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1.0 SUMMARY  
 
It is well received that conventional CMOS technology is approaching its physical limita-
tions. Researchers have started to explore the potential replacement by leveraging the ad-
vances of nanotechnology. Very recently, memristors attracted growing attentions since 
the first physical realization was reported by Hewlett-Packard (HP) Laboratories in 2008. 
Unique characteristics like non-volatility, reconfigurability, and analog state storage 
made memristors a very promising candidate for the realization of artificial neural sys-
tems. In this project, we developed a SPICE-compatible model of a memristor and de-
signed CMOS-mimicked memristor cells for system development. Then we proposed a 
memristor-based design of bidirectional transmission excitation/inhibition synapses and 
implemented a neuromorphic computing system based on our proposed synapse designs. 
The robustness of our system is also evaluated by considering the actual manufacturing 
variability with the emphasis on process variations. Next, we discussed memristor-based 
crossbar neuromorphic architecture. Finally, we compared the designs of synapse net-
work-based and crossbar-based neuromorphic computing systems.  
 

2.0 INTRODUCTION 

 
Although the memristor was predicted as the 4th fundamental circuit element in 1971 by 
Professor Chua [1], the first realization of a physical memristive system was reported by 
HP Labs in 2008 [2]. The memristive effect is shown as a pinched hysteresis I-V curve, 
which becomes the basis for resistive memories [3]. Memristance can be theoretically de-
scribed as the relationship between the magnetic flux φ and the electric charge q through 
the device as [1] 
 

       .                                      (1) 
 
Figure 1(a) shows the conceptual structure of a TiO2 memristor [2][4]. A perfect TiO2 
layer acts as an insulator or highly resistive conductor, while the conductivity of the oxy-
gen-deficient titanium dioxide TiO2-x layer is much higher. The resistance of the entire 
memristive system, or memristance, can be controlled by moving the doping boundary 
between the TiO2 and TiO2-x regions. As shown in Figure 1(b), the overall memristance 
can be calculated as 
 

 ( )       (   )    ,.                 (2) 
 
where    and    represent the conductivities per length of TiO2 and TiO2-x, respectively.  
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     (a) TiO2 Memristor Stucture           (b) Equivalent Circuit 

 
Figure 1. TiO2 thin-film memristor [4] 

 
In general, memristors have the following unique properties that make them become very 
promising devices for artificial neural system implementation. 1) Memristance relies on 
the history of the total electric charge flowing through the device [1][5]. 2) Memristors 
are non-volatile [6][7], that is, the memristance (resistance) of the device can be retained 
even after the system is powered off. No leakage or refresh power overheads are intro-
duced into during the information storage. 3) Memristors can be used as an analog device 
of which the resistance state can be programmed continuously.  
 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
 

3.1. Memristor Model 
 
We developed a SPICE-compatible compact model of TiO2-TiO2−x memristors based on 
classic ion transportation theory. Our model is shown to simulate important dynamic 
memristive properties, e.g., the doping front motion and real-time memristance switch-
ing, which are critical in memristor-based analog circuit designs. The model, as well as 
its analytical approximation, is validated with the experimentally obtained data from real 
devices. We divide a TiO2-TiO2−x memristor into three regions, namely, the conductive 
region, the transition region, and the insulating region, as shown in Figure 2. We also use 
w, λ, and D to denote the lengths of the conductive region, the transition region, and the 
entire device, respectively [1]. 
 

TiO2

Perfect TiO2

Metal (top electrode)

Metal (bottom electrode)

VDoping 

front

TiO2-X

With oxygen vacancies

(1-α)·RH

α·RL

TE

BE
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Figure 2. Region partitioning of TiO2-TiO2−x memristor 
 
The real-time current density at position x in the memristor at time t can be expressed as 
 
  

  (   )    (   )    (   )     
   (   )

  
                                  ( ) 

 
Here the subscript   (     ) denotes the parameter of conductive region, transition re-
gion, and insulating region, respectively.    and    represent the electric field and the 
electron density, respectively. µ is the mobility coefficient.   is the elementary charge.    
is the diffusion constant. Eq. (3) shows that the current is generated mainly from the elec-
tron drifting in the electric field and the electron density gradient.    is typically small, so 
the second term in Eq. (3) is ignored in our model. If we ignore the variation of the cross 
section area and assume the current density is uniform in the memristor, i.e.,         , 
then the relationships between the electric fields and electron densities of the three re-
gions can be summarized as 
 

      ( )    (   )    (   )    ( )    ( )                         ( ) 
 
Here we assume the    and    are uniform in the conductive and insulating regions and 
are determined only by the real-time applied voltage (except that    is a constant). In 
general, the evolution of the electron density in the insulating region under a time-varying 
electric field    can be calculated by 
 

   ( )

  
   (     ( ))  ( )                                                ( ) 

 
where    is the electron generating coefficient in the insulating region. At a given time t 
and position x, the electric field    can be viewed as a linear function bounded by    and 
  , 
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  (   )  
(  ( )    ( ))

 
(   )    ( )                            ( ) 

 
We note that the voltage V(t) applied on the two ends of the memristor equals the integral 
of the electric field along the device, 
 

 ( )    ( )  ∫   (   )     ( )(     ) 
   

 

                 ( ) 

 
Combing Eq. (6) and (7), we have 
 

                  ( )  
 ( )

  
 
 
  

  
  ( )

(    
 
  )

                               ( ) 

 
Finally, the transition region length λ reduces when the applied voltage V(t) increases, 
which is approximated by 
 

     
 | ( )|                                                       ( ) 

 
In our model,    is the transition region length at  ( )   . 
 
Without loss of generality, we assume the doping front starts moving from the left end of 
the device (x = 0) at time t = 0.   (   ) is the electron density at the position x in the 
transition region at time t. Compared to the electron density    at the boundary between 
the conductive region and the transition region, the change of the electron density at posi-
tion x is      (   ), which is mainly due to the oxygen ion vacancy redistribution [6]. 
 
Because of the drifting of the doping front, the electron density increment in an infinites-
imal time interval dt equals the difference between the electron densities at positions 
(    ) and x,  
 

  (      )    (   )  
   (   )

  
(   )   

   (   )

  
 (   )   

                                             (     (   ))  (   )                        (  ) 
 
Here    is the electron generating coefficient in the transition region. Note that the maxi-
mum attainable electron density in the memristor device is   , or the region is fully con-
ductive. Based on Eq. (10), the doping front velocity at position x can be calculated by 
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 (   )   
  (     (   ))  (   )

   (   )
  

                             (  ) 

 
where    (   )

  
 can be derived from Eq. (4) and (6). 

 
The motion of the transition region can be described by the average doping front moving 
velocity, which is defined as 
 

                                     ( )̅̅ ̅̅ ̅̅  
∫  (   )  
   

 

 
                                          (  ) 

 
Here we simplify the expressions of   ,   (   ), and   ( ) as   ,   , and   , which are 
still the functions of x and/or t. 
 
Substituting Eq. (4) and (6) into Eq. (11), we have 
 

 (   )  (
  
  
  )     ( )  

  

  
  
     
     

                              (  ) 

 
Substituting Eq. (4), (6), (8), and (11) into (12), the transition region moving velocity can 
be approximated by 
 

        
  ( )

  
  ̅( )       

 
  
  
  

 
 ( )

 (  
  
  
)  

 
   

  
  
(  

 
  )

             (  ) 

 

where β =  
 
(
  

  
  )

 

 
 

 
(
  

  
  )

 

 
 

 
(
  

  
  )  

 
The memristance of the memristor can then be calculated by 
 

 ( )  
 ( )

   
 

 ( )

      ( ) 
                                            (  ) 

 
where A is the cross section area of the memristor. Eq. (14) and (15) describe the dynam-
ic changes of memristor device structure and electrical property, respectively. 
 

3.2. CMOS-Mimicked Memristor Cell 
 

3.2.1 CMOS-mimicked memristor cell design. We created a schematic cell model of CMOS-
mimicked memristor that was used in the subsequent SPICE simulations, as shown in 
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Figure 3. The behavior of the memristor was emulated by using a CMOS circuit, which 
enabled binary training operation. A corresponding circuit symbol was also created to en-
able graphic-based circuit design. CMOS mimicked memristor had five pins rather than 
the two pins of a two-terminal memristor device because a latch was included in the de-
sign. Besides the two voltages at the top, vtop, and the bottom, vbot, of the virtual 
memristor device, we also need a power supply pair, vdd and gnd, and an output, out, to 
supply the latch and record its output. 
 

 
 

Figure 3. Symbol view of CMOS-mimicked memristor 
 

The corresponding CMOS-mimicked memristor circuit schematic is shown in Figure 4. It 
was built up with an XOR gate, a latch, and an NMOS transistor. By controlling the gate 
voltage of the NMOS transistor, the resistance between the source and drain of the 
NMOS transistor was changed to emulate the memristance shift of a memristor. The dif-
ference between such a design and a real memristor was that our CMOS circuit could not 
fully reproduce the memristive behavior, which was determined by the historical effects 
of electronic excitation. The use of a latch allowed us to record the state of the “memris-
tor” circuit and provide the proper response to the training operations.  
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Figure 4. Schematic of CMOS-mimicked memristor 
 

The truth table of the CMOS-mimicked memristor circuit is shown in Table 1. When the 
output Q of the latch was ‘1’, the NMOS transistor functioned as a low resistance. When 
the output was ‘0’, the NMOS transistor functioned as a high resistance. The XOR gate 
generated a CLK signal, which drove the latch. As shown in Table 1, the memristor only 
changed its resistance state when the value of vtop was different from the value of vbot. 
In fact, the state of the CMOS-mimicked memristor always changed to the direction indi-
cated by the value of vtop during the state programming operation. 
 

Table 1. CMOS-mimicked memristor truth table 
 

V_top V_bot CLK Q Resistance 
0 0 0 No change No change 
0 1 1 0 High 
1 0 1 1 Low 

 

The writing function is shown in Table 2. When vtop and vbot changed, a CLK signal 
was generated to trigger the corresponding training process. A latch circuit recorded the 
state of the CMOS-mimicked memristor and controlled the resistance of a NMOS transis-
tor. When latch output Q was ‘1’, the NMOS transistor was programmed to a low re-
sistance state. Conversely, when Q was ‘0’, the NMOS transistor was programmed to a 
high resistance state. 
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Table 2. CMOS-memristor based synapse operation table 
 

Enable Vout Dtrain Vtop Vbot CLK Status 
0 X X 0 0 0 Operating 
0 1 1 0 0 0 No training 
1 0 1 1 0 1 RH to RL 
1 0 1 0 1 1 RL to RH 

 
The detailed writing circuit can be found in Figure 5. The whole synapse system can be 
divided into five major parts: latch, logic gates, write driver, pass gate, and CMOS-
mimicked memristor. 
 
Latch:  Different from the latch in the CMOS-mimicked memristor circuit, this 

latch stored the value of vout when the enable signal E switched from ‘0’ 
to ‘1’ and held the value of vout for one clock cycle to produce the appro-
priate write signals. 

 
Logic gates:  These logic gates performed the necessary logic functions, including a 3-

input OR gate and a 3-input NAND gate. They produced write signals 
based on three input signals (E, vout, and Dtrain) as shown in Table 2. 

 
Write driver:  The write driver was an inverter buffer that guaranteed sufficient strong 

write signals to drive the memristor. 
 
Pass gate:  Based on the enable signal E, the pass gate controlled the output signal 

vout by switching between Z and the value of the memristor when it was 
being trained. 

 
Memristor:   The memristor is the CMOS-mimicked memristor module. 
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Figure 5. Schematic of the training circuit of CMOS-mimicked memristor 
 
There are several differences between the designed CMOS-mimicked memristor circuit 
and the real memristor circuit. First, the inverters/buffers may not be necessary in the 
write drivers of the real memristor circuit. In the real memristor circuit, when the memris-
tor is not being trained, the vbot should be set to ‘0’, while the vtop should be floating. In 
the CMOS-mimicked circuit, both the vtop and the vbot have to be set to ‘0’ when the 
mimicked memristor is being trained. The write driver is built up with two writing buff-
ers, which generated vtop and vbot to adjust the resistance of the NMOS transistor. 
 

3.2.2 CMOS-mimicked memristor cell layout. We also completed the layout of a single 
CMOS-mimicked memristor circuit, including the training circuit. As shown in Figure 6, 
the layout included five parts: Latch, Logic Gates, Write Drive, Pass Gate, and Memris-
tor. There were 34 PMOS and 35 NMOS transistors in this layout. We use 180 nm TSMC 
technology as the example. Each PMOS transistor was 540 x 180 nm. Each NMOS tran-
sistor was 270 x 180 nm. There were 7 pins: Dtrain, Vin, E, Vout, Vout, Vdd, and GND. 
In order to minimize the size of layout, we divided the whole design into two parts but 
sharing the same GND. In the layout, the part on the bottom was upside down to share 
the GND metal. 
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Figure 6. Layout of synapse design with training circuit 
 

3.2.3 Design environment. We setup the design environment of the targeted tapeout process, 
including the library setup, and the parasitic parameter extraction flow based on Calibre 
(Mentor Graphics) and Assura (Cadence). We also installed the required file for chip 
tape-out process, e.g., TSMC 350nm technologies. All required libraries, including veri-
fication tools, were fully installed. In the installation process, the work load mainly in-
cluded how to integrate the PDK into the pre-installed Cadence environment. The TSMC 
PDK provided the GUI symbol in Virtuoso, SPICE model, and configuration protocols 
for each standard cell. Also, TSMC provide both Assura and Calibre tool sets, which 
conduct multiple functions like Design Rule Check (DRC), Layout vs. Schematic (LVS), 
and RC extraction for post-layout verification. By applying these rules correctly during 
the test, the most significant work was to ensure the design was correct and satisfied the 
process and manufacture requirements. Significant effort was spent on the analysis of 
TSMC PDK structure, setting up the environment variables, and loading necessary con-
figuration files. Despite the services provided in TSMC PDK, we also integrated some 
pre-exited tools and functions in this development environment which accommodated our 
developers’ working habits and raised the efficiency. After the configuration, an integrat-
ed Linux script was written to setup all the environment variables and load the necessary 
configuration files by using only one command. Users in the same development group 
could simply source the script files and achieve the one-click setup at any computers. 
 
The library installation example is shown in Figure 7. The hierarchy of installation path is 
summarized as below: 
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Figure 7. Tapeout library installation 
 

|- assura_tech.lib  cds.lib  display.drf  techfile  icc.rrules ... 
|- pdkInstall.cfg  pdkInstall.pl  Readme.first  REVISION 
|- /setup 
 |- cdsenv  cdsinit  cds.lib  common_bindkeys.il 
 |- runset.calibre.drc runset.calibre.pex  runset.calibre.lvs 
 |- setup_TSMC350 
|- /skill 
 |- callback.ile  pdkParamTable.ile ... 
|- /models 
 |- tsmc35lg.scs  tsmc35lg.mdl  CM_FSG.mdle  LP_FSG.mdl  LV_FSG.mdl 
|- /stream 
 |- strmioMap 
|- /techFiles 
 |- /Assura 
  |- drc  lvs ... 
 |- /Calibre  
  |- drc lvs ... 
 |- icc.rules  cds.lib  ... 
|- /Assura 
 |- /drc - assura.ant  assura.drc ... 
  |- /lvs - extract.rul   bind.rul  compare.rul ... 
 |- DRC.README  LVS.README  techRuleSets ... 
|- /Calibre 
 |- /drc - calibre.ant  calibre.drc 
 |- /lvs -  calibre.lvs  calibre.xrc ... 
 |- DRC.README  LVS.README  REVISION.calibre 
|- /PDK_doc 

 |- Device_list.txt  Application_note_for _customized_cells.pdf  tsmc_PDK_usage_guide.pdf ... 
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3.3. Synapse Neuromorphic System Design 
 

3.3.1 Biology-inspired synapse design. In biological neural systems, there are chemical syn-
apses and electrical synapses working as the connections between neurons. Electrical 
synapses can have the similar bidirectional transmission, which is important to the im-
plementation of artificial neuromorphic computing system. In order to realize bidirec-
tional transmission, two sets of input/output are needed for one synapse; and the trans-
mission direction should be controlled by a switch signal. Figure 8 shows the schematic 
of a memristor-based bidirectional transmission synapse with two connected neurons. 
The resistance R and memristance M determined the gate voltage of the NMOS transistor. 
By controlling the gate voltage of the NMOS transistor, the weighted current was gener-
ated just like biology synapse. To test the bidirectional transmission function of the syn-
apse, the neurons worked as an oscillating ring. Each neuron updated the state of the oth-
er neuron based on its own state. A neuron consisted of a capacitor and an inverter. The 
capacitor allowed the neuron to collect information, i.e., weighted current, from multiple 
inputs; and the inverter worked as an analog amplifier whose threshold determined the 
state of neuron according to the accumulated charge on the capacitance. 
 

 
 

Figure 8. Schematic of neurons with memristor-based bidirectional synapse 
 
In biological neural systems and artificial neural network models, synapses transmit exci-
tations or inhibitions between neurons according to different functions. Inhibitions are re-
quired in the system to suppress the excitations in interconnected networks. Interneurons, 
by way of their inhibitory actions, provide the necessary autonomy and independence to 
neighboring principal cells. Therefore, one of the basic components of neuromorphic 
computing systems is synapses with the ability of excitation/inhibition transmission. 
However, in the literature, prior research on memristor-based synapse design only fo-
cused on weighted excitation signal transmission. Figure 9 shows the schematic of the 
synapse we proposed to implement excitation/inhibition transmission. Since a capacitor 
was used in the neuron design, excitation/inhibition could be implemented by charging 
(pull up)/discharging (pull down) the capacitance. The truth table of the Excita-
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tion/Inhibition synapse is shown in Table 3. Signal ‘+/-’ was used to determine whether a 
synapse implemented an ‘Excitation’ or ‘Inhibition’ function. When Vin1/Vin2 was ‘1’ 
and ‘+/-’ was ‘1’, the input signal was positive. The synapse then transmitted an excita-
tion. Next, Vc (XOR output of input signal ‘Vin1/Vin2’ and ‘+/-‘) became ‘0’, which ena-
bled the P-transistor and cut off the N-transistor, charging the neuron connected to it. 
 

 
 

Figure 9. Excitation/Inhibition synapse 
 

Table 3. Excitation/Inhibition synapse truth table 
 

Vin1/Vin2 +/– P-transistor N-transistor Vout1/Vout2 
1 1 Pass Cut off Pull up 
1 0 Cut off Pass Pull down 
0 1 Cut off Pass Pull down 
0 0 Pass Cut off Pull up 

 
To demonstrate the weighted Excitation/Inhibition transmission ability of the synapse we 
proposed, simple information collecting neuron demo (shown in Figure 10) was designed 
and simulated in the Cadence environment. 
 

 
 

Figure 10. Information collecting neuron demo 
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In this demo, neuron N0 collected the information from other neurons through synapses 
as we proposed. Based on the weighted Excitation/Inhibition signals from 30 other neu-
rons, neuron N0 make a decision with a non-linear function 
 

     {    ∑               

  

   

          

                           (  ) 

 
3.3.2 Synapse based neuromorphic computing system. A memristor behaves similarly to a 

synapse in biological systems and hence can be easily used as weighted connections in 
neural networks. Based on the memristor-based bidirectional synapse design, we imple-
mented a network serving as a neuromorphic computing system with units (artificial neu-
rons) and weighted connections (synapses). The neuron in this network was a binary 
threshold unit that produced only two different states (values). A synapse worked as a 
weighted connection to transmit a signal from one neuron to another. The activation func-
tion was described in equation (14).  
 
The proposed neural network could be used for pattern recognition. Frst, multiple stand-
ard input images were sent in to train the connection weights of the system till they con-
verged. After that, every input pattern produced a local minimum, which was a stable 
state corresponding to one of the stored standard patterns. Such a network system was 
then used to recognize the input image with defects. In our experiment, we built a net-
work with 100 (10×10) neurons and stored the character images ‘A’, ‘B’, and ‘C’ shown 
in Figure 11(a) as the standard patterns. Each neuron in the network represented a pixel 
of the image. Then the defected images in Figure 11(b) were applied as the inputs to ini-
tialize the network’s state. Each input had 13 defects compared to its corresponding 
standard images (see black bars), as shown in Figure 11(b). The proposed system suc-
cessfully recognized the imperfect images and converged to one of the standard patterns, 
as demonstrated by the write bars in Figure 11(c). 
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Figure 11. The neural network for pattern recognition: (a) the standard patterns and (b) 
the noised input patterns. (c) Comparison of the convergence iterations when recognizing 
the noisy images input (black bars) and the standard images (white bars) 

 
4.0 RESULTS AND DISCUSSION 

 
In the section, we showed the corresponding simulation results to validate our proposed 
model and the designed memristor-based synapsed based design.  
 

4.1. Validation of Memristor Model 
 
Table 4 summarized the three types of the device parameters used in our memristor mod-
el, including the geometric parameters, the electrical parameters, and the structural pa-
rameters. The electron generating coefficients    and    were derived from the measured 
data and assumed constant for the different working ranges, as shown in Figure 12. We 
compared our model with the experimentally obtained characteristic static I-V curve and 
dynamic pulse programming curve of a TiO2-TiO2−x memristor device. Figure 12 shows 
the measured I-V curve from a real memristor device as well as the experimental data 
from the numerical simulation and analytical approximation. During the measurement, a 
sequence of voltage pulses was applied to the memristor device. The magnitude of the 
voltage pulse grew exponentially and varied from positive to negative following a sinus-
oidal function. The numerical simulation results fit well with the measured data in all four 
working ranges. The analytical approximation showed slight discrepancy from the meas-
ured data when the resistance was high. This was because the simulated doping front ve-
locity was lower than the actual value when the variation of   over time was ignored. 
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Table 4. Model Parameters 
 Parameter Value Parameter Value 

Geometric D 35 nm A 25 m2 
Electrical e 1.602 × 10-19 C nc 8.75× 1020 m-3 
Structural w0 0.15D 0 0.05D 

Working Range Derived parameters 
1→2 

t 

2.3 × 10-6 

i

1 × 10-6 
2→1 8 × 10-6 1 × 10-8 
1→3 1 × 10-10 1 × 10-9 
3→1 7 × 10-7 2 × 10-7 

 

 
 

Figure 12. Model validation with static I-V curve, including numerical simulation and 
analytical approximation 

 
To prove the capability of our model for simulating the dynamic switching property of 
the memristor, we plotted the resistance changes following the programming pulses in 
Figure 13. The resistance of the memristor first decreased when the positive pulses were 
applied and then rose when the polarization of the pulses changed to negative. Our nu-
merical simulation matched the measured data very well over most of the plotted points. 
Small discrepancies appeared at the high resistance state. One reason for the deviations 
could be the impact of thermal fluctuations, which become prominent under a relatively 
low programming voltage. The analytical approximation showed relatively large devia-
tion from the measured data at the high resistance state. 
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Figure 13. Model validation of memristor dynamic switching for one single cycle, in-
cluding numerical simulation and analytical approximation 
 

4.2. Simulations of the CMOS-mimicked Memristor Training Circuit 
 

4.2.1 Pre-layout results. The pre-layout simulation results of the CMOS-mimicked memristor 
training circuit are shown in Figure 14. The Vout (vout in the schematic) was stored in the 
latch when the signal E rose. Vout remained constant during the training period. The 
memristor was trained when E rose to high. This caused a delay in Vout due to the train-
ing time. When E was pulled down, Vout changed according to the resistance of the 
memristor (or NMOS transistor). From Figure 14, the CMOS-mimicked memristor was 
trained only when the Vout was different from the D_train (Dtrain in the schematic). 
 

4.2.2 Post-layout results. The simulation results based on the extracted layout parameters are 
shown in Figure 15. The circuit worked as expected. This simulation verified that our 
CMOS-mimicked memristor-based synapse design fully demonstrated the required func-
tionalities of the biological synapses. The training circuit worked well at the circuit level. 
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Figure 14. Simulation of synapse circuit schematic, including training circuit 
 

 
 

Figure 15. Simulation of synapse circuit on extracted layout 
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4.3. Simulations of Memristor-based Bidirectional Synapse Design 
 

4.3.1 Results of neuron-synapse oscillating ring. The neuron-synapse oscillating ring based 
on the memristor-based bidirectional synapse design was simulated in Cadence Virtuoso, 
as shown in Figure 16. When the switch signal C1 was ‘1’, neuron1 updated the state of 
neuron2 to neuron1’s state. When C1 was ‘0’, the synapse worked the other way – neu-

ron2 changed the state of neuron1 to the opposite state of neuron2. In the beginning of 
the simulation, the initial states of both neurons was set to ‘1’. At 30 µs, the capacitance 
of neuron1 was discharged (Vin2 was ‘0’). Since the data was stored as the capacitance, 
the neuron oscillating ring had very good tolerance for race conditions. 

 
An advantage of the neuron-synapse oscillating ring was that the oscillating frequency 
was determined by the weight of the synapse. The larger the memristance was, the higher 
the gate voltage was; and, consequently, the stronger the weighted current that would be 
generated. This meant the charging period of the capacitance was longer. 
 

 
 

Figure 16. Simulation result of neuron-synapse oscillating ring 
 
4.3.2 Results of information collecting neuron demo. We gave different sets of excitation 

and inhibition weights to every synapse in Figure 10 and tested the state of N0 by increas-
ing the number of positive input neurons. Result are shown as Figure 17. 
 



Approved for Public Release; Distribution Unlimited. 

20 

Figure 17. Functions of the synapse network with memristor-based bidirectional         
synapses 

 
Curves from left to right depict the test results for positive/negative synapse weight ratios 
of 3/1, 2/1, 1/1, 1/2, and 1/3. The number of positive neurons needed to change the state 
of N0 was 7, 10, 15, 21, and 23, respectively. 
 

4.3.3 Robustness. The number of storable standard patterns (capacity) of this neural network 
design was determined by the number of neurons and connections. Also, the more pat-
terns stored in the system, the higher the precision of the connection weights was needed. 
Therefore, a large number of stored patterns and a high process variation of memristances 
would result in a high failure probability Pf. To quantitatively evaluate the impact of 
memristance variations and the robustness of the proposed neural network design, we 
conducted Monte-Carlo simulations on the network with 100 (10×10) neurons. Random 
variations following Gaussian distribution were injected into the memristors. The system 
could fail to recognize the noised patterns or mismatch an input with other standard pat-
terns due to the inaccurate connection weights. To test the failure probability under dif-
ferent conditions, we ran 10,000 Monte-Carlo simulations by varying the memristance 
variation σ, standard deviation of memristance, for 7, 8, 9, or 10 stored patterns in the 
system. In this experiment, each input image contains 21 defects among 100 pixels. 
 



Approved for Public Release; Distribution Unlimited. 

21 

 
 

Figure 18. The impact of memristor variations on the failure probability Pf 
 
The simulation results in Figure 18 demonstrated that the proposed memristor-based neu-
romorphic system had a high tolerance on memristance variations. When σ < 0.4, Pf of all 
the four configuration were close to the ideal condition at σ = 0. This indicated that the 
performance of the proposed neuromorphic system maintained robustness even with a 
large memristor device variation. When further increased to σ > 0.5, Pf grew significant-
ly. As expected, under the same process variation condition, the system suffered from a 
higher Pf when more patterns were stored. 
 

4.3.4 Capacity analysis. In our implemented artificial neural network, the capacitance worked 
as a key factor affecting the robustness of the system. If errors in recollection were al-
lowed, the maximum number p of the patterns to be stored in a network with N neurons is 
0.15N. This limitation was attributed to the fact that the network was trapped in the so 
called “spurious local minima.” In 1987 McEliece, et al. [8] proved that when p < 
N/(4lnN) held true, the Hopfield’s model was able to recall all the memorized patterns 
without errors. 
  
For demonstration purpose, we conducted Monte-Carlo simulations to evaluate the im-
pacts of the capacity on the robustness of our networks. A large Hopfield network with 
100 neurons was built to recognize larger sets of text patterns where the respective theo-
retical capacity was limited to about 18 patterns. Process variations were simulated by in-
troducing Gaussian distribution noise to the memristance of the memristor devices in 
Matlab simulations. A system failure was defined as converging to a wrong standard pat-
tern (one that does not correspond to the input pattern) or failing to converge to a stable 
point. The test results are shown in Figure 19. 
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Figure 19. Failure rate of memristor-based Hopfield network under different pattern 
numbers and process variation conditions 

 
Figure 19 shows that our design had a good immunity against process variations. Even 
when σ < 0.2, our system still demonstrated a Pf close to zero. Increasing the number of 
text patterns quickly degraded the system’s robustness, i.e., a much higher Pf. When the 
number of patterns approached the capacity limit, the system robustness degraded very 
quickly. The increase in process variations σ also substantially degraded system robust-
ness. However, in conventional CMOS circuit manufacturing, the parametric standard 
deviation is usually less than 10% [9]. 
 
For the same amount of stored patterns, a larger network with more neurons was more 
robust to process variations. Figure 20 compares the performance of the systems with 100 
neurons (the blue line) and with 400 neurons (the green line). Both systems had 10 stand-
ard patterns, and the input defect rate remains at 21% for the two designs. The simula-
tions show that in a bigger network, the impact of process variations was smaller, leading 
to a lower required precision of the connection weights. Hence, in a neural network sys-
tem design, the tradeoff between network capacity and robustness needs to be considered. 
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Figure 20. Increasing the network size vs. Pf 
 

5.0 CONCLUSIONS 
 
In this project, we proposed a compact model to simulate the transition region motion in 
the TiO2-TiO2−x memristor based on classic ion transportation theory. Our model was 
validated with the measured data from a real TiO2-TiO2−x memristor device and proved 
capable of simulating the static and dynamic switching properties of the device. We then 
designed a memristor-based synapse circuit with bidirectional transmission and exhibi-
tion/inhibition functions and implemented neuromorphic computing system with our pro-
posed synapse design. Experimental results showed that the proposed design had high 
tolerance on process variation and input noise. Finally, we compared memristor crossbar-
based and synapse-based neuromorphic computing architectures and discussed their re-
spective advantages and target applications.  
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LIST OF ABBREVIATIONS AND ACRONYMS 
 
CMOS  complementary metal–oxide–semiconductor 
DRC   Design Rule Check 
HP  Hewlett-Packard  
LVS   Layout vs. Schematic 
MOSFET  metal–oxide–semiconductor field-effect transistor 
NMOS  N-channel MOSFET 
Pf   probability of failure 
PMOS  P-channel MOSFET 
RC  resistor-capacitor 
SPICE  Simulation Program with Integrated Circuit Emphasis 
 
 




