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ABSTRACT 

Data from the CloudSat cloud profiling radar was used to verify the performance, 

or operational health, of the United States Air Force’s World Wide Merged Cloud 

Analysis (WWMCA) system to detect clouds.  WWMCA performance for 2010 

over the Northern Hemisphere was analyzed by (1) cloud event category: 

Cloudy, Partly Cloudy, Clear; (2) geographic region: (Northern Hemisphere, 0N–

50N, 0N–23.5N, 23.5N–35N, 35N-50N, 50N–90N, South China Sea, and 

Southwest Asia), 3) month; and (4) age of input data used by WWMCA.  Overall 

and cloud category performance were evaluated using 11 performance metrics.  

Overall, WWMCA properly identified cloud categories 65% of the time, with a 

detection range of 40%–70% depending on the region.  WWMCA performed best 

(worst) at low (high) latitudes.  Decreases in WWMCA accuracy were noted 

when using input data older than 45 minutes.  We confirmed that newer (older) 

data performed best (worst), with an improvement of nearly 20% when using all 

data available rather than data older than 3 hours.  Annual hemispheric average 

Heidke skill scores were 0.52 for Cloudy, 0.47 for Clear, and 0.09 for Partly 

Cloudy conditions.  Maximum (minimum) HSS values for all three cloud 

categories occurred at low (high) latitudes. 
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I. INTRODUCTION 

A. IMPORTANCE OF CLOUD ANALYSES  

With the constant downsizing of the Department of Defense (DoD) forces, 

the ever increasing threat to national security, and the constant pressure to “do 

more with less”, it is impossible to have continuous human oversight of all of the 

information being received from intelligence, surveillance, and reconnaissance 

(ISR) systems, weather satellites, and other information sources.  This is 

especially true for information about clouds, which are an important 

environmental factor in planning and executing many DoD and intelligence 

community (IC) operations, especially data collection by many types of ISR 

satellite sensors.  Because of this, automated cloud detection, analysis, and 

forecasting processes must be developed, tested, and used in, for example, the 

targeting process for satellite based ISR.  Improved information about clouds can 

help decrease the time required during the decision analysis and targeting cycle, 

and help increase operational efficiency and success rates.  This helps ensure 

that a balance of weather and security factors is considered when determining 

the targets to be observed by a satellite.  

Improved accuracy in automated cloud analyses and forecasts would lead 

to increased user confidence in those products for ISR satellite tasking.  For 

example, if a cloud analysis and forecasting system with a proven level of high 

performance predicted unfavorable cloud conditions over a user’s priority one 

and priority two targets, but favorable conditions over targets three, four, and five, 

then a satellite could be refocused on targets three through five.  This would 

improve the chances of some successful data collection versus no data collection 

on the five targets because an attempt was made to collect on target one and 

two.  Higher confidence in the cloud analyses and forecasts would allow planners 

to have higher confidence in their decisions to reprioritize their target list based 

on anticipated weather conditions.  A major goal for our study was to contribute 



 2 

to the improvement of cloud analyses and forecasts, and to thereby improve the 

planning and outcomes of DoD and IC operations.  

The United States Air Force (USAF) currently uses the Cloud Depiction 

Forecast System (CDFS) II to combine weather satellite, surface observations, 

and ground characteristics to produce an hourly global cloud analysis and short 

term forecasts for the remote sensing intelligence community (IC).  The World 

Wide Merged Cloud Analysis (WWMCA) is an analysis generated every thirty 

minutes by as part of the CDFS II process.  Detailed information on the history 

and processes in CDFS II and WWMCA can be found in Chapter II Section B. 

The goal of our study was to assess the accuracy of WWMCA in order to 

provide improved understanding of WWMCA and the forecasts based on 

WWMCA.  Specifically, we conducted a detailed investigation into the accuracy 

of WWMCA in overall cloud detection, as well as in specific cloud categories of 

interest to the satellite intelligence community.  Our aim was to develop objective 

quantitative measures of WWMCA performance that could be used to (a) assist 

WWMCA users in determining how to weight WWMCA and corresponding 

forecasts in their planning cycles; and (b) identify methods for improving 

WWMCA tuning and merging algorithms and the corresponding CDFS II 

forecasts. 

B. PRIOR RESEARCH 

Prior researchers have compared various cloud observation data sets to 

WWMCA analyses and other merged cloud analyses processes.  The sources of 

the observational data have included surface observations, surface and air based 

lidar, atmospheric profilers, rawindsonds, radar, Moderate Resolution Imaging 

Spectroradiometer (MODIS), and CloudSat. A number of these studies have 

been well summarized in a Northrop Grumman Information Systems review 

(NGIS; 2011), including Heidemen, Ruggiero, Norquist, UCAR/AER, Gustafson 

and a climatology effort by the USAF 14th Weather Squadron.  Table 1, at the 
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end of this section, summarizes the key similarities and differences between the 

prior studies.  

Heidemen (1995) is one of the earlier studies relevant to this research 

project.  This study reviewed data over a 10-day period in 1993 for three 

geographic regions of interest comparing the SERCAA analysis to the RTNEPH 

to determine if SERCAA should replace the RTNEPH process.  Cloud coverage 

categories were divided into the categories (clear <20%, partly cloudy 20–80%, 

and cloudy >80%), and the SERCAA and RTNEPH  data were compared to 

determined when they matched and when there was a level-2 difference (i.e., a 

level-2 difference occurred when one data set showed clear while the other 

indicated cloud).  When differences occurred, human visual inspection was used 

to compare the analyses to the corresponding satellite imagery to see whether 

SERCAA or RTNEPH was more accurate.  This comparison was conducted 

separately for day and night periods.  Overall, Heidemen determined that 

SERCAA provided a more accurate analysis than RTNEPH, especially during 

daylight hours.  This study provided useful information critical to developing 

upgrades to CDFS that were implemented in CDFS II (NGIS 2011). 

Ruggiero (2000) was a validation trial of SERCAA by the Air Force 

Research Laboratory (AFRL).  The purpose of this study was to determine if 

SERCAA could be used to improve the initialization of moisture fields in 

numerical weather prediction (NWP) modeling.  SERCAA data was divided into 

two sets, one for data that were processed using Phase I algorithms and one for 

data that were processed using Phase II algorithms.  Phase I algorithms were the 

original algorithms developed under SERCAA, while Phase II algorithms included 

upgrades to address shortcomings in Phase I algorithms.  SERCAA Phase I and 

Phase II data was verified against surface based observations and rawinsondes 

from September 1995 in eastern Massachusetts, with comparisons being done in 

four cloud coverage categories: clear <0.1; scattered 0.1–0.5; broken 0.6–0.9;  

and overcast > 0.9.  Ruggiero anticipated that data that underwent Phase II 

processing would perform better than Phase I, if the Phase II upgrades were 
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successful.  Ruggiero determined that the Phase II algorithms indeed performed 

better than the Phase I algorithms.  Phase II algorithms detected cloud when it 

was present 81% of the time, agreed with observed cloud fraction in 73% of the 

cases, was within one category in 94% of the cases, and was off by two 

categories in 6% of the cases (NGIS 2011).  On the basis of hit rate, Ruggiero 

determined that using the Phase II SERCAA data improved the cloud analyses 

and forecasts. 

Norquist (2007) verified WWMCA data for cloud layering against cloud 

profiling radar and portable lidar data from two studies conducted from Oct 2004 

through Dec 2005 for the WWMCA cell located over Hanscom AFB, MA.  In this 

study, data for 117 hours in which cloud cover was present was reviewed to 

compare WWMCA low, middle, and high cloud “observations” to radar and lidar 

observations in order to assess the ability of WWMCA to recognize cloud layers 

and levels.  Norquist found that WWMCA under diagnosed high cloud and over 

diagnosed low and middle cloud. Overall, Norquist determined that WWMCA did 

a good job of cloud detection and its performance was reasonable for low and 

middle level clouds (NGIS 2011).  

Horsman (2007) conducted a study using data from ten Air Force bases 

across the continental United States for 16 days in 2007.  Hourly manual 

observations were compared to the ten corresponding WWMCA cell values.  

Horsman determined that the WWMCA had a poor performance for point 

locations, with an overall verification rate of 27% and a miss rate of 32% 

(Horseman 2007). 

University Corporation for Atmospheric Research (UCAR), conducted a 

comparative study of WWMCA to CloudSat in 2008 and the Atmospheric 

Environmental Research, Inc. (AER), followed up these findings with a similar 

study in 2010.  These studies were done with the assistance of the U.S. Air 

Force 16th Weather Squadron.  No formal reports were released but the studies 

were summarized in a verification and validation paper by Northrop Grumman 

Information Systems in 2011(NGIS 2011).  The first study covered the Northern 
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Hemisphere from 1 April–29 June 2008 using only WWMCA data less than three 

hours old.  The 2010 follow up study included the original analyzed period, a 

secondary three month period from 28 March–31 May 2010, and expanded to 

include both hemispheres. It studied performance using all WWMCA data 

regardless of age and using only data less than three hours old.  CloudSat and 

WWMCA data sets are at different resolutions, so the two data points had to be 

matched to similar spatial and temporal periods for comparison.  All CloudSat 

data sixty minutes prior to the hour was consolidated to be included for 

comparison to the top of the hour WWMCA analysis.  It was then converted into 

WWMCA cell coordinates and binned accordingly.  If more than six CloudSat 

pixels were included in a WWMCA cell, then the CloudSat cloud percentage and 

cloud category was calculated for direct comparison to the WWMCA values. 

More details on this process will be discussed in Chapter II.  UCAR and AER 

determined that WWMCA had a tendency to under analyze cloud. Results from 

using all data available showed that WWMCA detected cloud when CloudSat 

said there was cloud more than 80% of the time and agreed on the cloud/no 

cloud amounts 75% of the time (NGIS 2011). 

Bartlett (2009) conducted qualitative studies to compare WWMCA to data 

from MODIS and from the Navy Operational Global Atmospheric Prediction 

System (NOGAPS).  While not a quantitative study, Bartlett determined that 

quantitative verification of cloud distributions could be achieved (Bartlett 2009). 

Gustafson (2011) compared MODIS derived cloud mask data to WWMCA 

data on a global scale for June and September of 2010.  The MODIS data was 

converted to “yes/no” cloud for each 1 km box and then matched to WWMCA 

cells.  A percent cloudy calculation was done based on the number of MODIS 

data points in the WWMCA cell.  Unlike the UCAR and AER studies, the number 

of MODIS points available in a WWMCA cell did not appear to be a consideration 

in the Gustafson study.  Cloud fractions for both the MODIS cloud masks and 

WWMCA were calculated and classified as clear (<20%), partly-cloud (20–80%), 

or cloudy (>80%).  Gustafson also noted when there was a greater than 20% 
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difference in the cloud fractions between MODIS and WWMCA.  Gustafson 

determined that the cloud fractions of WWMCA and MODIS were in agreement 

65% of the time, and that MODIS performed better over the polar regions, while 

WWMCA performed better over bright backgrounds, such as deserts or sun glint.  

Gustafson determined that, while a useful comparison, the MODIS cloud mask is 

less than ideal as an independent source of “truth” for analysis comparison and 

recommended a similar study be conducted using CloudSat as “truth” (NGIS 

2011).  

Stubblefield (2011) worked to extract value from ensembles for cloud free 

forecasting using forecasts created using WWMCA combined with output from 

the National Centers for Environmental Prediction (NCEP) global weather 

ensemble.  Data over three climatologically different regions from Feb 2010–Jan 

2011 was compiled and analyzed to determine Heidke skill score, true skill score 

(TSS), hit ratio, correct reject ratio, odds ratio, and relative operating 

characteristic (ROC).  The focus was on determining if skill could be increased by 

using ensemble forecasting for clouds; however, some valuable information on 

WWMCA performance was discovered as well.  Stubblefield found that the 

tendency for WWMCA to create bi-modal distribution of 100 or 0 percent clear or 

cloudy conditions was problematic for both forecasting and verification.  Specific 

to our study, Stubblefield determined that appreciable skill and value does exist 

in WWMCA cloud free forecasts and that the skill varies with cloud type and 

frequency.  Stubblefield also determined that the advection scheme of ADVCLD 

gives a poor representation of cloud cover processes and evolution and should 

be re-evaluated (Stubblefield 2011). 

Cleary (2012) conducted a study using the CloudSat 2B-GeoProf data 

mask to verify the accuracy of WWMCA for southwest Asia and western Russia 

for January, April, July, and October 2010.  Cleary used methods similar to the 

UCAR (2008) and AER (2010) studies for spatial and temporal matching of 

CloudSat to WWMCA.  Contingency table metrics were then calculated and used 

to compare WWMCA performance in three cloud cover categories: clear (<20% 
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cloud), probably cloud (20–80% cloud), and cloud (> 80% cloud) for day and 

night performances. He used the CloudSat data mask values of 20 and 30 as 

cloud occurrence thresholds.  Cleary found that WWMCA performed better in 

persistent cloud conditions than variable cloud conditions, and that WWMCA 

performed poorly in partly cloudy conditions.  HSS values were higher for mid-

latitude analyses than high latitude analyses.  Cleary found that overall WWMCA 

performance was lower than that discovered in prior studies.  Additionally, Cleary 

concluded that WWMCA performance was relatively insensitive to the 20 and 30 

CloudSat cloud masking thresholds used in the verification (Cleary 2012a). 
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Table 1.   Summary and comparison of prior research to include key studies and 
their data sets, verification metrics used, results, and conclusions. 

Study Period Region Data Sets 
Compared 

Verifying 
Data 
Period 

Testing Method Verification 
Metrics Results and Conclusions 

Heidemen 
(1995) 

May 93 
(10 days) 

Three regions: 
Japan, Central 

America, 
Himalayas 

SERCCA vs 
RTNEPH N/A 

Compared values 
for three cloud 
categories (LT 
20%, 20–80%, 

GT 80%) 

Hit rate 
 

Level-2 
difference 

SERCAA outperformed RTNEPH 

Ruggiero 
(2000) 

Sept 95 
(48 cases) 

One Region: 
Eastern 

Massachusetts 

SERCAA vs 
Surface 

Observations 
and 

Rawinsonde 
Data 

N/A 

Compared values 
for four cloud 

categories (clear, 
sct, bkn, ovc) 

Cloud 
detection rate 

SERCAA correctly detected cloud 
81%, cloud fraction in agreement 

73%, cloud fraction was within 
one category 94%, cloud fraction 

significantly disagreed 6% 

Norquist 
(2007) 

Oct 04 – 
Feb 05 

(10 days) 
and Feb –

Dec 05 
(26 days): 

total 
117hrs 

One WWMCA 
cell (~24km x 

24km) 

WWMCA vs 
LIDAR N/A 

Compared values 
for cloud height 

detection 

Cloud 
detection rate 

WWMCA: detected clouds 78%, 
under diagnosed high cloud, over 
diagnosed low and middle cloud 

Horseman 
(2007) 16 days 10 U.S. 

military bases 

WWMCA vs 
Surface 

Observation 
N/A 

Compared values 
for YES/NO cloud 

(percent not 
specified) 

Verification 
Miss rate 

WWMCA: verification rate 27%, 
miss rate 32% 

UCAR 
(2008)/AER 

(2010) 

1 Apr – 29 
Jun 08 

28 Mar – 
31 May 10 

 

2008 – 
Northern 

Hemisphere 
2010 - Global 

WWMCA vs 
CloudSat 2B 

GeoProf 

CloudSat 
matching to 
WWMCA 

VT- 60 min 

Compared values 
for YES/NO cloud 
(hit = greater than 
1% cloud), done 
with all WWMCA 

data and only 
WWMCA data 

less than 3 hrs old 

Hit rate 
WWMCA: detected cloud more 

than 80%, agreed with CloudSat 
75% 

Bartlett 
(2009) 

April – 
June 08 

Two regions: 
Horn of Africa 

and Sub-
Saharan Africa 

WWMCA vs 
MODIS and 
NOGAPS 

Varied, 
typically +/- 

30 min 
between 
WWMCA 

and MODIS 

Comparison of 
total cloud fraction 

(0–20%, 20–
40%,40–60%,60–
80%,80–100%), 

and cloud 
layering using 
Euclidean and 

Kulback-Leibler 
methods 

Visual 
quantitative 

and 
qualitative 
inspection 

WWMCA did well at depicting 
large areas of distinct cloud cover 
at meso-beta and higher scales. 
Quantitative evaluation of clouds 

can be achieved 

Gustafson 
(2011) 

Sept and 
June 2010 Global WWMCA vs 

MODIS 

MODIS 
matching to 
WWMCA 

VT – 60min 

Compared values 
for three cloud 

categories (Clear 
< 20%, Partly 

Cloudy 20–80%, 
Cloud > 80%) and 
greater tha n20% 

differences 

Proportion 
correct 

 
Greater than 

20% 
difference 
between 

MODIS and 
WWMCA 

65% of the time the sky was either 
clear or cloudy. WWMCA and 

MODIS: Clear match 25%, Partly 
Cloudy match 6%, and Cloudy 

match 34%. MODIS had 20% or 
more cloud than WWMCA 28%, 

WWMCA had 20% or more cloud 
than MODIS 7%. WWMCA 

outperformed MODIS over desert 
regions and sun glint. MODIS 

outperformed WWMCA in polar 
regions. MODIS not 100% 

accurate so may not be the best 
“truth” for verification. Locations 

were MODIS and WWMCA 
disagree can help optimally focus 

tuning efforts 

Stubblefield 
(2011) 

Feb 2010 
–Jan 2011 

Three regions: 
Saudi Arabia 

and Iran, 
China, 

northern South 
America 

Ensemble 
forecasting 

with WWMCA 
and National 
Centers for 

Environmental 
Predictions 

global weather 
ensemble 

N/A 30% cloud/no 
cloud threshold 

Heidke Skill 
Score (HSS), 

True skill 
score (TSS), 

relative 
operating 

characteristic 
(ROC), hit 

ratio, correct 
reject ratio, 
odds ratio 

Bi-modal distribution discourages 
use of varied cloud fractions. 

Advection scheme of ADVCLD is 
poor representation of cloud cover 

processes and evolution. Utility 
theory should be employed 

operationally. Appreciable skill 
and value exists in cloud free 
forecasts and skill varies with 

cloud type and frequency. 

Cleary 
(2012) 

Jan, Apr, 
Jul and 

Oct 2010 

Two regions: 
Russia 

(WWMCA box 
26) and SWA 
(WWMCA box 

22) 

WWMCA vs 
CloudSat 2B 

GeoProf 

CloudSat 
matching to 
WWMCA 

VT+/- 
30min 

Compared values 
for three cloud 
categories (LT 
20%, 20–80%, 

GTE 80%) 

Probability of 
detection 
(POD), 

proportion 
correct (PC), 
false alarm 
(FA), threat 
score (TS), 
bias, HSS 

WWMCA performed better in 
persistent cloud conditions than in 

variable cloud conditions. 
WWMCA performance was lower 

than in prior studies. WWMCA 
performance was insensitive to 

CloudSat cloud mask thresholds 
of 20 and 30. HSS higher for mid-

latitude than high latitude. 
WWMCA performance poor for 

partly cloudy conditions. 
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C. MOTIVATION AND SCOPE OF RESEARCH 

The prior studies were critical for improving automated cloud analyses and 

forecast systems, but additional research is still needed to assess these systems 

and improve their performance.  Most of the prior studies only accounted for a 

small localized region and/or short period of time, and thus may not be 

representative of performance in other regions and periods, or of overall global 

performance.  Most of the prior studies used a very limited set of performance 

metrics, and thus provided only a limit performance perspective.  The Ruggiero 

study only accounted for hit rates and cloud category differences, and did not 

present a full picture of the overall performance.  For example, it did not explicitly 

provide information on false alarms ratios or rates, threat scores, and other 

conventional verification metrics.  The Norquist (2007) study addressed the 

ability of WWMCA to recognize clouds at various levels versus overall cloud 

detection, but only considered hit rates in its verification.  Horsman (2006) used 

both hit rate and miss rate; however, he only accounted for a single WWMCA cell 

for 16 days, and used a single point observation to represent an entire 24 km x 

24 km region.  The UCAR (2008) and AER (2010) studies expanded the areas 

and periods of interest to include a more global perspective and multiple months 

of data, which had not been done in prior studies.  Unfortunately, these studies 

only looked at “yes/no” cloud hit rates and averaged CloudSat data up to an hour 

old to determine the top of the hour “truth” for comparison to WWMCA.  Cleary 

(2012) reduced the time matching for CloudSat “truth” from the 60 min window to 

a 30 minute window; however, the method used for both his study and the UCAR 

and AER studies for spatial matching made a large assumption that six CloudSat 

pixels was an adequate amount of verifying data to use in assessing a given 

WWMCA cell.  None of the prior studies accounted for latitudinal variation of the 

WWMCA cell size. 

We addressed these shortcomings in our study by: (1) increasing the 

study period and study region to cover a full year and all of the northern 

hemisphere; (2) accounting for latitudinal variations in WWMCA cell size; (3) 
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setting a minimum for CloudSat coverage within a WWMCA cell of 6%; (4) using 

a wide range of performance metrics; (5) limiting the window of CloudSat data 

use to determine the “truth”; and (5) addressing the age, or time latency, of the 

input data used to generate WWMCA.  Specifically, WWMCA performance for 

2010 over the Northern Hemisphere was analyzed by: (1) cloud event category: 

cloudy (80–100% cloud cover), partly cloudy (20–79% cloud cover), clear (0–

19% cloud cover); (2) geographic region (Northern Hemisphere, below 50 

degrees north latitude, tropics (0–23.5N), subtropics (23.5–35N), mid-latitude 

(35-50N), high-latitude (50–90N), South China Sea, and Southwest Asia; (3) 

month (January–December); and (4) pixel age of WWMCA data.  WWMCA 

overall and cloud category performance were evaluated using contingency table 

and other metrics, including probability of detection, probability of false detection, 

proportion correct, threat score, false alarm ratio, Heidke skill score, bias, hit 

proportion, miss proportion, and level-1 and level-2 differences.  Our intention in 

conducting a more comprehensive study than prior studies was to develop a 

more robust and detailed assessment of WWMCA.  Table 2 summarizes our 

study for comparison to prior studies (see Table 1). 

Table 2.   Summary of current research. 
Study Period Region 

Data Sets 
Compared 

Verifying Data 
Period 

Testing Method 
Verification 

Metrics 
Results and 
Conclusions 

Pasillas 

(2013) 
Jan – Dec 2010 

Eight regions: Northern 

Hemisphere 0-90N, 

Tropics 0-23.5N, 

Subtropics 23.5-35N 

Midlatitude 35-50N. 

High latitude 50-90N, 0-

50N, Southeast Asia 

WWMCA Box 22, South 

China Sea WWMCA 

Box 12 

WWMCA vs 

CloudSat 2B 

GeoProf 

CloudSat 

matching to 

WWMCA VT – 

15min 

Compared 

values for three 

cloud categories 

and level 1 and 

level 2 

differences as 

well as latency. 

Hit proportion, 

miss proportion, 

level-1 

difference, level-

2 difference, 

PC, POD, TS, 

FAR, POFD, 

bias, HSS 

See Chapter III 

 

The variety of methods seen in prior research demonstrates that there are 

many approaches to assessing the performance of cloud analysis and 

forecasting products such as WWMCA.  It is important to note that there is not 

one generally agreed upon approach for verifying such products and for 
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determining what independent data sources should be used for verification 

purposes.  The large variation in the studies also shows the complexity of 

interpreting performance results from similar studies for the same forecasting 

tools.  Additionally, WWMCA is a constantly evolving product with regular 

upgrades, including a major upgrade in April 2009.  WWMCA verification results 

for prior periods may not be applicable to newer updated versions of WWMCA.  

This is why it is difficult to do a direct comparison of results between similar 

studies on WWMCA performance.  Ingenuity and originality are appreciated in 

the scientific community, but the meteorological research community would 

benefit greatly from some form of standard operating procedures for analysis and 

verification of WWMCA performance.   

D. ORGANIZATION  

Chapter I includes an overview of the study, summary of prior research, 

motivations, and scope of research.  Chapter II provides a history and 

explanation of cloud forecasting systems and processes, information on the 

system being used for verification, data for analysis, data reduction and 

assimilation processes, and methods used to verify WWMCA performance 

against CloudSat.  Chapter III discusses the results of the WWMCA verification 

study addressing both latency and overall performance.  Chapter IV provides a 

summary of findings, conclusions, and recommendations for future research. 
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II. DATA AND METHODS 

A. OVERVIEW 

This chapter provides background information on CDFS II, WWMCA, and 

CloudSat.  Additionally, it discusses the data sets used in this study and outlines 

the methods used in data processing, assimilation, and analysis.  Specifically, 

this chapter outlines the steps to temporally and spatially match the WWMCA 

and CloudSat data sets, explains the process and purposes for preliminary 

analyses done after data matching, and provides details on the specific methods 

and metrics used in the focus analyses of this study.   

B. AUTOMATED CLOUD ANALYSIS  

1. Cloud Depiction and Forecasting System II 

Prior to CDFS II, the original CDFS used Real-Time Nephanalysis 

(RTNEPH) for its data processing.  RTNEPH was greatly limited in the data that it 

could ingest and combined conventional surface observations with reduced 

resolution single channel infrared or visual channels from the Defense 

Meteorological Satellite Program (DMSP) operational line scanner (OLS) or 

National Oceanic Atmospheric Administration (NOAA) Advanced Very High 

Resolution Radiometer (AVHRR) data to create a merged analysis of clouds.  

The RTNEPH model produced four floating layers of clouds and provided total 

and layered cloud amounts, cloud layer tops, cloud layer bases and cloud type at 

48 km resolution.  RTNEPH was dependent on polar orbiting satellites which 

greatly reduced the frequency at which it could produce reliable and timely 

products (Isaacs 1994).  

The Support of Environmental Requirements of Cloud Analysis and 

Archive (SERCAA) was an initiative of the Air Force research community to 

improve upon the RTNEPH process and provide the next generation 

nephanalysis model for CDFS II.  It also was used to create a new global cloud 

algorithm for use in determining radiative and hydrological effects of clouds on 
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climate and global change (Isaacs 1994).  Its main goal was to improve the 

automated nephanalysis capabilities for multi-platform sensors.  While RTNEPH 

was tuned to accept only one channel of infrared or visual channels, SERCAA 

made use of full resolution data and multiple visible and infrared channels from 

the various satellites.  Furthermore, SERCAA allowed for three separate 

nephanalyses to be produced at the sensor resolution before the integration of 

satellites into a single analysis.  The final analysis included up to four floating 

layers of clouds and provided total and layered cloud amounts and cloud type 

done at a 24 km resolution versus 48 km (Isaacs 1994).  Having algorithms tuned 

for specific sensors capabilities improved the ability to detect, and more 

accurately layer, clouds over the original RTNEPH processes. 

In 1998, CDFS II was released as an initiative to increase the amounts 

and types of satellite information ingested into cloud analysis processes in order 

to improve cloud detection, analyses, and forecasts.  This initiative allowed for 

the inclusion of rapidly updating geostationary satellites to improve the temporal 

and spatial resolution for automated cloud analysis.  Similar satellite types and 

systems are grouped into families and their data merged into a single gridded 

data record (GDR) for that sensor family and time.  There are four primary sensor 

families and associated GDRs: Defense Meteorological Satellite Program 

(DMSP), Geostationary (GEO’s) which contains the five geostationary platforms, 

Television Infrared Observation Satellite Program (TIROS), which contain the 

NOAA polar orbiters and the European METOP polar orbiter (all of these sources 

fly the same instrument) and a GDR containing the two NASA MODIS satellites.  

For this study there were only three GDR families (DMSP, GEOs, and TIROS) as 

the addition of the MODIS GDR did not occur until after 2010.  During the 

retrieval of satellite information, SERCAA algorithms are applied to the data from 

the individual satellites, and cloud layers and types are determined for each input 

sensor and mapped to the GDR (Isaacs 1994).  This is an ongoing process that 

creates a new GDR every time new data becomes available any sensor within 

that family.  The typical refresh rate for a geostationary satellite is every 15–30 
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minutes and every 75–90 minutes for a polar orbiter.  Figure 1 and Figure 2 show 

the data coverage provided by geostationary and polar orbiting satellites for the 

CDFS II in 2012.  The MODIS satellite was not available in 2010. There is a gap 

in polar coverage from 2200–0100 local time (L) and 1000L–1300L as well as 

from 0300L–0400L and 1500L–1600L.  This time amounts to approximately 66% 

of the hours not covered by a satellite in orbit. 

 
Figure 1.  Geostationary Metsat coverage available to the CDFS II for 2012. 

Coverage extends to 50 degrees along satellite centerline and is 
overlapping (From AFWA 2011). 
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Figure 2.  Polar orbiting satellite coverage available for CDFS II in 2012. The N15 

and F15 satellites are at the end of their life cycle and, if not replaced, will 
cause more gaps, decreasing polar coverage to 66% of the day as in 2010 

(From AFWA 2011). 

The compiled analysis created by CDFS II is called the World Wide 

Merged Cloud Analysis (WWMCA).  There are four main levels of processing in 

CDFS II to create the WWMCA.  Level 1 is ingest-processing that includes 

unpacking of the telemetry stream, sensor data calibration, and earth location. 

Level 2 is cloud-detection, cloud optical property retrieval, and parallax correction 

performed on a pixel-by-pixel basis using sensor-specific algorithms to analyze 

data transmitted from each satellite. Level 3 is cloud-layering and typing to 

provide a vertical stratification of the cloud-filled pixels detected in Level 2. Level 

3 output is remapped to the standard AFWA polar-stereographic grid projection 

at a resolution of 24 km (true at 60 degrees latitude). Level 1, 2, and 3 are event 

driven processes triggered by the receipt of new data from any of the satellite 

sources. Level 4 is integration, or merge, processing wherein the most recent 

analyzed products from each satellite and all available surface observer reports 

are combined to produce the World Wide Merged Cloud Analysis. (HQ/AFWA 

2012)Levels 1–3 are constantly updating, while level 4 is a time driven process 

that occurs at the top and bottom of the hour.  The bottom of the hour analysis is 
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distributed without modifications while the top of the hour analysis reviewed by a 

weather forecaster in the loop (FITL).  The WWMCA that goes through forecaster 

manipulation is labeled as a top of the hour (e.g., 12Z) analysis of global cloud 

coverage but contains little to no data for that precise valid time.  WWMCA is 

actually comprised of data that varies strongly in age from near zero minutes to 

greater than four hours old, due to the refresh rate and availability of data (T. 

Nobis 2013, personal communication).  If necessary, the FITL will make slight 

modifications to cloud cover in focus regions based on visual comparisons to 

satellite imagery before the top of the hour output is used to initiate various 

model outputs.  Model outputs may then again be adjusted by a FITL and 

released for use in the weather intelligence cycle.  This FITL process is 

repeatedly every 60 minutes, 365 days a year (T. Nobis 2012, personal 

communication).  Figure 3 depicts how CDFS II combines surface and upper air 

observations, specialized global analyses of surface temperatures and snow 

depths, and the data from the four GDRs created from each meteorological 

satellite family to create a merged cloud analysis.  Levels 1–3 occur during the 

satellite tuning portion of this diagram.  A more detailed summary of all of the 

CDFS processing levels from Cleary (2012a) can be found in Appendix A.  
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Figure 3.  Flow chart for data in the CDFS II process.  Satellite data, observations, 
and modeled surface temperature and snow depth are adjusted and 
merged to create the WWMCA cloud analysis.  The analysis is then 

combined with numerical weather predictions to output cloud forecasts 
(After AFWA 2011). 

All steps in the CDFS II process are critical; however, it is important to 

highlight the level 4 cloud analysis integration step in which the CDFS II merges 

the GDRs from each satellite sensor into a single analysis.  This occurs during 

the cloud analysis step in Figure 3 using the integration processes outlined in 

Figure 4.  This is the step which results from our study may help to improve.  

Further information on this step is provided by HQ AFWA (2012), in which the 

following is stated about the satellite merging process: 

Integration of total cloud amount precedes integration of layer 
quantities since the estimates of total cloud fraction are believed to 
be more reliable than any individual layer fraction (due to small 
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sample sizes and the potential for height assignment errors). 
Processing occurs independently for each grid cell.  First, a series 
of rules is applied to determine if any one of the input analyses is 
superior to the other two.  If none of the input grids have been 
updated since the time of the previous Worldwide Merged Analysis, 
then the previous analysis is persisted.  If new analyses are 
available, a check is made to determine if more than one are timely.  
If only one timely analysis is available, the merged total cloud 
fraction is set to the value of this analysis.  If more than one 
analysis satisfies timeliness requirements, these analyses are 
examined to determine if they are all either completely cloud-filled 
or completely cloud-free.  If so, total cloud fraction is set to either 
100 or 0 percent, respectively.  If multiple timely analyses exist that 
are neither all completely clear nor completely cloud-filled, then an 
estimated error of each sensor analysis is used to determine if the 
most recent analysis also has the lowest estimated error.  Only 
when all these conditions fail is an optimum interpolation (OI) 
algorithm used to obtain a blended estimate of total cloud fraction 
from multiple input analyses.  Averaging weights for the OI are 
based on estimated analysis errors computed for each available 
sensor analysis. (HQ AFWA 2012) 
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Figure 4.  Cloud analysis integration functional flow (From HQ AFWA 2012). 

2. World Wide Merged Cloud Analysis 

WWMCA analyses are done by overlaying a regular rectangular grid on to 

a polar stereographic projection as seen in Figure 5.  This mesh grid creates 64 

numbered boxes for the Northern and Southern Hemispheres, referred to in our 
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study as the WWMCA boxes.  These numbered boxes represent a “whole” mesh 

grid and the area is further reduced to a 1/16th mesh with a 1024 x 1024 grid with 

I,J values that represent the latitudes and longitudes of the 1/16th mesh.  We 

refer to the cells defined by the 1024 x 1024 grid as the WWMCA cells.  These 

smaller cells are 1/16th of the whole mesh, which translates to a cell size that is 

24 km x 24 km at 60 degrees latitude.  This is the resolution at which cloud 

classification is done for WWMCA.  Using this projection and meshing, WWMCA 

cell size is a function of latitude, with a minimum box size of 12.5 km at the 

equator and at a maximum of 25 km at the poles.  This resolution is an 

improvement over prior cloud merging processes; however, meteorological 

satellites often have higher resolutions, ranging from 1 to 15 km, higher than the 

current average WWMCA resolution (HQ AFWA 2012).   

 

Figure 5.  WWMCA box and cell orientation on a 1/16th mesh grid.  The WWMCA 
whole mesh is represented by the boxes numbered 1-64, while the 

WWMCA cells are sub-regions defined by the 1/16th mesh (After Cleary 
2012b). 
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Due to its current merging algorithm, the tendency for CDFS II is to 

categorize clouds in a WWMCA cell as either 100% clear or 100% cloud during 

the creation of GDRs and the merging process, when in actuality there may be a 

combination of both clear and cloud conditions that are ignored by WWMCA.  

The OI algorithm is rarely used to obtain a blended estimate of total cloud 

fraction for a WWMCA cell, even though the input satellite is at a higher spatial 

resolution and may indicate mixed cloud.  This may lead to problems in 

identifying smaller features and areas of cloudiness within larger patches of clear 

skies, or small clearings in larger cloud shields.  Figure 6 shows the distribution 

of WWMCA analyses of cloud cover for the Northern Hemisphere for 00Z from 

12 – 21 February 2012.  Notice the predominance of clear and cloud conditions, 

with over 70% of the WWMCA analyses indicating no cloud or cloud conditions, 

and less than 30% indicating partly cloudy conditions.  This figure is 

representative of the tendency or bias in the WWMCA analyses toward clear or 

cloud noted in other studies (e.g., HQ AFWA 2012; Cleary 2012). 

 

 

Figure 6.  The distribution of WWMCA analyses for 00Z, Northern Hemisphere from 
12–21 Feb 2012 (T. Nobis, 2012, personal communication). 
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C. CLOUDSAT 

1. Description of CloudSat 

CloudSat is a National Aeronautics and Space Administration (NASA) 

Earth Sciences Systems Pathfinder (ESSP) mission that was launched in April 

2006.  CloudSat’s mission is to measure the vertical structure of clouds from 

space, and observe cloud and precipitation.  The primary CloudSat instrument is 

a W-band (94-GHz), nadir-pointing, Cloud Profiling Radar (CPR) (NASA 2008).  

The original CloudSat program was funded to operate for only 22 months, but 

received an extension of mission operations to September 2011.  As of February 

2013, CloudSat is still operating, but at a reduced capability, and is now limited to 

day use only.  Ground operations and satellite communications are performed by 

the USAF at Kirkland Air Force Base, Albuquerque, New Mexico, and the data is 

downloaded and processed at the CloudSat Data Processing Center (CDPC) at 

Colorado State University (CSU) (Stephens 2008).  The four key mission 

objectives for CloudSat are as follows: 

 (1) quantitatively evaluate the representation of clouds and cloud 
processes in global atmospheric circulation models, (2) 
quantitatively evaluate the relationship between the vertical profiles 
of cloud liquid water and ice and the radiative heating of the 
atmosphere and surface, (3) evaluate cloud properties retrieved 
from other satellite systems, in particular those of Aqua, and (4) 
contribute to improving our understanding of the indirect effect of 
aerosols on clouds by investigating the effect of aerosols on cloud 
and precipitation formation. (Stephens 2008) 

CloudSat is just one satellite in a constellation of satellites commonly 

referred to as the “A-Train”.  The constellation flies in a Sun-synchronous orbit 

with a mean equatorial altitude of 705–730 km and an inclination of 98.2°.  This 

orbit is fixed, so that there are no changes in the orbital elements over long time 

periods.  The satellites cross the equator at approximately 1330L and 0130L 

every day and the revisit interval to the exact same location is 16 days.  This 

means that CloudSat repeats its ground track every 16 days, or 233 revolutions 

(NASA 2011).  The A-Train consists of six satellites: CloudSat, Cloud-Aerosol 
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Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, Aura, 

Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled 

with Observations from a Lidar (PARASOL), Aqua, and Orbiting Carbon 

Observatory (OCO).  The MODIS sensor is flow on the Aqua.  The relationship of 

these satellites can be seen in Figure 7.  While each satellite itself provides 

critical information to the meteorological community, it is the synergistic effect of 

the satellites working together that is unparalleled by any other sensing system: 

By combining the components, scientists are able to gain a better 
understanding of important parameters related to climate change. 
The A-Train formation will allow for synergistic measurements 
where data from several different satellites can be used together to 
obtain comprehensive information about various key atmospheric 
components or processes. Combining the information from several 
sources gives a more complete answer to many questions than 
would be possible from any single satellite taken by itself. (NASA 
2003) 

 
Figure 7.  A depiction of the satellites that make up the “A-Train” constellation.  The 

satellite name and equator crossing is shown for each satellite in the 
constellation.  Note that the gap between the coverage of the first and last 
satellite in the “A-Train” is less than 30 minutes (and less than two minutes 
between Aqua, CloudSat, and CALIPSO), which allows for synergy within 

the constellation (From NASA 2003). 
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Data from a single orbit of the CloudSat is referred to as a CloudSat 

granule.  Each granule represents a surface path that is 40,786 km in length and 

contains approximately 37,088 profiles.  Each profile represents a vertical 

sounding from the satellite through the atmosphere to the surface.  The 

horizontal surface area represented by each profile is the CloudSat pixel area or 

instantaneous field of view (IFOV).  From an altitude of 705 km, the IFOV, at 

mean sea level, is 1.7 km along and 1.3 km across track (Mace et al. 2007).  A 

dissection of the CloudSat granule can be seen in Figure 8.   

 
Figure 8.  Dissection of a single CloudSat Granule, including the IFOV for the 

CloudSat cloud profiling radar (CPR). (From Cleary 2012b). 

2. CPR and the 2B Cloud Geometrical Profiling (GeoProf) Product 

The cloud profiling radar (CPR) is the sensor on CloudSat that is used to 

detect microwave radiation from clouds, and thus infer clouds and precipitation in 

the atmosphere.  The CPR has provided nearly continuous, global time series of 

vertical cloud structure and properties at a vertical resolution of 485 m since 2 

June 2006.  The CPR emits a 3.3 microsecond pulse resulting in a vertical 
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resolution of 485 m.  The back scattered signal is oversampled to produce a 

range gate spacing of 240 m (Stephens et al. 2008).  This spacing leads to 124 

levels in the vertical profile as see in Figure 9. 

   
Figure 9.  Description of the vertical layer resolution of the CloudSat cloud profiler 

(From Cleary 2012b). 

There are several products derived from measurements taken by the 

CPR.  The 2B-GeoProf product provides information about the presence or 

absence of clouds by identifying the levels in the vertical column sampled by 

CloudSat that contain significant radar echo from hydrometeors and providing an 

estimate of the radar reflectivity factor for each of these volumes.  The cloud 

mask data portion of the 2B-GeoProf provides values that indicate the likelihood 

of cloud detection at each vertical profile level over a CloudSat pixel.  The cloud 

mask data is stored in the 2B-GeoProf data product and contains a value 

between 0 and 40 for each range bin, with values greater than 5 indicating the 

likelihood of hydrometeors (Stephens et al. 2008).  Larger values indicate a 

higher likelihood of hydrometeors, and hence clouds, and a lower likelihood of 

false detections.  The measurable cloud mask values and product cautions are 
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described in Figure 10.  For this study, we used the maximum detected value 

and level of occurrence to determine if there was any detection of cloud in the 

vertical column over each CloudSat pixel.  

 
Figure 10.  Description of the CloudSat cloud mask values, false detections goals and 

estimates, and warnings on the use of the values (From NASA 2007a).  

CloudSat has difficulty detecting some low level stratus, cumulus, non-

drizzling stratocumulus, warm altocumulus composed of small water droplets, 

and optically thin, high cirrus (Mace et al. 2007).  Information on how CloudSat 

attempts to overcome these deficiencies can be found in Mace et al. (2007).  To 

account for the low level deficiency of CloudSat, we removed all data at the 
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lowest levels (1 km) of the cloud mask column from consideration during 

CloudSat mask data retrieval.  WWMCA is also known to have difficulty detecting 

high cirrus, and we made no modifications to the CloudSat to address this issue. 

D. DATA SET 

1. World Wide Merged Cloud Analysis  

The WWMCA data set used for this study contained hourly global cloud 

amount analyses for 2010 and was provided by the USAF’s 16th Weather 

Squadron in ASCII format.  Each data file provided consisted of hourly analyses 

for each month for approximately 1.5 million global data points.  A sample of the 

data format can be seen in Figure 11.  Data extracted from these files for this 

study included: year, month, day, hour, WWMCA I and J coordinates, total cloud 

amount from all layers, and pixel age.  Further information on how we determined 

whether an individual WWMCA cell had enough CloudSat pixels to warrant 

combining for analysis is located in Section F.2. 
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Figure 11.  WWMCA data format.  Cloud amount data was determined from the total 

cloud amount from all the layers, not from layer percentages. (From 
Cleary 2012b). 

2. CloudSat–2B GeoProf 

The CloudSat 2B–GeoProf data set used for this study was downloaded 

via file transfer protocol (FTP) from the CloudSat Data Processing Center in 

hierarchical data format (HDF).  We created a data file for each orbit of the 

CloudSat and included detailed information for approximately 37,000 data points.  

CloudSat data provided mostly continuous coverage for the year 2010, with the 

exception of a complete outage of data from 01–15 Jan 2010 and an occasional 

single orbit outage throughout the rest of the year.  Data extracted from these 

files included: date, time (hh:mm:ss), latitude, longitude, CPR Cloud Mask 

maximum mask value (0–40), the level of occurrence of the maximum mask 

value (1–124), MODIS cloud confidence flag (0–3), and MODIS cloud fraction.   
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E. DATA PREPARATION 

1. Overview 

In order to do a comparison of WWMCA analyses to CloudSat, we had to 

conduct a three dimensional time and space matching of the two data sets.  The 

steps to ensure proper matching of data sets included: (1) retrieval of required 

data from CloudSat granules; (2) merging of CloudSat pixels from within the 

CloudSat granules into WWMCA compatible data sets for time and location; (3) 

reduction of the CloudSat data to a reasonable “truth” window comparable to the 

WWMCA valid time; and (4) matching the CloudSat data to corresponding 

WWMCA data via valid time, date, and location.  Once dimensional matching 

was completed, a data format quality control was performed, and the data was 

decoded and reformatted for calculation using MATLAB.  We used MATLAB for 

format and data quality control, reformatting, and data processing to ensure the 

quality of the data and assimilate the data into predetermined bins for analysis.  

MATLAB coding samples for all steps can be found in Appendix B. 

2. Data Retrieval from CloudSat 

During this step, data was retrieved at two time intervals to match with the 

WWMCA valid time (VT).  This included 30 and 15 minute intervals prior to the 

top of the hour.  Samples of 30 and 15 minute data sets were then processed 

through the final reduction steps.  After a comparative review of the results, we 

determined that the 15 minutes would be the optimal time in order to maximize 

useable data and to analyze data that would be most representative of the actual 

conditions at the top of the hour.  Thus, the CloudSat data was reduced to 

include only data in the Northern Hemisphere that occurred 15 min prior to the 

top of each hour for the raw data described in Section C.1.  Details and results 

on the process of time determination can be seen in section G.1 of this chapter.  

In this step, CloudSat pixel latitude and longitude were converted into WWMCA 

box and WWMCA cell coordinates.  Additionally, a CloudSat occurrence value 

was calculated to relate the CloudSat cloud mask value for each pixel to a cloud 
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occurrence value according to Table 3.  This data was placed into CSV files for 

each day sorted by a time stamp.  An example of the output of this phase can be 

seen in Figure 11. 

Table 3.   Translation from CloudSat cloud data mask to occurrence values. 
 

Cloud Mask 
Value 

Cloud Occurrence 
Value 

Interpretation of Occurrence Values 

-9 999 Missing or bad data. Will be removed from further 

processing 

0-10 0 Clear 

20 1 Probable Cloud, will be considered cloud if using 

20 Threshold, will be no cloud if using 30 

threshold 

30-40 2 Cloud 
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Figure 12.  A sample of the initial data pulled and calculated in phase I. Note that this 

sample has data for three different WWMCA cells. 

3. Merging CloudSat Granules and Calculating Additional 
Information 

In this step, CloudSat pixels that were located in the same WWMCA cell 

and contained the same date and hourly time stamp were merged into a single 

line of data, in order to calculate a cloud fraction for average CloudSat cloud 

cover from the cloud occurrence values for that cell and time.  The percent 

cloudiness and final cloud category was calculated twice using the cloud mask 

threshold value of 20 as cloud and as not a cloud.  An example of the output of 

this phase can be seen in Figure 13. 
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Figure 13.  A sample of the merging of CloudSat data for the initial data shown in 
Figure 12.  Note that instead of 42 lines, the sample now contains only 
three lines, one representing each WWMCA cell for a specific date and 

time. 

4. Matching CloudSat and WWMCA via Time, Date and Location 

Once CloudSat data for a specific WWMCA cell and time was 

reduced to a single line, it then was matched to the corresponding WWMCA data 

for the same location and time.  After the data was matched, then only the 

required WWMCA information needed was retrieved from the WWMCA files. This 

data was placed into a single CSV file where each line had a combination of the 

necessary CloudSat and WWMCA data for each WWMCA cell and valid time.  At 

this point all data was matched for all 12 months and data processing for 

comparisons could be started.  An example of the output of this phase can be 

seen in Figure 14.  This step was completed for all months using the 15 minute 

window and one day using the 30 minute window for future validation of the 

temporal data reduction choice made for CloudSat. 

 
Figure 14.  A sample of a final data set after the merging between CloudSat and 

WWWMCA data sets.  This is a continuation of the sample shown in 
Figures 12 and 13. 

WWMCA 
Valid Time

Average 
Lat

WWMCA 
i

WWMCA 
j

WWMCA 
Box

WWMCA Box 
Length

 WWMCA Box 
Area (km**2)

WWMCA Box 
Coverage (%)

Night Flag 
(D=day;N
=night)

 50 
Degree 
(A=above;
B=below)

 Total 
CSPs

# CSPs 
Cloudy

 # CSPs 
PC

# CSPs 
No 
Cloud

Sum 
CSPs

CS % 
Cloudy 
(cats 1 
and 2)

 
Cloud 
Cover 
Bin 
(cats 1 
and 2) 

CS % 
Cloudy 
(cat 2)

  
Cover Bin 
(cat 2) (0-
19:0 ; 20-
79:1 ; 80-
100:2)

2010011622z 31.424 315 711 43 19.41422199 376.9120157 7.96737667 D B 21 15 1 5 21 76.19 1 71.43 1
2010011622z 31.563 315 710 43 19.44069122 377.940475 3.026931688 D B 8 0 0 8 8 0 0 0 0
2010011622z 31.664 316 710 43 19.45983281 378.6850929 4.909092105 D B 13 1 0 12 13 7.69 0 7.69 0

WWMCA 
Valid 
Time

Average 
Lat

WWMCA 
i

WWMCA 
j

WWMCA 
Box

WWMCA 
Box 
Length

 WWMCA 
Box Area 
(km**2)

WWMCA 
Box 
Coverage 
(%)

Night 
Flag 
(D=day;N
=night)

 50 
Degree 
(A=above
;B=below
)

 Total 
CSPs

# CSPs 
Cloudy

 # CSPs 
PC

# CSPs 
No 
Cloud

Sum 
CSPs

CS % 
Cloudy 
(cats 1 
and 2)

  
Cover Bin 
(cats 1 
and 2) (0-
19:0 ; 20-
79:1 ; 80-
100:2)

CS % 
Cloudy 
(cat 2)

CS Cloud 
Cover Bin 
(cat 2) (0-
19:0 ; 20-
79:1 ; 80-
100:2)

WWMCA 
Cloud 
Cover Bin 
(0;1;2)

WWMCA 
Total 
Cloud 
Cover 
(%)

WWMCA 
Pixel Age 
(min)

201001162  31.424 315 711 43 19.41422 376.912 7.967377 D B 21 15 1 5 21 76.19 1 71.43 1 2 100 32
201001162  31.563 315 710 43 19.44069 377.9405 3.026932 D B 8 0 0 8 8 0 0 0 0 0 0 32
201001162  31.664 316 710 43 19.45983 378.6851 4.909092 D B 13 1 0 12 13 7.69 0 7.69 0 0 0 32
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5. Data File Format Quality Control and Decoding  

This step ensured that all lines from the final monthly .CSV files 

created during data reduction and assimilation were the same length (i.e., had 

inputs for all data sections), and that there were no errors in the output 

formatting.  In this step we also converted the data to a .mat file for use with 

MATLAB.  If any lines differed in length, they were identified and then omitted 

from further processing.  Next, the quality controlled .mat file was decoded and 

the columns and variables were associated to respective categories for quick 

reference use in further MATLAB coding.  

F. DATA CALCULATIONS AND FUNCTIONS 

a.  MATLAB Step 3a: Function to Calculate 

In this step, we calculated WWMCA performance metrics using 

standard 3x3 and 2x2 contingency tables (Tables 4–5) and verification metrics.  

We calculated the performance by cloud category (Cloudy, Partly Cloudy, and 

Clear), region, and month.  We used the 3x3 contingency tables for each region 

to assess overall hits, and one category and two category differences (Table 4).  

We used the 2x2 contingency tables to separately assess the performance for 

each of the three cloud categories (Table 5).  We used as our performance 

verification metrics: hit proportion, miss proportion, level-1 and level-2 

differences, proportion correct (PC), threat score (TS), false alarm ratio (FAR), 

probability of detection (POD), probability of false detection (POFD), Heike skill 

score (HSS), and bias (B) (Wilks 2006).  These metrics are most commonly 

applied to the verification of forecasts.  However, for our study, we applied them 

to the verification of analyses --- specifically, WMMCA analyses.  In the following 

descriptions of these metrics, the letters A-D are referred to and represent the 

quantities described in Table 5.    
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Table 4.   A generic 3x3 contingency table for assessing WWMCA hits, and level-1 
and level-2 differences. 

 
 Observations (CloudSat) 

Cloud Partly Cloudy Clear 

Analysis 

(WWMCA) 

Cloud HIT MISS – Level-1 

difference 

MISS – Level-2 

difference 

Partly Cloudy MISS – Level-1 

difference 

HIT MISS – Level-1 

difference 

Clear MISS – Level-2 

difference 

MISS – Level-1 

difference 

HIT 

 
 

Table 5.   A generic 2X2 contingency table for assessing WWMCA performance in 
analyzing the occurrence of the three cloud categories: Cloudy, Partly 

Cloudy, and Clear.  The example shown in this figure is for the analysis of 
Cloudy conditions.  We used similar tables for assessing WWMCA 

performance in analyzing Clear and Partly Cloudy conditions (After Wilks 
(2006) and Cleary (2012)). 

 
 Observations 

(CloudSat) 
 

Cloud Not-Cloudy 
 

Analysis 
(WWMCA) 

 
Cloudy 

A 
Hits 

(A / N) 

B 
False Alarms 

(B / N) 

 
A + B 

(A + B) / N 

 
Marginal Totals for 

Analysis & 
Marginal 

Distributions for 
Analysis 

 
Not-Cloudy 

 
C 

Misses 
(C / N) 

D 
Correct 

Rejections  
(D / N) 

 
C + D 

(C + D) / N 

 A + C 
(A + C) / N 

B + D 
(B + D) / N 

N = A + B + C + D 
1.00 

 

Marginal Totals for Observations 
& Marginal Distributions for 

Observations 

 
Sample Size 

& Total 
 A = Number of Hits                              N = A + B + C + D  

B = Number of False Alarms                Letter/ N = Probability of that event 
C = Number of Misses    
D = Number of Correct Rejections 
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In the 3x3 matrix, when cloud categories agreed this was a hit.  

When they did not agree this was a miss.  When a miss occurred and the cloud 

category differed by one category this was considered a level-1 difference.  

When a miss occurred and the cloud category differed by two categories, this 

was considered a level-2 difference.   The total number of hits were added 

together and divided by the total sample size to get an overall measure of 

success referred to as the hit proportion (HP). The total number of misses was 

added together and divided by the total sample size to determine the miss 

proportion (MP). 

Before evaluating performance metrics it is useful to know the 

distribution of the observations to know how often an event had the opportunity to 

be evaluated.  It is also useful to know the distribution of the analyses for 

comparison to the distribution of the observations.  Mathematically, the marginal 

distribution (MD) for observations and analyses are calculated by: 

MD OBSERVATIONS = (A+C) / N 
 

MD ANALYSES = (A+B) / N 
 
 

 The proportion correct (PC) is the ratio of correct analysis of an 

event to the total number of samples and is an accuracy measurement.  

Accuracy measures reflect the correspondence between pairs of forecasts and 

the events they are meant to predict (Wilks 2006).  Even though the PC does not 

clearly distinguish between correctly identified event and non-event occurrences, 

Wilks (2006) considers this one of the most straightforward and sensitive 

measures of the accuracy of non-probabilistic forecasts for discrete events.  The 

PC credits yes and no events equally, and thus can be problematic when the yes 

event is rare.  In our study, we found that WWMCA rarely detected partly cloudy 

conditions, so the PC may not be the best assessment of skill for this particular 
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cloud category, but it may work well for verifying the skill of cloudy or clear 

condition forecasts.  Mathematically, the PC is calculated by: 

PC = (A + D)/N 

 

The threat score (TS), also known as the critical success index 

(CSI), provides information on the accuracy of the performance by eliminating the 

times when a correct rejection was identified.  This score is useful when the 

event that is forecasted occurs substantially less frequently than non-events 

occur.  A value of one indicates the best possible threat score while a value of 

zero indicates the worst (Wilks 2006).  TS is calculated by:  

TS = CSI = A / (A + B + C) 

 

The false alarm ratio (FAR) is a reliability performance metric.  It is 

the fraction of yes forecasts that turn out to be incorrect or the proportion of 

forecasts that never materialize.  Due to its negative orientation, a smaller FAR is 

preferred with the best performance a value of zero and the worst being one.  

Often this performance metric is called the false alarm rate; however the term 

false alarm rate is actually reserved for the discrimination measurement of 

probability of false detection (POFD) (Wilks 2006).  Mathematically, FAR is 

calculated by: 

FAR = B / (A + B) 

 

The POFD is also known as the false alarm rate (F).  It is one of 

two discrimination performance metrics, the other being the POD.  It is the ratio 

of false alarms to the total number of nonoccurrences of the event.  It provides 
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the conditional relative frequency of a wrong forecast given that the event does 

not occur (Wilks 2006). Mathematically, F is calculated by:   

POFD = F = B / (B+D) 

 

The POD, often also referred to as the hit rate, is the ratio of correct 

analyses of the event to the number of times that the event occurred.  This 

performance metric is only concerned with the actual event of interest and its 

occurrence.  Combined with the POFD, this metric provides the conceptual and 

geometric basis for the signal detection approach for verifying probabilistic 

forecasts (Wilks 2006).  Mathematically, POD is calculated by: 

 POD = Hit Rate = A / (A + C) 

 

The HSS provides an overall measure of the skill of the WWMCA 

analyses.  Perfect WWMCA analyses would result in a HSS of one, while values 

between zero and one would indicate improvement over random analyses, and 

negative values would indicate skill worse than random analyses.  The HSS 

provides a measure of how skillful the analyses were compared to random 

analyses (Wilks 2006).  This is probably the best single metric to use for 

performance assessment because it: (1) describes the analysis skill by 

comparisons to a random analysis benchmark; and (2) gives more (less) credit to 

accurately analyzing rare (common) events.  Mathematically, HSS is calculated 

by: 

HSS = 2((A * D) – (B * C)) / ((A + C) (C + D) + (A + B) (B + D)) 
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The bias is an indicator of the over or under forecasting of an event.  

It is calculated by combining the values for hits and false alarms and dividing 

them by the number of observations of the event.  Unbiased analyses have a 

bias of 1.  Bias values greater than 1 indicate an over analysis of the event 

meaning the event was analyzed more often than observed, while values less 

than 1 indicate an under analysis of the even or that the event was forecast less 

often than observed (Wilks 2006).  Mathematically, bias is calculated by: 

Bias = (A + BA) / (A + C) 

 

b. MATLAB Step 3b: Main Program to Calculate 

This step was critical for mass data analysis.  This took the core 

function formulas and allowed them to be rapidly calculated for various 

geographic regions and CloudSat thresholds.  This program can be used to 

create a more detailed reduction thresholds as determined by the user.  This step 

is where the reduction for WWMCA cell coverage and the various summated 

time categories and regions of interest were input and then performance metrics 

calculated.  The calculations were put into a matrix for easy reference during this 

step, although there is no associated labeling of the rows and columns.  As the 

focus of the research was revised, codes for step 3a and 3b were modified to 

reflect these revisions. 

2. Final Conversion for Analysis: Rewriting to CSV 

In this step, the .mat files were converted to monthly .csv files for 

integration back into Microsoft Excel.  Once in .csv format, files were opened and 

the proper titling of the rows and columns was inserted for identification. 

G. DATA ANALYSIS 

Most calculations were completed though the use of MATLAB but needed 

to be displayed via a different method to properly analyze and compare the 
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statistics.  Microsoft Excel proved to be the simplest way to do side by side 

comparisons between months, geographic regions, and cloud categories.  To 

best do this, the twelve monthly files that were the output of MATLAB were 

condensed into a single Excel file consisting of ~6,400 rows of data for all months 

and valid times.  In addition to the contingency table metrics described in Section 

F, we also determined the percent of monthly and annual data from each 

geographic region in relation to the total data set.  This information can be found 

in Appendix C.  Once all raw data was compiled into a single file, a combination 

of line and bar graphs was used to analyze the data.  

Before a detailed study could be completed for all locations, months, and 

time periods, we needed to determine which CloudSat data period to use to 

represent the truth, how much data coverage overlap between WWMCA and 

CloudSat would be sufficient for a proper analysis, and which CloudSat data 

mask would provide the most accurate representation of the clouds that 

occurred. 

1. CloudSat Period Determination 

We needed to determine a proper time period to average CloudSat data 

for our “truth” to be representative of the top of the hour analyses.  It is important 

to note that clouds can change dramatically within an hour, and thus we needed 

a short enough time window to not be greatly impacted by the evolution of cloud 

elements within a WWMCA cell.  The choice of the time period for the “truth” 

value for this study was motivated by concerns that a longer period could lead to 

more inaccurate results about what occurred at the top of the hour, and a shorter 

period could lead to too little data and not cover all regions we wanted to 

investigate.  Additionally, we were concerned with cloud advection and wanted to 

minimize the risk of significant cloud advection through a WWMCA cell during the 

period of truth.  We investigated using CloudSat data from 15, 30, and 60 

minutes prior to the hour for which a top of the hour WWMCA analysis is valid.  It 

was necessary to balance a time period that allows for enough data coverage to 
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establish a valid study, but not so long a time period as to dilute the averaged 

“truth” that is to represent the top of the hour cloud conditions over an area.  Prior 

studies used 30 and 60 min averaging of CloudSat.   

A hypothetical example (Figure 15) illustrates the impacts of using 

different averaging periods.  Using a 60 minute averaging of cloud would lead to 

the top of the hour representation of truth to be LT 20%, or Clear, when at the top 

of the hour it was actually Cloudy.  Using a 30 min window, the average would be 

20-80%, or Partly Cloudy.  Using the 15 min window nearest the top of the hour, 

the average would be greater than 80%, or Cloud.  As the averaging time 

decreases, the average cloud conditions become more representative of the 

conditions at the WWMCA valid time.  Based on these considerations, we 

decided that the 15 minute window provided a sufficiently large data set for our 

study, while ensuring a fair representation of the top of the hour cloud coverage. 

 
Figure 15.  Observed conditions over a location for one hour and the conditions that 

would be reported by CloudSat as the “truth” for the top of the hour based 
on various averaging periods. 

2. Coverage Area Determination 

In addition to determining a “time window” that would be representative of 

the top of the hour; we needed to determine how much CloudSat coverage was 

needed to describe the actual cloud conditions in a WWMCA cell.  Due to the 
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nature of the size and structure of clouds and cloud layers, it is unreasonable to 

expect one single 1.3 km x 1.7 km CloudSat pixel to be representative of an 

entire 12 km x12 km or 24 km x 24 km WWMCA cell.  If this were done in an 

area with varying clouds there would be large number of possible cloud 

representations, each of which could be different than the observed conditions.  

Thus, we decided that we needed to determine the minimum acceptable areal 

coverage of a WWMCA cell by CloudSat pixels to allow an assessment of 

WWMCA performance in that cell.  In prior studies (e.g., UCAR 2008, AER 2010, 

Cleary 2012) data coverage determination for CloudSat to WWMCA comparisons 

was done via a CloudSat percentage method.  In this method, the average 

WWMCA cell size was used and the number of pixels a CloudSat granule could 

have in that cell was calculated based on the WWMCA cell dimensions at 60 

degrees latitude.  Next, the number of pixels that did occur in the WWMCA cell 

was summed up and if that cell included “6 or more CloudSat points” which was 

approximately 25% of the possible CloudSat points, then sufficient CloudSat data 

was determined to be available to assess WWMCA performance in that cell.  See 

Figure 16 for a pictorial representation of this process.   

If there were sufficient data amounts, then a cloud percent was calculated 

for CloudSat as follows: 
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Figure 16.  CloudSat Swath vs WWMCA Cell at 60 degrees latitude (From Cleary 

2012b). 

Further research into this method demonstrated that since WWMCA cells 

vary by latitude, even though six CloudSat pixels may represent 25% of the 

possible CloudSat pixels in a cell at 60 degree latitude, it only represents 1.8% of 

a WWMCA cell at 90 degrees latitude and 7.2 % of a WWMCA cell at zero 

degrees latitude (See Table 6).  In our study, we worked to improve the 

determination of whether there was sufficient CloudSat data for a given cell by: 

(a) analyzing cell size by latitude; (b) calculating the percent area of each 

WWMCA cell; and (c) calculating the percentage of the maximum possible 

coverage of the cell represented by CloudSat pixels.  From this information, we 

determined an acceptable cell coverage amount and assessed WWMCA 

performance only for cells and times for which the percent coverage threshold 

was met.   
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Table 6.   A comparison by latitude of WWMCA cell resolution, maximum CloudSat 
pixels per cell, the percent cell coverage the maximum pixels represents, 

and the minimum cell coverage available using a 6 pixel minimum 
requirement.  Note the ranges between 9 and 19% for maximum cell 

coverage and from 1.8% to 7.2% using 6 pixels. 

 
 

Figure 17 shows CloudSat coverage by latitude in a full dataset for March 

2010. Note that there is a great variation by latitude in maximum possible 

coverage, ranging between 7% and 14%.  Some months saw a potential 

maximum of 19% cell coverage.  We needed to represent all latitudes, so we 

considered 6% data coverage a good threshold for minimum coverage.   
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Figure 17.  Percent coverage of WWMCA cells by CloudSat, by latitude for March 
2010. 

We were interested in how results might vary if we used a smaller 

coverage amount, so we conducted a comparison over the Northern Hemisphere 

for January 2010 to assess the impact of limiting the data source to only data 

from a coverage area greater than 6%.  We compared data sets with no 

limitations in area coverage to data sets that had the greater than 6% WWMCA 

cell coverage limitation.  We noticed that using all cells that had at least one 

matching CloudSat pixel resulted in a much greater decrease in performance 

(Figure 18) versus the 6% or greater coverage.  This could be due to the fact that 

a 1.3 x 1.7 km square is not a fair assessment of cloud conditions for a 12 km x 

12 km or 24 km x 24 km cell.  While 6% area coverage may not be a lot either, it 

is significantly larger and can be considered a better evaluation.  We determined 

6% would be our threshold value of minimum WWMCA cell coverage to 

maximize CloudSat and WWMCA overlap area while ensuring the entire 

hemisphere could be analyzed.  Due to the coverage area variation by latitude, 
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we feel that future approaches to WWMCA verification should consider using a 

latitudinal based approach to data coverage versus a CloudSat pixel percentage.   

 
 

Figure 18.  Comparisons of NH performance metrics for January 2010 from using 
100% of CloudSat data available (dashed lines) and using CloudSat data 
only when it covered at least 6 % of a WWMCA cell (solid lines).  Notice 
the significant decrease in skill when using all available CloudSat data.  

3. CloudSat Data Mask Threshold Determination 

A comparison between the CloudSat cloud mask values of 20 and 30 for 

cloud thresholds was conducted before our final geographic analysis could be 

completed.  UCAR (2008) and AER (2010) used 20 as the lowest value to 

indicate cloud for their research, while Cleary (2012) used both 20 and 30 as 

thresholds and determined that WWMCA performance was rather insensitive to 

the choice of these thresholds in representing cloud.  We decided that we should 
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also investigate this threshold.  A comparison of performance metrics for the 

cloud category using both 20 and 30 values as the minimum indicator for cloud is 

seen in Figure 19.  On average, there is a less than 2% difference in the various 

performance metrics for the Northern Hemisphere when using the separate 

values as a cloud threshold.  We compared our findings with information from the 

NASA CloudSat documents, and with results from prior studies, and decided to 

use the threshold of 20 to indicate when a cloud occurred for a CloudSat pixel.  

Note that if our use of this 20 threshold leads to errors in our analyses of 

WWMCA performance, these errors will tend to underscore WWMCA 

performance.  

 
Figure 19.  Comparisons of the CloudSat Cloud mask thresholds of 20 and 30 for the 

Northern Hemisphere for five performance metrics.  The solid lines 
represent the 20 threshold while the dashed lines represent the 30 

threshold. 
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H. ASSUMPTIONS AND APPROXIMATIONS 

After reducing the data set based on the results from our preliminary 

investigations, the remaining performance metrics were calculated, graphed, and 

analyzed for various latitudinal bands and locations, cloud categories, and input 

data ages.  There were eight geographic regions of interest for this study into 

which we binned our data: six latitudinal bands (0N–90N, 0N–50N, 0N–23.5N, 

23.5–35N, 35N–50N, and 50N–90N) and two smaller geographic regions 

(Southwest Asia [WWMCA Box 12]; and South China Sea [WWMCA Box 22]).  

Our assessments of WMMCA performance were the main focus of this study and 

these results are discussed in Chapter III.   

We used the following assumptions and approximations to make our study 

feasible: 

1. CloudSat data describes the actual cloud conditions. 

2. The highest cloud mask level reported on the CloudSat profiler is a 

good measure of overall could cover. 

3. Cloud cover amounts are accurately represented by three cloud 

categories: Cloudy, Partly Cloudy, and Clear. 

4. A 15 minute window prior to the top of the hour is a good estimate 

of cloud cover for the top of the hour. 

5. Two CloudSat passes per day over a given area are representative 

of the entire day for that area. 

6. CloudSat data that covers at least 6% of the area of a WWMCA 

box is an acceptable minimum coverage requirement. 

7. Clouds are indicated by CloudSat if the mask value is 20 or greater.  

8. WWMCA performance can be adequately assessed using metrics 

based on 2x2 and 3x3 contingency tables. 
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9. The four main seasons can be represented by three calendar 

months: winter (January, February, and March), spring (April, May, 

and June), summer (July, August, and September) and autumn 

(October, November, and December).  

I. IMPROVEMENTS OVER PRIOR METHODS 

The combination of the study length, hemispheric size, inclusion of time 

latency issues, and the range of performance metrics evaluated for this study 

provide increased benefits over prior studies.  As noted in Chapter II, most 

studies considered only a relatively short study period for a relatively large study 

region, or a small study region.  Very few studies considered both long study 

periods and large study areas.  Those that did, focused on only a couple of 

performance metrics.  By conducting an annual study on the entire Northern 

Hemisphere with various subcategories and performance metrics, we were able 

to provide more detailed information on all aspects of WWMCA.  The following 

list of items denotes specific improvements over prior studies: 

1. Year-Long Study 

Our study considered all 12 months while, with the exception of the 

Stubblefield, all other studies covered between 10 days and four months.  This 

increased not only the size of the data sets, but allowed for comprehensive 

comparison between months, seasons, and annual performance versus treating 

one season or month as representative of all months and seasons. 

2. Increased Number of Performance metrics Evaluated 

Our study addressed 11 different performance metrics for evaluating 

WWMCA performance.  UCAR (2008), AER (2010), Norquist (2007), and 

Ruggiero (2000) only concerned themselves with hit rate while Horseman (2007) 

added miss rate.  Heidemen (1995) expanded from hit rate to look at level-2 

differences and Gustafson (2011) considered differences greater than 20% 

between WWMCA and his truth.  Cleary (2012) used more extensive measures 
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of performance metrics than others that are similar to our study but focused on 

smaller geographic regions for location verification. 

3. Hemispheric and Latitude Banded Approach 

Our study investigated WWMCA data on various levels: hemispheric, 

latitudinal bands, and regional.  Only Gustafson (20110, UCAR (2008), and AER 

(2010) have conducted large scale studies beyond a specific region. These were 

done on a global and hemispheric average.  Norquist (2007) and Horseman 

(2007) limited themselves to one or a few WWMCA cells, while others kept 

regions limited to two to six WWMCA boxes.  Our study will allow for comparison 

to other hemisphere studies and to Cleary’s (2012) regional study.  Our study will 

also help determine if there is variation in performance between latitude, an issue 

that has only been briefly addressed in prior studies. 

4. Monthly and Seasonal Comparisons 

We have provided an evaluation of monthly, seasonal, and annual 

performance that has only been attempted by Stubblefield (2011) and Cleary 

(2012).  The inclusion of all 12 months and seasons has the potential to provide 

improved insights to help modify tuning algorithms compared to what can be 

determined from shorter period studies. 

5. Use of Three Cloud Categories 

Our study addressed overall performance, and performance in three 

specific cloud categories: Clear (<20% cloud cover), Partly Cloudy (20-80% cloud 

cover) and Cloudy (>80% cloud cover).  Studies such as Horseman (2007), 

UCAR (2008), and AER (2010) only considered the overall hit/miss of WWMCA, 

not the performance for individual cloud categories. 

Furthermore, different values have been used to determine if conditions 

were cloudy or clear.  UCAR (2008) and AER (2010) used the threshold of 1% 

cloud as differentiation between clear and cloudy skies, Stubblefield (2011) used 

30% as the threshold between cloudy and clear, and the threshold for Horseman 
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(2007) was not provided.  All studies measured hit rate; however, it is hard to 

make direct comparisons of the results due to the varying thresholds used for 

cloud conditions. 

6. Improved Area Overlap in WWMCA and CloudSat for Baseline 
Data Assessment 

UCAR (2008), AER (2010), and Cleary (2012) used a six CloudSat pixel 

limit to determine if there was enough data for comparative analysis for a 

WWMCA cell.  Our data processing included a latitudinal adjustment and 

considered the amount of the WWMCA cell covered, not just a percentage of the 

amount of possible CloudSat pixels that could have occurred.  This serves to 

improve the comparison of results between different latitudes as well as enhance 

the quality of data for the study as the percentage of a grid cell actually sampled 

is more standardized. 

7. Assessment of the Impacts of Input Data Age 

Unlike any prior studies, we assessed the impacts on WMMCA 

performance of varying the age of the data that was used by WWMCA.  This 

included assessing the impacts on performance: (a) as older data was 

incorporated into the data set; and (b) by starting with old data and then including 

newer data.  This assessment of the impacts of data time latency on WMMCA 

performance also helps establish time performance curves for use in modifying 

input algorithms and threshold cutoffs. 

J. LIMITATIONS OF THIS STUDY 

Our methods provided some improvements over prior methods; however, 

our study was limited by the multidimensionality of the topics being addressed, 

and by the quantity, quality, and complexities in processing the available data. 

CloudSat is in a 1331L and 0131L orbit, and thus is limited in its ability to 

represent variations throughout a day.   
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Using 6% and greater coverage of the WWMCA cell, is an improvement 

over the 6 pixel standard used in some prior studies; however, this still amounts 

to very little coverage in comparisons to the size of the WWMCA cells.  Using 

CloudSat alone as truth, the maximum WWMCA cell coverage possible is only 

19%, and this is just at the tropics. 

We assessed WMMCA performance in six latitudinal bands and two sub-

regions, which allowed us to be more specific in our assessments than would be 

possible using only global or hemispheric regions.  There could still be important 

performance variations within our regions that our assessments would not be 

able to identify (e.g., variations due to differences in the background surfaces, 

terrain, climatological conditions).  

We did retain the flag for separating day and night data; however, we did 

not evaluate and address the separation of daytime and nighttime performance 

of WWMCA. 

We attempted to remove concerns in accuracy due to backscatter and 

miss readings at the lowest 1 km from CloudSat by removing data from the levels 

that occur in this range.  However, we only evaluated the WWMCA overall cloud 

percentage and did not evaluate the four reported layers of WWMCA.  Because 

of this, there may be periods in which WWMCA reported clouds at this level that 

could be considered misses in this study, if they were in a shallow layer that did 

not extend above 1 km and there were no other clouds above them.   

We assessed WMMCA performance a monthly and annual scales, and 

established baseline performance metrics unavailable from prior studies.  

However, we did not attempt to determine how well WWMCA performs for 

specific short term weather phenomena (e.g., blocking conditions with 

persistently clears skies, large scale weather systems, monsoon patterns, 

localized weather patterns). 

. 
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III. RESULTS 

A. OVERVIEW 

The focus of this study was to provide a base line evaluation of the 

performance, or operational health, of WWMCA.  The results shown in this 

chapter are based on the 2010 WWMCA data set for the Northern Hemisphere 

and the corresponding CloudSat data set as described in Chapter II, and using 

the processing and analysis methods described in Chapter II (e.g., using 

CloudSat data from 15 minutes prior to the hour, a CloudSat data mask threshold 

of 20, and a CloudSat data minimum coverage threshold of 6% of the 

corresponding WWMCA cell).  Section B of this chapter describes the general 

performance of WWMCA based on hit and miss proportions, as well as level-1 

and level 2 differences, for six latitudinal bands (0N-90N, 0N-50N, 0N-23.5N, 

23.5-35N, 35N-50N, and 50N-90N).  Section C describes how WWMCA 

performance varied with the timeliness (or latency) of the input data by latitude 

bands.  Finally, Section D describes the performance of WWMCA for four metrics 

in analyzing the three cloud categories for two latitude bands and for two specific 

geographic regions, Southwest Asia and the South China Sea.  Additional results 

are provided in Appendix C. 

B. GENERAL PERFORMANCE 

The hit proportion, miss proportion, and level-1 and level 2 differences 

were used to evaluate the overall ability of WWMCA to accurately identify cloud 

conditions at annual and monthly scales and for the six latitudinal bands.  Figure 

20 shows the Northern Hemispheric annual hit proportion was 63%.  The miss 

proportion was 37%, and level-1 differences occurred in 24% of the cases while 

level-2 differences occurred in 12% of the cases.  Performance was best near 

the equator and worsened as latitude increased, and was especially low in the 

highest latitude band (50N-90N).  The performance in the highest latitude band 
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was worse than the hemispheric average and was 20-28% lower than for the 

other bands.   

 

 
 

Figure 20.  Annual mean results for hit proportion and level-1 and level-2 differences 
for the six latitudinal bands.  

 

Table 7 summarizes the monthly performance ranges by band (see also 

Figures 21-22).  Note that the best (worst) performance occurred at low (high) 

latitudes, and that there was little month to month variation in performance within 

each band.  The monthly mean versions of the annual mean results (Figure 20) 

are shown in Appendix C.    
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Table 7.   Monthly ranges for hit proportion, and in level-1 and level-2 differences, for 
each latitude band.  Note that the best (worst) performance occurred at 
low (high) latitudes, and that there was little month to month variation in 

performance within each band. 
 

Region Hit proportion 

monthly range 

Level-1 difference 

monthly range 

Level-2 difference 

monthly range 

0N – 50N 64% – 67% 22% – 25% 8% – 12 % 

0N – 23.5N 62% – 68% 22% – 25% 7% – 12% 

23.5N – 35N 61% – 69% 21% – 26% 6% – 12% 

35N – 50N 60% – 66% 22% – 28% 9% – 16% 

50N – 90 N 42% – 56% 23% – 29% 16% – 32% 

0N – 90N 62% – 65% 23% – 26% 11% – 14% 

 

Figure 21 and Figure 22 display the monthly comparisons for each region.  

The top panel in Figure 21 shows overall WWMCA performance in the Northern 

Hemisphere.  Note that the detection of cloud categories was slightly better near 

the solstices and that the level-2 hit error was the worst in the fall and winter.   

The 0N-50N latitude band was chosen for specific investigation, as it represents 

the coverage provided by geostationary satellites that refresh every 15–30 

minutes, although this band does have a few areas that depend on polar orbiters.  

The middle panel in Figure 21 displays data for this region.  The best overall 

performance for this band occurred in the winter followed by the solstices.  On 

average there was a less than 10% level-2 difference for this area with the 

minimum level-2 difference seen in the late fall and winter months.   

The 50N-90N latitude band is covered by only polar orbing satellites due 

to parallax in the geostationary satellites.  Polar satellites provide coverage for 

approximately 18 hours of the day, and provide updates to CDFS II on average 

every 75–90 minutes, due to constraints imposed by orbit and data downlink 
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capabilities.  As a result, the highest time latencies observed in WWMCA usually 

occur in the 50N-90N band.  The bottom panel in Figure 21 displays data for this 

region and shows that the hit proportion was up to 20% lower than the 

hemispheric average depending on the month.  This overall decrease in 

performance may well be linked to the latency of the data in this band.  In 

addition, there is a well-defined late spring to summer period of maximum hit 

proportions and a well-defined minimum in the fall.  The 50N-90N band has the 

largest deviations between the maximum and minimum performance, which 

could be due to the seasonal changes in the background.  The level-2 difference 

for the high latitudes is 5–15% larger than for any other region, with a minimum 

difference in the summer months.  This minimum deviation suggests that cloud 

detection may be better during periods when there is less ice and snow in the 

backgrounds.  It is known that snow and ice are difficult backgrounds to 

distinguish from cloud and the trend in error rates, specifically the level-2 

difference, for the high latitude regions tends to support this statement. 
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Figure 21.  Monthly results for hit proportion, and level-1 and level-2 differences, by 
latitudinal bands.  From top to bottom, the chart represents the following 

regions (0N–90N, 0N–50N, and 50N–90N).  Note the different patterns of 
performance over the various regions. 
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The best performance for accurate cloud category detection was seen in 

the lower latitudes.  The top panel in Figure 22 displays data for the 0N–23.N 

region while the middle panel shows 23.5N–35N.   No defined seasonal trends 

appeared which may be due to the fairly consistent background conditions 

throughout the year.  These tropical and subtropical bands had the lowest level-2 

differences of all the latitude bands.  The high performance in these regions may 

be due to a combination of factors, such as more frequent satellite refresh rate, 

consistent backgrounds with little variation between seasons, large uniform 

backgrounds (e.g., ocean surface), or the relatively slowly varying major cloud 

patterns (e.g., the inter-tropical convergence zone (ITCZ); relatively persistent 

clear skies in much of the subtropics). 

The middle latitude band covered 35N–50N.  Many studies consider mid-

latitudes to extend up to 60N; however, we limited our band to 50N to account for 

the current maximum range of geostationary satellite coverage.  Like the 0–50N 

band, this band is a blend between geostationary and polar data due to ‘cusp’ 

regions between the geostationary satellite coverage areas (Figure 1). The 

results for this region can be seen in the bottom panel of Figure 22. No specific 

trends in the seasons were noted for this region; however the overall 

performance was lower than for the lower latitudes.  This region is a transition 

region between the geostationary region to the south and the polar obiter 

dominated region to the north.    This may explain the decrease in accuracy, as 

dependency on polar orbiters increases where geostationary coverage is lacking.   

 



 59 

 
 

 
 

 
 

Figure 22.  Monthly results for percent hit, and level-1 and level-2 differences, by 
latitudinal bands.  From top to bottom, the chart represents the following 

regions (0N–23.5N, 23.5N–35N, and 35N–50N).  Note the different 
patterns of performance over the various regions. 
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The overall results shown in Figures 21-22 indicate that WWMCA 

performed best in low latitudes and worst in the high latitudes.  At lower latitudes, 

there was generally less than 5% variation between months.  But variation up to 

15% can be seen in higher latitude bands. 

We also compared the results in Figures 21-22 to those from prior studies.  

Hit rates for April and May can be compared to the studies done by UCAR (2008) 

and AER (2010), while September and June results can be compared to the 

study by Gustafson (2011).  All of these studies used data from 2010.  Hit 

proportions for our study were around 62% for April and May, while UCAR (2008) 

and AER (2010) determined that WWMCA was in agreement with CloudSat 75% 

of the time.  Our lower values may be due to how cloudy and clear were defined.   

UCAR (2008) and AER (2010) used 1% cloud as the threshold between cloud 

and no cloud.  Each time we had partly cloudy conditions, and sometimes when 

we had clear conditions, would have been a cloud hit under the used in some 

prior studies, which would have led to a higher performance result.  Another 

difference may be due to differences in the truth time period used.  We used 15 

minutes while both the UCAR (2008) and AER (2010) studies used one hour. 

Finally, results may differ due to the use of different minimum coverage 

thresholds.  These prior studies used a threshold based on a percentage of 

possible CloudSat pixel versus WWMCA cell area, and did not account for 

latitudinal variations in WMMCA cell size.   

Gustafson (2011) conducted his study on a global scale, while ours was 

done on the Northern hemisphere; however our findings with respect to 

accurately matching cloud categories were similar.  We used the same three 

cloud categories as Gustafson.  Gustafson determined that WWMCA and MODIS 

had a clear match for 25% of the cases, a partly cloudy match for 6%, and a 

cloudy match for 34% of his cases. These values lead to an overall success rate 

for matching cloud categories in 65% of the cases, while our Northern 

Hemisphere results were between 63% and 65%.  We did not calculate the hit 

proportion for each cloud category, but this could easily be done in a follow-on 



 61 

study.  The slight differences in values could be because Gustafson’s study was 

for the globe scale and ours was for the Northern Hemisphere.  It could also be 

due to the time period used for truth averaging, as Gustafson used 60 minutes 

and we used 15 minutes, or that MODIS was used versus CloudSat for 

verification of WWMCA analyses.  While MODIS is similar to CloudSat, it may be 

beneficial to use a combination of MODIS and CloudSat to verify WWMCA.  

Additionally, a comparison of MODIS to CloudSat may be beneficial to determine 

if one satellite better represents truth over the other.  

C. LATENCY STUDY  

1. Overview 

Latency in WWMCA performance was investigated from two perspectives, 

one in which we started with older data and examined how adding younger data 

impacted performance, and the other in which we started with younger data and 

examined how adding aged data impacted performance.  WWMCA starts with 

the previous analysis and then attempts to update each cell with the newest data 

available.  The old analysis will persist if more recent data is not available. 

Neither of our two approaches replicates how CDFS II merges the data to 

produce WWMCA, but the combination of both should adequately determine the 

impacts of time latency.  After our first review of the data, we determined that 

some time bins had too few data points in them, which led to what we determined 

to be spurious performance results.  Because of this, the initial time bins were 

enlarged and time bins with less than 300 data points were removed from our 

study.  This change had the greatest impact on the January data set, as data 

was only available for half of the month of January.  It also removed Monthly 

results for percent hit, and level-1 and level-2 differences, by latitudinal bands.  

From top to bottom, the chart represents the following regions (0N–23.5N, 

23.5N–35N, and 35N–50N).  Note the different patterns of performance over the 

various regions very old data over the tropics, as it is rare to have data over 2 

hours old for this region due to the abundance of geostationary satellite updates.  
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The spurious results were less noticeable after applying these restrictions, but 

some may still be present.  Ideally, we would have been able to work with time 

bins containing at least 1000 data points, to ensure enough sampling took place 

for determining the impacts on performance of data time latency.   

AFWA uses the following conditions as an assessment of the operational 

health of the final WWMCA product based on the timeliness of the input data. If 

the global average age of all WWMCA pixels is less than 90 minutes, the product 

is GREEN, and considered a reliable product.  If this age is 90–120 minutes, the 

product is AMBER and should be used with caution.  Finally, if the global 

average age is greater than 120 minutes, the product is RED and should be used 

with extreme caution.  These conditions are based on the assumption that pixel 

age averaging done on a global scale is a direct reflection of the quality in the 

resulting cloud analysis.  Addressing the impacts of latency was critical to 

determine if these AFWA thresholds are appropriate.  With the exception of the 

AER (2010) study, which compared the difference in performance of WWMCA 

using all data versus only data less than 3 hours old, no prior studies have 

addressed the data latency issue. 

Annual comparisons between the regions can be seen in Figure 23.  For 

comparisons for each month between the regions to the annual hemispheric 

average for hit proportion, and level-1 and level-2 differences, see Appendix C.  

The purpose of these comparisons is to determine how WMMCA performance 

changes over time as data is added or taken away, versus evaluating the 

performance between the regions which was done in the previous section.   
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Figure 23.  Annual average performance by input data age (minutes) for the six 
latitudinal bands.  From top to bottom the panels are proportion correct, 
level-1 difference, and level-2 difference.  Note that the y-axis has been 

adjusted to enhance the identification of differences between the regions.  
The hemispheric average is highlighted with the dashed line. 
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It would be beneficial to address the current process that determines how 

“reliable” WWMCA is.  The current condition assessment looks at the global 

average of pixels to assess health.  The rate of decline with age varies over 

geographic regions so a latitude based health assessment could be more 

beneficial to the end user.  If a WWMCA target was at high latitudes it would be 

helpful to know that while the “global average” data age may have allowed for a 

GREEN interpretation of the WWMCA analyses this region’s average data age is 

actually RED in reliability.  This would allow for a more accurate assessment of 

the analysis and forecast due to increased knowledge of regional confidence. 

2. Adding Newer Data to Old 

The impacts of adding newer data to old can be seen in the left graphs in 

Figure 23.  These graphs represent the results when starting with the oldest data 

and systematically adding younger data.  An increase in performance as large as 

20% was found from adding younger data, which supports the general 

assumption that using younger data improves performance over using only older 

data.  Adding younger data to old is less relevant in the high-latitude regions than 

in other locations.  This may be because the percentage of younger data 

available for the high latitudes is far less than the amount of older data, so the 

averaged improvements are minimized.  When adding younger data to aged 

data, the most significant jumps occur between the 60–75 minutes period and 

between the 30–45 min.  This is most likely an effect of the percentages of older 

and younger data available at these times. 

3. Adding Older Data to New 

CDFS II attempts to use the timeliest data available.  If timely (recent) data 

is not available then old data from the prior analysis is persisted.  This often 

leads to the use of very old data, especially at higher latitudes.  Additionally, 

more timely data at a lower spatial resolution will trump slightly older data at a 

higher spatial resolution, which may not be an improvement in properly 

identifying cloud conditions.  The right graphs in Figure 23 represent the impacts 
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on performance of adding older data to younger data.  With the exception of an 

initial increase in performance to data ages of approximately 45 minutes, a 

decrease in performance is seen in all regions as older data is added.  As 

latitude increased, the rate of decrease in performance with respect to data age 

increased as well.  Aged data has the greatest impacts on the ability to detect 

clouds in the high latitudes.  This does not mean that aged data performs well at 

low latitudes, but since aged data is rarely used at lower latitudes the impacts of 

small amounts of older data are minimized.  Although performance decreases 

significantly with age, not providing any WMMCA analyses when the data is old 

would also be problematic and might impact customer confidence in WWMCA 

and CDFSII generally.  The best performance occurred when the data was less 

than 45 minutes old.  Adding additional and older data led to a decrease in 

performance.  The hemispheric average performance did not decrease 

drastically, but there were changes in the amount of decrease in the latitude 

bands.  The high latitude band had overall lower performance for all periods, but 

its performance was rather consistent until 90 minutes when it rapidly decreased.   

D. CLOUD CATEGORY STUDY 

We assessed WMMCA performance by cloud category for eight regions 

using seven performance metrics.  Only four regions, four performance metrics, 

and an analysis of marginal distribution will be examined in detail in this thesis.  

The results for all regions and metrics are available in Appendix C.  The four 

focus regions discussed in this chapter are 0N–50N, 50N–90N, SWA, and SCS.  

These regions allow for distinctions between performances for locations: (a) in 

which the input data is primarily from geostationary satellites or primarily polar 

orbiting satellites; and (b) with specific types of weather and climate.  In this 

chapter, the focus is on assessing performance via POD, POFD, bias, and HSS.  

.  
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1. Marginal Distribution 

Marginal distribution comparisons are helpful in determining the 

opportunities to observe and analyze specific events.  Figures 24-27 show the 

marginal distribution of CloudSat and WWMCA for each month and cloud 

category compiled by region. For the 2010 study period and the Northern 

Hemisphere as a whole, the CloudSat data indicated Clear for 45% of the 

observations, Cloudy for 38% of the observations, and Partly Cloudy for 17% of 

the observations.  The corresponding WWMCA data indicated Clear for 49% of 

the analyses, Cloudy for 36% of the analyses, and Partly Cloudy for 15% of the 

analyses.  These results show a good agreement between WWMCA and 

CloudSat on an annual and hemispheric average basis.   

The CloudSat and WMMCA MDs are in good agreement for specific 

latitude bands and region, with the notable exception of the high latitude band. 

The MDs at the high latitudes shows WWMCA analyzed Clear most often and 

CloudSat observed Cloudy most often throughout the year, with differences 

between CloudSat and WWMCA of almost nearly 30% in the winter and fall. The 

smaller differences at lower latitudes indicate that WMMCA performance should 

be better at lower latitudes.  Note that both CloudSat and WMMCA identified 

Partly Cloudy conditions least often.  This suggests that WMMCA analyses of 

Partly Cloudy conditions may be problematic, due to these conditions being less 

common.   

Gustafson determined that 65% of the time the sky was either clear or 

cloudy for the globe in September and June.  We determined that for the 

northern hemisphere annual average, the sky was clear or cloudy in 83% of the 

CloudSat observations and in 85% of the WWMCA analyses.  The corresponding 

numbers from our study for September and June 2010 were 82% and 85%, 

respectively.   
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Figure 24.  Marginal distributions for each month and all three cloud categories for 
0N–50N.  The top panel is for CloudSat while the bottom panel is for 

WWMCA.  This figure should be compared to Figures 25–27.  Solid lines 
represent the monthly values, while the dashed lines represent the annual 

average for the region, and the dotted line is the Northern Hemisphere 
annual average. 
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Figure 25.  Marginal distributions for each month and all three cloud categories for 
50N–90N.  The top panel is for CloudSat while the bottom panel is for 
WWMCA.  This figure should be compared to Figures 24, 26, and 27.  

Solid lines represent the monthly values, while the dashed lines represent 
the annual average for the region, and the dotted line is the Northern 

Hemisphere annual average. 
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Figure 26.  Marginal distributions for each month and all three cloud categories for 
SWA.  The top panel is for CloudSat while the bottom panel is for 

WWMCA.  This figure should be compared to Figures 24, 25, and 27.  
Solid lines represent the monthly values, while the dashed lines represent 

the annual average for the region, and the dotted line is the Northern 
Hemisphere annual average. 
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Figure 27.  Marginal distributions for each month and all three cloud categories for 
SCS.  The top panel is for CloudSat while the bottom panel is for 

WWMCA.  This figure should be compared to Figures 24– 26.  Solid lines 
represent the monthly values, while the dashed lines represent the annual 

average for the region, and the dotted line is the Northern Hemisphere 
annual average. 
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2. Probability of Detection 

Figure 28 and Figure 29 show the probability of detection for each month 

and cloud category by region.  The annual Northern Hemisphere POD rates were 

75% for Clear, 68% for Cloudy and 22% for Partly Cloudy conditions with 

variations of +/- 5% for clear, +/- 2% for partly cloudy, and +/- 7% for cloudy 

conditions.  The POD and other performance metrics for Party Cloudy conditions 

were routinely worse than for the two other cloud categories.  This may have 

been due to the tendency for WWMCA to analyze predominately clear or cloudy 

conditions.  For 0N-50N, the POD for Clear was similar to that for the NH, while 

the POD for Cloudy was slightly better than for the NH.  For the high latitude 

regions, POD for Clear was best and was within +/- 10% of the NH average.  

However, for Cloud, POD was much worse than for the NH at the higher 

latitudes, and there was a greater than 30% difference between the highest (60% 

in July) and lowest (31% in Dec) PODs.  The highest POD was for Clear in SWA, 

with POD as high as 95% and an annual average POD that was 15% better than 

the NH average (Figure 30).  However, the POD for Cloudy in SWA was nearly 

10% lower than the NH average.  This suggests that the relatively common and 

persistent clear sky conditions in SWA were relatively easy for WMMCA to 

analyze, while the less common and transient cloudy sky conditions were more 

difficult for WMMCA to analyze.  For the SCS, there was a reversal in the top 

performing cloud category, with Cloudy having the best POD and a better POD 

than for the NH as a whole (Figure 30).  The SCS had a nearly 30% variation in 

POD values between seasons for Cloud and over 40% variation for Clear.  This 

performance variation may be due to difficulty in analyzing cloud changes 

associated with monsoonal shifts.   
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Figure 28.  Probability of Detection for each month and all three cloud categories.  
The top panel is for 0N–50N while the bottom panel is for 50N–90N.  This 
figure should be compared to Figure 29.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 29.  Probability of Detection for each month and all three cloud categories.  
The top panel is for SWA while the bottom panel is for SCS.  This figure 

should be compared to Figure 28.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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3. Probability of False Detection 

Figure 30 and Figure 31 show the probability of false detection for each 

month and cloud category by region.  The annual Northern Hemisphere average 

POFD was 27% for Clear, 17% for Cloudy, and 13% for Partly Cloudy with 

deviations of +/- 5% for Clear, +/- 2% for Partly Cloudy, and +/- 4% for Cloudy.  

The regional POFDs were similar to the NH POFDs, with the highest —that is, 

the worst — POFDs occurring for Clear for all regions, except for the SCS, where 

POFD was highest / worst for Cloudy.  In general, WMMCA performance, 

including performance as measured by POFD, was worse for the high latitudes 

and better for the low latitudes.  In particular, the POFD for Clear was high (48-

58%) in the colder months (Nov-Apr), indicating WMMCA too often analyzed 

clear skies when the actual conditions were Cloudy or Partly Cloudy.  However, 

the high latitude POFDs for Partly Cloudy and Cloudy were similar to those for 

the NH average.  The POFD for Clear in SWA was high (40-65%) in all but four 

months (Feb-May), indicating that WMMCA analyzed clear skies too often.  This 

result, when combined with those in Figure 30, indicates that WMMCA achieved 

a high POD for Clear by issuing too many false alarms for Clear.   The POFDs 

for SCS were quite high for some months, especially Jun for Cloudy (99%), Aug 

for Partly Cloudy (69%), and Dec for Clear (49%).  The monthly variations in 

POFD for the SCS were also quite large, with variations of more than 80% from 

late spring - early summer to late fall.  This is most likely due to WMMCA 

difficulties in representing monsoon variations in clouds over the SCS, especially 

variations associated with the onset of the summer monsoon and intraseasonal 

variations due to Madden-Julian Oscillations, fluctuations in tropical cyclone 

activity, etc.  Note that the poor performance indicated by the SCS POFDs would 

have been missed if we had only conducted a latitudinal study.  These results 

help reveal the importance of assessing WMMCA performance for specific 

regions (e.g., regions with specific climatological characteristics, background 

surface types, etc.).  
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Figure 30.  Probability of False Detection for each month and all three cloud 

categories.  The top panel is for 0N–50N, while the bottom panel is for 
50N–90N.  This figure should be compared to Figure 31.  Solid lines 

represent the monthly values for the region, dashed lines represent the 
annual average for the region, and the dotted line is the Northern 

Hemisphere annual average. 
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Figure 31.  Probability of False Detection for each month and all three cloud 

categories.  The top panel is for SWA while the bottom panel is for SCS.  
This figure should be compared to Figure 30.  Solid lines represent the 

monthly values for the region, dashed lines represent the annual average 
for the region, and the dotted line is the Northern Hemisphere annual 

average.  The POFD for Cloudy in SCS in June was 99%. 
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4. Bias 

Figure 32 and Figure 33 show the bias results for each month and cloud 

category compiled by region.  The annual Northern Hemisphere bias values were 

1.09 for Clear, 0.95 for Cloudy and 0.86 for Partly Cloudy conditions.  For the 

NH, Clear conditions always had a positive bias, Partly Cloudy conditions always 

negative bias and Cloudy conditions had both positive and negative bias 

depending on month.  On a hemispheric scale, WWMCA appears to have only 

small bias in analyzing cloud categories.  However, biases off by +/- 0.2 were 

seen in the high latitudes and in the smaller geographic regions.  Bias at high 

latitudes were as low as 0.38 for fall Cloudy conditions and as high as 2.6 for 

Clear conditions during the same period.  With the exception of the late spring 

and summer months, the bias for the high latitudes in all categories differed more 

than +/- 0.2 from the non-bias value of one.  This bias at high latitudes needs to 

be addressed and adjusted for.  Bias in the high latitudes is the only time where 

there may be the smallest discrimination and forecasting issues with the Partly 

Cloudy conditions versus any other cloud category with an annual average bias 

of one.  This average bias value fails to capture the monthly trends in over and 

under biased events.  Comparing bias values between the cloud categories 

reflects that where there is a tendency to over analyze Cloudy (Clear) conditions 

then there is also a tendency to under analyze Clear (Cloudy), though not to the 

same deviation from an unbiased analysis. 
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Figure 32.  Bias results for each month and all three cloud categories.  The top panel 
is for 0N–50N while the bottom panel is for 50N–90N.  Note the y-axis 
variation to allow for larger range of bias at higher latitudes. This figure 

should be compared to Figure 33.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 33.  Bias results for each month and all three cloud categories.  The top panel 
is for SWA while the bottom panel is for SCS.  This figure should be 

compared to Figure 32.  Solid lines represent the monthly values for the 
region, dashed lines represent the annual average for the region, and the 

dotted line is the Northern Hemisphere annual average. 
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5. Heidke Skill Score 

Figure 35 and Figure 36 show the Heidke skill score for each month and 

cloud category by region.  The annual Northern Hemisphere Heidke skill scores 

were 0.47 for Clear, 51% for Cloud, and 10% for Partly Cloudy, with monthly 

variations +/- 9% for Cloudy and Clear conditions, and +/- 2% for partly cloudy 

conditions. HSSs were best for cloudy conditions, followed by clear conditions, 

with partly cloudy conditions reporting the lowest skill. The skill at high latitudes is 

almost identical for both cloudy and clear categories and is on average 0.15–0.35 

lower than the hemispheric average and worse than low latitudes. For latitudinal 

bands, HSS scores were always positive.  There were negative HSSs for the two 

focus regions SWA and SCS over partly cloudy conditions.  The largest seasonal 

variations in HSS for latitude bands were seen at the high latitudes.  There is no 

set threshold of HSS that AFWA aims to achieve in its analyses.  However HSS 

values over 50% might be considered a minimum threshold or benchmark that 

AFWA should aim to achieve for its near real time analyses, based on prior 

studies of HSS for short range forecasts issued by AFWA (e.g., Jarry 2005).  

Overall HSSs ranged between 0.48 and 0.62 between all regions except the high 

latitudes in the clear and cloudy categories indicating that there is good skill in 

the WWMCA forecast for these events.   
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Figure 34.  Heidke Skill Scores for each month and all three cloud categories.  The 
top panel is for 0N–50N while the bottom panel is for 50N–90N.  This 

figure should be compared to Figure 35.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 35.  Heidke Skill Scores for each month and all three cloud categories.  The 
top panel is for SWA while the bottom panel is for SCS.  This figure should 

be compared to Figure 34.  Solid lines represent the monthly values for 
the region, dashed lines represent the annual average for the region, and 

the dotted line is the Northern Hemisphere annual average. 
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6. Comparison of SWA Results to Prior Studies 

Having latitudinal scale results is useful over hemispheric results however, 

results may not directly relate to a smaller scale interest area within the latitude 

band.  Smaller scale studies were done on SWA and SCS to compare them to 

their latitude bands.  Additionally, data from the SWA study can be compared to 

results from a similar study done by Cleary in 2012. Cleary studied the same 

region in 2010 over four months (Jan, Apr, Jul, Oct) and calculated similar 

performance metrics.  POD values over SWA were within 5% between our study 

and Cleary for Clear conditions with slightly better POD for Cloudy conditions.  

Cleary determined that no bias existed during July for Cloudy and Clear 

conditions; however, our findings show that bias does exist during this time, but 

that it is at a minimum during the summer months.  Additionally, overall bias 

results between our study and Cleary 2012 were greatly different (up to 40% 

different) for all cloud categories in these months.  Cleary saw the best HSS for 

Clear conditions across Jan, Apr, Jul, and Oct while we saw the best HSS vary 

by month between Clear and Cloudy conditions.  We also detected a greater 

range in the HSS scores with a 15–20% variance in HSS versus a 5–10% range 

between maximum and minimum scores. Both studies covered the exact same 

WWMCA box and months, and used CloudSat for validation.  Because of the 

similarities in the base data set, it is most likely due to the differences in our 

collection and reduction methods and the use of 20 versus 30 for a cloud mask 

threshold that we see different results for the same performance metrics. 
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IV. SUMMARY, CONCLUSION AND RECOMMENDATIONS 

A. SCOPE OF RESEARCH 

A major goal of our study was to contribute to the improvement of cloud 

analyses and forecasts, and to thereby improve the planning and outcomes of 

DoD and IC operations.  We conducted an analysis of WWMCA performance, or 

operational health, by comparing it to CloudSat as an independent data source 

for a number of locations and periods, using a range of performance metrics for 

all months of 2010.  We aimed to overcome several of the shortcomings in this 

area of research that were identified in prior studies by considering a 

hemispheric, latitudinal, and focus region approach and including the calculation 

and comparison of 11 metrics.  Additionally, we incorporated new approaches for 

data set reduction, including consideration of latitudinal variations in a WWMCA 

cell size and total data coverage ratio between the “truth” and analyzed data set.  

These changes and approaches were intended to better provide a well-rounded 

study which could be used to establish solid base-line performance metrics in 

various measures for use in improving WMMCA and for comparisons in and to 

future studies.  

B. CONCLUSIONS 

1. General Performance 

WWMCA had an annual Northern Hemisphere hit proportions of 63% and 

miss proportion of 37%.  WWMCA was within one cloud category in 24% of the 

occurrences and missed by two categories in 12% of the occurrences.  The 

proportion correct for the Northern Hemisphere was best in March and 

September.  Overall performance was better than the Northern Hemispheric 

average at the equator and worsened as latitude increased, with performance in 

mid-latitudes and high latitudes being worse than the Northern Hemisphere 

average.  This could be due to a combination of factors, including latitudinal 

variations in the timeliness of data, data coverage and quantity, surface 
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backgrounds, seasonal effects, and predominant weather patterns and climate 

regimes.  There were some large regional differences (e.g., between SWA and 

SCS) and large intraseasonal differences (e.g., between January and December) 

in performance, indicating that high spatial and temporal resolution is needed to 

fully characterize WMMCA.   

2. Latency  

Our approach to data time latency for WMMCA input data was twofold: 

assessments of performance based on adding older data to younger data, and 

on adding younger data to older data.  Using both approaches revealed two 

significant jumps in WWMCA performance occurring at the 45 and 75 minute 

data ages.  Data older than 75 minutes did little to improve the overall 

performance of the WWMCA, but not having any data for those regions would be 

detrimental and equally as bad, if not worse, than using older data.  Due to the 

average temporal and spatial resolution of WWMCA data points, it may be useful 

to consider doing latitudinal time averaging above and below 50 degrees or at 

various latitude bands to create confidence levels by latitude, instead of looking 

at overall WWMCA pixel age average time to determine the confidence level or 

reliability of WWMCA.  Product performance is best when input data is under 45 

minutes old.  At lower latitudes, most of the data is under 45 minutes old, which 

is probably a major reason why WMMCA higher performance tends to be higher 

in the lower latitudes.  Knowing if data is younger and typically more reliable, or 

older and less reliable, for an individual focus region may be useful in 

determining the weight and confidence users should have in WMMCA for that 

region.   

3. Cloud Categories 

Verification metrics such as probability of detection, proportion correct, 

false alarm ratio, and probability of false detection varied between regions and 

seasons.  While these metrics may have been higher for some regions and cloud 

categories than others, the HSS was used to determine best overall WWMCA 
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performance for cloud categories.  The overall performance and Heidke skill 

scores demonstrated that WWMCA performs best in analyzing cloudy (>80%) 

conditions.  Bias values tended to change between negative and positive as the 

seasons progressed.  This could be due to adjustments made in the tuning 

algorithms to try to take into account changes in the surface background 

conditions.  Table 8 summarizes the monthly ranges of the performance metrics 

for all regions, cloud categories, and performance metrics, including those not 

discussed in Chapter III.  Additional results are available in Appendix C. 
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Table 8.   Monthly ranges in performance metrics for the eight regions of study. 
 

Area Cloud 
Category 

PC POD POFD FAR TS BIAS HSS 

0N-
90N 

Clear 0.72-0.75 0.70-0.80 0.23-.034 0.29-0.33 0.53-0.58 1.01-1.17 0.43-0.50 

Pt Cld 0.74-0.77 0.20-0.24 .013-.014 0.72-0.77 0.12-0.15 0.79-0.98 0.07-0.12 

Cloudy 0.75-0.79 0.61-0.74 0.12-0.21 0.25-0.34 0.49-0.55 0.82-1.07 0.47-0.55 

0N–
50N 

Clear 0.73-0.77 0.71-0.81 0.22-0.28 0.25-0.28 0.56-0.63 0.95-1.10 0.46-0.54 

Pt Cld 0.74-0.78 0.21-0.24 0.11-0.14 0.70-0.77 0.13-0.15 0.78-1.00 0.09-0.13 

Cloudy 0.78-0.82 0.71-0.77 0.13-0.21 0.28-0.35 0.51-0.58 0.96-1.12 0.50-0.60 

50N–
90N 

Clear  0.53-0.70 0.63-0.84 0.25-0.57 0.39-0.67 0.26-0.45 1.02-2.57 0.16-0.38 

Pt Cld 0.70-0.77 0.16-0.29 0.11-0.20 0.76-0.82 0.09-0.15 0.72-1.39 -0.004-0.09 

Cloudy 0.54-0.69 0.31-0.57 0.09-0.24 0.18-0.33 0.29-0.47 0.37-0.89 0.18-0.37 

0N–
23.5N 

Clear 0.73-0.77 0.71-0.82 0.20-0.31 0.21-.032 0.54-0.65 0.91-1.09 0.45-0.53 

Pt Cld 0.75-0.78 0.18-0.22 0.11-0.13 0.70-0.78 0.11-0.14 0.68-0.89 0.07-0.12 

Cloudy 0.79-0.84 0.73-0.82 0.12-0.21 0.25-0.39 0.50-.064 1.04-1.25 0.53-0.61 

23.5N
–35N 

Clear 0.74-0.77 0.71-0.85 0.20-0.31 0.23-0.28 0.57-0.66 0.97-1.14 0.47-.052 

Pt Cld 0.73-0.78 0.21-0.28 0.12-0.17 0.67-.076 0.13-0.18 0.78-1.04 0.08-0.16 

Cloudy 0.77-0.84 0.64-0.78 0.08-0.19 0.22-.038 0.47-0.61 0.86-1.10 0.46-0.61 

35N–
50N 

Clear 0.73-0.77 0.63-0.74 0.15-0.24 .022-0.46 0.43-0.58 0.85-1.17 0.41-0.53 

Pt Cld 0.71-0.78 0.25-0.32 0.13-0.18 0.72-0.76 0.14-0.17 0.93-1.19 0.08-0.15 

Cloudy 0.72-0.79 0.66-0.78 0.16-0.26 0.20-0.40 0.51-0.61 0.85-1.13 0.44-0.55 

SWA Clear 0.73-0.87 0.83-0.97 0.29-0.65 0.10-0.34 0.61-0.87 1.07-1.18 0.37-0.59 

Pt Cld 0.79-0.89 0.05-0.17 0.03-0.10 0.67-0.88 0.06-0.12 0.32-0.90 -0.009-0.13 

Cloudy 0.78-0.95 0.38-0.70 0.02-0.12 0.18-0.46 0.33-0.55 0.52-1.11 0.43-0.68 

SCS Clear 0.68-0.81 0.41-0.81 0.07-0.49 0.18-0.41 0.34-0.57 0.81-1.36 0.33-0.57 

Pt Cld 0.69-0.81 0.11-0.21 0.09-0.69 0.11-0.86 0.08-0.13 0.46-1.11 -0.04-0.1 

Cloudy 0.75-0.83 0.62-0.92 0.11-1 0.20-0.80 0.44-0.71 0.96-1.30 0.46-0.64 
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C. RECOMMENDATIONS FOR FUTURE RESEARCH 

WWMCA is an ever-changing product, with the last major upgrade made 

in 2009.  Additional upgrades have been made since 2011.  A study of more 

recent data could use the 2010 study as a baseline to assess if the modifications 

are improving or degrading the performance of WWMCA. 

We investigated WWMCA performance only for the Northern Hemisphere.  

It would be beneficial to replicate our study for the Southern Hemisphere.  This 

would allow comparisons to be made to the UCAR study for the same period, as 

well as providing a more global assessment of WMMCA performance.   

We focused on assessing WWMCA performance averaged over the whole 

Northern Hemisphere and latitudinal bands.  WWMCA performance for more 

focused regions was only done for two relatively large regions, Southwest Asia 

and the South China Sea.  We recommend that future research investigate 

performance in specific regions of interest to DoD and the IC.  In addition to 

looking at specific AORs based on these interests, it would be useful to focus 

studies on areas of surface backgrounds and weather / climate conditions to 

better understand the behavior of WWMCA in more and less difficult challenging 

situations (situations with: (a) predominantly water, land, sand, snow, or ice 

surfaces; situations with well-organized weather systems, persistent clear skies, 

rapidly changing cloud conditions; etc.). 

We did not conduct separate day and night assessments of WWMCA 

performance.  We recommend that this be done because satellites sensors may 

change their preferred wavelength for cloud detection in periods of light versus 

periods of darkness.  Results from such a study could lead to a change in the 

weight given during day and night hours to each input in the merging algorithm.  

Currently CloudSat is only providing data for the day time. 
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The current process for merging satellite information within and among 

satellite families only uses timeliness of data to determine data superiority.  

Instead of only using the age of the satellite data, it would be beneficial to 

consider both age and sensor capabilities of the data (e.g., slightly older polar 

orbiter time stamp versus newer geostationary time stamp, and multi-channel 

data versus single channel data).  This is a more complex approach for 

determining data superiority, compared to the current use of pixel age alone, and 

could improve the accuracy of WWMCA.  Since algorithms currently do not exist 

to do such weighing, we recommend a study be done to help establish these 

algorithms.  Using the GDRs would be a good way to initiate such algorithms.  A 

validation on the GDRs that are made by each family would provide critical 

information for modelers to determine how to modify the level 4 algorithms based 

on sensor performance, for use in fine tuning WWMCA output and improving the 

overall accuracy of CDFS II.  By using CloudSat as truth, analyses could be done 

of the GDRs to determine the impacts of the time latency of each satellite sensor 

on WWMCA accuracy.  This knowledge could then been incorporated into the 

decision algorithm CDFS II uses in combining the various satellite products to 

ensure the optimal set of observational data is used by WWMCA.  Unfortunately, 

due to the large file size, higher frequency updates and limited AFWA storage 

capacity, the GDRs are not archived.  The data needed for analyses of GDRs 

would need to be specifically requested prior to the creation of the GDRs.  A 

temporary archive of GDRs was established for May–July 2012 in hopes of doing 

such a comparison study; however, CloudSat data was not made available 

during the same collection period by the start of our study. 

There is no standardization for verification methods or metrics for 

WWMCA.  It appears there is strong desire to learn more about the details of its 

performance in many subcategories.  Additionally, CloudSat is nearing the end of 

its life, and may not always be around for comparison, and may not be the best 

source of truth data.  We recommend comparisons be done between MODIS and 

CloudSat to determine if one, both, or neither of these systems should be 
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considered a good provider of data on actual cloud conditions.  Finally, we 

recommend determining a standard averaging process for data timeliness and 

data coverage, if these are to be used as truth in the future for evaluation of 

WWMCA or other automated cloud forecasts and analyses. 
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APPENDIX A. “CLOUD DEPICTION FORECAST SYSTEM (CDFS) 
II PROCESSING LEVELS”  

This appendix describes the processes that occur throughout the four 

main levels of CDFSII.  This appendix originally appeared in Cleary (2012) and 

has been modified only to adjust the formatting as well as provide an 

introduction. 

Satellite and conventional observations (surface observations and 
upper air soundings) undergo a four level process to be merged 
into a global cloud analysis (Figure 1). Level one is data calibration, 
level two classifies each pixel into cloudy or clear, level three 
applies cloud layering and typing, and level four consists of merging 
the separate analyses into one global analysis (HQ AFWA/DNXM 
2011). 

 
Figure 1.  Illustration of the four processing levels within Cloud 
Depiction Forecast System II.  Observations are received from 
meteorological satellites, conventional observations, and global 

analysis from various models.  These observations are merged into 
one global cloud analysis that is used to initiate cloud forecast 

models.  Shapes are defined as: rectangles are processes; rounded 
rectangles are inputs; ovals are products; and snipe same side 

corner rectangles are cloud models. 
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A. LEVEL 1  

Level one processing consists of data ingestion and calibration. 
Satellite telemetry transmissions are received by AFWA’s Satellite 
Data Handling System located at Offutt Air Force Base in 
Nebraska. Downlinked satellite data is encoded and must be 
decoded. The decoded data reveal physical parameters for 
radiance measurements received by the detectors on the sensor’s 
focal plane array and are placed in the Sensor Data Records 
(SDR). Satellite imagers’ focal plane array consist of detectors that 
represent the pixels, which measure the radiance received from 
reflected or emitted energy within Earth’s atmosphere. CDFS II use 
the data from the satellite’s visible and infrared channels. A 
calibration step for the infrared data converts the measured emitted 
energy into either radiance or brightness temperature. Brightness 
temperature is the temperature of an object if it was radiating as a 
black body. The brightness temperature is the parameter required 
by CDFS II to make the analysis. Reflectance values are measured 
from the satellite’s visible channels are used directly in the 
algorithms (HQ AFWA/DNXM 2011).  

 
B. LEVEL 2  

Level two is where cloud detection occurs. Each sensor has its own 
tailored algorithms designed to optimize their instrument’s ability to 
exploit measurements made in different channels in an attempt to 
distinguish cloud from clear scene. DMSP’s Operational Line 
Scanner (OLS) sensor, has the highest spatial resolution, but only 
two broadband channels (one visible and one infrared), whereas, 
NOAA POES’ Advanced Very-High Resolution Radiometer 
(AVHRR), have six narrowband channels (one visible, one near-
infrared, and four infrared). DMSP’s OLS cloud detection is 
accomplished by comparing a pixel’s brightness temperature to a 
cloud-free referenced pixel’s brightness temperature. If the pixel is 
determined to be cloud free, its brightness temperature is then used 
as the clear-scene brightness temperature for all other pixels in the 
frame. To determine a cloud-filled pixel, the observed brightness 
temperature of the said pixel is compared to the predicted clear-
scene brightness temperature. The difference in magnitude of 
brightness temperature determines if the pixel is cloud-filled or 
cloudfree. A similar method is used for the visible channel when 
available. Threshold values are used to determine the cutoff 
between cloudy and clear pixel (HQ AFWA/DNMX 2011).  
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The algorithm for NOAA’s AVHRR exploits the multispectral 
properties of the sensor to identify cloud or clear scene. The 
strength of the AVHRR is its six channels designs, which are listed 
in Table 2 with their respective wavelengths and typical use. Each 
channel differs in their sensitivity to reflectivity and emissivity 
properties of clouds and clear terrestrial surfaces. In addition to the 
sensors data, the algorithm uses clear-scene characterizations of 
the terrestrial background. The algorithm utilizes various techniques 
to include straight threshold type algorithms, inter-channel 
comparisons and spectral comparisons between the terrestrial 
surface and satellite data. A suite of twelve tests are used to 
characterize the different spectral characteristics of clouds and 
background surfaces to determine cloud-filled or clear scene. Each 
test is based on one or more specific spectral signatures that 
compare the radiance measurement of one or more channels, and 
fall into either cloud tests or background tests categories (HQ 
AFWA/DNXM 2011). 
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Table 1.  The channels below are from the AVHRR/3 sensor. The 
AVHRR is a radiation-detection imager that can be used for 

remotely determining cloud cover and the surface temperature. 
Note that the term surface can mean the surface of the Earth, the 
upper surfaces of clouds, or the surface of a body of water. This 

scanning radiometer uses 6 detectors that collect different bands of 
radiation wavelengths as shown below. Measuring the same view, 
this array of diverse wavelengths, after processing, permits multi 

spectral analysis for more precisely defining hydrologic, 
oceanographic, and meteorological parameters. Comparison of 

data from two channels is often used to observe features or 
measure various environmental parameters. The three channels 
operating entirely within the infrared band are used to detect the 

heat radiation from and hence, the temperature of land, water, sea 
surfaces, and the clouds above them. Table based from NOAASIS 

(2011).  

 
 

 

 

 

 

 

 

 

 

 

 

There are nine cloud tests and three background tests, which are 
summarized in Table 3. Different tests are used to identify clouds 
under different conditions. The low clouds and fog test for solar-
illuminated data is used to identify water droplets based low-level 
cloud when the scene is illuminated by sunlight, and the non-

Channel 
number 

Resolution at 
nadir (km) 

Wavelength (µm) Typical use 

1 1.09  0.58-0.68 Daytime cloud and surface 
mapping 

2 1.09 0.725-1.00 Land-water boundaries 

3a 1.09 1.58-1.64 Snow and ice detection 

3b 1.09 3.55-3.93 Night cloud mapping, sea surface 
temperature 

4 1.09 10.30-11.30 Night cloud mapping, sea surface 
temperature 

5 1.09 11.50-12.50 Sea surface temperature 
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illuminated test is used during nighttime. Since no one test will 
identify all the clouds in a scene, the cloud tests must be used in 
combination to accurately identify all cloud-filled pixels. The 
background tests are unique to the AVHRR algorithm, which 
exploits the multispectral characteristics of AVHRR data, to identify 
snow and ice, desert and sun glint backgrounds. These tests are 
essential because clouds and surface features often exhibit similar 
spectral signatures in the visible spectrum, however; a positive 
result from these tests does not automatic mean a cloudfree pixel. 
These tests identify suspected visible data; the infrared cloud tests 
must still be applied to determine a cloud-filled pixel (HQ 
AFWA/DNXM 2011). 

 
Table 2.  Cloud analysis test for the NOAA AVHRR level 2 

algorithm. Table from HQ AFWA/DNXM (2011). 

 

There are three algorithms used to detection clouds from 
geostationary satellite data. Geostationary satellites have a high 
temporal resolution but the spatial resolution is degraded due to its 
altitude (~36,000 km). The first algorithm takes advantage of the 
high temporal resolution to identify cloud-filled pixels by testing for 
rapid changes in brightness temperature and reflectance values in 
pixels representing the same geolocation. The pixels that exhibit 
changes in radiance values greater than the amount expected for 
clear scene from frame to frame are identified as cloud-filled. The 
second algorithm is a dynamic threshold algorithm that identifies 
cloud with similar characteristics. Cloud-filled pixels identified 
through the temporal difference algorithm are processed by the 
dynamic threshold algorithm. The dynamic threshold algorithm 
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identifies maximum and minimum brightness temperatures or 
reflectance within a grid cell, which are used to define threshold 
values for cloud-filled and cloud-free pixels remaining within the 
grid cell. The third algorithm uses a series of spectral discrimination 
tests similar to the OLS and AVHRR spectral tests. Not all 
geostationary satellite data are the same, so a different set of tests 
may need to be ran for each satellite system. For instance, 
METOSAT platforms have different spectral channels than GOES 
(HQ AFWA/DNXM 2011). Tables 4 and 5 summarize the spectral 
channels for METEOSAT and GOES, respectively. The resultant 
dataset, generated for each satellite data source, is called Cloud 
Data Records (CDR). 

 
Table 3.  Spectral channels and bandwidth for METEOSAT 

satellites. Table from EUMETSAT (2011).  

 
 

Table 4.  GOES imager channels. Table from GOES Imager 
Channel Notation (2011). 
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C. LEVEL 3  

Level three is where the satellite pixels are gridded onto AFWA’s 
standard Polar-stereographic grid at “16th mesh” with a horizontal 
resolution of 24 km (true at 60° latitude). Pixels are assembled into 
the 16th mesh grid cells by computing the coordinates that 
correspond to the latitude and longitude of each pixel (Hoke et al., 
1981 Rev. March 1985). A detailed description of the Polar-
stereographic grid is provided in Map Projections and Grid System 
for Meteorological Applications, AFGWC Technical Notes 79/003 
(Hoke et al., 1981 Rev. March 1985). The cloud layers are 
identified through the Long Wave Infrared (LWIR) brightness 
temperature data contained within each grid cell. A clustering 
algorithm clusters pixels of similar brightness characteristics to 
identify potential layer separations. Statistical procedures are 
applied to the grid cell to limit the identified layers to four. Once the 
layers are identified, cloud top temperatures are compared against 
vertical temperature information from the Nation Centers for 
Environmental Prediction (NCEP) Global Forecast System (GFS) 
model to assign a cloud top height. The cloud top height and 
temperature information is used with the visible/LWIR-count 
variance, from the background surface temperature model 
employed in level two, to assign each layer to one of nine different 
cloud types listed in Table 6. Along with each derived cloud type is 
a climatological cloud thickness that is subtracted from the cloud 
top height to determine the cloud base height (HQ AFWA/DNXM 
2011). At the end of level three, each satellite family (e.g., DMSP, 
NOAA, Geostationary) have a common gridded cloud mask that 
consists of cloud fraction up to four layers. The cloud masking also 
includes cloud type, and cloud top/base heights. These datasets 
are called Gridded Data Records (GDR). 
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Table 5.  WWMCA default cloud thickness according to height. 
Cloud thickness is based on climatology. Table from HQ 

AFWA/DNXM (2011).  

 
Level three processing also includes hourly global surface and 
upper air based data, METARS or SYNTOPIC type formats, which 
contain fractional cloud coverage and cloud base heights from the 
World Meteorological Organization. These conventional 
observations are combined with the satellite data to determine the 
cloud mask, cloud type, and cloud top/base heights. 

 

D. LEVEL 4  

Level four is where the satellite family GDRs and conventional 
surface observations are merged into a single global analysis of 
cloud cover information. One problem that arises in level four is that 
the independent gridded analyses have different valid times 
because the satellites input their data into CDFS II at different 
times. Each independent gridded analysis has strengths and 
weaknesses. For example, the polar-orbiters (DMSP and NOAA 
satellites) derived analyses have greater accuracy from the spatial 
resolution (polar satellites are in a lower orbit, ~800 km); however, 
the temporal resolution is course, usually passing over a particular 
region one or two times a day. Geostationary satellites analyses 
have a finer temporal resolution, every 30 minutes, but spatial 
resolution, or instantaneous field of view (IFOV), varies from 1 to 8 
km depending on the channel. See the resolution at nadir column in 
Table 12 for each channel’s IFOV. The timeliness and accuracy of 
the observations is a major concern when merging the data into a 
one global analysis (HQ AFWA/DNXM 2011).  
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Integration of total cloud amounts supersedes integration of layered 
quantities since total cloud fraction estimates are more accurate 
than individual layer fraction due to the sample size of total cloud 
amount is far greater than the layered cloud amounts (HQ 
AFWA/DNXM 2011). Bartlett (2009) explains how the total cloud 
amount analysis works:  

Total cloud fraction is then set to either 100 or 0 
percent, respectively. If neither analysis is completely 
cloud-filled or completely cloud-free, then the error for 
each analysis is estimated. The estimated errors for 
the analyses are compared to one another to see if 
the most recent analysis also has the lowest 
estimated error. Optimum interpolation (OI) occurs 
when one analysis cannot be chosen as the most 
accurate. OI maintains a blended estimate of total 
cloud fraction from multiple input analyses. Weighting 
functions for the OI are based on the estimated 
analysis errors which are computed for each 
individual analysis. Analysis errors are defined as an 
initial analysis error plus an additional error growth 
function which grows linearly with time. The error 
growth function is a tunable parameter that analysts 
can adjust to correct for inconsistencies.  

When total cloud amount is completed the other cloud parameters 
are merged. Rules applied, to determine which analysis is superior, 
in the layered analysis are similar to the total cloud amount; 
however, if multiple timely analyses have 100% cloud cover or it is 
determined that an OI technique is necessary. The integration of 
layered cloud amounts undergoes a more extensive algorithm. 
Most likely the individual analyses will have varying vertical 
distributions of cloud and cloud type due to the differences in 
sensor characteristics for each satellite family. The more complex 
algorithm determines which analyses is the most accurate and 
designates that analyses as the master template for which all other 
timely analyses are merged on. This process impacts discrete 
values such as the number of cloud layers and cloud types 
because these when integrated they will assume the values of the 
master template. The OI procedure is used for varying layered 
cloud faction and cloud top temperature. The OI process combines 
layers that closely match in cloud top temperatures and determines 
the layered cloud fraction. Special cloud algorithms have been 
designed for certain satellite sensors to enhance detection of low 
level stratus and cirrus. These special-case clouds are verified 
against the integrated analysis to be certain that the analysis is 
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accurate, and are effective in showing the persistence of the 
observations in the subsequent integration analysis (HQ 
AFWA/DNXM 2011).  

All the output variables are placed in a GriB file (a collection of 
individual self-containing records, and the individual records 
themselves can stand alone as meaningful data) and is published 
as the Worldwide Merge Cloud Analysis (WWMCA). 
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APPENDIX B. MATLAB CODE EXAMPLES FOR DATA 
PROCESSING 

This appendix provides examples for code used to process the data via 

MATLAB. Due to the length of the programs not all codes are written in their 

entirety. Please contact Dr. Tom Murphree in the Meteorology department at 

NPS for full copies of the code at murphree@nps.edu or (com) 831-656-2723. 

A. MATLAB STEP 1 DATA FILE FORMAT QUALTIY CONTROL 

% file = step1_data_fileformat_QC_16Nov.m 
clear all 
close all 
clc 
dir_ORIG = '\\comfort\cmlecomp$\Desktop\MATLAB_CURRENT\ORIGINAL_CSV\' 
dir_QC   = '\\comfort\cmlecomp$\Desktop\MATLAB_CURRENT\QC_CSV\' 
file_to_QC = 'CloudSat_wwmca_phase3_12_2010.csv' 
file_after_QC = [file_to_QC(1:end-4) '_QCd.csv'] 
  
% make file names with directories 
input_file = [dir_ORIG file_to_QC] 
output_file = [dir_QC file_after_QC] 
  
% ----------------------------------- 
% Step 1:  See if file has bad lines 
% ----------------------------------- 
% Open Input File  
fid = fopen(input_file,'r') 
  
header_line = fgetl(fid) 
icount = 0; 
for i = 1:5e6 
    line = fgetl(fid); 
    if line == -1 
        disp(['line number = ' int2str(i)]) 
        break  
    end 
    index = findstr(line,','); 
  
    N = 23;   % for CloudSat WWMCA dataset from Bruce Ford    
    if strcmp(line(11:11),'z') & length(index) ~= N        
        disp(['line i = ' int2str(i) ' has N = '  
int2str(length(index)) ' entries']) 
        icount = icount+1; 
    end 
end 
icount 
fclose(fid); 
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% -------------------------------------------- 
% Step 2:  Write QC'd file to omit bad lines 
% -------------------------------------------- 
 %  Write the output file without the Bad Lines 
if icount > 0 
     
    fid = fopen(input_file,'r')  % read only -- cannot write to it 
    % open output file with write option 
    fid_out = fopen(output_file,'w') 
     
    % read header line 
    header_line = fgetl(fid); 
    % write header line to Output file 
    fprintf(fid_out,'%s\n',header_line); 
     
    icount = 0; 
    for i = 1:5e6 
        line = fgetl(fid); 
        if line == -1 
            disp(['line number = ' int2str(i)]) 
            break 
        end 
        index = findstr(line,','); 
         
        N = 23;   % for CloudSat WWMCA dataset from Bruce Ford 
        if strcmp(line(11:11),'z') & length(index) ~= N 
            disp(['line i = ' int2str(i) ' has N = '  
int2str(length(index)) ' entries']) 
            icount = icount+1; 
        else 
            fprintf(fid_out,'%s\n',line);  % write to output file 
        end 
    end 
    icount 
    fclose(fid); 
    fclose(fid_out); 
else 
    % if all the lines were Good, we will copy the file instead of 
    % rewritting as above 
    [copy_success,copy_message] = copyfile(input_file,output_file,'f') 
end 

B. MATLAB STEP 2 DECODE QUALTIY CONTROLLED DATA 

% file = step2_DECODE_QC_CSV_16Nov12.m 
clear all 
close all 
clc 
dir_QC   = '\\comfort\cmlecomp$\Desktop\MATLAB_CURRENT\QC_CSV\' 
file_after_QC = 'CloudSat_wwmca_phase3_12_2010_QCd.csv'  %USER CHANGE 
HERE 
input_file = [dir_QC file_after_QC] 
dir_MAT = '\\comfort\cmlecomp$\Desktop\MATLAB_CURRENT\MAT_PHASE4\' 
matfile = [dir_MAT file_after_QC(23:end-8) '.mat'] 
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fid = fopen(input_file,'r') 
header_line = fgetl(fid); 
  
for i = 1:5e6 
    line = fgetl(fid); 
    if line == -1 
        disp(['line number = ' int2str(i)]) 
        break  
    end 
    index = findstr(line,','); 
     
    % extract YYYYMMDDHH as string 
    YYYYMMDDHH_str(i,:) = line(1:10); 
    % column 2 
    AVG_CSLAT(i,1) = str2num(line(index(1)+1:index(2)-1)); 
    % column 3 
    WWMCA_I(i,1) = str2num(line(index(2)+1:index(3)-1)); 
    % column 4 
    WWMCA_J(i,1) = str2num(line(index(3)+1:index(4)-1)); 
    % column 5 
    WWMCA_BOX(i,1) = str2num(line(index(4)+1:index(5)-1)); 
    % column 6 
    BOX_LENGTH(i,1) = str2num(line(index(5)+1:index(6)-1)); 
    % column 7 
    BOX_AREA(i,1) = str2num(line(index(6)+1:index(7)-1)); 
    % column 8 
    BOX_COVERAGE(i,1) = str2num(line(index(7)+1:index(8)-1)); 
    % column 9 ... character string D = day, N = night 
    str = line(index(8)+1:index(9)-1); 
    if strcmp(str,'N') 
        DAY_NIGHT_FLAG(i,1) = -1;  %  Night = -1 
    elseif strcmp(str,'D') 
        DAY_NIGHT_FLAG(i,1) = 1;  %  Day = 1 
    end 
     
    % column 10 ... character string 50 degree flag A = above, B = 
below 
    str = line(index(9)+1:index(10)-1); 
    if strcmp(str,'A') 
        DEG_MARKER(i,1) = 1;  %  Above = 1 
    elseif strcmp(str,'B') 
        DEG_MARKER(i,1) = -1;  %  Below = -1 
    end 
     
    % column 11 
    N_CSP_TOTAL(i,1) = str2num(line(index(10)+1:index(11)-1)); 
   % column 12 
    N_CSP_CLOUD(i,1) = str2num(line(index(11)+1:index(12)-1)); 
    % column 13 
    N_CSP_PC(i,1) = str2num(line(index(12)+1:index(13)-1)); 
    % column 14 
    N_CSP_NO_CLOUD(i,1) = str2num(line(index(13)+1:index(14)-1)); 
    % column 15 
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    SUM_CSP(i,1) = str2num(line(index(14)+1:index(15)-1)); 
    % column 16 
    CS_20_TCC(i,1) = str2num(line(index(15)+1:index(16)-1)); 
    % column 17 
    CS_20_CCB(i,1) = str2num(line(index(16)+1:index(17)-1)); 
    % column 18 
    CS_30_TCC(i,1) = str2num(line(index(17)+1:index(18)-1)); 
    % column 19 
    CS_30_CCB(i,1) = str2num(line(index(18)+1:index(19)-1)); 
    % column 20 
    WWMCA_LAT(i,1) = str2num(line(index(19)+1:index(20)-1)); 
    % column 21 
    WWMCA_LONG(i,1) = str2num(line(index(20)+1:index(21)-1)); 
    % column 22 
    WWMCA_CCB(i,1) = str2num(line(index(21)+1:index(22)-1)); 
    % column 23 
    WWMCA_TCC(i,1) = str2num(line(index(22)+1:index(23)-1)); 
    % column 24 
    WWMCA_PIXEL_AGE(i,1) = str2num(line(index(23)+1:end)); 
     
end 
fclose(fid); 
  
clear ans i index line str fid 
clear dir_QC file_after_QC input_file dir_MAT 
  
YYYY = str2num(YYYYMMDDHH_str(:,1:4)); 
MM = str2num(YYYYMMDDHH_str(:,5:6)); 
DD = str2num(YYYYMMDDHH_str(:,7:8)); 
HH = str2num(YYYYMMDDHH_str(:,9:10)); 
  
whos 
  
eval(['save  ' matfile]) 
%  
 

C. MATLAB STEP 3A FUNCTION TO CALCULATE 

Note that the steps under the “ % NORTHERN HEMISPHERE TOTAL” 

were repeated in this function to account for all regions. 
function [SUM_TOTAL] = 
step3_FUNCTION_to_CALCULATE_REGION_16Jan(matfile,index1,index2,index3,i
ndex4,index5,index6,index7,index8) 
% Chandra LeCompte thesis calculations  
disp(' ************ Entering Function *******************') 
% Load MAT File --------------------------------------------- 
feval('load', matfile) 
% NORTHERN HEMISPHERE TOTAL  ----------------------------------------- 
TRUTH_20 = CS_20_CCB (index1); 
N_TRUTH_20 = length(TRUTH_20) 
FCST = WWMCA_CCB (index1); 
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N_FCST = length(FCST)   
OVERALL_20_HIT = sum(TRUTH_20 == 0 & FCST == 0 |TRUTH_20 == 1 & FCST == 
1 |TRUTH_20 == 2 & FCST ==2)% number of times the cloud category was 
properly forecasted and observed 
OVERALL_20_1_CAT_MISS = sum(TRUTH_20 == 1 & FCST ~=1 | TRUTH_20 ~= 1 & 
FCST == 1)% number of times the forecast was off from the observed by 
one category of clouds 
OVERALL_20_2_CAT_MISS = sum(TRUTH_20 == 2 & FCST == 0 | TRUTH_20 == 0 & 
FCST == 2)% number of times the forecast was off from the observed by 
two categories of clouds , (ie forecasted no cloud when cloud, or cloud 
when no cloud) 
   
NC_20_HIT = sum(TRUTH_20 == 0 & FCST == 0) % number of accurately 
forecasted no cloud  
NC_20_MISS = sum(TRUTH_20 == 0 & (FCST == 1 | FCST == 2)) % forecasted 
cloud but truth is No Cloud 
NC_20_FA = sum(TRUTH_20 ~= 0 & FCST == 0)% forecasted no cloud but 
cloud occured 
NC_20_CR = sum((TRUTH_20 == 1 |TRUTH_20 == 2) & (FCST == 1 | FCST == 
2)) % fcst and truth are Cloud, properly forecasted cloud to exist 
clear XX_matrix POD PROP_COR TS BIAS FAR HSS 
  
XX_matrix = [NC_20_HIT, NC_20_MISS, NC_20_FA, NC_20_CR] 
TOTAL = (XX_matrix(1)+XX_matrix(2)+ XX_matrix(3) + XX_matrix(4)) 
POD = XX_matrix(1)/(XX_matrix(1) + XX_matrix(2))  %will need to repeat 
this for all 8 categories with proper H,M,CR,FA 
PROP_COR = (XX_matrix(1) + XX_matrix(4))/(XX_matrix(1) + XX_matrix(2) + 
XX_matrix(3) + XX_matrix(4))%will need to repeat this for all 8 
categories with proper H,M,CR,FA 
TS = (XX_matrix(1))/(XX_matrix(1)+ XX_matrix(2)+ XX_matrix(3)) 
BIAS = (XX_matrix(1)+XX_matrix(3))/(XX_matrix(1)+ XX_matrix(2)) 
FAR =  
(XX_matrix(3))/(XX_matrix(1)+XX_matrix(2)+XX_matrix(3)+XX_matrix(4))%wi
ll need to repeat this for all 8 categories with proper H,M,CR,FA 
HSS = (2*((XX_matrix(1)*XX_matrix(4))-
(XX_matrix(2)*XX_matrix(3))))/((XX_matrix(1)+XX_matrix(2))*(XX_matrix(2
) + XX_matrix(4))+((XX_matrix(1)+XX_matrix(3))*(XX_matrix(3) + 
XX_matrix(4)))) %will need to repeat this for all 8 categories with 
proper H,M,CR,FA  
RESULT_NC_20 = [NC_20_HIT NC_20_MISS NC_20_FA NC_20_CR POD PROP_COR TS 
BIAS FAR HSS] 
   
PC_20_HIT = sum(TRUTH_20 == 1 & FCST == 1) % number of accurately 
forecasted partly cloud  
PC_20_MISS = sum(TRUTH_20 == 1 & (FCST == 0 | FCST == 2)) % forecasted 
cloud or no cloud but truth is partly Cloud 
PC_20_FA = sum(TRUTH_20 ~= 1 & FCST == 1)% forecasted partly cloud but 
cloud or no cloud occured 
PC_20_CR = sum((TRUTH_20 == 0 |TRUTH_20 == 2) & (FCST == 0 | FCST == 
2)) % fcst and truth are Cloud or no cloud, properly forecasted partly 
cloud would not happen 
clear XX_matrix POD PROP_COR TS BIAS FAR HSS 
  
XX_matrix = [PC_20_HIT, PC_20_MISS, PC_20_FA, PC_20_CR] 
TOTAL = (XX_matrix(1)+XX_matrix(2)+ XX_matrix(3) + XX_matrix(4)) 
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POD = XX_matrix(1)/(XX_matrix(1) + XX_matrix(2))  %will need to repeat 
this for all 8 categories with proper H,M,CR,FA 
PROP_COR = (XX_matrix(1) + XX_matrix(4))/(XX_matrix(1) + XX_matrix(2) + 
XX_matrix(3) + XX_matrix(4))%will need to repeat this for all 8 
categories with proper H,M,CR,FA 
TS = (XX_matrix(1))/(XX_matrix(1)+ XX_matrix(2)+ XX_matrix(3)) 
BIAS = (XX_matrix(1)+XX_matrix(3))/(XX_matrix(1)+ XX_matrix(2)) 
FAR =  
(XX_matrix(3))/(XX_matrix(1)+XX_matrix(2)+XX_matrix(3)+XX_matrix(4))%wi
ll need to repeat this for all 8 categories with proper H,M,CR,FA 
HSS = (2*((XX_matrix(1)*XX_matrix(4))-
(XX_matrix(2)*XX_matrix(3))))/((XX_matrix(1)+XX_matrix(2))*(XX_matrix(2
) + XX_matrix(4))+((XX_matrix(1)+XX_matrix(3))*(XX_matrix(3) + 
XX_matrix(4)))) %will need to repeat this for all 8 categories with 
proper H,M,CR,FA  
RESULT_PC_20 = [PC_20_HIT PC_20_MISS PC_20_FA PC_20_CR POD PROP_COR TS 
BIAS FAR HSS] 
   
CLOUD_20_HIT = sum(TRUTH_20 == 2 & FCST == 2)% number of accurately 
forecasted cloud  
CLOUD_20_MISS = sum(TRUTH_20 == 2 & (FCST == 1 | FCST == 0)) % 
forecasted no cloud but truth is Cloud 
CLOUD_20_FA = sum(TRUTH_20 ~= 2 & FCST == 2)% forecasted cloud but no 
cloud occured 
CLOUD_20_CR = sum((TRUTH_20 == 1 |TRUTH_20 == 0) & (FCST == 1 | FCST == 
0)) % fcst and truth are no cloud, properly forecasted no cloud to 
exist 
  
clear XX_matrix POD PROP_COR TS BIAS FAR HSS 
XX_matrix = [CLOUD_20_HIT, CLOUD_20_MISS, CLOUD_20_FA, CLOUD_20_CR] 
TOTAL = (XX_matrix(1)+XX_matrix(2)+ XX_matrix(3) + XX_matrix(4)) 
POD = XX_matrix(1)/(XX_matrix(1) + XX_matrix(2))  %will need to repeat 
this for all 8 categories with proper H,M,CR,FA 
PROP_COR = (XX_matrix(1) + XX_matrix(4))/(XX_matrix(1) + XX_matrix(2) + 
XX_matrix(3) + XX_matrix(4))%will need to repeat this for all 8 
categories with proper H,M,CR,FA 
TS = (XX_matrix(1))/(XX_matrix(1)+ XX_matrix(2)+ XX_matrix(3)) 
BIAS = (XX_matrix(1)+XX_matrix(3))/(XX_matrix(1)+ XX_matrix(2)) 
FAR =  
(XX_matrix(3))/(XX_matrix(1)+XX_matrix(2)+XX_matrix(3)+XX_matrix(4))%wi
ll need to repeat this for all 8 categories with proper H,M,CR,FA 
HSS = (2*((XX_matrix(1)*XX_matrix(4))-
(XX_matrix(2)*XX_matrix(3))))/((XX_matrix(1)+XX_matrix(2))*(XX_matrix(2
) + XX_matrix(4))+((XX_matrix(1)+XX_matrix(3))*(XX_matrix(3) + 
XX_matrix(4)))) %will need to repeat this for all 8 categories with 
proper H,M,CR,FA  
RESULT_CLOUD_20 = [CLOUD_20_HIT CLOUD_20_MISS CLOUD_20_FA CLOUD_20_CR 
POD PROP_COR TS BIAS FAR HSS] 
   
TOTAL_RESULT_20 = [ N_FCST OVERALL_20_HIT OVERALL_20_1_CAT_MISS 
OVERALL_20_2_CAT_MISS RESULT_NC_20 RESULT_PC_20 RESULT_CLOUD_20 ] 
  
disp(' ************ Exiting Function *******************') 
disp('   ') 
% ---------- end of function -------------------------  
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D. MATLAB STEP 3B MAIN PROGRAM TO CALCULATE 

Note that the “column” calculations were repeated in this function to 

account for all of the time block periods.   
% file = step3_MAIN_PTC_REGION_16Jan.m 
% Purpose:  MATRIX with greater than 6% box coverage, 20 threshold, 
reduced time binning and all 3 displays, include region WWMCA box 22 
and 12 
% ------------------------------------------------------------- 
clear all 
close all 
clc 
format bank  
dir_MAT = '\\comfort\cmlecomp$\Desktop\MATLAB_CURRENT\MAT_PHASE4\' 
matfile = [dir_MAT '01_2010.mat'] % USER Change -------------- 
dir_OUTPUT = '\\comfort\cmlecomp$\Desktop\MATLAB_CURRENT\MATRIX\' 
output_MATFILE = [dir_OUTPUT '01_2010_REGIONS_COR2.mat'] % USER Change   
% load Phase4 MAT (input MAT) 
feval('load', matfile) 
% -------------------- ------------------------------ 
%  Column 1 240 <= AGE 
% -------------------------------------------------- 
ICOLUMN = 1 
index1 = (WWMCA_LAT<=90 & 240<=WWMCA_PIXEL_AGE & 6<=BOX_COVERAGE); %  
this should give all points in the data set 
index2 = (WWMCA_LAT<50 & 240<=WWMCA_PIXEL_AGE & 6<=BOX_COVERAGE); %  
all points in the data set below 50 degrees 
index3 = (WWMCA_LAT <23.5 & 240<=WWMCA_PIXEL_AGE & 6<=BOX_COVERAGE); 
%tropics 
index4 = ( 23.5<= WWMCA_LAT & WWMCA_LAT<35 & 240<=WWMCA_PIXEL_AGE & 
6<=BOX_COVERAGE); %  all points in the data set for subtropics 
index5 = ( 35<= WWMCA_LAT & WWMCA_LAT<50 & 240<=WWMCA_PIXEL_AGE & 
6<=BOX_COVERAGE); %  all points in the data set for midlat 
index6 = ( 50<= WWMCA_LAT & 240<=WWMCA_PIXEL_AGE & 6<=BOX_COVERAGE); %  
all points in the data set for polar 
index7 = (WWMCA_BOX == 22 & 240<=WWMCA_PIXEL_AGE & 6<=BOX_COVERAGE); 
index8 = (WWMCA_BOX == 12 & 240<=WWMCA_PIXEL_AGE & 6<=BOX_COVERAGE); 
  
[SUM_TOTAL] = 
step3_FUNCTION_to_CALCULATE_REGION_16Jan(matfile,index1,index2,index3,i
ndex4,index5,index6,index7,index8); % USER CHANGE ALL LOCATIONS IF ADD 
MORE INDEX OR CHANGE NAME OF THE FUNCTION 
 
FINAL_MATRIX(:,ICOLUMN) = SUM_TOTAL' 
clear SUM_TOTAL index* 
eval(['save ' output_MATFILE ' FINAL_MATRIX ']) 
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E. MATLAB STEP 4 WRITING TO EXCEL 

% file = step4_write_to_EXCEL_20Dec12.m 
% Purpose:   
% ------------------------------------------------------------- 
clear all 
close all 
clc 
format bank 
  
dir_MAT = '\\comfort\cmlecomp$\Desktop\MATLAB_CURRENT\MATRIX\' 
%matfile1 = [dir_MAT '12_2010_all.mat']  % USER Change -------------- 
matfile2 = [dir_MAT '01_2010_REGIONS_COR2.mat'] % USER Change --------- 
%outfile1 = [dir_MAT '12_2010_all_for_EXCEL.txt'] % USER Change ------- 
outfile2 = [dir_MAT '01_2010_REGIONS_COR2_EXCEL.txt']  % USER Change --  
% NOTE:  Number of  columns in FINAL_MATRIX MUST MATCH THE NUMBER OF 
%14.4f\t  in the format statement 
%  -------------- WRITE File --------------------------- 
% load input MAT 
feval('load', matfile2) 
  
fid2 = fopen(outfile2,'w') 
index = find(FINAL_MATRIX == Inf); 
FINAL_MATRIX(index) = NaN; 
  
for i=1:length(FINAL_MATRIX) 
    one_row = FINAL_MATRIX(i,:)'; 
    %fprintf(fid2,'%14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t 
%14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t 
%14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t 
%14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t 
%14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t \n',one_row); 
    % set for 30 columns 
    fprintf(fid2,'%14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t 
%14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t 
%14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t 
%14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t %14.4f\t 
\n',one_row); 
     
    clear one_row 
end 
fclose(fid2) 
clear one_row FINAL_MATRIX 
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APPENDIX C. ADDITIONAL RESULTS FIGURES 

This appendix provides additional figures for comparing of the various 

performance metrics between months and locations.   

  

• Overall performance by month 
 

• Hit proportion and level-1 and level-2 differences with respect to 
data latency issues by month 
 

• Percent of monthly and yearly data by latitude 
 
• Cloud category performance metric evaluations for all regions 
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Figure 36.  A comparative evaluation of WWMCA hit proportion and level-1 and level-
2 differences for the six sub regions by month. From top to bottom the 

panels are January, February, and March.  This figure should be 
compared to Figures 37–39. 
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Figure 37.  A comparative evaluation of WWMCA hit proportion and level-1 and level-
2 differences for the six sub regions by month. From top to bottom the 
panels are April, May, and June.  This figure should be compared to 

Figures 36, 38 and 39. 
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Figure 38.  A comparative evaluation of WWMCA hit proportion and level-1 and level-
2 differences for the six sub regions by month. From top to bottom the 

panels are July, August, and September.  This figure should be compared 
to Figures 35, 36 and 39. 
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Figure 39.  A comparative evaluation of WWMCA hit proportion and level-1 and level-
2 differences for the six sub regions by month. From top to bottom the 
panels are October, November, and December.  This figure should be 

compared to Figures 36–38. 
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Figure 40.  Monthly hit proportion for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 

panels are January, February, and March.  This figure should be 
compared to Figures 41 – 43. 
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Figure 41.  Monthly hit proportion correct for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 

panels are April, May, and June.  This figure should be compared to 
Figures 40, 42 and 43. 
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Figure 42.  Monthly hit proportion for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 

panels are July, August, and September.  This figure should be compared 
to Figures 40, 41 and 43. 
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Figure 43.  Monthly hit proportion for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 
panels are October, November, and December.  This figure should be 

compared to Figures 40 – 42. 
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Figure 44.  Monthly level-1 differences for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 

panels are January, February, and March. This figure should be compared 
to Figures 45 – 47. 
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Figure 45.  Monthly level-1 differences for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 

panels are April, May, and June.  This figure should be compared to 
Figures 44, 46, 47. 
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Figure 46.  Monthly level-1 differences for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 

panels are July, August, and September.  This figure should be compared 
to Figures 44, 45 and 47. 
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Figure 47.  Monthly level-1 differences for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 
panels are October, November, and December.  This figure should be 

compared to Figures 44 – 46. 
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Figure 49.  Monthly level-2 differences for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 

panels are April, May, and June.  This figure should be compared to 
Figures 48, 50, and 51. 
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Figure 50.  Monthly level-2 differences for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 

panels are July, August, and September.  This figure should be compared 
to Figures 48, 49 and 51. 
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Figure 51.  Monthly level-2 differences for each region in comparison to the annual 
WWMCA performance for all time categories.  From top to bottom these 
panels are October, November, and December.  This figure should be 

compared to Figures 48 – 50. 
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Figure 52.  Monthly percent of total data coverage by latitude.  Value represents the 
percent of data out of all data collected for that period.  From top to bottom 

these panels are January, February, and March.  This figure should be 
compared to Figures 53 – 55. 
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Figure 53.  Monthly percent of total data coverage by latitude.  Value represents the 
percent of data out of all data collected for that period.  From top to bottom 
these panels are April, May, and June.  This figure should be compared to 

Figures 52, 54, and 55. 
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Figure 54.  Monthly percent of total data coverage by latitude.  Value represents the 
percent of data out of all data collected for that period.  From top to bottom 

these panels are July, August, and September.  This figure should be 
compared to Figures 52, 53, and 55. 
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Figure 55.  Monthly percent of total data coverage by latitude.  Value represents the 
percent of data out of all data collected for that period.  From top to bottom 
these panels are October, November, and December.  This figure should 

be compared to Figures 52 – 54. 
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Figure 56.  Annual variation of total data coverage by latitude.  Value represents the 
percent of data out of all data collected for that period.  The top panel is 

0N–50N the bottom panel is 50N–90N.  From left to right, the panels 
represent greater than or equal to minutes, less than or equal to minutes 

and minute ranges.  This figure should be compared to Figures 57 and 58. 
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Figure 57.  Annual variation of total data coverage by latitude.  Value represents the 

percent of data out of all data collected for that period.  The top panel is 
0N–23.5N the bottom panel is 23.5N–35N.  From left to right, the panels 
represent greater than or equal to minutes, less than or equal to minutes 

and minute ranges.  This figure should be compared to Figures 56 and 58. 
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Figure 58.  Annual variation of total data coverage by latitude.  Value represents the 
percent of data out of all data collected for that period.  This is 35N–50N.   
From left to right, the panels represent greater than or equal to minutes, 
less than or equal to minutes and minute ranges.  This figure should be 

compared to Figures 56 and 57. 
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Figure 59.  Proportion Correct for each month and all three cloud categories.  The top 
panel is for 0N–90N while the bottom panel is for 0N–50N.  This figure 

should be compared to Figures 60–62.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 60.  Proportion Correct for each month and all three cloud categories.  The top 
panel is for 0N–23.5N while the bottom panel is for 23.5N–35N.  This 

figure should be compared to Figures 59, 61, and 62.  Solid lines 
represent the monthly values for the region, dashed lines represent the 

annual average for the region, and the dotted line is the Northern 
Hemisphere annual average. 
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Figure 61.  Proportion Correct for each month and all three cloud categories.  The top 
panel is for 35N–50N while the bottom panel is for 50N–90N.  This figure 
should be compared to Figures 59, 60, and 62.  Solid lines represent the 
monthly values for the region, dashed lines represent the annual average 

for the region, and the dotted line is the Northern Hemisphere annual 
average. 
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Figure 62.  Proportion Correct for each month and all three cloud categories.  The top 
panel is for SWA while the bottom panel is for SCS.  This figure should be 
compared to Figures 59–61.  Solid lines represent the monthly values for 
the region, dashed lines represent the annual average for the region, and 

the dotted line is the Northern Hemisphere annual average. 
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Figure 63.  Probability of Detection for each month and all three cloud categories.  
The top panel is for 0N–90N while the bottom panel is for 0N–50N.  This 
figure should be compared to Figures 64–66.  Solid lines represent the 

monthly values for the region, dashed lines represent the annual average 
for the region, and the dotted line is the Northern Hemisphere annual 

average. 
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Figure 64.  Probability of Detection for each month and all three cloud categories.  
The top panel is for 0N–23.5N while the bottom panel is for 23.5N–35N.  
This figure should be compared to Figures 63, 65, and 66.  Solid lines 

represent the monthly values for the region, dashed lines represent the 
annual average for the region, and the dotted line is the Northern 

Hemisphere annual average. 
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Figure 65.  Probability of Detection for each month and all three cloud categories.  
The top panel is for 35N–50N while the bottom panel is for 50N–90N.  
This figure should be compared to Figures 63, 64, and 66.  Solid lines 

represent the monthly values for the region, dashed lines represent the 
annual average for the region, and the dotted line is the Northern 

Hemisphere annual average. 
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Figure 66.  Probability of Detection for each month and all three cloud categories.  
The top panel is for SWA while the bottom panel is for SCS.  This figure 
should be compared to Figures 63–65.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 67.  Probability of False Detection for each month and all three cloud 

categories.  The top panel is for 0N–90N while the bottom panel is for 0N–
50N.  This figure should be compared to Figures 68–70.  Solid lines 

represent the monthly values for the region, dashed lines represent the 
annual average for the region, and the dotted line is the Northern 

Hemisphere annual average. 
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Figure 68.  Probability of False Detection for each month and all three cloud 

categories.  The top panel is for 0N–23.5N while the bottom panel is for 
23.5N–35N.  This figure should be compared to Figures 67, 69, and 70.  

Solid lines represent the monthly values for the region, dashed lines 
represent the annual average for the region, and the dotted line is the 

Northern Hemisphere annual average. 
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Figure 69.  Probability of False Detection for each month and all three cloud 

categories.  The top panel is for 35N–50N while the bottom panel is for 
50N–90N.  This figure should be compared to Figures 67, 68, and 70.  
Solid lines represent the monthly values for the region, dashed lines 

represent the annual average for the region, and the dotted line is the 
Northern Hemisphere annual average. 
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Figure 70.  Probability of False Detection for each month and all three cloud 

categories.  The top panel is for SWA while the bottom panel is for SCS.  
This figure should be compared to Figures 67–69.  Solid lines represent 

the monthly values for the region, dashed lines represent the annual 
average for the region, and the dotted line is the Northern Hemisphere 

annual average.  The POFD for Clouds in SCS in June was 99%. 
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Figure 71.  False alarm ratio for each month and all three cloud categories.  The top 
panel is for 0N–90N while the bottom panel is for 0N–50N.  This figure 

should be compared to Figures 72–74.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 72.  False alarm ratio for each month and all three cloud categories.  The top 
panel is for 0N–23.5N while the bottom panel is for 23.5N–35N.  This 

figure should be compared to Figures 71, 73, and 74.  Solid lines 
represent the monthly values for the region, dashed lines represent the 

annual average for the region, and the dotted line is the Northern 
Hemisphere annual average. 



 149 

 

 
 

Figure 73.  False alarm ratio for each month and all three cloud categories.  The top 
panel is for 35N–50N while the bottom panel is for 50N–90N.  This figure 
should be compared to Figures 71, 72, and 74.  Solid lines represent the 
monthly values for the region, dashed lines represent the annual average 

for the region, and the dotted line is the Northern Hemisphere annual 
average. 
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Figure 74.  False alarm ratio for each month and all three cloud categories.  The top 
panel is for SWA while the bottom panel is for SCS.  This figure should be 
compared to Figures 71–73.  Solid lines represent the monthly values for 
the region, dashed lines represent the annual average for the region, and 

the dotted line is the Northern Hemisphere annual average. 
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Figure 75.  Threat score for each month and all three cloud categories.  The top panel 
is for 0N–90N while the bottom panel is for 0N–50N.  This figure should be 
compared to Figures 76–78.  Solid lines represent the monthly values for 
the region, dashed lines represent the annual average for the region, and 

the dotted line is the Northern Hemisphere annual average. 
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Figure 76.  Threat score for each month and all three cloud categories.  The top panel 
is for 0N–23.5N while the bottom panel is for 23.5N–35N.  This figure 

should be compared to Figures 75, 77, and 78.  Solid lines represent the 
monthly values for the region, dashed lines represent the annual average 

for the region, and the dotted line is the Northern Hemisphere annual 
average. 
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Figure 77.  Threat score for each month and all three cloud categories.  The top panel 
is for 35N–50N while the bottom panel is for 50N–90N.  This figure should 
be compared to Figures 75, 76, and 78.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 78.  Threat score for each month and all three cloud categories.  The top panel 
is for SWA while the bottom panel is for SCS.  This figure should be 

compared to Figures 75–77.  Solid lines represent the monthly values for 
the region, dashed lines represent the annual average for the region, and 

the dotted line is the Northern Hemisphere annual average. 
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Figure 79.  Bias for each month and all three cloud categories.  The top panel is for 
0N–90N while the bottom panel is for 0N–50N.  This figure should be 

compared to Figures 80–82.  Solid lines represent the monthly values for 
the region, dashed lines represent the annual average for the region, and 

the dotted line is the Northern Hemisphere annual average. 
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Figure 80.  Bias for each month and all three cloud categories.  The top panel is for 
0N–23.5N while the bottom panel is for 23.5N–35N.  This figure should be 

compared to Figures 79, 81, and 82.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 81.  Bias for each month and all three cloud categories.  The top panel is for 
35N–50N while the bottom panel is for 50N–90N.  This figure should be 
compared to Figures 79, 80, and 82.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 82.  Bias for each month and all three cloud categories.  The top panel is for 
SWA while the bottom panel is for SCS.  This figure should be compared 
to Figures 79–81.  Solid lines represent the monthly values for the region, 
dashed lines represent the annual average for the region, and the dotted 

line is the Northern Hemisphere annual average. 
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Figure 83.  HSS for each month and all three cloud categories.  The top panel is for 
0N–90N while the bottom panel is for 0N–50N.  This figure should be 

compared to Figures 84–86.  Solid lines represent the monthly values for 
the region, dashed lines represent the annual average for the region, and 

the dotted line is the Northern Hemisphere annual average. 
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Figure 84.  HSS for each month and all three cloud categories.  The top panel is for 
0N–23.5N while the bottom panel is for 23.5N–35N.  This figure should be 

compared to Figures 83, 85, and 86.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 85.  HSS for each month and all three cloud categories.  The top panel is for 
35N–50N while the bottom panel is for 50N–90N.  This figure should be 
compared to Figures 83, 84, and 86.  Solid lines represent the monthly 
values for the region, dashed lines represent the annual average for the 
region, and the dotted line is the Northern Hemisphere annual average. 
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Figure 86.  HSS for each month and all three cloud categories.  The top panel is for 
SWA while the bottom panel is for SCS.  This figure should be compared 
to Figures 83–85.  Solid lines represent the monthly values for the region, 
dashed lines represent the annual average for the region, and the dotted 

line is the Northern Hemisphere annual average. 
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