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Chapter 12
Orbital Evasive Target Tracking and Sensor
Management

Huimin Chen, Genshe Chen, Dan Shen,
Erik P. Blasch, and Khanh Pham

Summary In this chapter, we consider the sensor management problem for track-
ing space targets where the targets may apply evasive maneuvering strategy to avoid
being tracked by the space borne observers. We first study the case of single target
tracking by a single observer and formulate the pursuit–evasion game with complete
information. Then we extend the tracking problem to a set of collaborative observers
and each observer has to decide when to sense which target in order to achieve the
desired estimation error covariance. A popularly used criterion for sensor manage-
ment is to maximize the total information gain in the observer-to-target assignment.
We compare the information based approach to the game theoretic criterion where
the observers are assigned according to the best response of the terminal result in
the pursuit–evasion game. Finally, we use realistic satellite orbits to simulate the
space resource management for situation awareness. We adopted NASA’s General
Mission Analysis Tool (GMAT) for space target tracking with multiple space borne
observers. The results indicate that the game theoretic approach is more effective
than the information based approach in handling intelligent target maneuvers.

12.1 Introduction

Over recent decades, the space environment has become more complex with a sig-
nificant increase in space debris among densely populated satellites. Efficient and

H. Chen
Department of Electrical Engineering, University of New Orleans, New Orleans, LA, USA

G. Chen (�) · D. Shen
DCM Research Resources, LLC, Germantown, MD, USA
e-mail: gchen@dcmresearchresources.com

E.P. Blasch
AFRL/RYAA, WPAFB, OH, USA

K. Pham
AFRL/RVSV, Kirtland AFB, NM, USA

M.J. Hirsch et al. (eds.), Dynamics of Information Systems,
Springer Optimization and Its Applications 40, DOI 10.1007/978-1-4419-5689-7_12,
© Springer Science+Business Media, LLC 2010

233

mailto:gchen@dcmresearchresources.com
http://dx.doi.org/10.1007/978-1-4419-5689-7_12


234 H. Chen et al.

reliable space operations rely heavily on the space situation awareness where search
and tracking space targets and identifying their intent are crucial in creating a con-
sistent global picture of the space. Orbit determination with measurements pro-
vided by a constellation of satellites has been studied extensively [6, 7, 14, 16].
The tracking and data relay satellite system uses satellites in geostationary orbits
(GEO) to track the satellites in low-Earth orbit (LEO). The global positioning sys-
tem (GPS) uses a constellation of satellites with pseudo-range measurements, i.e.,
range measurements with clock differentials to determine the location of a user.
Unlike ground targets whose motion may contain frequent maneuvers, a satellite
usually follows its orbit so that long-term prediction of its orbital trajectory is pos-
sible once the orbital elements are known [6]. However, a space target can also
make an orbital change owing to its desired mission or intentionally hiding from the
space borne observers. Existing maneuvering target tracking literature mainly fo-
cuses on modeling target maneuver motion at random onset time (see, e.g., [1, 13]).
In space surveillance, the constellation of satellite observers is usually known to
the adversary and very unlikely to change frequently due to energy constraint. In
this case, evasive maneuvering motion can be intelligently designed to take advan-
tage of the sensing geometry, e.g., transferring to an orbit with maximum dura-
tion of the Earth blockage to an observer with known orbital trajectory. Accord-
ingly, a sensor management method has to optimally utilize the sensing resources
to acquire and track space targets with sparse measurements, i.e., with a typically
large sampling interval, in order to maintain a large number of tracks simultane-
ously.

Sensor management is concerned with the sensor-to-target assignment and a
schedule of sensing actions for each sensor in the near future given the currently
available information on the space targets. Sensor assignment and scheduling usu-
ally aim to optimize a certain criterion under energy, data processing and communi-
cation constraints. One popularly used criterion is the total information gain for all
the targets being tracked [11]. However, this criterion does not prioritize the targets
with respect to their types or identities. Alternatively, covariance control optimizes
the sensing resources to achieve the desired estimation error covariance for each
target [10]. It has the flexibility to design the desired tracking accuracy according to
the importance of each target. We want to compare both informative based criterion
and the covariance control method in a game theoretic setting where the target can
intelligently choose its maneuvering motion and onset time based on the knowledge
of observers’ constellation.

The rest of the chapter is organized as follows. Section 12.2 presents the
space target motion and sensor measurement model. Section 12.3 provides a game
theoretic formulation of target maneuvering motion. Section 12.4 discusses the
information based performance metric for sensor management and covariance
control method with possibly evasive target maneuvering motion. Section 12.5
compares the performance of the proposed tracking and sensor management
scheme with the existing methods. Conclusions and future work are presented in
Sect. 12.6.
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12.2 Fundamentals of Space Target Orbits

12.2.1 Time and Coordinate Systems

Several time systems are popularly used in the orbit determination problems. Satel-
lite laser ranging measurements are usually time-tagged in coordinated universal
time (UTC) while global positioning system (GPS) measurements are time tagged
in GPS system time (GPS-ST). Although both UTC and GPS-ST are based on
atomic time standards, UTC is loosely tied to the rotation of the Earth through the
application of “leap seconds” while GPS-ST is continuous with the relation GPS-
ST = UTC + n where n is the number of leap seconds since January 6, 1980. The
orbital equation describing near-Earth satellite motion is typically tagged with ter-
restrial dynamical time (TDT). It is an abstract, uniform time scale implicitly de-
fined by the motion equation and can be converted to UTC or GPS-ST for any given
reference date.

The Earth centered inertial (ECI) coordinate system used to link GPS-ST with
UTC is a geocentric system defined by the mean equator and vernal equinox at
Julian epoch 2000.0. Its XY -plane coincides with the equatorial plane of the Earth
and the X-axis points toward the vernal equinox direction. The Z-axis points toward
the north pole and the Y -axis completes the right hand coordinate systems.

The Earth centered Earth fixed (ECEF) coordinate system has the same XY -plane
and the Z-axis as in the inertial coordinate system. However, its X-axis rotates with
the Earth and points to the prime meridian and the Y -axis completes the right hand
coordinate systems.

The local Cartesian system commonly referred to as east-north-up (ENU) coor-
dinate system has its origin at some point on the Earth surface or above (typically at
the location of an observer). Its Z-axis is normal to the Earth’s reference ellipsoid
defined by the geodetic latitude. The X-axis points toward the east while the Y -axis
points toward the north. The conversion among these three coordinate systems is
provided in Appendix 1.

12.2.2 Orbital Equation and Orbital Parameter Estimation

Without any perturbing force, the position r of a space target relative to the center
of the Earth in ECI coordinate system should satisfy

r̈ = − μ

‖r‖3
r (12.1)

where μ is the Earth’s gravitational parameter. The target velocity is v �= ṙ and the

radial velocity is vr
�= v·r

r
where r

�= ‖r‖ is the distance from the target to the cen-
ter of the Earth. In order to determine the position and velocity of a satellite at any
time instance, six parameters are needed, typically, the three position components
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and three velocity components at a certain time instance. Alternatively, the orbital
trajectory can be conveniently described by the six components of the Keplerian ele-
ments. The description of Keplerian elements and their relationship to the kinematic
state of the target can be found in Appendix 2.

In reality, a number of forces act on the satellite in addition to the Earth’s gravity.
To distinguish them from the central force created by the satellite target, these forces
are often referred to as perturbing forces. In a continuous time state space model,
perturbing forces are often lumped into the noise term of the system dynamics.
Denote by x(t) the continuous time target state given by

x(t)
�=

[
r(t)
ṙ(t)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x(t)

y(t)

z(t)

vx(t)

vy(t)

vz(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.2)

For convenience, we omit the argument t and write the nonlinear state equation as
follows.

ẋ = f (x) + w (12.3)

where

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

−(μ/r3)x

−(μ/r3)y

−(μ/r3)z

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.4)

and

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

wx

wy

wz

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.5)

is the acceleration resulting from perturbing forces. As opposed to treating the per-
turbing acceleration as noise, spacecraft general propagation (SGP) model maintains
general perturbation element sets and finds analytical solution to the satellite motion
equation with time varying Keplerian elements [12]. For precise orbit determination,
numerical integration of (12.3) is often a viable solution where both the epoch state
and the force model have to be periodically updated when a new measurement is
available [17].
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12.3 Modeling Maneuvering Target Motion in Space Target
Tracking

12.3.1 Sensor Measurement Model

We consider the case that a space satellite in low-Earth orbit (LEO) observes a
target in geostationary orbit (GEO). A radar onboard the space satellite can provide
the following type of measurements: range, azimuth, elevation, and range rate. The
range between the ith observer located at (xi, yi, zi) and the space target located at
(x, y, z) is given by

dr(i) =
√

(x − xi)2 + (y − yi)2 + (z − zi)2 (12.6)

The azimuth is

da(i) = tan−1
(

y − yi

x − xi

)
(12.7)

The elevation is

de(i) = tan−1
(

z − zi√
(x − xi)2 + (y − yi)2

)
(12.8)

The range rate is

dṙ (i) = (x − xi)(ẋ − ẋi ) + (y − yi)(ẏ − ẏi ) + (z − zi)(ż − żi )

dr

(12.9)

Measurements from the ith observer will be unavailable when the line-of-sight
path between the observer and the target is blocked by the Earth. Thus, the con-
stellation of multiple observers is important to maintain consistent coverage of the
target of interest.

The condition of Earth blockage is examined as follows. If there exist α ∈ [0,1]
such that Dα(i) < RE , where

Dα(i) =
√[

(1 − α)xi + αx
]2 + [

(1 − α)yi + αy
]2 + [

(1 − α)zi + αz
]2 (12.10)

then the measurement from the ith observer to the target will be unavailable. The
minimum of Dα(i) is achieved at α = α∗ given by

α∗ = −xi(x − xi) + yi(y − yi) + zi(z − zi)

(x − xi)2 + (y − yi)2 + (z − zi)2
(12.11)

Thus, we first examine whether α∗ ∈ [0,1] and then check the Earth blockage con-
dition Dα∗(i) < RE .
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12.3.2 Game Theoretic Formulation for Target Maneuvering
Onset Time

We consider the case that a single observer tracks a single space target. Initially,
the observer knows the target’s state and the target also knows the observer’s state.
Assume that the target can only apply a T second burn that produces a specific thrust
w with a maximum acceleration of a m/s2. The goal of the target is to determine
the maneuvering onset time and the direction of the thrust so that the resulting orbit
will have the maximum duration of the Earth blockage to the observer. The goal of
the observer is to maintain the target track with the highest estimation accuracy. To
achieve this, the observer has to determine the sensor revisit time and cuing region as
well as notify other observers having better geometry when Earth blockage occurs.
Without loss of generality, we assume that the target can transfer its orbit to the
same plane as the observer. In this case, when the target is at the opposite side of the
Earth with respect to the observer and rotating in the same direction as the observer,
the duration of the Earth blockage will be the maximum compared with other orbits
with the same orbital elements except the inclinations. Note that in the pursuit–
evasion game confined to a two dimensional plane, the minimax solution requires
that the target applies the same thrust angle as the observer’s (see Appendix 4 for
details). Thus, an intelligent target will choose its maneuvering onset time as soon as
its predicted observer’s orbital trajectory has the Earth blockage. The corresponding
maneuvering thrust will follow the minimax solution to the pursuit–evasion game.

When a target is tracked by multiple space borne observers, an observer can
predict the target’s maneuvering motion based on its estimated target state and the
corresponding response of the pursuit–evasion game from the target where the ter-
minal condition will lead to the Earth blockage to the observer. Thus, there is a need
for the sensor manager to select the appropriate set of sensors that can persistently
monitor all the targets especially when they maneuver.

12.3.3 Nonlinear Filter Design for Space Target Tracking

When a space target has been detected, the filter will predict the target state at any
time instance in the future based on the available sensor measurements. Denote by
x̂−
k the state prediction from time tk−1 to time tk based on the state estimate x̂+

k−1 at
time tk−1 with all measurements up to tk−1. The prediction is made by numerically
integrating the state equation given by

˙̂x(t) = f
(
x̂(t)

)
(12.12)

without process noise. The mean square error (MSE) of the state prediction is ob-
tained by numerically integrating the following matrix equation

Ṗ (t) = F
(
x̂−
k

)
P(t) + P(t)F

(
x̂−
k

)T + Q(t) (12.13)
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where F(x̂−
k ) is the Jacobian matrix given by

F(x) =
[

03×3 I3
F0(x) 03×3

]
(12.14)

F0(x) = μ

⎡
⎢⎢⎣

3x2

r5 − 1
r3

3xy

r5
3xz

r5

3xy

r5
3y2

r5 − 1
r3

3yz

r5

3xz

r5
3yz

r5
3z2

r5 − 1
r3

⎤
⎥⎥⎦ (12.15)

r =
√

x2 + y2 + z2 (12.16)

and evaluated at x = x̂−
k . The measurement zk obtained at time tk is given by

zk = h(xk) + vk (12.17)

where

vk ∼ N (0,Rk) (12.18)

is the measurement noise, which is assumed independent of each other and indepen-
dent to the initial state as well as process noise.

The recursive linear minimum mean square error (LMMSE) filter applies the
following update equation [2]

x̂k|k
�= E∗[xk|Zk

] = x̂k|k−1 + Kk z̃k|k−1 (12.19)

Pk|k = Pk|k−1 − KkSkK
′
k (12.20)

where

x̂k|k−1 = E∗[xk|Zk−1]
ẑk|k−1 = E∗[zk|Zk−1]
x̃k|k−1 = xk − x̂k|k−1

z̃k|k−1 = zk − ẑk|k−1

Pk|k−1 = E
[
x̃k|k−1x̃′

k|k−1

]
Sk = E

[
z̃k|k−1z̃′

k|k−1

]
Kk = Cx̃k z̃k

S−1
k

Cx̃k z̃k
= E

[
x̃k|k−1z̃′

k|k−1

]

Note that E∗[·] becomes the conditional mean of the state for linear Gaussian dy-
namics and the above filtering equations become the celebrated Kalman filter [2].
For nonlinear dynamic system, (12.19) is optimal in the mean square error sense
when the state estimate is constrained to be an affine function of the measurement.
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Given the state estimate x̂k−1|k−1 and its error covariance Pk−1|k−1 at time tk−1,
if the state prediction x̂k|k−1, the corresponding error covariance Pk|k−1, the mea-
surement prediction ẑk|k−1, the corresponding error covariance Sk , and the crossco-
variance E[x̃k|k−1z̃′

k|k−1] in (12.19) and (12.20) can be expressed as a function only
through x̂k−1|k−1 and Pk−1|k−1, then the above formula is truly recursive. However,
for general nonlinear system dynamics (12.3) and measurement equation (12.17) ,
we have

x̂k|k−1 = E∗
[∫ tk

tk−1

f
(
x(t),w(t)

)
dt + xk−1|Zk−1

]
(12.21)

ẑk|k−1 = E∗[h(xk,vk)|Zk−1] (12.22)

Both x̂k|k−1 and ẑk|k−1 will depend on the measurement history Zk−1 and the corre-
sponding moments in the LMMSE formula. In order to have a truly recursive filter,
the required terms at time tk can be obtained approximately through x̂k−1|k−1 and
Pk−1|k−1, i.e.,

{x̂k|k−1,Pk|k−1} ≈ Pred
[
f (·), x̂k−1|k−1,Pk−1|k−1

]
{ẑk|k−1, Sk,Cx̃k z̃k

} ≈ Pred
[
h(·), x̂k|k−1,Pk|k−1

]

where Pred[f (·), x̂k−1|k−1,Pk−1|k−1] denotes that {x̂k−1|k−1,Pk−1|k−1} propagates
through the nonlinear function f (·) to approximate E∗[f (·)|Zk−1] and the corre-
sponding error covariance Pk|k−1.

Similarly, Pred[h(·), x̂k|k−1,Pk|k−1] predicts the measurement and the corre-
sponding error covariance only through the approximated state prediction. This
poses difficulties for the implementation of the recursive LMMSE filter due to insuf-
ficient information. The prediction of a random variable going through a nonlinear
function, most often, can not be completely determined using only the first and sec-
ond moments. Two remedies are often used: One is to approximate the system to the
best extent such that the prediction based on the approximated system can be carried
out only through {x̂k−1|k−1,Pk−1|k−1} [20]. Another is by approximating the den-
sity function with a set of particles and propagating those particles in the recursive
Bayesian filtering framework, i.e., using a particle filter [8].

12.3.4 Posterior Cramer–Rao Lower Bound of the State
Estimation Error

Denote by J (t) the Fisher information matrix. Then the posterior Cramer–Rao lower
bound (PCRLB) is given by [18]

B(t) = J (t)−1 (12.23)
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which quantifies the ideal mean square error of any filtering algorithm, i.e.,

E
[(

x̂(tk) − x(tk)
)(

x̂(tk) − x(tk)
)T |Zk

] ≥ B(tk) (12.24)

Assuming an additive white Gaussian process noise model, the Fisher information
matrix satisfies the following differential equation

J̇ (t) = −J (t)F (x) − F(x)T J (t) − J (t)Q(t)J (t) (12.25)

for tk−1 ≤ t ≤ tk where F is the Jacobian matrix given by

F(x) = ∂f (x)

∂x
(12.26)

When a measurement is obtained at time tk with additive Gaussian noise N (0,Rk),
the new Fisher information matrix is

J (t+k ) = J (t−k ) + Ex
[
H(x)T R−1

k H(x)
]

(12.27)

where H is the Jacobian matrix given by

H(x) = ∂h(x)

∂x
(12.28)

See Appendix 3 for the numerical procedure to evaluate the Jacobian matrix for a
non-perturbed orbital trajectory propagation. The initial condition for the recursion
is J (t0) and the PCRLB can be obtained with respect to the true distribution of
the state x(t). In practice, the sensor manager will use the estimated target state to
compute the PCRLB for any time instance of interest and decide whether a new
measurement has to be made to improve the estimation accuracy.

12.4 Sensor Management for Situation Awareness

12.4.1 Information Theoretic Measure for Sensor Assignment

In sensor management, each observer has to decide when to measure which target
so that the performance gain in terms of a certain metric can be maximized. For
a Kalman filter or its extension for the nonlinear dynamic state or measurement
equations, namely, the recursive LMMSE filter, the error covariance of the state
estimate has the following recursive form [2].

P −1
k+1|k+1 = P −1

k+1|k + H(xk+1)
T R−1

k+1H(xk+1) (12.29)

Thus the information gain from the sensor measurement at time tk+1 in terms of the
inverse of the state estimation error covariance is H(xk+1)

T R−1
k+1H(xk+1) where

Rk+1 is the measurement error covariance. Consider M observers each of which can
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measure at most one target at any sampling time. When there are N space targets
being tracked by M observers, sensor assignment is concerned with the sensor to
target correspondence so that the total information gain can be maximized. Denote
by χij the assignment of observer i to target j at any particular time tk+1. The sensor
assignment problem is

min
χij

cijχij (12.30)

subject to
M∑
i=1

χij ≤ 1, j = 1, . . . ,N; (12.31)

N∑
j=1

χij ≤ 1, i = 1, . . . ,M; (12.32)

and χij ∈ {0,1}. The cost cij is

cij = Tr
{
H

(
xj

(
(tk+1)

))T
R−1

i (tk+1)Hi

(
xj

(
(tk+1)

))}
(12.33)

if there is no Earth blockage between observer i to target j . In the above formulation,
all targets are assumed to have the same importance so the observes are scheduled to
make the most informative measurements. This may lead to a greedy solution where
those targets close to the observers will be tracked more accurately than those away
from the observers. It may not achieve the desired tracking accuracy for each target.

12.4.2 Covariance Control for Sensor Scheduling

Covariance control method does not optimize a performance metric directly in the
sensor-to-target assignment, instead, it requires the filter designer to specify a de-
sired state estimation error covariance so that the selection of sensors and the corre-
sponding sensing times will meet the specified requirements after the tracker update
using the sensor measurements as scheduled. Denote by Pd(tk+1) the desired error
covariance of the state estimation at time tk+1. Then the need of a sensor measure-
ment at tk+1 for this target, according to the covariance control method, is

n(tk+1) = −min
(
eig

{
Pd(tk+1) − Pk+1|k

})
(12.34)

where the negative sign has the following implication: A positive value of the eigen-
value difference implies that the desired covariance requirement is not met. The goal
of covariance control is to minimize the total sensing cost so that all the desired co-
variance requirements are met. If we use the same notation cij as the cost for the
observer i to sense the target j at tk+1, then the covariance control tries to solve the
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following optimization problem.

min
χij

cijχij (12.35)

subject to nij (tk+1) = −min
(
eig

{
Pdij (tk+1) − Pk+1|k+1(χij )

}) ≤ 0,

i = 1, . . . ,M, j = 1, . . . ,N (12.36)

and χij ∈ {0,1}. In this setting, more than one observer can sense the same target
at the same time. The optimization problem is combinatorial in nature and one has
to evaluate 2MN possible sensor-to-target combinations in general, which is compu-
tationally prohibitive. Alternatively, a suboptimal need-based greedy algorithm has
been proposed [10]. It also considers the case where certain constraints can not be
met, i.e., the desired covariance is unachievable even with all the sensing resources.

12.4.3 Game Theoretic Covariance Prediction for Sensor
Management

In the formulation of the sensor management problem, we need the filter to provide
the information on the state estimation error covariance which is based on the or-
bital trajectory propagation assuming that the target does not maneuver. If the target
maneuvers, then the filter calculated error covariance assuming the non-maneuver
motion model will be too optimistic. There are two possible approaches to account
for the target maneuver motion. One is to detect target maneuver and estimate its on-
set time as quickly as possible [15]. Then the filter will be adjusted with larger pro-
cess noise covariance to account for the target maneuvering motion. Alternatively,
one can design a few typical target maneuvering motion models and run a mul-
tiple model estimator with both non-maneuver and maneuver motion models [2].
The multiple model filter will provide the model conditioned state estimation error
covariances as well as the unconditional error covariance for sensor management
purposes. Note that the multiple model estimator does not make a hard decision
on which target motion model is in effect at any particular time, but evaluates the
probability of each model. The corresponding unconditional covariance immedi-
ately after target maneuver onset time can still be very optimistic, which is needed
to support the evidence that a maneuvering motion model is more likely than a non-
maneuvering one. As a consequence, the scheduled sensing action in response to
the target maneuver based on the unconditional covariance from a multiple model
estimator can be too late for evasive target motion.

We propose to use generalized Page’s test for detecting target maneuver [15] and
apply the model conditioned error covariance from each filter in the sensor manage-
ment. Denoted by Sm(tk+1) the set of targets being classified as in the maneuvering
mode and S−m(tk+1) the set of targets in the nonmaneuvering model, respectively.
We apply covariance control for sensor-to-target allocation only to those targets in
Sm(tk+1) and use the remaining sensing resources to those targets in S−m(tk+1) by
maximizing the information gain. The optimization problem becomes
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min
χij

cijχij (12.37)

subject to nij (tk+1) = −min
(
eig

{
Pdij (tk+1) − Pk+1|k+1(χij )

}) ≤ 0,

i = 1, . . . ,M, j ∈ Sm(tk+1) (12.38)

M∑
i=1

χij ≤ 1, j ∈ S−m(tk+1) (12.39)

∑
j∈S−m(tk+1)

χij ≤ 1, i = 1, . . . ,M (12.40)

and χij ∈ {0,1}. The cost cij is

cij =
{

Tr
{
H

(
xj

(
(tk+1)

))T
R−1

i (tk+1)Hi

(
xj

(
(tk+1)

))}
j ∈ S−m(tk+1)

0 j ∈ Sm(tk+1)
(12.41)

Given that target j ∈ S−m(tk), we assume that observer i will declare j ∈ Sm(tk+1)

if the predicted target location has Earth blockage to the observer i at tk+1. If the
target is declared as in the maneuvering mode, then the predicted error covariance
will be based on the worst case scenario of the pursuit–evasion game between the
observer and the target (see Appendix 4 for details).

12.5 Simulation Study

12.5.1 Scenario Description

We consider a small scale space target tracking scenario where four satellite ob-
servers collaboratively track two satellite targets. The nominal orbital trajectories
are generated from realistic satellite targets selected in the SpaceTrack database.
The four observer satellites are (1) ARIANE 44L, (2) OPS 856, (3) VANGUARD 1,
and (4) ECHO 1. They are in low-Earth orbits. The two target satellites are:
(1) ECHOSTAR 10, and (2) COSMOS 2350. They are in geostationary orbits. The
simulation was based on the software package that utilizes the general mission anal-
ysis tool (GMAT).1 Figure 12.1 shows the orbital trajectories of the observers and
targets. The associated tracking errors were obtained based on the recursive linear
minimum mean square error filter when sensors are assigned to targets according to
the nonmaneuvering motion. The error increases in some time segments are due to
the Earth blockage where no measurements are available from any observer.

1General Mission Analysis Tool, released by National Aeronautics and Space Administration
(NASA), available at http://gmat.gsfc.nasa.gov/.

http://gmat.gsfc.nasa.gov/
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Fig. 12.1 The space target tracking scenario where four observers collaboratively track two targets

12.5.2 Performance Comparison

We now consider the case in which the target performs an unknown thrust maneu-
ver that changes the eccentricity of its orbit. In particular, both targets are initially
in the GEO orbit and at time t = 1000 s, target 1 performs a 1 s burn that produces a
specific thrust, i.e., an acceleration w = [0 0.3 0]T km/s2, while, at time t = 1500 s,
target 2 performs a 1 s burn that produces a specific thrust w = [0 0.5 0]T km/s2.
The eccentricity change of target 1 after the burn is around e ≈ 0.35 while the eccen-
tricity change of target 2 after the second burn is e ≈ 0.59. Another type of target
maneuver is the inclination change produced by a specific thrust. Two inclination
changes are generated with i ≈ 0.16 for target 1 and i ≈ 0.09 for target 2. Each
observer has the minimal sampling interval of 50 s and we assume that all observers
are synchronized and the sensor manager can make centralized coordination based
on the centralized estimator for each target. We consider two cases: (i) the observer
has range and angle measurements with standard deviations 0.1 km and 10 mrad, re-
spectively, and (ii) the observer has range, angle and range rate measurements with
standard deviations 0.1 km, 10 mrad, 2 m/s, respectively.

We applied the generalized Page’s test (GPT) without and with range rate mea-
surement for maneuver detection while the filter update of state estimate does not
use the range rate measurement [15]. The reason is that the nonlinear filter designed
assuming non-maneuver target motion is sensitive to the model mismatch in the
range rate when target maneuvers. The thresholds of the generalized Page’s test for
both case (i) and case (ii) were chosen to have the false alarm probability PFA = 1%.
The average delays of target maneuver onset detection for both cases are measured
in terms of the average number of observations from the maneuver onset time to
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Table 12.1 Comparison of tracking accuracy for various orbital changes of the targets

Cases e → 0.35 e → 0.59 i → 0.09 i → 0.16

(i) Average delay per observations 7.3 6.4 12.1 9.6

(i) PTR, peak position error (km) 33.7 54.8 14.5 18.9

(i) IMM, peak position error (km) 48.1 66.5 12.4 22.3

(i) PTR, peak velocity error (km/s) 0.38 0.40 0.22 0.25

(i) IMM, peak velocity error (km/s) 0.41 0.44 0.21 0.26

(ii) Average delay per observations 1.3 1.0 2.9 2.4

(ii) PTR, peak position error (km) 6.9 7.4 3.1 3.8

(ii) IMM, peak position error (km) 8.3 11.2 3.2 4.1

(ii) PTR, peak velocity error (km/s) 0.28 0.31 0.16 0.19

(ii) IMM, peak velocity error (km/s) 0.30 0.34 0.16 0.21

the declaration of the target maneuver. Once target maneuver is declared, then an-
other filter assuming the white noise acceleration with process noise spectrum of
0.6 km/s2 was used along both tangential and normal directions of the estimated tar-
get motion. Alternatively, an interacting multiple model (IMM) estimator [2] with
nonmaneuver and maneuver motion models using the same parameter settings as
the model switching filters embedded in the target maneuvering detector was used
to compare the tracking accuracy. Table 12.1 compares the peak errors in position
and velocity for each target maneuvering motion using model switching filter and
the IMM estimator. The average detection delays for both cases are also shown
in Table 12.1 for GPT algorithm. We can see that the range rate measurement, if
available, can improve the average detection delay of target maneuver significantly
and thus reducing the peak estimation errors in both target position and velocity.
The model switching filter using GPT has better tracking accuracy than the IMM
estimator in most cases even for the peak errors. It should be clear that the filter
based on nonmaneuver motion model outperforms the IMM estimator during the
segment that the target does not have an orbital change. Interestingly, even though
the inclination change takes longer time to detect compared with the eccentricity
change for both targets, the resulting peak estimation errors in position and velocity
are relatively smaller for both the model switching filter and the IMM estimator.
The extensive comparison among other nonlinear filtering methods for space target
tracking can be found in [4].

Next, we assume that both target 1 and target 2 will choose their maneuver on-
set times intelligently based on their geometries to the observers. Both targets can
have a maximum acceleration of 0.05 km/s2 with a maximum of 10 s burn. We as-
sume that each observer can measure target range, angle, and range rate with the
same accuracy as in the case (ii) of the tracking scenario considered previously. We
implemented the following configurations of the sensor management schemes to
determine which observer measures which target at a certain time instance. (i) In-
formation based method: Sensors are allocated with a uniform sampling interval of
50 s to maximize the information gain. (ii) Covariance control based method: Sen-
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Table 12.2 Performance comparison for various sensor management methods

Configuration Peak position Average position Peak velocity Average velocity Average sampling
error (km) error (km) error (km/s) error (km/s) interval (s)

(i) Target 1 89.7 24.4 2.1 0.16 50

(i) Target 2 76.3 14.2 1.6 0.14 50

(ii) Target 1 16.7 2.4 0.36 0.10 13.5

(ii) Target 2 15.2 1.8 0.29 0.09 16.8

(iii) Target 1 12.2 1.8 0.28 0.08 37.6

(iii) Target 2 10.9 1.3 0.27 0.08 39.2

sors are scheduled with the sampling interval such that the desired position error is
within 10 km for each target. The state prediction error covariance for nonmaneuver
or maneuver motion model is computed based on the posterior Cramer–Rao lower
bound. (iii) Game theoretic method: Sensors are allocated by maximizing the infor-
mation gain for nonmaneuvering targets and covariance control will be applied to
maneuvering targets. The maneuvering onset time is predicted based on the pursuit
evasion game for each observer-to-target pairing. In all three configurations, model
switching filter is used for tracking each target. We compare the peak and average
errors in position and velocity for both targets as well as the average sampling inter-
val from all observers for configurations (i)–(iii). The results are listed in Table 12.2.
We can see that the information based method (configuration (i)) yields the largest
peak errors among the three schemes. This is due to the fact that both targets apply
evasive maneuver so that the peak errors will be much larger compared with the re-
sults in Table 12.1 based on the same tracker design and sampling interval. In order
to achieve the desired position error, covariance control method (configuration (ii))
achieves much smaller peak and average errors compared with configuration (i) at
the price of making the sampling interval much shorter. Note that the peak position
errors are larger than 10 km for both targets owing to the detection delay of maneu-
vering onset time. The proposed game theoretic method (configuration (iii)) has the
smallest peak and average errors because of the prediction of maneuvering onset
time by modeling target evasive motion from the pursuit evasion game. Note that
it also has longer average sampling interval than that of configuration (ii) due to a
quicker transient when each target stops its burn, indicating possible energy saving
for the overall system. The sensing resources saved with configuration (iii) can also
be applied to search other potential targets in some designated cells. One possible
approach to perform joint search and tracking of space targets was discussed in [5].

12.6 Summary and Conclusions

In space target tracking by satellite observers, it is crucial to assign the appropriate
sensor set to each target and minimizes the Earth blockage period. With complete
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knowledge of the space borne observers, a target may engage its evasive maneu-
vering motion immediately after the Earth blockage occurs and change its orbit
to maximize the duration of the Earth blockage. We presented a game theoretic
model for the determination of maneuvering onset time and consequently, the co-
variance control is applied to the maneuvering targets in the sensor-to-target assign-
ment. For nonmaneuvering targets, we try to maximize the total information gain
by selecting sensors that will provide the most informative measurements on the
target’s state. We simulated a multi-observer multi-target tracking scenario where
four LEO observers collaboratively track two GEO targets. We found that the mul-
tiple model estimator assuming random maneuvering onset time yields much larger
estimation error compared with the model switching tracker based on maneuver-
ing detection from the solution to the pursuit–evasion game. In addition, sensor
assignment based on maximum information gain can lead to large tracking error
for evasive targets while using the same desired error covariance for all targets can
only alleviate the issue at the price of more frequent revisit time for each target.
Fortunately, the sensor assignment based on covariance control for maneuvering
targets and maximum information gain for nonmaneuvering targets achieves a rea-
sonable tradeoff between the tracking accuracy and the consumption of sensing re-
sources.

There are many avenues to extend the existing work in order to achieve space
situational awareness. First, target intent can be inferred based on its orbital history.
It is of great interest to separate the nonevasive and evasive orbital maneuvering
motions and allocate the sensing resources accordingly. Second, our model of the
pursuit–evasion game relies on the complete knowledge of the observer’s and tar-
get’s state which may not be known to both players in real life. This poses challenges
in the development of the game theoretic model with incomplete information which
is computationally tractable for the sensor management to allocate sensing resources
ahead of time. Finally, the current nonlinear filter does not consider the clutter and
closely spaced targets where imperfect data association has to be handled by the fil-
tering algorithm. It should be noted that the posterior Cramer–Rao lower bound for
single target tracking with random clutter and imperfect detection [19] can be read-
ily applied to the covariance control. However, it is still an open research problem
to design efficient nonlinear filtering method that can achieve the theoretical bound
of the estimation error covariance.
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Appendix 1: Conversion of the Coordinate Systems

The following conversion schemes among different coordinate systems are based
on [3]. Given the position r = [ξ η ζ ]′ in the ECEF frame, the latitude ϕ, longitude
λ and altitude h (which are the three components of rgeo) are determined by
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STEP 1 ϕ = 0

repeat

ϕold = ϕ

Dϕ = Re

[
1 − εe sin2 ϕold

]− 1
2

ϕ = atan

(
ζ + Dϕε2

e sinϕold√
ξ2 + η2

)

until |ϕ − ϕold| < TOL

STEP 2 λ = atan(
η
ξ
)

h = ζ

sinϕ
− Dϕ

(
1 − ε2

e

)

where Re = 6378.137 km and εe = 0.0818191 are the equatorial radius and eccen-
tricity of the Earth, respectively. TOL is the error tolerance (e.g., 10−10) and the
convergence occurs normally within 10 iterations.

The origin of the local Cartesian frame O is given by

O = [
0 Dϕε2

e sinϕ cosϕ Dϕ

(
ε2
e sin2 ϕ − 1

)]′ (12.42)

and the rotation matrix is given by

A =
⎡
⎣ − sinλ cosλ 0

− sinϕ cosλ − sinϕ sinλ cosϕ

cosϕ cosλ cosϕ sinλ sinϕ

⎤
⎦ (12.43)

The position r in the local Cartesian frame is given by

rloc = Ar + O (12.44)

Appendix 2: Keplerian Elements

The specific angular momentum lies normal to the orbital plane given by h = r × v

with magnitude h
�= ‖h‖. Inclination is the angle between the equatorial plane and

the orbital plane given by i
�= cos−1(

hz

h
) where hz is the z-component of h. Eccen-

tricity of the orbit is given by

e �= 1

μ

[(
v2 − μ

r

)
r − rvrv

]
(12.45)

with magnitude e
�= ‖e‖. The longitude of the ascending node is given by

Ω
�=

{
cos−1( nx

n
) ny ≥ 0

2π − cos−1( nx

n
) ny < 0

(12.46)
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where n is the vector pointing towards the ascending node with magnitude n
�= ‖n‖.

The argument of perigee is angle between the node line and the eccentricity vector
given by

ω
�=

{
cos−1(ne

ne
) ez > 0

2π − cos−1(ne
ne

) ez < 0
(12.47)

with the convention that

ω = cos−1
(

ex

e

)
(12.48)

for an equatorial orbit. The true anomaly ν is the angle between the eccentricity
vector and the target’s position vector given by

ν
�=

{
cos−1( er

er
) vr > 0

2π − cos−1( er
er

) vr < 0
(12.49)

with the convention that ν = cos−1( rx
r
) for a circular orbit. The eccentric anomaly

is the angle between apogee and the current position of the target given by

E = cos−1
(

1 − r/a

e

)
(12.50)

where a is the orbit’s semi-major axis given by a = 1
2
r
− v2

μ

. The mean anomaly is

M = E − e sinE. The orbital period is given by T = 2π

√
a3

μ
.

The six Keplerian elements are {a, i,Ω,ω, e,M}. The orbit of a space target can
be fully determined by the parameter set {i,Ω,ω,T , e,M} with initial condition
given by the target position at any particular time [17]. The angles {i,Ω,ω} trans-
form the inertial frame to the orbital frame while T and e specify the size and shape
of the ellipsoidal orbit. The time dependent parameter ν(t) represents the position
of the target along its orbit in the polar coordinate system.

Appendix 3: Algorithm for Orbital State Propagation

Presented below is an algorithm that propagates the state of an object in an or-
bital trajectory around the Earth following [3]. Both the trajectory propagation
and the corresponding Jacobian matrix of the nonlinear orbital equation are given.
Let x(t)′ = [r(t)′ ṙ(t)′] be the unknown state to be computed at time t , given
the state x′

0 = x(t0)
′ = [r′

0ṙ′
0] at the time t0. The gravitational parameter μ =

3.986012 × 105 km3/sec2 and the convergence check parameter TOL = 10−10 are
used.
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STEP 1 r0 := ‖r0‖; v0 := ‖ṙ0‖; q0 := 1

μ
r′

0ṙ0

a0 := 2

r0
− v2

0

μ
; p0 := 1 − a0r0√

μ

STEP 2 α := a0(t − t0)√
μ

; β := a0α
2

STEP 3 c := 1 − cos(
√

β)

β
; s :=

√
β − sin(

√
β)

β
√

β

STEP 4 τ := p0α
3s + q0α

2c + r0√
μ

α

dτ

dα
:= p0α

2c + q0α(1 − sβ) + r0√
μ

α := α +
[

dτ

dα

]−1[
(t − t0) − τ

]

STEP 5 if
([

(t − t0) − τ
]
> TOL

)
gotoSTEP 3

STEP 6 f := 1 − α2c

r0
; g := (t − t0) − α3s√

μ

r(t) := f r0 + gṙ0; r := ∥∥r(t)
∥∥

STEP 7 ḟ :=
(√

μ

r0

)
(sβ − 1)

(
α

r

)
; ġ := 1 − α2c

r
; ṙ(t) := ḟ r0 + ġṙ0

The above steps yield the required state x(t)′ = [r(t)′ṙ(t)′] at time t . In order to
predict the covariance of the position r(t) by propagating the covariance of r(t0)
from t0 to t , we need to compute the 6 × 3 matrix ∇x0r(t). The computation of this
matrix involves the following additional steps.

STEP 8 ∇x0r0 :=
[

r0
0

](
1

r0

)
; ∇x0v0 :=

[
0
ṙ0

](
1

v0

)

∇x0q0 :=
[

ṙ0
r0

](
1

μ

)

∇x0a0 := (∇x0r0)

(−2

r2
0

)
+ (∇x0v0)

(−2v0

μ

)

∇x0p0 := (∇x0r0)

(−a0√
μ

)
+ (∇x0a0)

(−r0√
μ

)
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STEP 9
ds

dβ
:= c − 3s

2β
; dc

dβ
:= 1 − sβ − 2c

2β

STEP 10 b1 := (∇x0q0)
(−α2c

) + (∇x0p0)
(−α3s

) + (∇x0r0)

( −α√
μ

)

b2 := (∇x0a0)
(−α2)

A :=
[

3p0α
2s + 2q0αc + r0√

μ
p0α

3 ds

dβ
+ q0α

2 dc

dβ

2a0α −1

]

[
(∇x0α)(∇x0β)

] := [b1b2]A−1

STEP 11 ∇x0f :=
[
(∇x0r0)

(
αc

r0

)
− (∇x0α)(2c) − (∇x0β)

(
α

dc

dβ

)][
α

r0

]

∇x0g :=
[
(∇x0α)(3s) − (∇x0β)

(
α

ds

dβ

)][−α2

√
μ

]

STEP 12 ∇x0 r(t) =
[
f I3
gI3

]
+ (∇x0f )r′

0 + (∇x0g)ṙ′
0.

Appendix 4: Pursuit Evasion Game in a 2D Plane

Consider the space target orbiting the Earth with the polar coordinate system fixed
on the Earth’s center. The motion of the target is given by

r̈ − rθ̇2 = − μ

r2
+ F sinα

m
(12.51)

rθ̈ + 2ṙ θ̇ = F cosα

m
(12.52)

where α is the angle the thrust vector and the local horizontal as shown in Fig. 12.2.
Denote by vθ and vr the tangential and radial velocities of the target, respectively.
The dynamic equation of the space target can be written as

v̇r − v2
θ

r
= − μ

r2
+ F sinα

m
(12.53)

v̇θ + vrvθ

r
= F cosα

m
(12.54)

It is desirable to normalize the parameters with respect to a reference circular
orbit with radius r0 and velocity v0, so that significant figures will not be lost due to
linearizing the target motion equation. Define the following normalized state vari-
ables.

x1 = r

r0
(12.55)
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Fig. 12.2 Simplified 2D
geometry of a space target

x2 = vr

v0
(12.56)

x3 = vθ

v0
(12.57)

x4 = θ (12.58)

Let τ = v0
r0

t . The state equation with respect to τ can be written as

ẋ1 = x2 (12.59)

ẋ2 = x2
3

x1
− 1

x2
1

+ F0 sinα (12.60)

where F0 = r0F

v2
0m

is a constant depending the thrust F and target’s mass m.

ẋ3 = −x2x3

x1
+ F0 cosα (12.61)

ẋ4 = x3

x1
(12.62)

In the standard pursuit evasion game, the objective is to find the minimax solu-
tion, if exists, to the objective function

J = φ
(
x(tf )

)
(12.63)

with the state dynamics given by

ẋ = f (x, u, v, t) (12.64)

and the initial condition x(t0) = x0 as well as the terminal constraint ψ(x(tf )) = 0.
Here u and v represent the controls associated with the pursuer and the evader,
respectively. The goal is to determine {u∗, v∗} such that

J
(
u∗, v

) ≤ J
(
u∗, v∗) ≤ J

(
u,v∗) (12.65)



254 H. Chen et al.

The necessary condition for the minimax solution to exist is that the costate λ satis-
fies the following transversality condition.

λ = φx(tf ) + νψx(tf ) (12.66)

H(tf ) = φt (tf ) + νψt (tf ) (12.67)

where ν is a Lagrange multiplier and H is the Hamiltonian associated with λ that
has to be optimized

H ∗ = max
v

min
u

H(x,λ, u, v, t) (12.68)

It has been shown in [9] that at the optimal solution, the thrust angles of the pursuer
and the evader are the same.
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