelity literature, the observations are assumed to

completely represent the underlying process.

y1 y5y4y3y2 y6

Model

Model

fidelity

Model

confidence

Figure 3.1: Hierarchy of the process, observations, and model showing the relationship between model fidelity
and model confidence

3.1.2 Model Confidence Algorithm

Suppose we have constructed a HMM using the zero knowledge HMM inference algorithm [26] from an output

sequence. Consider an outgoing transition δ associated with a particular state s. The joint probability of

s and δ is ǫ. The analysis of model confidence can be rephrased as to determine if the inferred model will

include all transitions with probabilities no smaller than ǫ with desired significance α.

Let πs be the asymptotic probability of state s, the conditional probability of δ emitting from state s can

be calculated with γδ
s =

ǫ

πs

. We use z-test to determine if the inferred model includes all transitions leaving

s with emission probabilities no smaller than γδ
s with desired significance. In the one-tailed z-test, the null

hypothesis H0: ps ≥ γδ
s is tested against the alternative hypothesis H1: ps < γδ

s , where ps represents the

conditional probability of an undetected outgoing transition of state s; and accordingly the sample value

of ps is 0. We say more data is needed if H0 is accepted. Otherwise, we say that sufficient data has been

collected.

To use the z-test in this manner, we propose a simple algorithm to perform on-line testing of the obser-

vation sequence [33]. The algorithm determines if a constructed model statistically represents a data stream

in the process of being collected. We also prove that the z-test only needs to be performed once for the state

with minimum asymptotic probability and also finds the minimum amount of training samples needed for δ

to be detected with this given level of significance.

21

In [33], we provide simple illustrations of the concept of model confidence algorithm. The results of these

examples illustrate the point that if an insufficient amount of data samples are used, the algorithm only

creates a model representative of the data, not of the underlying process. To build a model representing the

underlying process, there must be enough data samples available to fully describe that process. The adoption

of the model confidence algorithm in the practical examples in Section 2 illustrate the useful application value

of the proposed algorithm. In these applications, we used the model confidence algorithm [33] to calculate

the amount of training dataset to rebuild the HMM to captures the pattern of interest.

3.2 Similarities between Constructed Markov models

As presented in Chapter 2, we used HMMs to represent patterns of different network traffic. these demon-

strations, HMMs were inferred from timing data. Similar data sets can create models that represent the

same system with minor differences in probability or structure. It may, however, be difficult to tell if model

differences are minor or significant. For detection, we need to find if the inferred model matches the given

model. So we developed a metric space for HMMs [19].

3.2.1 Model Equivalence

We define equivalence (M1 = M2) as M1 and M2 accepting the same symbol sequences with statistical

significance α. To compare models for statistical equivalence, we extend the confidence interval approach

in [6] to use the χ2 test of equivalence for sets of normal distributions. The procedure is as follows. We

generate a sequence of symbols from M1 and traverse M2 with this sequence. If a path through M2 that

corresponds the symbol sequence exists, we say that M2 accepts this sequence. We then count the number

of times each transition being taken. The occurrence probability (joint probability) of each transition is

estimated by dividing the corresponding transition frequency by length of the sequence. χ2-test is used

to determine if M1 and M2 were equivalent at a significance level α. The procedure is in Figure 3.2.

Each probability in the smaller model would be inferred using a large number of samples, so the estimated

probabilities should be closer to the true value.

3.2.2 Model Distance

When M1 and M2 are not equivalent, the distance between them is determined by how much their statistics

differ with significance α2. To find this difference, we progressively remove the least likely events from

22

Figure 3.2: Procedure for model equivalence test

both systems until the remaining Markov processes are equivalent. We define a threshold value Pth on the

joint probability of transitions. Transitions with joint probability not greater than Pth are deleted from

both models. The resulted models are renormalized and then compared using the approach introduced in

Section 3.2.1. The procedures is repeated until two Markov models are tested as equivalent. Therefore, Pth

iterates from low to high and stops when two models are equivalent. We define the minimum Pth that makes

M1 and M2 equivalent as the distance between these two models.

3.2.3 Experiment Results

The proposed model distance approach is used to calculate the distance between G11, G12, and G13 in

Figure 3.3. They have similar structures and are only different in the transitions around state S3. Event

probabilities of transitions leaving state S3 (where the differences are located) are in square brackets. The

results are shown in Figure 3.4.

Figure 3.3: Similar models: (a) G11; (b) G12; (c) G13.

23

Figure 3.4: Model distance results for similar models in Figure 3.3

We also compare our results with those of the KullbackLeibler divergence (KLD) approaches. The

results using KLD are shown in Figure 3.5. Since G11 cannot accept the sequence generated by G12 due

to the additional transition in S3, D(G12, G11) = ∞. However, D(G11, G12) is small since G12 can match

the sequence generated by G11 with a similar probability. It is the same for G11 and G13. Both cases

clearly show that KLD cannot measure the distance for them; however, our approach solves this problem

by progressively removing events to a point where the remaining models are equivalent, and it returns a

reasonable distance value. This shows a strong point of our approach in which it can measure the distance

between all appropriate models while maintaining the triangle inequality.

Figure 3.5: KLD results for similar models in Figure 3.3

3.3 Network analysis by PCFGs

While using HMMs to represent protocols in network, we have one assumption that the protocol has finite

state. For context-free grammars (CFGs), they are in a higher level than finite state machines in Chomsky

Hierarchy and do not have finite states limitation. Moreover, programming languages can be represented

by a CFG, so it is more reasonable to use CFGs to model protocols. We started research with Probabilistic

CFGs, where each production rule is augmented with a probability.

3.3.1 Inferring PCFGs

A context-free grammar is a tuple G = (N,Σ, R, S), where:

1. N is a set of nonterminal symbols;

2. Σ is a set of terminal symbols;

24

3. R is a set of production rules in the form of A → β, where A ∈ N and β ∈ (Σ ∪N)∗;

4. S is the start symbol in N .

A Probabilistic CFG is a CFG where each production rule has an associated probability, denoted as p(A → β).

For every nonterminal A, we have
∑

β(A → β) = 1. The statistical methods we used for HMMs were also

applied to PCFGs. We took parsing tools from compiler development and found that we could create LALR

(1) (look ahead left-right of 1 character we parsed a data stream 1 character at a time as the data arrived)

parse table and used it to detect protocols by analyzing timing side-channel information. The procedure is

in Figure 3.6

Figure 3.6: Procedure for PCFG detection

We estimated production probabilities while parsing using LALR (1) parse table. Frequency counting

method which was similar to the confidence intervals approach was used for each reduce action performed

while parsing. The reduce action of parsing using parse table indicated that a reduction with a production

rule should be performed for one or more symbols in the sequence. The frequency of the reduce actions

of particular production rule in parsing a sentence meant how many times that production rule were used

while generating this sentence by the PCFG. The frequency of a particular nonterminal was calculated by

summing frequencies of all the production rules whose left hand side is that nonterminal. We estimated the

production probabilities by dividing the production frequencies by frequencies of their respective left hand

side nonterminals. The confidence intervals of the estimated probabilities are:



p̂i,j − Zα

2

√

p̂i,j(1− p̂i,j)

ni

, p̂i,j + Zα

2

√

p̂i,j(1 − p̂i,j)

ni





where p̂i,j is the estimated probability for jth production that starts with ith nonterminal, ni is the frequency

of ith nonterminal and Zα

2
is from standard normal distribution with significance α. Confidence interval was

used for detecting one production, but for the whole PCFG detection, we used χ2-test. For a set of sentences

25

and a know PCFG, we built the statistics:

χ2 =
∑

i

∑

j

ni

(p̂i,j − pi,j)
2

pi,j

where ni is the frequency of ith nonterminal in the sentence set, p̂i,j is the estimated probability of jth

production that starts with ith nonterminal and pi,j is the probability of jth production of ith nonterminal

in the known PCFG. If χ2 > χ2
α, we rejected the hypothesis that the sentence set was generated by the

known PCFG. The degree of freedom of chi-square test is |R| − |N |, where R is the number of productions

in PCFG and N is the number of nonterminals.

3.4 Fixed-size Finite-state Controllers for POMDPs with Average

Performance Criterion

Partially observable Markov decision processes (POMDPs) are control systems that cannot be observed

directly. They commonly model stochastic environments with hidden states. By generalizing Markov decision

processes (MDPs) and allowing for more uncertainty, POMDPs provide a more powerful formalism for

modelling realistic problems, especially managing systems with noisy data or limited sensitivity. POMDPs

have been extensively used in diverse fields [7].

A great deal of research has been devoted to infinite horizon discounted POMDPs. We consider the

problem of finding the optimal FSC of a given size for average POMDPs. We transform the POMDP

planning problem into a NLP problem. A wide assortment of optimization techniques can efficiently solve

large-scale NLP problems [4]. The experiment results in section 3.4.2 show that a small FSC can adequately

optimize the selected benchmarks. This suggests that near-optimal approximations may be possible for

large-scale problems with reasonable-size FSCs, which indicates that our approach may be able to solve

POMDPs whose size is beyond the limits of classical methods.

3.4.1 The Proposed Algorithm

Our approach only requires one input: the size of the FSC (|N |). A nice feature of a POMDP given a

FSC is that, the sequence generated by the joint process 〈Nt, St〉 constitutes a Markov chain [21]. A similar

conclusion also applies with FSCs stated as follow: Given a POMDP, under any given FSC, the sequence of

node-state-action triplets 〈Nt, St, At〉 constitutes a Markov chain.

26

We assume that the optimal Markov chain, i.e., the one with the maximum average reward, is ergodic.

That is, the expected reward is constant and does not depend on the initial belief. According to Yu [32],

there exists an ǫ-optimal policy. Since any policy can be represented by a FSC [5], this ensures the existence

of an ǫ-optimal FSC. Based on the above analysis, we proposed the following NLP-based average POMDP

solution in a similar way as the linear programming (LP) approach for solving average MDPs [10].

Theorem 1. Given an ergodic POMDP, the optimal fixed-size FSC, denoted by 〈N ,A,O, x∗, y∗〉, can be

generated from the optimal solutions of the NLP problem:

max
∑

n∈N

∑

s∈S

∑

a∈A

πnsa · r(s, a)

where variables πnsa and g(n, o, n′, a′) are subject to:

πn′s′a′ =
∑

n∈N

∑

s∈S

∑

a∈A

πnsa

∑

o′∈O

T (s, a, s)Z(a, s′, o′)g(n, o′, n′, a′), ∀n′ ∈ N , ∀s′ ∈ S, ∀a′ ∈ A,

∑

n′∈N

∑

a′∈A

g(n, o′, n′, a′) = 1, ∀n ∈ N , ∀o′ ∈ O,

g(n, o′, n′, a′) > 0, ∀n ∈ N , ∀o′ ∈ O, ∀n′ ∈ N , ∀a′ ∈ A.

(3.1)

Let g∗ = {g∗(n, o′, n′, a′)}n∈N ,o′∈O,s′∈S,a′∈A be part of the optimal solution of the NLP in (3.1), we can

construct the corresponding optimal internal state transition probabilities y∗(n, o′, n′) by

y∗(n, o′, n′) =
∑

a′∈A

g(n, o′, n′, a′) (3.2)

and the optimal action selection probabilities x∗(n′, a′) by

x∗(n′, a′) =
g∗(n, o′, n′, a′)

y∗(n, o′, n′)
(3.3)

3.4.2 Experiments

We demonstrate the utility of our approach by applying it to a set of frequently used benchmark problems for

POMDP algorithm testing. For detailed information, we refer the reader to [8]. We used the sparse nonlinear

optimizer (SNOPT) integrated in the optimization software called AIMMS to solve the NLP problems. This

solution uses the SQP method [12]. AIMMS is freely available for academic use. All the computation was

performed on a Intel Core 2 DUO E8400 3.00 GHz computer.

27

To illustrate the effectiveness of our approach, a summary of our results, in comparison with the results

of two other algorithms can be found in Table 3.1. Perseus PBVI is one of the leading POMDP approxi-

mation techniques and has been shown to be very efficient for discrete POMDPs [?]. We also compare the

performance of our approach with the results published in [32] using the lower approximation scheme (LAS).

Table 3.1: Experimental comparisons of the proposed approach with other algorithms

Problem
FSC Perseus PBVI LAS

|N | a. r. time(sec) a.r. time(sec) a.r.

2s2a2o(max) 2 10.1454 <1 8.5013 11 N/A

Tiger(max) 3 1.0838 <1 -1 13 N/A

DAS(max) 2 0.3569 <1 -9.721 21 N/A

paint(max) 2 0.17 <1 -0.0011 66 -0.172

bridge(min) 2 259 <1 2515 37 241.798

shuttle(max) 2 2.6316 <1 1.1202 224 -1.835

maze(max) 2 4.2413 <30 2.1357 766 N/A

hallway(max) 6 0.043 <100 0.064 22641 N/A

machine maintenance(max) 2 0.095 <30 0.0368 41 N/A

tag(max) 2 0 <30 -1 266 N/A

tiger-grid(max) 2 0 <30 0 2643 N/A

1 “max” means to maximize the limiting average reward while “min” means to minimize the limiting
average cost.

In Table 3.1, the columns with identifier a.r. contain the limiting average rewards computed using

different algorithms. |N | is the size of the FSC. The computation time for solving the NLPs are given in the

column labeled time(sec). All the experiments using Perseus are configured to iterate a significant number

of steps (2000 steps in our context) to ensure that the algorithm converges to a stable value. So we also give

the time taken to complete the iteration for each problem.

The experimental results show that in almost all the domains our approach achieves competitive per-

formance through the adoption of very small FSCs. Our NLP-based algorithm often needs a very succinct

policy, i.e., a small FSC, to achieve a competitive optimization effect, even for some large-scale problems.

In other words, our NLP-based POMDP algorithm allows us to leverage most of what a fixed-size FSC

offers in POMDP optimization. Consider, for example, “tiger-grid” problem. While our formulation may

not have a distinct advantage in terms of solution quality, the policy representation (|N | = 2) is much more

compact than the value function given by Perseus, which contains 20 hyperplanes. Furthermore, it took

28

the SNOPT solver less than one minute to find the optimal solutions, even for some large-scale problems

(maze20, hallway, tag and tiger-grid). Finally, it should also be noted that the results of Perseus PBVI

are obtained based the assumption that the initial belief is given, which gives the Perseus PBVI a decided

advantage. If the initial belief is inaccurate or unknown, the performance may be worse than the results

shown in Table 3.1. But our approach does not require a priori knowledge and the computed results are

invariant to initial beliefs.

29

Chapter 4

Summary

Stochastic models are used extensively in science and engineering to explain and predict natural processes.

In this work, we investigated the application of stochastic models (HMM, PCFG and POMDP) to network

security. In this chapter, we give a summary of our work and achievements.

We proposed pattern detection approaches with stochastic models for traffic timing analysis. We de-

veloped inference and detection algorithms for HMMs and PCFG. With these approaches, we inferred the

protocols tunneled through SSH and Tor, measured the noise in the Tor communication and detected traffic

that are generated from centralized and P2P botnets. From a sequence of observations, we inferred the

HMMs without any a priori information about the structure and initial transition probabilities [26].

A model confidence test [33] was used to check the significance of the inferred HMM. We find the level of

confidence that the model and data represent process under observation. Our method uses the observation

data to dynamically determine an upper bound on the probability of an unobserved transition occurring. If

this upper bound is not sufficient for the observed situation, we explained how user-defined thresholds can

be used to determine new bounds. However, our approach should be free of the problem of overtaining even

when this assumption does not hold. Some of the undesired patterns would be excluded from the constructed

model due to the threshold ǫ.

To compare the similarity of HMMs for accurate detection, we proposed a normalized statistical metric

space [19]. Our Markov metric compares HMM based on underlying system statistics, which is fundamentally

different from the graph isomorphism problem from graph theory. Using the χ2 test, we determine the

equivalence of two HMMs. If they are not equivalent, the Markov metric removes states and transitions until

the models are equivalent within a given statistical significance. This measures the distance between two

30

models. Compared to KLD, which is a widely used HMM similarity.

HMMs are probabilistic state machines, which are the simplest models of computation. Therefore we

extended the detection approach to use PCFGs, which have more expressive power in pattern representations.

We proposed a simple statistical approach for PCFG detection. We estimated production probabilities from

either tree sets, or sentence sets with LALR parser. The χ2-test was used to determine whether a data set

matches a given PCFG, or whether two data sets are equivalent. From illustrative examples, our approach

has better detection rates compared with the previously used inside-outside algorithm.

Using HMM inference and detection approaches, we presented a centralized botnet traffic detection

application [17]. We inferred HMMs from Zbot traffic timing data. The inferred HMM detect botnet traffic

using confidence intervals of the state probabilities. Experimental results on real-world network traffic show

that this approach appropriately differentiates botnet traffic from normal traffic, and has a higher true

positive rate and a lower false positive rate than the autocorrelation analysis.

Hierarchical P2P botnets have arisen to avoid the disadvantages of centralized botnets. HMMs failed

to detect recursive and structural patterns in P2P botnet traffic. We used PCFGs to detect P2P botnet

traffic [18]. From traffic timing data of a real-world Storm botnet, we estimated PCFGs, which maps

probability distributions from traffic data into production probabilities. Detection results show that based

on ROC curve analysis on χ2 statistics, we can appropriately differentiate Storm botnet χ2 from normal

P2P χ2.

In addition to exploring the vulnerabilities of existing security products, more effective and adaptive

measures are needed to tackle new attacks. We presented a distributed security system combining HIDSs

and honeypots [34]. Since all devices are placed in the production network, judicious management of available

resources impacts the performance of the application. Thus, methods that optimize device scheduling have

great importance. The scheduling of the proposed application is formulated as an average DEC-POMDP.

This allows each HIDS and honeypot to independently make decisions. In the proposed scheme, the security

devices are dynamically selected based on the current security posture and resources.

31

Bibliography

[1] The threat from p2p botnets. http://www.securelist.com/en/blog/654/Lab Matters The threat from P2P botnets.

[2] Zeus gets more sophisticated using p2p techniques. http://www.abuse.ch/?p=3499.

[3] James Nicholas Ashworth. Piercing the cloud and marking the onion: Removing the anonymity of the

tor network. Master’s thesis, Clemson University.

[4] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, 2004.

[5] D. Braziunas. Pomdp solution methods. Technical report, 2003.

[6] R. R. Brooks, J. M. Schwier, and C. Griffin. Behavior detection using confidence intervals of hidden

markov models. IEEE Trans. on Systems, Man, and Cybernetics, part B, 39(6):1484 –1492, December

2009.

[7] A. R. Cassandra. A survey of pomdp applications. AAAI Fall Symposium, 1998.

[8] A.R. Cassandra. Tony’s pomdp file repository page.

http://www.cassandra.org/pomdp/examples/index.shtml, 2009.

[9] Ryan Michael Craven. Traffic analysis of anonymity systems. Master’s thesis, Clemson University.

[10] J. Filar and L. Vrieze. Competitive Markov Decision Processes. Springer-Verlag, New York, NY, USA,

1997.

[11] B. Fritzke. Fast learning with incremental rbf networks. Neural Processing Letters, 1(1):2 – 5, 1994.

[12] P.E. Gill, W. Murray, and M.A. Saunders. Users guide for snopt version 7: Software for large-scale

nonlinear programming. Technical report, San Diego, CA, June 2008.

32

[13] G. Gu. Correlation-Based Botnet Detection In Enterprise Networks. PhD thesis, College of Computing,

Georgia Institute of Technology, 2008.

[14] G. Gu, J. Zhang, and W. Lee. Botsniffer - detecting botnet command and control channels in network

traffic. 15th Annual Network and Distributed System Security Symposium, 2008.

[15] D. Gunetti and C. Picardi. Keystroke analysis of free text. ACM Transactions on Information and

System Security, 8(3):312–347, 2005.

[16] K. Hempstalk. Continuous Typist Verification using Machine Learning. PhD thesis, University of

Waikato.

[17] C. Lu and R. R. Brooks. Botnet traffic detection using hidden markov models. In Proceedings of the

7th CSIIRW.

[18] C. Lu and R. R. Brooks. P2p hierarchical botnet traffic detection using hidden markov models. In

Learning from Authoritative Security Experiment Results (LASER) Workshop, 2012.

[19] C. Lu, J. Schwier, R. Craven, L. Yu, R. Brooks, , and C. Griffin. A normalized statistical metric space

for hidden markov models. IEEE Trans. on Systems, Man, and Cybernetics, part B, In Press.

[20] Chen Lu. Network Traffic Analysis Using Stochastic Grammars. PhD thesis, Clemson University.

[21] N. Meuleau, K.E. Kim, L.P. Kaelbling, and A.R. Cassandra. Solving pomdps by searching the space of

finite policies. In Proc. of UAV, pages 417–426, Stockholm, Sweden, 1999.

[22] G. Ollmann. Botnet communication topologies. Technical report, 2012. White Paper of Damballa.

[23] L. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. Pro-

ceedings of the IEEE, 77(2):257 – 286, 1989.

[24] J. Schwier. Pattern Recognition for Command and Con-trol Data Systems. PhD thesis, Clemson Uni-

versity, Clemson, SC, 2009.

[25] J. Schwier, R. R. Brooks, and C. Griffin. Methods to window data to differentiate between markov

models. IEEE Transactions on System Man and Cybernetics, Part B: Cybernetics, 41(3):650 – 663,

2010.

[26] J. M. Schwier, R. R. Brooks, C. Griffin, and S. Bukkapatnam. Zero knowledge hidden markov model

inference. Pattern Recognition Letters, 30:1273 – 1280, 2009.

33

[27] C. Shalizi. Causal architecture, complexity, and self-organization in time series and cellular automata.

PhD thesis, University of Wisconsin-Madson, 2001.

[28] C. Shalizi and J. Crutchfield. Journal of Statistical Physics, (140):819 – 881, 2001.

[29] C. Shalizi and K. Shalizi. Blind construction of optimal nonlinear recursive predictors for discrete

sequences. arXiv:cs.LG/0406011 v1, June 2004.

[30] C. Shalizi, K. Shalizi, and J. Crutcheld. An algorithm for pattern discovery in time series.

arXiv:cs.LG/0210025 v3, November 2002.

[31] C. Shalizi, K. Shalizi, and J. Crutcheld. Pattern discovery in time series, part i: Theory, algorithm,

analysis, and convergence. Technical report, 2002.

[32] H. Yu and D.P. Bertsekas. On near optimality of the set of finite-state controllers for average cost

pomdp. Mathematics of Operations Research, 33(1):1 – 11, February 2008.

[33] L. Yu, J. Schwier, , R. Craven, R. R. Brooks, and C. Griffin. Inferring statistically significant hidden

markov models. IEEE Tras. TKDE, PP, 2012.

[34] Lu Yu. Stochastic Tools for Network Security: Anonymity Protocol Analysis and Network Intrusion

Detection. PhD thesis, Clemson University.

34

	fa9550-09-1-0173_sf298
	FA9550-09-1-0173_-_Final_Report

