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Optimal Index Policies for Quickest Localization of
Anomaly in Resource-Constrained Cyber Networks
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Abstract— We consider the problem of quickest localization
of anomaly in a resource-constrained cyber network consisting
of multiple components. Due to resource constraints, only one
component can be probed at each time. The observations are
random realizations drawn from two different distributions
depending on whether the component is normal or anomalous.
Components are assigned priorities. Components with higher
priorities in an abnormal state should be fixed before components
with lower priorities to reduce the overall damage to the network.
We formulate the problem as a priority-based constrained op-
timization problem. The objective is to minimize the expected
weighted sum of completion times of abnormal components
subject to error probability constraints. We then propose a
two-stage optimization formulation to solve the problem. First,
we consider the independent model, where each component is
abnormal independent of other components. Next, we consider
the exclusive model, where one only one component is abnormal.
We develop optimal index policies under both models. Optimal
low-complexity algorithms are derived for the simple hypotheses
case, where the distribution is completely known under both
hypotheses. Asymptotically (as the error probability approaches
zero) optimal low-complexity algorithms are derived for the
composite hypotheses case, where there is uncertainty in the
distribution parameters. Simulation results then illustrate the
performance of the algorithms.

Index Terms— Anomaly detection, Intrusion Detection Sys-
tem (IDS), sequential hypothesis testing, detection under un-
certainty.

I. INTRODUCTION

An intrusion detection system (IDS) is a system that moni-
tors the network to detect malicious activities (i.e., attacks)
in the network. Once an IDS determines that a malicious
activity has occurred, it then alerts the security administrator
or initiates a proper response to the malicious activity. Good
surveys of IDSs can be found in [1], [2]. Here, we focus
on anomaly detection, where statistical methods are used to
detect deviations from normal operation. Quickest detection
of anomaly subject to reliability constraints is an important
requirement when designing intrusion detection schemes. The
sooner an IDS detects malicious activities, the lower the
resulting damage to the network. Related works of existing
techniques for anomaly detection can be found in [3]–[16].

In this paper we address the problem of quickest localization
of anomaly in a resource-constrained cyber network. We con-
sider a network with K heterogeneous components which can
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be paths, routers, or subnets. Assume that an intrusion has been
detected. The goal here is to locate the infected components as
quickly and as reliably as possible. Most of existing studies on
anomaly detection do not consider the constraint on the system
monitoring capacity. Here, we focus on a resource-constrained
intrusion detection in cyber networks, as was done in [15]–
[17]. Due to resource constraints, only one component can be
probed at each time. The observations are random realizations
drawn from two different distributions depending on whether
the component is normal or anomalous. The completion time
of component k is defined as the time where the IDS completes
testing component k. Components are assigned priorities.
Components with higher priorities in an abnormal state should
be fixed before those with lower priorities to reduce the overall
damage to the network.

Throughout this paper we use the theory of sequential
detection. In sequential tests, after each observation has been
collected, the detector decides whether to accept H0, reject
H0 or to take another observation. The sample size achieved
by sequential tests can be significantly reduced as compared
to fixed-size tests. Therefore, it is a natural approach for
quickest localization of anomaly. Sequential detection has
been extensively studied in the literature. In cases where
the measurements can be collected sequentially according to
a specific order, the number of measurements required for
optimal detection can be significantly reduced. Related works
on this subject can be found in [18]–[21]. However, this
is not the case in the IDS model. Change-point detection
theory can be applied to the problem of anomaly detection
to identify a change in the probability distribution when a
malicious activity occurs. Related works on this subject can
be found in [8]–[10]. However, in this paper we consider a
different problem. Here, an intrusion has been detected (by
probing subnet, for instance [15]). The goal here is to locate
the infected components. During the anomaly localization, all
the observations are drawn from two different distributions
depending on whether the component is normal or anomalous.
The problem of sequentially testing the simple null hypothesis
H0 versus the simple alternative hypothesis H1 was solved in
[22], [23]. It was shown that the Sequential Probability Ratio
Test (SPRT) minimizes the expected sample size under given
type I and type II error probability constraints. Related works
on SPRT-based solutions for anomaly detection can be found
in [3], [5], [6], [13], [14]. Various problems of sequentially
testing the composite null hypothesis H0 versus the composite
alternative hypothesis H1 were studied in [24]–[30]. In this
case, asymptotically optimal performance can be obtained as
the error probability approaches zero.
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In the following, we summarize the main results of this
paper. We formulate the anomaly localization problem as a
priority-based constrained optimization problem. The objective
is to minimize the expected weighted sum of completion times
of abnormal components (since normal components do not
cause damage to the network) subject to error probability con-
straints. Minimizing the weighted sum of completion times is
a natural criterion to prioritize the completion of high-priority
components [31]. The optimization is done over the set of all
possible selection rules (that the IDS uses to decide which
component to test at each time), stopping rules (that the IDS
uses to decide when to stop testing each component) and deci-
sion rules (that the IDS uses to make a decision regarding the
state of each component). We then convert the original opti-
mization problem to a two-stage optimization problem. The the
two-stage formulation allows us to simplify the computation
of the original optimization problem by decomposing it into
two subproblems. We consider both independent and exclusive
models. In the former, each component is abnormal, with some
prior probability, independent of other components. Under the
exclusive model, one and only one component is abnormal
with some prior probability (which is a reasonable model
when the probability of each component to be compromised is
small). We develop index policies under both models. Optimal
algorithms are derived for the simple hypotheses case, where
the distribution is completely known under both hypotheses.
However, in numerous cases under the adversary model, there
is uncertainty in the observation distribution (in particular
when the component is in an abnormal state). Therefore, we
extend our results to the case of composite hypotheses, where
there is uncertainty in the distribution parameters. For this
case, asymptotically (as the error probability approaches zero)
optimal algorithms are derived. In all cases, the algorithms
have low-complexity.

The rest of this paper is organized as follows. In Section
II we describe the network model and problem formulation.
In Section III we present the two-stage optimization formu-
lation. In Sections IV, V we derive optimal low-complexity
algorithms under the independent and exclusive models for the
simple hypotheses case, respectively. In Section VI we extend
our results to derive asymptotically optimal low-complexity
algorithms under the independent and exclusive models for the
composite hypotheses case. In Section VII we provide appli-
cations and numerical examples to illustrate the performance
of the algorithms.

II. NETWORK MODEL AND PROBLEM FORMULATION

Consider a cyber network consisting of K components.
Assume that an intrusion has been detected. The goal here is
to locate the infected components. Due to resource constraint,
only one component can be probed at each time. When
component k is tested, a sequence of i.i.d. measurements
{yk(i)}i≥1 is drawn in a one-at-a-time manner. If component
k is in a healthy state, {yk(i)}i≥1 are drawn from distribution
f
(0)
k ; if component k is abnormal, {yk(i)}i≥1 are drawn from

distribution f
(1)
k . We define

yk(n) = {yk(n)}ni=1 (1)

as the vector of observations for the n samples that have been
collected from component k.

Components are assigned priorities. Let wk (0 ≤ wk < ∞)
be the priority (or weight) of component k. Components with
higher priorities in an abnormal state should be fixed before
components with lower priorities to reduce the overall damage
to the network.

We consider the case where the switching cost is high. Thus,
switching between components is done only when testing
the current component is completed. The advantages of this
scheme are twofold. First, switching between components
typically adds significant delay that should be avoided. Sec-
ond, the IDS is required to store observations of only one
component at each time. Thus, this scheme is applicable to
limited-memory systems. For convenience, we define tm as
the time where the IDS has completed the (m − 1)th test
and starts the mth test. After each observation has been
collected, the IDS needs to decide whether to take more
measurements from the current component or finalize the test
on the current component by declaring its state (healthy or
abnormal) and choose the next component to test. Let πk(tm)
be the probability (i.e., belief) that component k is abnormal
at time tm. Let 1k(tm) be the testing indicator function,
where 1k(tm) = 1 if component k is tested at time tm and
1k(tm) = 0 otherwise.

Let Nk be the random sample size required to make a
decision regarding the state of component k. Let Ck be the
random completion time of testing component k. For example,
if the IDS tests component 1 followed by component 2, then
C1 = N1 and C2 = N1 +N2.

Let τk be a stopping rule, which the IDS uses to decide
whether to take more measurements from component k or to
finalize the test by declaring its state. Let τ = (τ1, ..., τk) be
the vector of stopping rules for the K components.

Let δk ∈ {0, 1} be a decision rule, where δk = 0 if the IDS
declares that component k is in a healthy state (i.e., H0), and
δk = 1 if the IDS declares that component k is in an abnormal
state (i.e., H1). Let δ = (δ1, ..., δK) be the vector of decision
rules for the K components.

Let ϕ(tm) ∈ {1, 2, ...,K} be a selection rule, indicates
which component is chosen to be tested at time tm. Let
ϕ = (ϕ(t1), ..., ϕ(tK)) be the vector of selection rules for
the K components.

Let

H1 = {k : 1 ≤ k ≤ K , component k is abnormal} ,

H0 = {k : 1 ≤ k ≤ K , component k is healthy} ,

be the sets of all the abnormal and healthy components,
respectively.

The problem is to find a selection rule ϕ, a stopping rule τ
and a decision rule δ that minimize the expected weighted sum
of completion times of all the abnormal components subject
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to error probability constraints for each component:

inf
τ ,δ,ϕ

E

{∑
k∈H1

wkCk

}
s.t. PFA

k ≤ αk ∀k = 1, ...,K ,

PMD
k ≤ βk ∀k = 1, ...,K .

(2)

Higher penalties are assigned to higher-priority components in
an abnormal state 1. No penalty is associated with components
in a healthy state since they do not cause damage to the net-
work. Note that the policy (ϕ, τ , δ) is dynamic. At each time,
the IDS needs to decide whether to take more measurements
from component k or to finalize the test by declaring its state
and select the next component.

Throughout this paper we develop optimal and asymptot-
ically optimal algorithms to solve (2) under the simple and
composite hypotheses cases, respectively. The algorithms de-
veloped throughout this paper can be applied to other network
models as well. We discuss these extensions in Section VIII.

III. TWO-STAGE OPTIMIZATION PROBLEM

Instead of solving (2) directly, we propose a two-stage
optimization problem. At the first stage, the problem is to find
a stopping rule τk and a decision rule δk for every component
k that minimize the expected sample size given Hi subject to
error probability constraints:

inf
τk,δk

E(Nk|Hi) , i = 0, 1

s.t. PFA
k ≤ αk ,

PMD
k ≤ βk .

(3)

For the simple hypotheses case, the solution to the first-stage
optimization problem (3) is given by the SPRT [22], [23].
Let

Lk(n) =

∏n
i=1 f

(1)
k (yk(i))∏n

i=1 f
(0)
k (yk(i))

(4)

be the Likelihood Ratio (LR) between the two hypotheses of
component k at stage n.
Let Ak, Bk (Bk > 1/Ak) be the boundary values used by
the SPRT for component k, such that the error constraints are
satisfied2. According to the SPRT algorithm, at each stage n,
the LR is compared to the boundary values as follows:

• If Lk(n) ∈
(
(Ak)

−1, Bk

)
, continue to take observations

from component k.
• If Lk(n) ≥ Bk, stop taking observations from component

k and declare it as abnormal (i.e., H1). Clearly, Nk = n.
• If Lk(n) ≤ (Ak)

−1, stop taking observations from
component k and declare it as normal (i.e., H0). Clearly,
Nk = n.

Remark 1: Implementing sequential tests requires to compute
boundary values to determine the stopping rule, such that error

1Note that the loss due to missed-detection events is negligible for small
error probability, since PMD

k ∈ O(1/Bk) and E(Nk) ∈ Θ(logBk), where
Bk is a boundary value of the sequential test [23], [27].

2We discuss the determination of the boundary values Ak, Bk in Remark
1.

constraints are satisfied. In general, the exact determination
of the boundary values is very laborious and depends on the
observation distribution. However, since the solution to (3) is
given by the SPRT, Wald’s approximation can be applied to
simplify the computation [23]:

Bk ≈ 1− βk

αk
, Ak ≈ 1− αk

βk
. (5)

Wald’s approximation performs well for small αk, βk. Since
type I and type II errors are typically small, Wald’s approx-
imation is widely in practice [23].

For the composite hypotheses case, where there is uncertain-
ty in the distribution parameters, we can obtain asymptotically
optimal solution to (3). This case is discussed in Section VI.

At the second stage, the problem is to find a selection rule
ϕ that minimizes the objective function, given the solution to
the K subproblems (3):

inf
ϕ

E

{∑
k∈H1

wkCk

}
s.t. solutions to (3) are given for k = 1, ...,K .

(6)

The solutions to the second-stage optimization problem for
the independent and exclusive models are given in Sections
IV and V, respectively.

The formulation of the two-stage optimization problem
allows us to decompose the original optimization problem (2)
into K + 1 subproblems (3) and (6). We use this formulation
to design the solution to (2). In subsequent sections we show
that for the simple hypotheses case the solution to the two-
stage optimization problem solves the original optimization
problem (2) under both independent and exclusive models. For
the composite hypotheses case, the solution to the two-stage
optimization problem asymptotically (as the error probability
approaches zero) solves the original optimization problem
under both independent and exclusive models.

IV. THE INDEPENDENT MODEL CASE

In this section we consider the independent model under the
simple hypotheses case. Under the independent model, each
component is abnormal independent of other components. The
posterior probability of component k being abnormal can be
updated at time tm+1 as follows:

πk(tm+1) =

1k(tm)πk(tm)f
(1)
k (yk(Nk))

πk(tm)f
(1)
k (yk(Nk)) + (1− πk(tm)) f

(0)
k (yk(Nk))

+ (1− 1k(tm))πk(tm) .
(7)

In the following we derive optimal low-complexity algorithm
for this case.

A. The Proposed Solution

We use the two-stage optimization problem to design the
solution to (2). For the simple hypotheses case, the solution to
the first-stage optimization problem (3) is given by the SPRT,
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discussed in section III. Thus, here we focus on the solution
to the second-stage optimization problem (6).

It was shown in [31] that the optimal selection rule for
the problem of minimizing the expected weighted sum of
completion times given the expected testing time of each
component is to select the components in decreasing order
of wk/E(Nk). However, the problem in (6) is different. First,
the objective is to minimize the expected weighted sum of
completion times of abnormal components only. Second, the
expected sample size depends on the component state. In what
follows we derive a modified optimal selection rule that solves
the second-stage optimization problem (6).

Theorem 1: Let E(Nk) be the solution to (3). A selection-
rule ϕ∗ that selects the components in decreasing order of
πk(t1)wk/E(Nk) solves the second-stage optimization prob-
lem (6).

Proof: The theorem follows from the proof of Theorem 2.
Remark 2: The solution to the second-stage optimization
problem (6) requires one to compute the expected sample size
E(Nk) for all k = 1, 2, ...,K to select the components in
decreasing order of πk(t1)wk/E(Nk). In general, it is difficult
to obtain a closed-form expression to E(Nk). However, since
the solution to (3) is given by the SPRT, Wald’s approximation
can be applied to simplify the computation [23]. For every
i, j = 0, 1, let

Dk(i||j) = Ei

(
log

f
(i)
k (yk(1))

f
(j)
k (yk(1))

)
(8)

be the Kullback-Leibler (KL) divergence between the hypothe-
ses Hi and Hj , where the expectation is taken with respect to
f
(i)
k .

The expected sample size is well approximated by [23]:

E(Nk|H0) ≈
(1− αk) log Ãk − αk log B̃k

Dk(0||1)
,

E(Nk|H1) ≈
(1− βk) log B̃k − βk log Ãk

Dk(1||0)
,

(9)

where Ãk = (1 − αk)/βk, B̃k = (1 − βk)/αk are the
approximation to Ak, Bk, given in (5).
Thus, at each time t, the expected sample size required to
make a decision regarding the state of component k is given
by:

E(Nk) = πk(t)E(Nk|H1) + (1− πk(t))E(Nk|H0) ,
(10)

where the approximation approaches the exact expected sam-
ple size for small αk, βk. Since type I and type II errors
are typically small, Wald’s approximation is widely used in
practice. [23].

Based on the solution to the two-stage optimization prob-
lem, we propose Algorithm 1, presented in Table I, to solve
(2). Sorting the components in step 1 can be done in O(k log k)
time via sorting algorithms. Then, a series of SPRTs is
performed according to this order until all the components are
tested. The index policy described in Algorithm 1 is intuitively
satisfying. The priority of component k in terms of testing
order should be higher as the weight wk increases, or the

TABLE I
ALGORITHM 1 FOR THE INDEPENDENT MODEL

1. arrange the components in decreasing
order of πk(t1)wk/E(Nk)

2. for k = 1, ...,K components do:

3. perform SPRT for component k,
with PFA

k ≤ αk, PMD
k ≤ βk

4. end for

probability to be abnormal πk(t1) increases, or the expected
sample size E(Nk) decreases (since E(Nk) is added to the
completion time of every component which is tested after
component k). The SPRT is used to minimize the expected
sample size to reduce the completion times.

B. Optimality of Algorithm 1

In this section we provide performance analysis of Algo-
rithm 1. Note that Algorithm 1 uses a static selection rule (as
stated in step 1), where the components order is predetermined
at time t1. However, the performance analysis in this section is
not restricted to static selection rules. The following theorem
shows that Algorithm 1 is optimal among the class of both
static and dynamic selection rules (that update the selection
dynamically at each time tk).

Theorem 2: Under the independent model, Algorithm 1
solves (2).

Proof: Let E′(Nk|Hi,t) be the expected sample size achieved
by a stopping rule and a decision rule (τ ′k(t), δ

′
k(t)), depending

on the time that component k is tested (i.e., (τ ′k(t), δ
′
k(t))

depend on the selection rule), such that error constraints
are satisfied. Let EA1(Nk|Hi) be the expected sample size
achieved by the SPRT’s stopping rule and decision rule
(τA1

k , δA1
k ), independent on the time that component k is tested

(i.e., (τA1
k , δA1

k ) are independent on the selection rule), such
that error constraints are satisfied. Clearly, EA1(Nk|Hi) ≤
E′(Nk|Hi, t) for all k, t, for i = 0, 1 and are achieved by
Algorithm 1.

First, consider the case where K = 2. Assume that

π1(t1)w1

EA1(N1)
≥ π2(t1)w2

EA1(N2)
.

Consider selection rules ϕ(1), ϕ(2) that select component 1
first followed by component 2 and component 2 first followed
by component 1, respectively. The expected weighted sum of
completion times achieved by (τ ′(t), δ′(t),ϕ(2)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τ ′(t), δ′(t),ϕ(2))

}
= (E′(N2|H1, t1))π2(t1)w2

+(E′(N2|t1) + E′(N1|H1, t2))π1(t1)w1.

(11)
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The expected weighted sum of completion times achieved by
(τ ′(t), δ′(t),ϕ(1)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τ ′(t), δ′(t),ϕ(1))

}
= (E′(N1|H1, t1))π1(t1)w1

+(E′(N1|t1) + E′(N2|H1, t2))π2(t1)w2.

(12)

Note that the expected weighted sum of completion times
achieved by both selection rules can be further reduced
by minimizing the expected sample sizes (such that error
constraints are satisfied) independent on the selection rules,
which achieved by (τA1

k , δA1
k ). Therefore, an optimal solution

has to be (τA1, δA1,ϕ(1)) or (τA1, δA1,ϕ(2)). Next, we use
the interchange argument to prove the theorem for K = 2.
The expected weighted sum of completion times achieved by
(τA1, δA1,ϕ(2)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA1, δA1,ϕ(2))

}
=
(
EA1(N2|H1)

)
π2(t1)w2

+
(
EA1(N2) + EA1(N1|H1)

)
π1(t1)w1.

(13)

The expected weighted sum of completion times achieved by
(τA1, δA1,ϕ(1)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA1, δA1,ϕ(1))

}
=
(
EA1(N1|H1)

)
π1(t1)w1

+
(
EA1(N1) + EA1(N2|H1)

)
π2(t1)w2.

(14)

The expected weighted sum of completion times achieved by
ϕ(1) is lower than the expected weighted sum of completion
times achieved by ϕ(2) since that π1(t1)w1

EA1(N1)
≥ π2(t1)w2

EA1(N2)
, which

completes the proof for K = 2.
Next, we prove the theorem by induction on the number of
components K. Assume that the theorem is true for K − 1
components. Assume that

π1(t1)w1

EA1(N1)
≥ π2(t1)w2

EA1(N2)
≥ ... ≥ πK(t1)wK

EA1(NK)
.

Consider an optimal selection rule ϕ(j) that selects component
j first. Due to the independency between components, it
can be verified by the induction hypothesis that the last
K − 1 components have to be selected in decreasing order
of πk(t1)wk/E

A1(Nk) and tested by the SPRT. Hence, the
expected weighted sum of completion times achieved by

(τ ′(t), δ′(t),ϕ(j)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τ ′(t), δ′(t),ϕ(j))

}
= πj(t1)wj (E

′(Nj |H1, t1))

+

K∑
k=1,k ̸=j

[πk(t1)wk×E′ (Nj |t1) +

 k−1∑
i=1,i̸=j

EA1 (Ni)

+ EA1 (Nk|H1)

 .

(15)
First, note that the expected weighted sum of completion times
achieved by (τ ′(t), δ′(t),ϕ(j)) can be further reduced for all
j by minimizing the expected sample size E′(Nj |Hi, t1) for
i = 0, 1, which achieved by (τA1

j , δA1
j ). Therefore, an optimal

solution has to be (τA1, δA1,ϕ(j)) for an optimal selection
rule ϕ(j). Thus, in the following we consider solutions of the
form (τA1, δA1,ϕ).
Next, by contradiction, consider an optimal selection rule
ϕ(j ̸=1) that selects component j ̸= 1 first. Therefore, ϕ(j ̸=1)

selects the components by the following order:

j, 1, 2, ..., j − 1, j + 1, ...,K.

As a result, the expected weighted sum of completion times
achieved by (τA1, δA1,ϕ(j ̸=1)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA1, δA1,ϕ(j ̸=1))

}
= πj(t1)wj

(
EA1(Nj |H1)

)
+π1(t1)w1

[
EA1 (Nj) + EA1 (N1|H1)

]
+

K∑
k=2,k ̸=j

[πk(t1)wk×EA1 (Nj) +

 k−1∑
i=1,i ̸=j

EA1 (Ni)

+ EA1 (Nk|H1)

 .

(16)
We use the interchange argument to prove the theorem.
Consider a selection rule ϕ(1) that selects component 1 first
followed by components j, 2, 3, j − 1, j + 1, ...,K. Similar to
(16), the expected weighted sum of completion times achieved
by (τA1, δA1,ϕ(1)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA1, δA1,ϕ(1))

}
= π1(t1)w1

(
EA1(N1|H1)

)
+πj(t1)wj

[
EA1 (N1) + EA1 (Nj |H1)

]
+

K∑
k=2,k ̸=j

[πk(t1)wk×EA1 (Nj) +

 k−1∑
i=1,i ̸=j

EA1 (Ni)

+ EA1 (Nk|H1)

 .

(17)
By comparing (16) and (17), it can be verified that:
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E

{
K∑

k=1

wkCk1{k∈H1} | (τA1, δA1,ϕ(1))

}

≤ E

{
K∑

k=1

wkCk1{k∈H1} | (τA1, δA1,ϕ(j ̸=1))

}
since that π1(t1)w1/E

A1(N1) ≥ πj(t1)wj/E
A1(Nj) .

The expected weighted sum of completion times can be
reduced by selecting component 1 first followed by component
j, which contradicts the optimality of ϕ(j ̸=1). Hence, at time
t1 selecting component 1 minimizes the expected weighted
sum of completion times. By the induction hypothesis, for the
last K−1 components we select the components in decreasing
order of πk(t1)wk/E

A1(Nk), which completes the proof.

V. THE EXCLUSIVE MODEL CASE

In this section we consider the exclusive model under the
simple hypotheses case. Under the exclusive model, one and
only one component is abnormal. The posterior probability
of component k being abnormal is updated at time tm+1 as
given in (18) on the next page. It is easy to see that under
the exclusive model, we have

∑K
k=1 πk(t) = 1. Note that

in contrast to the independent model, under the exclusive
model the beliefs of all the components are changed at each
time due to the dependency across components. The posterior
probabilities depend on the selection rule and the collected
measurements. Nevertheless, in what follows we propose an
optimal low-complexity algorithm to solve (2) based on the
two-stage optimization problem (3), (6). In section V-B we
provide an optimality analysis.

A. The Proposed Solution

We use the two-stage optimization problem to design the
solution to (2). For the simple hypotheses case, the solution to
the first-stage optimization problem (3) is given by the SPRT,
discussed in section III. Thus, here we focus on the solution
to the second-stage optimization problem (6). In section IV-A,
we showed that selecting the components in decreasing order
of πk(t1)wk/E(Nk) solves (6) under the independent model.
In the following we show that a different selection rule solves
(6) under the exclusive model.

Theorem 3: Let E(Nk|Hi), i = 0, 1 be the solution to (3).
A selection rule ϕ∗ that selects the components in decreasing
order of πk(t1)wk/E(Nk|H0) solves the second-stage opti-
mization problem (6).

Proof: The theorem follows from the proof of Theorem 4.
Based on the solution to the two-stage optimization problem,
we propose Algorithm 2, presented in Table II, to solve
(2). The index policy described in Algorithm 2 is intuitively
satisfying. The priority of component k in terms of testing
order should be higher as the weight wk increases, or the
probability to be abnormal πk(t1) increases, or the expected
sample size E(Nk|H0) decreases. Note that in contrast to the
independent model, here we take into account the expected
sample size under H0 solely. The reason is that if component
k is abnormal, there is no penalty to other components under
the exclusive model (since only one component is abnormal).

TABLE II
ALGORITHM 2 FOR THE EXCLUSIVE MODEL

1. arrange the components in decreasing
order of πk(t1)wk/E(Nk|H0)

2. for k = 1, ...,K components do:

3. perform SPRT for component k,
with PFA

k ≤ αk, PMD
k ≤ βk

4. end for

On the other hand, if component k is healthy, then E(Nk|H0)
is added to the completion time of the components which are
tested after component k (and may be abnormal). The SPRT
is used to minimize the expected sample size to reduce the
completion times.

B. Optimality of Algorithm 2

In this section we provide performance analysis of Algo-
rithm 2. Note that Algorithm 2 uses a static selection rule (as
stated in step 1), where the components order is predetermined
at time t1. However, the performance analysis in this section is
not restricted to static selection rules. The following theorem
shows that Algorithm 2 is optimal among the class of both
static and dynamic selection rules (that update the selection
dynamically at each time tk).

Theorem 4: Under the exclusive model, Algorithm 2 solves
(2).
Proof: Let E′(Nk|Hi,t) be the expected sample size achieved
by a stopping rule and a decision rule (τ ′k(t), δ

′
k(t)), depending

on the time that component k is tested (i.e., (τ ′k(t), δ
′
k(t))

depend on the selection rule), such that error constraints
are satisfied. Let EA2(Nk|Hi) be the expected sample size
achieved by the SPRT’s stopping rule and decision rule
(τA2

k , δA2
k ), independent on the time that component k is tested

(i.e., (τA2
k , δA2

k ) are independent on the selection rule), such
that error constraints are satisfied. Clearly, EA2(Nk|Hi) ≤
E′(Nk|Hi, t) for all k, t, for i = 0, 1.

First consider the case where K = 2. Assume that
π1(t1)w1

EA2(N1|H0)
≥ π2(t1)w2

EA2(N2|H0)
. (19)

Consider selection rules ϕ(1), ϕ(2) that select component 1
first followed by component 2 and component 2 first followed
by component 1, respectively. The expected weighted sum of
completion times achieved by (τ ′(t), δ′(t),ϕ(2)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τ ′(t), δ′(t),ϕ(2))

}
= (E′(N2|H1, t1))π2(t1)w2

+(E′(N2|H0, t1) + E′(N1|H1, t2))π1(t1)w1.
(20)
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πk(tm+1) =
1k(tm)πk(tm)f

(1)
k (yk(Nk))

πk(tm)f
(1)
k (yk(Nk)) + (1− πk(tm)) f

(0)
k (yk(Nk))

+
(1− 1k(tm))πk(tm)f

(0)
ϕ(tm)(yϕ(tm)(Nϕ(tm)))

πϕ(tm)(tm)f
(1)
ϕ(tm)(yϕ(tm)(Nϕ(tm))) +

(
1− πϕ(tm)(tm)

)
f
(0)
ϕ(tm)(yϕ(tm)(Nϕ(tm)))

.

(18)

The expected weighted sum of completion times achieved by
(τ ′(t), δ′(t),ϕ(1)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τ ′(t), δ′(t),ϕ(1))

}
= (E′(N1|H1, t1))π1(t1)w1

+(E′(N1|H0, t1) + E′(N2|H1, t2))π2(t1)w2.
(21)

Note that the expected weighted sum of completion times
achieved by both selection rules can be further reduced
by minimizing the expected sample sizes (such that error
constraints are satisfied) independent on the selection rules,
which achieved by (τA2

k , δA2
k ). Therefore, an optimal solution

has to be (τA2, δA2,ϕ(1)) or (τA2, δA2,ϕ(2)). Next, we use
the interchange argument to prove the theorem for K = 2.
The expected weighted sum of completion times achieved by
(τA2, δA2,ϕ(2)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA2, δA2,ϕ(2))

}
=
(
EA2(N2|H1)

)
π2(t1)w2

+
(
EA2(N2|H0) + EA2(N1|H1)

)
π1(t1)w1.

(22)

The expected weighted sum of completion times achieved by
(τA2, δA2,ϕ(1)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA2, δA2,ϕ(1))

}
=
(
EA2(N1|H1)

)
π1(t1)w1

+
(
EA2(N1|H0) + EA2(N2|H1)

)
π2(t1)w2.

(23)

The expected weighted sum of completion times achieved
by ϕ(1) is lower than the expected weighted sum of com-

pletion times achieved by ϕ(2) since that
π1(t1)w1

EA2(N1|H0)
≥

π2(t1)w2

EA2(N2|H0)
, which completes the proof for K = 2.

Next, we prove the theorem by induction on the number of
components K. Assume that the theorem is true for K − 1
components (where one and only one component is abnormal).
Assume that

π1(t1)w1

EA2(N1|H0)
≥ π2(t1)w2

EA2(N2|H0)
≥ ... ≥ πK(t1)wK

EA2(NK |H0)
.

(24)
Consider an optimal selection rule ϕ(j) that selects component
j first.
Let

γj(t) =
1

πj(t)
f
(1)
j (yj(Nj))

f
(0)
j (yj(Nj))

+ 1− πj(t)

. (25)

Note that when the IDS completes to test component j, the
other components update their beliefs according to:

πk(t2) = γj(t1)πk(t1) , ∀k ̸= j . (26)

The expected weighted sum of completion times achieved by
ϕ(j) given the outcome (at time t2) by testing component j
(i.e., given the observations vector yj(Nj)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | ϕ(j),yj(Nj)

}
= πj(t2)wjNj

+(1− πj(t2))×

E


K∑

k=1,k ̸=j

wkCk1{k∈H1} | ϕ(j),yj(Nj), j ∈ H0

 .

(27)
Let

C̃k = Ck −Nj ∀k ̸= j (28)

be the modified completion time, defined as the completion
time from t = Nj +1 until testing component k is completed.
Thus, we can rewrite (27) as:

E

{
K∑

k=1

wkCk1{k∈H1} | ϕ(j),yj(Nj)

}

=

K∑
k=1

πk(t2)wkNj

+(1− πj(t2))×

E


K∑

k=1,k ̸=j

wkC̃k1{k∈H1} | ϕ(j),yj(Nj), j ∈ H0

 .

(29)
The term

∑K
k=1 πk(t2)wkNj in (29) follows since,

Pr
(
k ∈ H1 | ϕ(j),yj(Nj), j ∈ H0

)
=

Pr
(
k ∈ H1, j ∈ H0 | ϕ(j),yj(Nj),

)
Pr
(
j ∈ H0 | ϕ(j),yj(Nj),

)
=

Pr
(
k ∈ H1 | ϕ(j),yj(Nj),

)
Pr
(
j ∈ H0 | ϕ(j),yj(Nj),

) =
πk(t2)

1− πj(t2)
, π̃k(t2) .

(30)
Minimizing

E

{
K∑

k=1

wkCk1{k∈H1} | ϕ(j),yj(Nj)

}
(31)
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at time t2, requires to minimize

E


K∑

k=1,k ̸=j

wkC̃k1{k∈H1} | ϕ(j),yj(Nj), j ∈ H0

 (32)

in (29).
Note that (32) is the expected weighted sum of completion
times for K − 1 components (where one and only one
component is abnormal) starting at time t = t2 = Nj + 1,
with prior probability π̃k(t2) = πk(t2)

1−πj(t2)
for component

k ̸= j to be abnormal. By the induction hypothesis, for any
optimal selection rule ϕ(j) that selects component j first,
arranging the last K − 1 components with decreasing order
of π̃k(t2)wk/E

A2(Nk|H0) (and testing them by the SPRT)
minimizes (32).
Since

π̃k(t2) =
γj(t1)

1− πj(t2)
πk(t1) ∀k ̸= j, (33)

then

π̃1(t2)w1

EA2(N1|H0)
≥ π̃2(t2)w2

EA2(N2|H0)
≥ · · · ≥ π̃j−1(t2)wj−1

EA2(Nj−1|H0)

≥ π̃j+1(t2)wj+1

EA2(Nj+1|H0)
≥ · · · ≥ π̃K(t2)wK

EA2(NK |H0)
.

(34)
Thus, the last K − 1 components have to be selected in
decreasing order of πk(t1)wk/E

A2(Nk|H0) and tested by the
SPRT.
Hence, the expected weighted sum of completion times
achieved by (τ ′(t), δ′(t),ϕ(j)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τ ′(t), δ′(t),ϕ(j))

}
= πj(t1)wj (E

′(Nj |H1, t1))

+
K∑

k=1,k ̸=j

[πk(t1)wk×E′ (Nj |H0, t1) +

 k−1∑
i=1,i̸=j

EA2 (Ni|H0)


+EA2 (Nk|H1)

)]
.
(35)

First, note that the expected weighted sum of completion times
achieved by (τ ′(t), δ′(t),ϕ(j)) can be further reduced for all
j by minimizing the expected sample size E′(Nj |Hi, t1) for
i = 0, 1, which achieved by (τA2

j , δA2
j ). Therefore, an optimal

solution has to be (τA2, δA2,ϕ(j)) for an optimal selection
rule ϕ(j). Thus, in the following we consider solutions of the
form (τA2, δA2,ϕ).
Next, by contradiction, consider an optimal selection rule
ϕ(j ̸=1) that selects component j ̸= 1 first. Therefore, ϕ(j ̸=1)

selects the components by the following order:

j, 1, 2, ..., j − 1, j + 1, ...,K.

As a result, the expected weighted sum of completion times

achieved by (τA2, δA2,ϕ(j ̸=1)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA2, δA2,ϕ(j ̸=1))

}
= πj(t1)wj

(
EA2(Nj |H1)

)
+π1(t1)w1

[
EA2 (Nj |H0) + EA2 (N1|H1)

]
+

K∑
k=2,k ̸=j

[πk(t1)wk×EA2 (Nj |H0) +

 k−1∑
i=1,i ̸=j

EA2 (Ni|H0)


+EA2 (Nk|H1)

)]
.
(36)

We use the interchange argument to prove the theorem.
Consider a selection rule ϕ(1) that selects component 1 first
followed by components j, 2, 3, j − 1, j + 1, ...,K. Similar to
(36), the expected weighted sum of completion times achieved
by (τA2, δA2,ϕ(1)) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA2, δA2,ϕ(1))

}
= π1(t1)w1

(
EA2(N1|H1)

)
+πj(t1)wj

[
EA2 (N1|H0) + EA2 (Nj |H1)

]
+

K∑
k=2,k ̸=j

[πk(t1)wk×EA2 (Nj |H0) +

 k−1∑
i=1,i ̸=j

EA2 (Ni|H0)


+EA2 (Nk|H1)

)]
.
(37)

By comparing (36) and (37), it can be verified that:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA2, δA2,ϕ(1))

}

≤ E

{
K∑

k=1

wkCk1{k∈H1} | (τA2, δA2,ϕ(j ̸=1))

}
since that

π1(t1)w1

EA2(N1|H0)
≥ πj(t1)wj

EA2(Nj |H0)
.

The expected weighted sum of completion times can be
reduced by selecting component 1 first followed by compo-
nent j, which contradicts the optimality of ϕ(j ̸=1). Hence,
at time t1 selecting component 1 minimizes the expected
weighted sum of completion times. We have already proved
that selecting the last K − 1 components in decreasing order
of πk(t1)wk/E

A2(Nk|H0) minimizes the objective function,
which completes the proof.

VI. LOCALIZATION OF ANOMALY UNDER UNCERTAINTY

In the previous sections, we focused on the simple hy-
potheses case, where the distribution under both hypotheses
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are completely known. For this case, the SPRT was applied
in Algorithms 1, 2 to solve (3). However, in numerous cases
under the adversary model, there is uncertainty in the obser-
vation distribution (in particular when the component is in
an abnormal state). Therefore, in this section we extend our
results to the case of composite hypotheses, where there is
uncertainty in the distribution parameters.

Let θk be a vector of unknown parameters of component
k. The observations {yk(i)}i≥1 are drawn from a common
distribution f (y|θk), θk ∈ Θk, where Θk is the parameters
space of component k. If component k is in a healthy state,
then θk ∈ Θ

(0)
k ; if component k is abnormal, then θk ∈

(Θ\Θ(0)
k ).

Let Θ
(0)
k , Θ

(1)
k be disjoint subsets of Θk, where Ik =

Θ\(Θ(0)
k ∪Θ(1)

k ) ̸= ∅ is an indifference region3. When θk ∈ Ik,
the detector is indifferent regarding the state of component k.
Hence, there are no constraints on the error probabilities for
all θk ∈ Ik. The hypothesis testing regarding component k is
to test

θk ∈ Θ
(0)
k against θk ∈ Θ

(1)
k .

Narrowing Ik has the price of increasing the sample size.
Let

θ̂k(n) = arg max
θk∈Θk

f (yk(n)|θk),

θ̂
(i)

k (n) = arg max
θk∈Θ

(i)
k

f (yk(n)|θk),
(38)

be the Maximum-Likelihood Estimates (MLEs) of the parame-
ters over the parameters space Θk, Θ(i)

k at stage n, respectively.
In contrast to the SPRT (for the simple hypotheses case),

the theory of sequential tests of composite hypotheses does
not provide optimal performance in terms of minimizing the
expected sample size under given error constraints. Neverthe-
less, asymptotically optimal performance can be obtained as
the error probability approaches zero.

First, we provide an overview of existing sequential tests
for composite hypotheses which are relevant to our problem.
Next, we apply these techniques to solve (2).

A. Existing Sequential Tests for Composite Hypothesis Testing
The key idea of sequential tests of composite hypotheses,

discussed in this section, is to use the estimated parameters
to perform a one-sided sequential test to reject H0 and a one-
sided sequential test to reject H1. Note that these techniques
were introduced for a single process. However, in this paper
we apply sequential tests for K components. Thus, we use the
subscript k to denote the component index.

1) Sequential Generalized Likelihood Ratio Test (SGLRT):
We refer to sequential tests that use the Generalized Likelihood
Ratio (GLR) statistics [32] as the SGLRT.
For i = 0, 1, let

L
(i),GLR
k (n) = log

∏n
r=1 f(yk(r)|θ̂k(n))∏n
r=1 f(yk(r)|θ̂

(i)

k (n))
(39)

3The assumption of an indifference region is widely used in the theory of
sequential testing of composite hypotheses to derive asymptotically optimal
performance. Nevertheless, in some cases this assumption can be removed.
For more details, the reader is referred to [27].

be the GLR statistics used to reject hypothesis Hi at stage n.
Let

N
(i)
k = inf

{
n : L

(i),GLR
k (n) ≥ B

(i)
k

}
, (40)

be the stopping rule used to reject hypothesis Hi. B
(i)
k is the

boundary value.
For each component k, the IDS stops sampling when Nk =

min
{
N

(0)
k , N

(1)
k

}
. If Nk = N

(0)
k , component k is declared

as abnormal (i.e., H0 is rejected). If Nk = N
(1)
k , component

k is declared as normal (i.e., H0 is accepted).
The SGLRT was first studied by Schwartz [24] for a one-

parametric exponential family, who assigned a cost of c for
each observation and a loss function for wrong decision. It was
shown that setting B

(i)
k = log(c−1

k ) asymptotically minimizes
the Bayes risk as ck approaches zero. Further refinement was
studied by Lai [27], [29], who set a time-varying boundary
value B

(i)
k ∼ log((nck)

−1). Lai showed that for a multivariate
exponential family this scheme asymptotically minimizes both
the Bayes risk and the expected sample size subject to error
constraints as ck approaches zero [29].

2) Sequential Adaptive Likelihood Ratio Test (SALRT): We
refer to sequential tests that use the Adaptive Likelihood Ratio
(ALR) statistics as the SALRT.
For i = 0, 1, let

L
(i),ALR
k (n) = log

∏n
r=1 f(yk(r)|θ̂k(r − 1))∏n
r=1 f(yk(r)|θ̂

(i)

k (n))
(41)

be the ALR statistics used to reject hypothesis Hi at stage n.
Let

N
(i)
k = inf

{
n : L

(i),ALR
k (n) ≥ B

(i)
k

}
, (42)

be the stopping rule used to reject hypothesis Hi.
For each component k, the IDS stops sampling when Nk =

min
{
N

(0)
k , N

(1)
k

}
. If Nk = N

(0)
k , component k is declared

as abnormal (i.e., H0 is rejected). If Nk = N
(1)
k , component

k is declared as normal (i.e., H0 is accepted).
The SALRT was first introduced by Robbins and Siegmund

[25], [26] to design power-one sequential tests. Pavlov used it
to design asymptotically (as the error probability approaches
zero) optimal (in terms of minimizing the expected sample
size subject to error constraints) tests for composite hypothesis
testing of multivariate exponential family [28]. Tartakovsky
shows asymptotically optimal performance for a more general
multivariate family of distributions [30].

The advantage of using the SALRT is that setting B
(0)
k =

log 1
αk

, B(1)
k = log 1

βk
satisfies the error probability constraints

in (3). However, such simple setting can not be applied to
the SGLRT. Thus, implementing the SALRT is much simpler
than implementing the SGLRT. The disadvantage of using
the SALRT is that poor early estimates (for small number
of observations) can never be revised even though one has
a large number of observations. Thus, generally, the SGLRT
outperforms the SALRT in terms of minimizing the expected
sample size for given type I and type II errors.
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TABLE III
ALGORITHM 3 FOR THE INDEPENDENT MODEL UNDER UNCERTAINTY

1. arrange the components in decreasing
order of πk(t1)wk/E(Nk)

2. for k = 1, ...,K components do:

3. perform SALRT/SGLRT for component k,
with PFA

k ≤ αk, PMD
k ≤ βk

4. end for

TABLE IV
ALGORITHM 4 FOR THE EXCLUSIVE MODEL UNDER UNCERTAINTY

1. arrange the components in decreasing
order of πk(t1)wk/E(Nk|H0)

2. for k = 1, ...,K components do:

3. perform SALRT/SGLRT for component k,
with PFA

k ≤ αk, PMD
k ≤ βk

4. end for

B. The Proposed Solutions for the Independent and Exclusive
Models

In this section we modify Algorithms 1, 2, given in Tables
I, II to take into account the uncertainty in the model of the
adversary. Based on the solution to the two-stage optimiza-
tion problem, we propose Algorithm 3 and 4 to solve (2)
for the independent and exclusive models under uncertainty,
respectively. The algorithms are presented in Tables III, IV.
The required modification is in step 3 of both algorithms.
Under uncertainty, one should perform SGLRT or SALRT,
as discussed in the previous section, instead of the SPRT.

Remark 3: Implementing Algorithms 3, 4 requires to compute
the expected sample size E(Nk|Hi) for all k = 1, 2, ...,K for
i = 0, 1, achieved by the SGLRT or the SALRT. In general, it
is difficult to obtain a closed-form expressions to the exact
value of E(Nk|Hi). However, we can use the asymptotic
property of the tests to obtain a closed-form approximation
to E(Nk|Hi), which approaches the exact expected sample
size as the error probability approaches zero.
For every i = 0, 1, let

Dk(θk||λ) = Eθk

(
log

f(yk(1)|θk)

f(yk(1)|λ)

)
(43)

be the KL divergence between the real value of θk and λ,
where the expectation is taken with respect to f(y|θk),
and let

D∗
k(θk||Θ(i)

k ) = inf
λ∈Θ

(i)
k

Dk(θk||λ) . (44)

Let P (i)(θk) be a prior distribution on θk under hypothesis Hi

at component k. Then, as PFA
k → 0, PMD

k → 0, the expected
sample size is given by:

E(Nk|H0) ∼
∫
θk∈Θ

(0)
k

logB
(1)
k

D∗
k(θk||Θ(1)

k )
dP (0)(θk) ,

E(Nk|H1) ∼
∫
θk∈Θ

(1)
k ∪I

(1)
k

logB
(0)
k

D∗
k(θk||Θ(0)

k )
dP (1)(θk)

+

∫
θk∈I

(0)
k

logB
(1)
k

D∗
k(θk||Θ(1)

k )
dP (1)(θk) ,

(45)

where I
(0)
k , I

(1)
k are disjoint subsets of Ik and Ik = I

(0)
k ∪I

(1)
k .

For all θk ∈ I
(i)
k we have logB

(j)
k

D∗
k(θk||Θ(j)

k )
≤ logB

(i)
k

D∗
k(θk||Θ(i)

k )
for

i, j = 0, 1.
At each time t, the expected sample size required to make a
decision regarding the state of component k is given by:

E(Nk) = πk(t)E(Nk|H1) + (1− πk(t))E(Nk|H0) ,

(46)
which can be well approximated for small error probability
using (45). Remark 4: In numerous cases, uncertainty is
associated with abnormal state solely, where the distribution
under normal state is completely known. In these cases, eval-
uating E(Nk) to implement Algorithm 3 depends on the prior
distribution on θk ∈ Θ\Θ(0)

k , while evaluating E(Nk|H0) to
implement Algorithm 4 does not.

C. Asymptotic Optimality of Algorithms 3, 4

In what follows we show that Algorithms 3, 4 are asymp-
totically optimal in terms of minimizing the objective function
subject to the error constraints (2) as the error probability
approaches zero. When deriving asymptotic we assume that
PFA
k → 0, PMD

k → 0 for all k such that the asymptotic
optimality property in terms of minimizing the expected sam-
ple size subject to the error constraints holds for each single
process for both SGLRT and SALRT, as discussed in Section
VI-A4.

Theorem 5: Consider the independent model under uncer-
tainty. Let (τ ∗, δ∗,ϕ∗) be the optimal solution to (2). Let
(τA3, δA3,ϕA3) be the solution achieved by Algorithm 3.
Then, as PFA

k → 0, PMD
k → 0 for all k, we obtain:

E

{∑
k∈H1

wkCk|(τA3, δA3,ϕA3)

}

∼ E

{∑
k∈H1

wkCk|(τ ∗, δ∗,ϕ∗)

} (47)

Proof: For every k, let E∗(Nk|Hi) be the minimal expected

4Asymptotic optimality for a single process is guaranteed for an exponential
family of distributions when logPFA

k ∼ logPMD
k ∼ logB−1 (which is

satisfied by setting B
(i)
k = d

(i)
k B for i = 0, 1 for some positive constants

d
(i)
k and letting B approach infinity) under some weak conditions on the

parameter distribution. Nevertheless, more general results can be obtained
in some cases. For more details, the reader is referred to Section VI-A and
references therein.
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sample size that can be achieved by any sequential test, such
that error constraints are satisfied. Let EA3(Nk|Hi) be the
expected sample size achieved by Algorithm 3, such that error
constraints are satisfied. Clearly, E∗(Nk|Hi) ≤ EA3(Nk|Hi)
for all k, for i = 0, 1.
Assume that

π1(t1)w1

E∗(N1)
≥ π2(t1)w2

E∗(N2)
≥ ... ≥ πK(t1)wK

E∗(NK)
. (48)

Similar to the proof of Theorem 2, it can be verified that the
optimal solution to (2) is given by selecting the components
by the following order: 1, 2, ...,K, where the components are
tested by a sequential test that achieves expected sample size
E∗(Nk|Hi) for all k, for i = 0, 1. Therefore, the expected
weighted sum of completion times achieved by (τ ∗, δ∗,ϕ∗)
is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τ ∗, δ∗,ϕ∗)

}

=
K∑

k=1

πk(t1)wk

[(
k−1∑
i=1

E∗ (Ni)

)
+ E∗ (Nk|H1)

]
.

(49)

By the asymptotic optimality property of the SALRT/SGLRT
for a single process (used in Algorithm 3), it follows that
EA3(Nk|Hi) ∼ E∗(Nk|Hi) for all k, for i = 0, 1 as PFA

k →
0, PMD

k → 0. As a result, for sufficiently small error prob-
abilities, the solution (τA3, δA3,ϕA3) is given by selecting
the components by the following order: 1, 2, ...,K, where the
components are tested by an asymptotically optimal sequential
test that achieves expected sample size EA3(Nk|Hi) for all
k, for i = 0, 1. Therefore, the expected weighted sum of
completion times achieved by (τA3, δA3,ϕA3) is given by:

E

{
K∑

k=1

wkCk1{k∈H1} | (τA3, δA3,ϕA3)

}

=
K∑

k=1

πk(t1)wk

[(
k−1∑
i=1

EA3 (Ni)

)
+ EA3 (Nk|H1)

]
.

(50)
Since EA3(Nk|Hi) ∼ E∗(Nk|Hi) for i = 0, 1 as PFA

k →
0, PMD

k → 0 for all k, the theorem follows.

Theorem 6: Consider the exclusive model under uncer-
tainty. Let (τ ∗, δ∗,ϕ∗) be the optimal solution to (2). Let
(τA4, δA4,ϕA4) be the solution achieved by Algorithm 4.
Then, as PFA

k → 0, PMD
k → 0 for all k, we obtain:

E

{∑
k∈H1

wkCk|(τA4, δA4,ϕA4)

}

∼ E

{∑
k∈H1

wkCk|(τ ∗, δ∗,ϕ∗)

} (51)

Proof: The structure of the proof is similar to the proof of The-
orem 5. Hence, we provide a sketch of the proof, using similar
notations used in the proof of Theorem 5. Similar to the proof
of Theorem 4, it can be verified that the optimal solution to (2)
is given by selecting the components in decreasing order of

πk(t1)wk/E
∗(Nk|H0), where the components are tested by a

sequential test that achieves expected sample size E∗(Nk|Hi)
for all k, for i = 0, 1. By the asymptotic optimality property
for a single process of the SALRT/SGLRT (used in Algorithm
4), it follows that EA4(Nk|Hi) ∼ E∗(Nk|Hi) for all k, for
i = 0, 1 as PFA

k → 0, PMD
k → 0. As a result, for suffi-

ciently small error probabilities, the solution (τA4, δA4,ϕA4)
is given by selecting the components in decreasing order of
πk(t1)wk/E

∗(Nk|H0), where the components are tested by an
asymptotically optimal sequential test that achieves expected
sample size EA4(Nk|Hi) for all k, for i = 0, 1. Similar to
the proof of Theorem 5, comparing the objective functions
achieved by (τ ∗, δ∗,ϕ∗) and (τA4, δA4,ϕA4) proves the
theorem.

VII. APPLICATIONS AND NUMERICAL EXAMPLES

In this section, we provide applications and numerical ex-
amples to illustrate the performance of the algorithms. Assume
that an intruder tries to launch a Denial of Service (DoS)
or Reduction of Quality (RoQ) attacks by sending a large
number of packets to a component (which can be a relay
node in this application). DoS attacks rely on overwhelming
the component with useless traffic that constantly exceeds its
capacity so to make it unavailable for its intended use. On
the other hand, RoQ attacks inflict damage on the component,
while keeping a low profile to avoid detection. RoQ attacks
do not cause denial of service.

To detect such attacks, the IDS performs a traffic-based
anomaly detection. It monitors the traffic at each component
to decide whether a component is compromised. Roughly
speaking, if the actual arrival rate is significantly higher than
the arrival rate under normal state, then the IDS should
declare that the component is in an abnormal state. Similar
traffic-based detection techniques were proposed in [7], [12]
for different models, considering a single process without
switching to other nodes.

For each component k, we assume that packets arrive
according to a Poisson process with rate θ(k), which is
generally considered to be a good model in a queuing theory
analysis [33]. When component k is tested, the IDS collects
an observation yk(n) ∈ N0 every time unit, which represents
the number of packets that arrived in the interval (n − 1, n).
Assume that the IDS considers component k as normal if
θk ≤ θ

(0)
k , and tests θk ≤ θ

(0)
k against θk ≥ θ

(1)
k (i.e.,

Ik = {θk|θ(0)k < θk < θ
(1)
k } is the indifference region).

We set wk = θ
(0)
k . Under this setting, the objective function

represents the total expected number of failed packets in the
network during DoS attacks. Thus, the optimization problem
can be observed as minimizing the maximal damage to the
network in terms of packet-loss. Furthermore, this setting
prioritizes components with higher normal traffic to reduce
the delay caused by RoQ attacks.

A. Detection Under Simple Hypotheses

In this section, we consider the case where the parameters
θk = θ

(0)
k under normal state and θk = θ

(1)
k under abnormal

state are known to the IDS. To implement Algorithms 1, 2
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(which are optimal in this scenario for the independent and
exclusive model, respectively), we need to compute the LR
(or the log-LR) between the hypotheses, defined in (4), and
the expected sample sizes under the hypotheses, which can be
well approximated by (9).
Let

Λk(n) = logLk(n) (52)

be the Log-Likelihood Ratio (LLR) between the two hypothe-
ses of component k at stage n, where Lk(n) is defined in (4).
After algebraic manipulations, it can verified that the LLR is
given by:

Λk(n) = −n
(
θ
(1)
k − θ

(0)
k

)
+log

(
θ
(1)
k /θ

(0)
k

) n∑
i=1

yk(i) . (53)

It can be verified that the KL divergence between the hypothe-
ses Hi and Hj , defined in (8), is given by:

Dk(i||j) = θ
(j)
k − θ

(i)
k + θ

(i)
k log

(
θ
(i)
k /θ

(j)
k

)
. (54)

Substituting (54) in (9) obtains the required approximation to
the expected sample size.

Next, we provide numerical example to illustrate the per-
formance of the algorithms. We compared three schemes: a
Random selection SPRT (R-SPRT), where a series of SPRTs
are performed until all the components are tested in a random
order, and the proposed Algorithms 1, 2, which are optimal
for the independent and exclusive models, respectively.

Let δK = (100 − 10)/(K − 1). We set wk = θ
(0)
k = 10 +

(k−1)δK and θ
(1)
k = 1.5 · θ(0)k . The error constraints were set

to PFA
k = PMD

k = 10−2 for all k. For the independent and
exclusive models, we set πk = 0.8 and πk = 1/K for all k,
respectively. The performance of Algorithm 1 and Algorithm 2
are presented in Fig. 1(a) and 1(b) under the independent and
exclusive models, respectively, as compared to the R-SPRT. It
can be seen that the proposed Algorithms save roughly 50%
of the objective value as compared to the R-SPRT under both
the independent and exclusive model scenarios.

B. Detection Under Uncertainty

In this section, we consider the case of composite hypothe-
ses, where there is uncertainty in the distribution parameters
(in particular when the component is in an abnormal state), as
discussed in Section VI. To implement Algorithms 3, 4 (which
are asymptotically optimal in this scenario for the independent
and exclusive model, respectively), we need to compute the
GLR or ALR statistics between the hypotheses, defined in
(39), (41) and the expected sample sizes under the hypotheses,
which can be well approximated by (45). The MLEs of the
parameters over the parameter space Θk, Θ(i)

k are given by the
sample mean and the boundary of the alternative parameter
space, respectively. As a result, substituting:

θ̂k(n) =
1
n

∑n
i=1 yk(i),

θ̂
(i)
k (n) = θ

(i)
k ,

(55)

in (39), (41) yields the GLR and ALR statistics, respectively.
The KL divergence between the real value of θk and the
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(a) An independent model scenario.

5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

O
bj

ec
tiv

e 
va

lu
e

Number of components

 

 

Algorithm 2
R−SPRT

(b) An exclusive model scenario.

Fig. 1. Objective value as a function of the number of components under
the independent and exclusive models.

parameter space Θ
(i)
k is given by:

D∗
k(θk||Θ

(i)
k ) = θ

(i)
k − θk + θk log

(
θk/θ

(i)
k

)
. (56)

Substituting (56) in (45) yields the approximate expected
sample size.

Next, we provide numerical example to illustrate the per-
formance of the algorithms under uncertainty. We simulated
a network with homogenous components (i.e., any selection
rule is optimal). We compared three schemes: R-SPRT, and
Algorithms 3 or 4 (which achieve the same performance in this
case) using the SALRT and the SGLRT, discussed in section
VI-A. We set θ

(0)
k = 19, θ

(1)
k = 21. Under uncertainty, the

IDS considers component k as normal if θk ≤ θ
(0)
k , and tests

θk ≤ θ
(0)
k against θk ≥ θ

(1)
k (i.e., Ik = {θk|19 < θk < 21} is

the indifference region). To implement the SGLRT, we set the
cost per observation c = 10−3. According to the assigned cost,
we obtained the following error probability constraints for all
k: PFA

k ≤ 0.026 for all θ(k) ≤ 19 and PMD
k ≤ 0.03 for all

θ(k) ≥ 21. We do not restrict the detector’s performance for
19 < θ(k) < 21 (Note that narrowing the indifference region
has the price of increasing the sample size). In Fig. 2 we show
the average number of observations required for detection as a
function of θ(k). As expected, for θk = 19 and θk = 21 the R-
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(a) Average number of observations as a function of θ
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(b) Average number of observations as a function of θ

Fig. 2. Average number of observations as a function of the arrival rate of
packets (denoted by θ).

SPRT requires lower sample size as compared to the proposed
schemes. On the other hand, it can be seen that for most values
of θ the SGLRT and the SALRT require lower sample size as
compared to the R-SPRT. The SALRT performs the worst for
18 < θk < 22, and performs the best for θk ̸∈(18, 22), roughly.
The SGLRT obtains the best average performance. It can be
seen that for large values of θk the anomaly is detected very
quickly, since the distance between the hypotheses increases.
This result confirms that DoS attacks are much easier to detect
as compared to RoQ attacks.

VIII. CONCLUSION

The problem of quickest localization of anomaly in a
resource-constrained cyber network was investigated. Due to
resource constraints, only one component can be probed at
each time. The observations are random realizations drawn
from two different distributions depending on whether the
component is normal or anomalous. The problem was for-
mulated as a priority-based constrained optimization prob-
lem. Components with higher priorities in an abnormal state
should be fixed before components with lower priorities to
reduce the overall damage to the network. The objective
is to minimize the expected weighted sum of completion
times subject to error probability constraints. We considered

two different anomaly models: the independent model in
which each component can be abnormal independent of other
components, and the exclusive model in which there is one
and only one abnormal component. For the simple hypotheses
case, we derived optimal algorithms for both independent
and exclusive models. For the composite hypotheses case,
we derived asymptotically (as the error probability approaches
zero) optimal algorithms for both independent and exclusive
models. These optimal algorithms have low-complexity.

The algorithms developed throughout this paper can be
applied to other models of anomaly detection as well. We can
modify the proposed algorithms to any detection scheme that
performs a series of tests until all the components are tested.
The required modification is in step 3 of the algorithms, where
the SPRT/SALRT/SGLRT are replaced by any given test. As a
result, the modified algorithms minimize the objective function
among all the algorithms that perform the given test.
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