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ABSTRACT

This paper proposes a hierarchical Bayesian model for multiple-pass, multiple antenna synthetic aperture
radar (SAR) systems with the goal of adaptive change detection. We model the SAR phenomenology directly,
including antenna and spatial dependencies, speckle and specular noise, and stationary clutter. We extend
previous work1 by estimating the antenna covariance matrix directly, leading to improved performance in
high clutter regions. The proposed SAR model is also shown to be easily generalizable when additional prior
information is available, such as locations of roads/intersections or smoothness priors on the target motion.
The performance of our posterior inference algorithm is analyzed over a large set of measured SAR imagery.
It is shown that the proposed algorithm provides competitive or better results to common change detection
algorithms with additional benefits such as few tuning parameters and a characterization of the posterior
distribution.
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1. INTRODUCTION

SAR radars traditionally are used to image stationary objects by integrating radar returns from spatially
diverse points. SAR images are often formed with much longer integration times than other radar modes (in
particular, MTI-mode radars). While this leads to high resolution images in many cases, the long integration
times also lead to other undesirable effects. Moving objects can cause phase errors in the reconstruction of
SAR images, leading to well known dispersion and displacement effects.2, 3 Moreover, angular scintillation
(aka ‘specular noise’ or ’glints’) can cause large phase errors that may considerably degrade signal quality.4

As the name suggests, angular scintillation has a large angular dependence in the sense that the intensity of
this noise source is only large from few azimuth angles. Speckle noise is an additional noise source that arises
from coherent imaging with SAR. Speckle noise tends to be spatially correlated, depending on the texture
of the surrounding pixels (e.g., buildings versus vegetation.) Unlike specular noise, the intensity of speckle
noise tends to be uniform as a function of azimuth angle.

In this work, we focus on the situation where the scene is being persistently monitored. Thus, images are
available from multiple passes of the radar platform, multiple antennas (phase centers), and multiple look-
angles. However, the background of these images remains relatively unchanged and is thus modeled as being
embedded in a low-dimensional subspace. Exploiting the low-dimensional subspace in order to extract the
moving targets of interest is used by many common algorithms. Soumekh5 shows that all stationary objects
can be removed from an ideal set of SAR images formed in a monopulse radar system by using a simple
difference image, also known as displaced phase center array (DPCA) processing. In practice, the antennas
are not perfectly calibrated, which can significantly degrade the performance of DPCA. Signal subspace
processing6 (SSP) addresses this problem by proposing an adaptive blind calibration technique of a two
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channel system that assumes that the signals are related through a locally spatially invariant filter. Ender
also considers using multiple channels for SAR detection of moving targets through space-time adaptive
processing7 (STAP), which adaptively estimates the clutter covariance matrix in order to separate moving
targets from the background. However, STAP is limited in the sense that it requires target-free data in order
to effectively estimate the clutter covariance matrix. In our work, we estimate both the calibration constants
and the clutter covariance directly in order to extract the moving targets from the SAR images.

Previously, we presented a model for synthetic aperture radar (SAR) imagery in order to separate a sparse
foreground component that may contain targets of interest from the stationary background.1 A hierarchical
Bayesian formulation was proposed that extends the model of Ding, He and Carin8 using the methods of
Tipping9 and Wipf and Rao.10, 11 This model

1. Provided Monte Carlo estimates of the posterior distribution using an efficient MCMC sampler.

2. Used conjugate distributions with non-informative hyperparameters, leading to very few tuning param-
eters.

3. Had low reconstruction errors and robustness to noise parameters on a synthetic dataset.

4. Performed well on a limited set of measured SAR imagery.

In this paper, we extend this model in several ways that include

1. Estimating the antenna covariance matrix directly, leading to improved performance in both low and
high variance regions of the scene.

2. Generalizing the model to be able to account for prior knowledge on the locations of the target signature.

3. Generalizing the model to include spatial dependencies using a hidden Markov model.

4. Analyzing the performance of our algorithm over a large set of measured SAR imagery with

• Comparisons to common change detection algorithms such as DPCA and along-track interferom-
etry (ATI).

• Comparisons as a function of our model (i.e., with/without prior knowledge and/or an antenna
covariance model).

• Analysis as a function of integration length and the number of observations.

The rest of the paper is organized as follows. The SAR image model is given in Section 2. Section 3
discusses the Monte Carlo implementation for posterior inference on the model. Performance of the model
and inference is analyzed with both synthetic and measured SAR imagery in Section 4. Finally, conclusions
and future work are provided in Section 5.

2. SAR IMAGE MODEL

In this work, it is assumed that we have access to SAR images formed from multiple passes of a radar platform
with multiple antennas (i.e., phase centers.) Moreover, images are formed over distinct azimuth angle ranges
that can be indexed by the frame number, f . Table 1 provides the indexing scheme used throughout this
paper in order to distinguish between images from various antennas, frames, and/or passes.

The image model proposed in this paper is very similar to our previous work.1 Whenever relevant, we
will point out the differences in our models.



Table 1. Index variable descriptions

Index Description Index Variable Range

Antenna (channel) k 1, 2, . . . ,K

Frame (azimuth range) f 1, 2, . . . , F

Pass i 1, 2, . . . , N

Pixel p 1, 2, . . . , P

(a) Independent pixels (b) Locally identical distributions (medium)

(c) Locally identical distributions (large) (d) HMM dependence for a single pixel

Figure 1. Various scenarios for spatial dependence used in this paper. In (a), pixels are independent. In (b) and (c),
pixels share an identical distribution over a medium and large area, respectively. In (d), pixels are assumed to have
a hidden Markov model dependence on neighboring cells with higher probabilities close to the center pixel.



Similar to our previous work, we propose a decomposition of SAR images into a background component
that lies in a low-dimensional subspace, a foreground component that is sparse, and additive noise:

Ik,f,i(p) = Hk,f,i(p) (Bk,f,i(p) + Tk,f,i(p)) + Vk,f,i(p), (1)

where Hk,f,i(p) is a spatially varying filter, Bk,f,i(p) is the background component, Tk,f,i(p) is the foreground
component, and Vk,f,i(p) is zero-mean additive noise. Moreover, we decompose the background component
as

Bk,f,i(p) = Sk,f (p) +Xk,f,i(p) + δf (p)Yk,f,i(p), (2)

where Sk,f (p) is the inherent background that is identical over all passes, Xk,f,i(p) is the speckle noise
component, Yk,f,i(p) is the specular noise (glint) component, and δf (p) is an indicator variable for specular
noise. The foreground component decomposes as

Tk,f,i(p) = Df,i(p)Mk,f,i(p), (3)

where Mk,f,i(p) is the target value and Df,i(p) is an indicator variable for the existence of the target at that
pixel. Table 2 provides the distributional models of each of these variables. The remainder of the section
discusses the model in greater detail.

Table 2. Distributional models for each component in equations (1), (2), and (3)

Component Variable Distribution Parameters Region All k?

Calibration constant Hk,f,i(p) = hk,f,i(g) Deterministic (LS) none p ∈ Zg No

Stationary Sk,f (p) Normal
(

0,ΣS(j)
)

ΣS(j) p ∈ Qj Yes

Speckle Xk,f,i(p) Normal
(

0,ΣX(j)
)

ΣX(j) p ∈ Qj Yes

Specular (glint) Yk,f,i(p) Normal
(

0,ΣY (j)
)

ΣY (j) p ∈ Qj Yes

Specular indicator δf (p) Bernoulli
(

πY
f (p)

)

πY
f (p) Each p No

Target Mk,f,i(p) Normal
(

0,ΣM
)

ΣM All p Yes

Target indicator Df,i(p) Bernoulli
(

πM
f,i(p)

)

πM
f,i(p) Each p No

Additive noise Vk,f,i(p) Normal
(

0,ΣV
)

ΣV All p Yes

Class assignment ~d(p) Multinomial(1; ~q) ~q Each p No

2.1 Calibration constants, Hk,f,i(p)

The calibration constants are assumed to be constant within small spatial regions as denoted by either
Figure 1(b) or 1(c). The calibration constant within such a region is a single value hk,f,i(g) for all pixels
p ∈ Zg. In general, hk,f,i(g) may be randomly distributed, though experimental evidence suggests that using
least-squares is sufficient for estimating the values.

2.2 Antenna covariance models for Σ

Each pixel in the stationary, speckle, specular, and target value components is jointly distributed across
the K antennas. Since the pixel values are complex, the joint distribution is over 2K values. Consider a
zero-mean vector W = [w1 w2 · · · wK ]T , where

wk = ak + jbk, k = 1, 2, . . . ,K. (4)



In this work,W could be representative of {Sk,f (p)}k, {Xk,f,i(p)}k, {Yk,f,i(p)}k or {Mk,f,i(p)}k. The complex
covariance matrix is given by

Γ = E
[

WWH
]

∈ C
K×K , (5)

which can be related to the real-valued covariance matrix

Σ =
1

2

[

Re {Γ} −Im {Γ}
Im {Γ} Re {Γ}

]

∈ R
2K×2K . (6)

In this work, we assume a specific structure for the complex covariance matrices Γ which can be derived by
assuming that

E[(wk)(wj)
∗] =

{

σ2, k = j

σ2ρe−jφkj , k 6= j
k, j = 1, 2, . . . ,K (7)

and

E

[

[

ak
bk

]

∣

∣

∣

∣

∣

[

aj
bj

]

]

= Pφjk

[

aj
bj

]

k, j = 1, 2, . . . ,K (8)

where Pφ is a rotation matrix by angle φ. In particular, let

Γ = σ2











1 ρe−jφ12 · · · ρe−jφ1K

ρe−jφ21 1 · · · ρe−jφ2K

...
...

. . .
...

ρe−jφK1 ρe−jφK2 · · · ρe−jφKK











, (9)

where σ2 is the channel variance, ρ is the coherence between antennas, and {φnm}n,m are the phase differ-
ences between the channels. Note that for background components, ρ should be near one and φij ≈ 0. A
more general model could account for different channel variance and coherence values, but since we use the
calibration constants Hk,f,i(p) to equalize the channels, the effect was seen to be relatively insignificant.

It should be noted that this form of the covariance matrix is related directly to some of the very common
methods for change detection in SAR imagery. In particular, consider the two antenna case (K = 2). It can
easily be shown that the eigendecomposition of Σ leads to eigenvalues λ and eigenvectors ν:

λ(Σ) =
{

2σ2(1 + ρ), 2σ2(1 − ρ)
}

(10)

ν(Σ) =

{[

1
e−jφ

]

,

[

1
−e−jφ

]}

. (11)

When the phase φ is zero, the second eigenvector reduces to [1 − 1]T , which can be interpreted as DPCA
for a two-antenna system. Moreover, along-track interferometry (ATI), which thresholds the phase φ, clearly
depends on the eigenvalues in a direct manner. Deming12 shows that ATI performs well when canceling
bright clutter (i.e., high σ2 and ρ ≈ 1), while DPCA performs well for canceling dim clutter (i.e., small σ2

and ρ ≈ 0.) In our work, we hope to gain the discriminating power of both DPCA and ATI by modeling the
covariance matrices directly.

Furthermore it should be noted that this covariance model generalizes our previous model1 which set
ρ = 1 and φnm = 0 for all n 6= m for the stationary, speckle and specular components. In Section 4, we
compare the performance of both models with measured SAR imagery.



2.3 Spatial dependencies for the background components

In our previous model,1 we assumed that objects in the background can be defined by one of C classes (e.g.,
roads, vegetation, or buildings.) Let

~d(p) = {dc}
C

c=1 ∼ Multinomial(1; q1, q2, . . . , qC) (12)

where qn is the prior probability of the c-th region type. Then the class assignment is the single location in
~d with value equal to one. Since object classes tend to have high spatial dependencies, the previous model
assumed that pixels within a small neighborhood all had a single class type. In this work, we introduce a
hidden Markov model dependency (see Figure 1(d)) which assumes that pixels in neighboring locations have
a high probability of being the same class. This small distinction provides two advantages: (a) we relax
the problem of tuning the size of the spatial dependency region; and (b) we allow finer transitions between
classes on a pixel-by-pixel basis. Future work plans to generalize the model to allow for mixtures of object
classes.

2.4 Priors on the distribution parameters

In general, the parameters of the distributions in Table 2 are not known a priori. Instead, we propose a
hierarchical Bayesian model based on the work by Tipping9 and others.8, 10, 11 In this model, we assume
that the parameters of the distribution are also random variables that need to be estimated from the data.
In most cases, we choose a non-informative distributions on the parameters in order to implement inference
algorithms with few tuning parameters. Table 3 shows the distributions of the so-called ‘hyper-parameters’
used in this work. For this work, we assume that the covariance matrices are given by equations (6) and (9)
so that they are parameterized by σ2, ρ, and {φnm}n,m. Unlike the other parameters, using this structure
suggests an informative prior based on our knowledge of the phenomenology of the SAR sensor. Future work
will compare to the non-informative case, where Σ is Inverse-Wishart distributed.

As in Tipping,9 we assume that the hyperparameters on the Inverse Gamma distributions are non-
informative leading to

aσ = bσ = 10−6. (13)

On the other hand, since the background coherence should be near unity, we let

aρ = 0.9, (14)

bρ = 0.1. (15)

It is also assumed that all object classes have equal prior probability, so that

cn = 1/C, n = 1, 2, . . . , C (16)

2.4.1 Indicator probability models

We have a great deal of flexibility for choosing the hyperparameters for the indicator probabilities. To ensure
that only a small percentage of the pixels contain either specular noise or targets, one should set the Beta
parameters so that

a(p)

a(p) + b(p)
≈ 0. (17)

However, in many cases there is a high degree of spatial and temporal dependence for the indicator variables.
For example, both targets and glints have spatial extents that spread over several pixels, while moving targets
tend to transition smoothly to neighboring pixels in sequential frames. Furthermore, it may be possible to
identify regions of the scene where specular noise or targets have a high likelihood, e.g. at edges of buildings



Table 3. Distributional models for parameters of distributions in Table 2

Component Variable Distribution Parameters Region

Stationary covariance ΣS(j) Each Qj

Variance
(

σS(j)
)2

Inv-Gamma aσ, bσ

Coherence ρS(j) Beta aρ, bρ

Phases
{

φS
nm(j)

}

n,m
Deterministic φS

nm(j) = 0

Speckle covariance ΣX(j) Each Qj

Variance
(

σX(j)
)2

Inv-Gamma aσ, bσ

Coherence ρX(j) Beta aρ, bρ

Phases
{

φX
nm(j)

}

n,m
Deterministic φX

nm(j) = 0

Specular covariance ΣY (j) Each Qj

Variance
(

σY (j)
)2

Inv-Gamma aσ, bσ

Coherence ρY (j) Beta aρ, bρ

Phases
{

φY
nm(j)

}

n,m
Deterministic φY

nm(j) = 0

Target covariance ΣM All p

Variance
(

σM
)2

Inv-Gamma aσ, bσ

Coherence ρM Deterministic ρM = 0

Phases
{

φM
nm

}

n,m
Uniform [0, 2π]

Additive noise covariance ΣV All p

Variance
(

σV
)2

Inv-Gamma aσ, bσ

Coherence ρV Deterministic ρV = 0

Phases
{

φV
nm

}

n,m
Uniform [0, 2π]

Target indicator probability πM
f,i(p) Beta aMf,i(p), b

M
f,i(p) Each p, f, i

Specular indicator probability πY
f (p) Beta aYf (p), b

Y
f (p) Each p, f

Region type probabilities ~q = {q1, . . . , qn} Dirichlet {cn}
C

n=1 All p



in the former case and near road intersections in the latter case. This information may be learned adaptively
through observed data or through human-in-the loop processing. In any of these cases, one would expect
that

a(p)

a(p) + b(p)
≈ 1. (18)

Define WY
f (p, δ) and WM

f,i(p,D) to be functions that map the indicator variables δ and D, respectively, to
a real number. For example, this may be the average number of non-zero indicators in the neighborhood of
pixel p, or it may be a weighted version similar to Figure 1(d). Then define:

aYf (p) =











ahigh, WY
f (p, δf ) > εYspatial

alow, else

, bYf (p) =











bhigh, WY
f (p, δf ) > εYspatial

blow, else

(19)

and

aMf,i(p) =











ahigh, WM
f,i(p,Df,i) > εMspatial and WM

f,i(p,Df−1,i) > εMtemporal

alow, else

, (20)

bMf,i(p) =











bhigh, WM
f,i(p,Df,i) > εMspatial and WM

f,i(p,Df−1,i) > εMtemporal

blow, else.

(21)

Note that (alow, blow) should be chosen to satisfy equation (17) and (ahigh, bhigh) should be chosen to satisfy
equation (18).

2.5 Generalizability of the model

The authors would like to stress that the model presented here is easily generalized to include additional
information sources. For example, if a target’s state (e.g. position and velocity), then one could predict the
location of its signature within the scene with high probability (see Jao2 or Newstadt et. al.13). Moreover,
one might consider different target classes or explicitly estimating the target phase which is proportional to
its radial velocity.

3. POSTERIOR INFERENCE

In this work, the computation of the posterior distribution estimation is done using a Gibb sampling scheme,
where the vast majority of variables can be easily sampled from simple distributions such as the multivariate-
normal and beta distributions. Since we wish to use the structure of the antenna covariance given in equation
(9), sampling is more difficult and requires other sampling methods, such as the Metropolis-Hastings algo-
rithm. Appendix A provides pseudocode for the implementation of our sampling method.

4. PERFORMANCE ANALYSIS

Figure 2 shows the full scene used for our performance analysis. The images are formed from a superset of
the data available through the public-released SAR-GMTI challenge problem.14 Images were formed for a 3
second interval from three passes of the radar platform and for each of three antennas. We considered five
separate locations that contained the signature of the Durango truck from the SAR-GMTI challenge problem
at times tf , f = 1, 2, . . . , 5. Figure 3 shows images of the scenes created at each of the times tf . These images
contain a variety of scenarios, including stationary targets, weak target signatures, strong target signatures
{(4, 4)} and barely visible target signatures.
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Figure 2. The full scene used for the performance analysis is shown in (a), while the yellow boxes in (b) correspond
to the individual scenes used for comparison of various scenarios. Note that the images formed in this dataset are a
superset of the public-released SAR-GMTI challenge problem dataset.14

Figure 4 shows the output of our algorithm for the scene/time combinations, {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}
(i.e., the scenes containing the Durango truck signature), as well as comparisons to DPCA and a mixture of
DPCA and ATI. For clarity, a grayscale image refers to a deterministic output such as the original image or
DPCA output, while a colored image refers to a probability or variance parameter. It can be seen that our
algorithm performs at least as well both DPCA and the DPCA/ATI mixture, although usually with fewer
false alarms. Moreover, both of the alternative algorithms required tuning of the threshold parameters (for
each of the 5 scenes). Finally, our method provides estimates of the posterior distribution, such as the vari-
ance of the background (which could be used for stronger hypothesis testing procedures) and the probability
of target existence.

Figure 5 compares the performance of our algorithm for scenes 2 and 3 as a function of the number
of observations. In particular, images were formed for each scene from n distinct look-angles, where n ∈
{10, 20, 30, 40, 50}. Each ‘observation’ consists of a set of images formed for K = 3 antennas and N = 3
passes. It can be seen that as the number of observations grows, the performance of our algorithm improves
with fewer false alarms.

In Figure 6, we compare the performance for scenes 2 and 3 as a function of the integration length
({0.2, 0.5, 1.0} seconds) used to form the images. It should be noted that for each integration length, a set
of images was formed that encompassed the entire 3 second interval (although possibly with fewer/greater
number of frames, F ). Thus, this simulation compares the robustness of our algorithm to using an arbitrary
integration length. The results suggest that the performance of our algorithm is invariant to the choice of
integration length. This relaxes the selection of another tuning parameter that can affect performance in
other algorithms such as DPCA and ATI.
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Figure 3. Image matrix of the scenes/times evaluated in this performance analysis. The signature of a single target
(Durango Truck) is known to exist along the diagonal, although other targets are in other scenes. Rows of the matrix
correspond to the same location as in Figure 2(b), while columns correspond to different times (i.e., azimuth ranges).
It should be noted that there are stationary targets {(1, 1)}, weak target signatures {(2, 2), (3, 3)}, strong target
signatures {(4, 4)} and barely visible target signatures {(5, 5)}.
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Figure 4. This figure shows the output of our algorithm for the scene/time combinations for the scenes containing the
Durango truck signature, {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)}. Grayscale images refer a deterministic output such as the
original image or DPCA output, while colored images refer to a probability or variance parameter. It is seen that
our algorithm performs at least as well both DPCA and the DPCA/ATI mixture, although usually with fewer false
alarms.
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Figure 5. This figure compares the performance of our proposed method for scenes 2 and 3 as a function of the number
of observations , n. A single observation consists of a set of images formed at a set of azimuth (look-) angles θn for each
of K = 3 antennas and N = 3 passes. The number of observations was varied for n ∈ {10, 20, 30, 40, 50}. It can be
seen that as n grows, the performance of our algorithm improves with fewer false alarms. Moreover, the performance
of the algorithm is relatively consistent for larger n, which suggests that the estimation of the background distribution
can be done with relatively few observations.
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Figure 6. This figure compares the performance of our proposed method for scenes 2 and 3 as a function of the
integration length ({0.2, 0.5, 1.0} seconds) used to form the images. The results suggest that the performance of our
algorithm is invariant to the choice of integration length, which relaxes the selection of another tuning parameter that
can affect performance in other algorithms such as DPCA and ATI.

Figure 7 shows the output of our algorithm both with and without the new antenna covariance model. It
can be seen that using the covariance model significantly reduces the number of false alarms in areas where
the background has high variance.

Figure 8 shows the output of our algorithm when prior information on the location of the targets might
be available. For example, in scene 1, targets are likely to be stopped at an intersection. We show the
performance improvement for two scenes that contain targets in our high probability region (mission) and
that don’t contain targets in those regions (reference). It can be seen that by including the prior information,
we are able to detect targets with much better accuracy, including the stationary targets in scene 1. On the
other hand, we don’t have significant performance decreases in the reference scenarios.

5. CONCLUSIONS AND FUTURE WORK

In this paper we extended the development and analysis of a hierarchical Bayesian model for persistent
SAR imagery, along with a Gibbs sampling scheme to efficiently estimate the posterior distribution. This
algorithm can infer statistics of the noise without extensive tuning of hyperparameters, yet also provides a
characterization of its uncertainty through a posterior distribution. The previous model was extended by
estimating the antenna covariance matrix directly, leading to improved performance in high clutter regions.
The model is also shown to be easily generalizable when additional prior information is available, such as
locations of roads/intersections or smoothness priors on the target motion. The performance of our posterior
inference algorithm is analyzed over a large set of measured SAR imagery. It is shown that the proposed
algorithm works at least as well as common change detection algorithms. Moreover, the algorithm is shown
to work well in a number of cases that include detecting stationary targets at intersections, detecting targets
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Figure 7. This figure compares the performance of our proposed method both with the new antenna covariance model
and as well the simpler model where the coherence of the channels is set to ρ = 1. It can be seen that using the more
general covariance model significantly reduces the number of false alarms in areas where the background has high
variance (i.e, high clutter regions.)
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Figure 8. This figure compares the performance of our proposed method with and without priors on target signature
locations. In scene 1, targets are likely to be stopped at an intersection, while in scene 2, the target signature is
assumed to lie in a low clutter region. We show the performance improvement for two scenes that contain targets in
the high probability region (mission scenes) and for two scenes that don’t contain targets in those regions (reference
scenes). It can be seen that by including the prior information, we are able to detect targets with much better
accuracy, including the stationary targets in scene 1. On the other hand, we don’t have significant performance
decreases in the reference scenarios.



in both bright and dim clutter situations, and working well regardless of the integration length used to form
the SAR images.

Future work will include the development of algorithms that exploit the use of a posterior distribution for
improved performance in a signal processing task, e.g. detection, tracking or classification. In particular, we
are interested in using algorithms for simultaneously detecting and estimating targets over a sparse scene with
resource constraints15, 16 as well determining the fundamental performance limits of a SAR target tracking
system. Furthermore, we would also like to consider other generalizations to our model, such as complex
target maneuvers, multiple target classes, and explicit tracking of the target phase.
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for iteration = 1 to Nburn−in +Nsamples do

Ĩ = I./H % Image Calibration

for all frames f do
% BACKGROUND
(S,X, δ, Y )= updateBackground(Ĩ, S,X, δ, Y,M,B,Θ, f)

% FOREGROUND
(D,M)= updateForeground(Ĩ, S,X, δ, Y,M,B,Θ, f)

% CALIBRATION CONSTANTS
for all calibration regions g, antennas k, passes i do

A = [Sk,f (p) +Xk,f,i(p) + δf (p). ∗ Yk,f,i(p)]p∈Zg
, b = [Ik,f,i(p)]p∈Zg

hk,f,i(g) = lscov(A, b) % Least squares solution to Ah = b
Hk,f,i(p) = hk,f,i(g), ∀p ∈ Zg

end for % (regions, antennas, passes)
end for % (frames)

% HYPERPARAMETERS
Θ =updateHyperParameters(Ĩ, S,X, δ, Y,M,B,H)

end for % (iterations)

Figure 9. Gibbs Sampling Pseudocode
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APPENDIX A. PSEUDOCODE FOR POSTERIOR ESTIMATION

Figures 9 through 16 provide the pseudocode used for our posterior estimation algorithm.



function (S,X, δ, Y ) = updateBackground(Ĩ , S,X, δ, Y,M,B,Θ, f)
for all regions j, pixels p ∈ Qj do

% Stationary component

rk =
∑N

i=1

[

Ĩ −X − δ. ∗ Y −D. ∗M
]

k,f,i
(p) k = 1, 2, . . . ,K

{Sk,f (p)}k ∼ N (µ,Σ); (µ,Σ) =calcPost(ΣS(j), {rk}k)

for all passes i do
% Speckle noise

rk =
[

Ĩ − S − δ. ∗ Y −D. ∗M
]

k,f,i
(p) k = 1, 2, . . . ,K

{Xk,f,i(p)}k ∼ N (µ,Σ); (µ,Σ) =calcPost(ΣX(j), {rk}k)

% Specular noise

rk =
[

Ĩ − S −X −D. ∗M
]

k,f,i
(p) k = 1, 2, . . . ,K

{Yk,f,i(p)}k ∼ N (µ,Σ); (µ,Σ) =calcPost(ΣY (j), {rk}k)
end for % (passes)

end for % (regions)

% Specular noise indicators

rk,i =
[

Ĩ − S −X −D. ∗M
]

k,f,i
(p), ri =

[

ℜ{rk,i}k ;ℑ{rk,i}k
]T

,

r = (
∑N

i=1 ri)/N , [y]k = (
∑N

i=1 Yk,f,i(p))/N
q0 = NormPDF(r; 0,ΣV /N2), q1 = NormPDF(r; [ℜ{y} ;ℑ{y}]T , (ΣV +ΣY )/N2)

δf (p) ∼ Bernoulli
(

q1
q0+q1

)

end function
Figure 10. Background update

function (D,M) = updateForeground(Ĩ , S,X, δ, Y,M,B,Θ, f)
for all passes i do

% Target amplitudes

rk =
[

Ĩ − S −X − δ. ∗ Y
]

k,f,i
(p) k = 1, 2, . . . ,K

{Mk,f,i(p)}k ∼ N (µ,Σ); (µ,Σ) =calcPost(ΣM , {rk}k)

% Specular noise indicators
r = [ℜ{rk}k ;ℑ{rk}k]

T , [m]k = Mk,f,i(p)
q0 = NormPDF(r; 0,ΣV )
q1 = NormPDF(r; [ℜ{y} ;ℑ{y}]T ,ΣV +ΣM )

Df,i(p) ∼ Bernoulli
(

q1
q0+q1

)

end for % (passes)
end function

Figure 11. Foreground update



function Θ = updateHyperparameters(Ĩ , S,X, δ, Y,M,B,Θ)
% Region classification
(d, ~q, ~z) = updateRegionClassifications(Ĩ , S,X, δ, Y,M,B,Θ)

% BACKGROUND covariance updates
for all regions j do

% Stationary covariance
~sf = complex2real(Sk,f (p)), ∀f ; s = concatenate({~sf}f )

(ΣS(j), σS(j), ρS(j)) = updateCovariance(σS(j), ρS(j), ssT , z(j) ∗ F )

% Speckle covariance
~xf,i = complex2real(Xk,f,i(p)), ∀f, i; x = concatenate({~xf,i}f,i)

(ΣX(j), σX(j), ρX(j)) = updateCovariance(σX(j), ρX(j),xxT , z(j)FN)

% Specular covariance
~yf,i = complex2real(Yk,f,i(p)), ∀f, i; y = concatenate({~yf,i}f,i)

(ΣY (j), σY (j), ρY (j)) = updateCovariance(σY (j), ρY (j),yyT , z(j)FN)
end for

% OTHER covariance matrices
% Target covariance
~mf,i = complex2real(Mk,f,i(p)), ∀f, i; m = concatenate({~mf,i}f,i)

(ΣM , σM ) = updateCovariance(σM , 0,mmT , NxNyFN)

% Additive noise
Vk,f,i(p) = ˜Ik,f,i(p)− Sk,f (p)−Xk,f,i(p)− δf (p). ∗ Yk,f,i(p)−Df,i(p). ∗Mk,f,i(p)
~vf,i = complex2real(Vk,f,i(p)), ∀f, i; v = concatenate({~vf,i}f,i)

(ΣV , σV ) = updateCovariance(σV , 0,vvT , NxNyFN)

% INDICATOR PROBABILITIES
{

πM
f,i(p)

}

f,i
= updateIndicatorProbabilities(D, εMspatial, ε

M
temporal, N) % Target

{

πY
f (p)

}

f
= updateIndicatorProbabilities(δ, εYspatial, ε

Y
temporal, 1) % Specular Noise

Θ =

{

d, ~q,
{

ΣS(j),ΣX(j),ΣY (j)
}

j
,ΣM ,ΣV ,

{

πM
f,i(p)

}

f,i
,
{

πY
f (p)

}

f

}

end function
Figure 12. Hyper-parameters update



function (d, ~q, ~z) = updateRegionClassifications(Ĩ , S,X, δ, Y,M,B,Θ)
for all pixels p do

for all classes j do
~sf = complex2real(Sk,f (p)), ∀f ; s = concatenate({~sf}f )

~xf,i = complex2real(Xk,f,i(p)), ∀f, i; x = concatenate({~xf,i}f,i)

TS = −trace
(

[ΣS(j)]−1ssT
)

, NS = F

TX = −trace
(

[ΣX(j)]−1xxT
)

, NX = FN

wj(p) = exp
{

TS −NS/2 log |ΣS(j)| −KNS log(2π) + TX −NX/2 log |ΣX(j)| −KNX log(2π) + qj
}

end for
end for

if useHMM then
wj(p) = HMM({wj(p)}p , p)

end if

% Class Assignment
for all pixels p do

~d(p) = Multinomial(1, {wj(p)}j)
end for

% Prior probabilities
for all classes j do

z(j) = | {p; dj(p) = 1} | % Number of pixels with class j
end for
~q = Gamma(~z + ~c, 1)/C

end function
Figure 13. Region classification update pseudocode



function (Σ, σ, ρ) = updateCovariance(σ, ρ,T , L)
σ2 = Inv−Gamma (aσ + L, bσ + trace(T )/2)
Σ = scaleMat(σ2, ρ)

pbest = Inv −WishartPDF (Σ;T + scaleMat(σ2, ρ) ∗ (df), df +N + 2K + 1)

for all Metropolis-Hastings repeats do
ρnew = Beta(aρ, bρ)
pnew = Inv −WishartPDF (Σ;T + scaleMat(σ2, ρnew) ∗ (df), df +N + 2K + 1)

if Uniform(0, 1) < pnew/pbest then
ρ = ρnew, pbest = pnew

end if
end for

end function

function Σ = scaleMat(σ2, ρ)
Γ = 2σ2

(

ρ11T + (1− ρ)IK
)

Σ =

[

Γ 0
0 Γ

]

end function
Figure 14. Covariance update pseudocode

function π = updateIndicatorProbabilities(B, εspatial, εtemporal, L)
for l = 1 to L do

for all pixels p, frames f do

aMf,l(p) =











ahigh, Wf,l(p,Bf,i) > εspatial and Wf,i(p,Bf−1,l) > εtemporal

alow, else

bf,l(p) =











bhigh, Wf,i(p,Bf,i) > εspatial and Wf,i(p,Bf−1,i) > εtemporal

blow, else.

πf,l(p) = Beta(af,l(p) +Bf,l(p), bf,l(p) + 1−Bf,l(p))
end for

end for
end function

Figure 15. Indicator probability update pseudocode



function (µ,Σ) = calcPost(Σprior, {rk}
K

k=1)

Λ = Σprior

(

Σprior +ΣV
)−1

r = complex2real({rk}
K
k=1)

µ = Λr; Σ = Σprior(I2K −Λ)
end function

function r = complex2real({rk}
K

k=1)

r = [ℜ{rk}k ;ℑ{rk}k]
T

end function

function R = concatenate({rn}
N
n=1)

R = [r1 r2 . . . rN ]
end function

Figure 16. Other functions used in this pseudocode


