
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Mining Program Source Code for Improving Software Quality

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

While the last decade has witnessed great advances in assuring high software quality through static verification

against software hazards and unexpected behavior, the field has pretty much focused on statically verifying

software applications against common properties to detect common programming problems such as incorrect usage

of memory pointers. But most quality issues such as correctness, security, and robustness violations are caused by

the incorrect usage of application programming interfaces (APIs). Although API properties or behaviors can be

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

09-05-2013

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

UU

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

Defect detection, mining source code, software testing

Tao Xie

North Carolina State University

Research Administration

2701 Sullivan Drive, Suite 240

Raleigh, NC 27695 -7514

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Final Report

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-08-1-0443

611102

Form Approved OMB NO. 0704-0188

54532-CS.48

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Tao Xie

919-515-3772

3. DATES COVERED (From - To)

8-Sep-2008

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

- 7-Sep-2012

Mining Program Source Code for Improving Software Quality

Report Title

ABSTRACT

While the last decade has witnessed great advances in assuring high software quality through static verification against software hazards and

unexpected behavior, the field has pretty much focused on statically verifying software applications against common properties to detect

common programming problems such as incorrect usage of memory pointers. But most quality issues such as correctness, security, and

robustness violations are caused by the incorrect usage of application programming interfaces (APIs). Although API properties or behaviors

can be formally specified and statically verified against software applications by the current state-of-the-art static verification tools, these

API properties or behaviors are often not documented by the developers, partly due to two major hindrances in practice: manually

specifying a large number of properties or behaviors for static verification is often (1) inaccurate or incomplete, and (2) cumbersome and

prohibitively expensive. This project develops new approaches that mine program source code for API properties, which are used to conduct

static verification on the software application under analysis to detect defects around APIs.

(a) Papers published in peer-reviewed journals (N/A for none)

Enter List of papers submitted or published that acknowledge ARO support from the start of

the project to the date of this printing. List the papers, including journal references, in the

following categories:

Received Paper

05/06/2013 21.00 Tao Xie, Suresh Thummalapenta, David Lo, Chao Liu. Data Mining for Software Engineering,

IEEE Computer, (08 2009): 35. doi: 10.1109/MC.2009.256

05/09/2013 35.00 Nuo Li, Tao Xie, Maozhong Jin, Chao Liu. Perturbation-based user-input-validation testing of web

applications,

Journal of Systems and Software, (11 2010): 0. doi: 10.1016/j.jss.2010.07.007

05/09/2013 36.00 Dan Hao, Tao Xie, Lu Zhang, Xiaoyin Wang, Jiasu Sun, Hong Mei. Test input reduction for result

inspection to facilitate fault localization,

Automated Software Engineering, (08 2009): 0. doi: 10.1007/s10515-009-0056-x

08/31/2011 2.00 Suresh Thummalapenta, Tao Xie. Alattin: mining alternative patterns for defect detection,

Automated Software Engineering, (4 2011): 0. doi: 10.1007/s10515-011-0086-z

08/31/2011 1.00 Hao Zhong, Lu Zhang, Tao Xie, Hong Mei. Inferring specifications for resources from natural language

API documentation,

Automated Software Engineering, (4 2011): 0. doi: 10.1007/s10515-011-0082-3

TOTAL: 5

(b) Papers published in non-peer-reviewed journals (N/A for none)

Number of Papers published in peer-reviewed journals:

Received Paper

TOTAL:

Number of Papers published in non peer-reviewed journals:

(c) Presentations

Number of Presentations: 0.00

Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Number of Non Peer-Reviewed Conference Proceeding publications (other than abstracts):

Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

05/05/2013 15.00 Xusheng Xiao, Amit Paradkar, Suresh Thummalapenta, Tao Xie. Automated extraction of security policies

from natural-language software documents,

the ACM SIGSOFT 20th International Symposium the Foundations of Software Engineering (FSE 2012).

2012/11/11 00:00:00, Cary, North Carolina. : ,

05/05/2013 20.00 Donia El Kateb, Tejeddine Mouelhi, Yves Le Traon, JeeHyun Hwang, Tao Xie. Refactoring access control

policies for performance improvement,

the third joint WOSP/SIPEW International Conference on Performance Engineering (ICPE 2012).

2012/04/22 00:00:00, Boston, Massachusetts, USA. : ,

05/05/2013 19.00 Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, Amit Paradkar. Inferring method

specifications from natural language API descriptions,

2012 34th International Conference on Software Engineering (ICSE). 2012/06/02 00:00:00, Zurich,

Switzerland. : ,

05/05/2013 17.00 JeeHyun Hwang, Tao Xie, Donia El Kateb, Tejeddine Mouelhi, Yves Le Traon. Selection of regression

system tests for security policy evolution,

the 27th IEEE/ACM International Conference on Automated Software Engineering (ASE 2012).

2012/09/03 00:00:00, Essen, Germany. : ,

05/05/2013 18.00 Tao Xie, Tao Xie. Cooperative Testing and Analysis: Human-Tool, Tool-Tool and Human-Human

Cooperations to Get Work Done,

2012 12th IEEE Working Conference on Source Code Analysis and Manipulation (SCAM). 2012/09/23

00:00:00, Riva del Garda, Italy. : ,

05/05/2013 16.00 Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, Hong Mei. Automating presentation changes in dynamic

web applications via collaborative hybrid analysis,

the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering (FSE

2012). 2012/11/11 00:00:00, Cary, North Carolina. : ,

05/05/2013 14.00 Qian Wu, Guangtai Liang, Qianxiang Wang, Tao Xie, Hong Mei. Iterative mining of resource-releasing

specifications,

2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE). 2011/11/06

00:00:00, Lawrence, KS, USA. : ,

05/05/2013 13.00 Wujie Zheng, Hao Ma, Michael R. Lyu, Tao Xie, Irwin King. Mining test oracles of web search engines,

2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE). 2011/11/06

00:00:00, Lawrence, KS, USA. : ,

05/06/2013 22.00 Suresh Thummalapenta, Tao Xie. Alattin: Mining Alternative Patterns for Detecting Neglected Conditions,

2009 24th IEEE/ACM International Conference on Automated Software Engineering (ASE). 2009/11/16

00:00:00, Auckland, New Zealand. : ,

05/06/2013 25.00 Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Peli de Halleux, Wolfram Schulte. MSeqGen:

object-oriented unit-test generation via mining source code,

the 7th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT

Symposium on the Foundations of Software Engineering (ESEC/FSE 2009). 2009/08/24 00:00:00, . : ,

05/06/2013 24.00 Nuo Li, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, Wolfram Schulte. Reggae: Automated Test

Generation for Programs Using Complex Regular Expressions,

2009 24th IEEE/ACM International Conference on Automated Software Engineering (ASE). 2009/11/16

00:00:00, Auckland, New Zealand. : ,

05/06/2013 23.00 Hao Zhong, Lu Zhang, Tao Xie, Hong Mei. Inferring Resource Specifications from Natural Language API

Documentation,

2009 24th IEEE/ACM International Conference on Automated Software Engineering (ASE). 2009/11/16

00:00:00, Auckland, New Zealand. : ,

05/09/2013 27.00 Tao Xie, Nikolai Tillmann, Jonathan de Halleux, Wolfram Schulte. Fitness-guided path exploration in

dynamic symbolic execution,

The 39th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2009).

2009/06/29 00:00:00, Lisbon, Portugal. : ,

05/09/2013 47.00 Michael Gegick, Pete Rotella, Tao Xie. Identifying security bug reports via text mining: An industrial case

study,

2010 7th IEEE Working Conference on Mining Software Repositories (MSR 2010). 2010/05/02 00:00:00,

Cape Town, South Africa. : ,

05/09/2013 46.00 Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, Qing Wang. Mining API mapping for language

migration,

 the 32nd ACM/IEEE International Conference on Software Engineering (ICSE). 2010/05/01 00:00:00,

Cape Town, South Africa. : ,

05/09/2013 45.00 Lingming Zhang, Tao Xie, Lu Zhang, Nikolai Tillmann, Jonathan de Halleux, Hong Mei. Test generation

via Dynamic Symbolic Execution for mutation testing,

2010 IEEE 26th International Conference on Software Maintenance (ICSM). 2010/09/12 00:00:00, Timi

oara, Romania. : ,

05/09/2013 44.00 Rahul Pandita, Tao Xie, Nikolai Tillmann, Jonathan de Halleux. Guided test generation for coverage

criteria,

2010 IEEE 26th International Conference on Software Maintenance (ICSM). 2010/09/12 00:00:00, Timi

oara, Romania. : ,

05/09/2013 43.00 Kunal Taneja, Nuo Li, Madhuri R. Marri, Tao Xie, Nikolai Tillmann. MiTV: multiple-implementation testing

of user-input validators for web applications,

the 25th IEEE/ACM International Conference on Automated Software Engineering (ASE 2010).

2010/09/20 00:00:00, Antwerp, Belgium. : ,

05/09/2013 42.00 Kunal Taneja, Yi Zhang, Tao Xie. MODA: automated test generation for database applications via mock

objects,

the 25th IEEE/ACM International Conference on Automated Software Engineering (ASE 2010).

2010/09/20 00:00:00, Antwerp, Belgium. : ,

05/09/2013 41.00 Guangtai Liang, Ling Wu, Qian Wu, Qianxiang Wang, Tao Xie, Hong Mei. Automatic construction of an

effective training set for prioritizing static analysis warnings,

the 25th IEEE/ACM International Conference on Automated Software Engineering (ASE 2010).

2010/09/20 00:00:00, Antwerp, Belgium. : ,

05/09/2013 40.00 Tao Xie, Jonathan de Halleux, Nikolai Tillmann, Wolfram Schulte. Teaching and training developer-testing

techniques and tool support,

the 25th Annual ACM Conference on Systems, Programming, Languages, and Applications: Software for

Humanity (SPLASH 2010), Educators' and Trainers' Symposium. 2010/10/17 00:00:00, Reno/Tahoe,

Nevada, USA. : ,

05/09/2013 39.00 Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, Jiasu Sun. Locating need-to-translate constant strings in

web applications,

the 18th ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE 2010).

2010/11/07 00:00:00, Santa Fe, New Mexico, USA. : ,

05/09/2013 38.00 Ahmed E. Hassan, Tao Xie. Software intelligence: the future of mining software engineering data,

FSE/SDP Workshop on the Future of Software Engineering Research (FoSER 2010). 2010/11/07

00:00:00, Santa Fe, New Mexico, USA. : ,

05/09/2013 37.00 Tao Xie, Nikolai Tillmann, Jonathan de Halleux, Wolfram Schulte. Future of developer testing: building

quality in code,

FSE/SDP Workshop on the Future of Software Engineering Research (FoSER 2010). 2010/11/07

00:00:00, Santa Fe, New Mexico, USA. : ,

05/09/2013 34.00 Suresh Thummalapenta, Tao Xie. SpotWeb: Detecting Framework Hotspots and Coldspots via Mining

Open Source Code on the Web,

2008 23rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2008).

2008/09/15 00:00:00, L'Aquila, Italy. : ,

05/09/2013 33.00 Mithun Acharya, Tao Xie. Mining API Error-Handling Specifications from Source Code,

the 12th International Conference on Fundamental Approaches to Software Engineering (FASE 2009).

2009/03/22 00:00:00, . : ,

05/09/2013 32.00 Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, Jiasu Sun. TranStrL: An automatic need-to-translate string

locator for software internationalization,

2009 IEEE 31st International Conference on Software Engineering, Formal Demonstration. 2009/05/16

00:00:00, Vancouver, BC, Canada. : ,

05/09/2013 31.00 Kunal Taneja, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, Wolfram Schulte. Guided path exploration

for regression test generation,

2009 31st International Conference on Software Engineering - Companion Volume. 2009/05/16 00:00:00,

Vancouver, BC, Canada. : ,

05/09/2013 30.00 Wujie Zheng, Michael R. Lyu, Tao Xie. Test selection for result inspection via mining predicate rules,

2009 31st International Conference on Software Engineering - Companion Volume. 2009/05/16 00:00:00,

Vancouver, BC, Canada. : ,

05/09/2013 29.00 Xiaoyin Wang, Lu Zhang, Tao Xie, Hong Mei, Jiasu Sun. Locating need-to-translate constant strings for

software internationalization,

2009 IEEE 31st International Conference on Software Engineering (ICSE 2009). 2009/05/16 00:00:00,

Vancouver, BC, Canada. : ,

05/09/2013 28.00 Suresh Thummalapenta, Tao Xie. Mining exception-handling rules as sequence association rules,

2009 IEEE 31st International Conference on Software Engineering (ICSE 2009). 2009/05/16 00:00:00,

Vancouver, BC, Canada. : ,

05/09/2013 26.00 Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, Hong Mei . MAPO: Mining and Recommending API Usage

Patterns,

The 23rd European Conference on Object-Oriented Programming (ECOOP 2009). 2009/07/06 00:00:00, .

: ,

08/31/2011 3.00 Tao Xie, Nikolai Tillmann, Jonathan de Halleux, Zhendong Su, Suresh Thummalapenta. Synthesizing

Method Sequences for High-Coverage Testing,

Proceedings of ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,

Languages, and Applications(OOPSLA 2011). 2011/10/21 12:00:00, . : ,

08/31/2011 4.00 Kunal Taneja, Mark Grechanik, Rayid Ghani, Tao Xie. Testing Software In Age Of Data Privacy: A

Balancing Act,

Proceedings of the 8th joint meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE 2011). 2011/09/04

12:00:00, . : ,

08/31/2011 5.00 Kunal Taneja, Tao Xie, Nikolai Tillmann, Jonathan de Halleux. eXpress: Guided Path Exploration for

Efficient Regression Test Generation,

the 2011 International Symposium on Software Testing and Analysis. 2011/07/16 12:00:00, Toronto,

Ontario, Canada. : ,

08/31/2011 6.00 Yitao Ni, Lu Zhang, Zhongjie Li, Tao Xie, Hong Mei. Detecting Concurrency-Related Problematic Activity

Arrangement in WS-BPEL Programs,

the 8th International Conference on Services Computing(SCC 2011). 2011/07/03 12:00:00, . : ,

08/31/2011 7.00 Tao Xie, Xusheng Xiao, Nikolai Tillmann, Jonathan de Halleux. Precise identification of problems for

structural test generation,

Proceeding of the 33rd International Conference on Software Engineering (ICSE). 2011/05/20 12:00:00,

Waikiki, Honolulu, HI, USA. : ,

08/31/2011 8.00 Suresh Thummalapenta, Madhuri Marri, Tao Xie, Nikolai Tillmann, Jonathan de Halleux. Retrofitting Unit

Tests for Parameterized Unit Testing ,

Proceedings of International Conference on Fundamental Approaches to Software Engineering(FASE

2011). 2011/03/25 12:00:00, . : ,

08/31/2011 9.00 Lin Shi, Hao Zhong, Tao Xie, Mingshu Li. An Empirical Study on Evolution of API Documentation,

Proceedings of International Conference on Fundamental Approaches to Software Engineering (FASE

2011). 2011/03/25 12:00:00, . : ,

08/31/2011 10.00 Xusheng Xiao, Tao Xie, Nikolai Tillmann, Jonathan de Halleux. Covana: Precise Identification of

Problems in Pex,

Proceedings of the 33rd International Conference on Software Engineering (ICSE 2011), Demonstration.

2011/05/20 12:00:00, Waikiki, Honolulu, HI, USA. : ,

08/31/2011 11.00 Xi Ge, Kunal Taneja, Tao Xie, Nikolai Tillmann. DyTa: Dynamic Symbolic Execution Guided with Static

Veri?cation Results,

Proceedings of the 33rd International Conference on Software Engineering (ICSE 2011), Demonstration.

2011/05/20 12:00:00, Waikiki, Honolulu, HI, USA. : ,

TOTAL: 41

(d) Manuscripts

Number of Peer-Reviewed Conference Proceeding publications (other than abstracts):

Received Paper

TOTAL:

Books

Number of Manuscripts:

Received Paper

TOTAL:

Patents Submitted

Patents Awarded

Awards

2012-2013 ASE 2007 Paper being the Most Cited ASE Papers in the Past Five Years, According to Google Scholar Metrics

2011 Microsoft Research Software Engineering Innovation Foundation Award

2010 IBM Faculty Award

2010 NCSU Sigma Xi Faculty Research Award

2009 ASE 2009 Best Paper Award

2009 ACM SIGSOFT Distinguished Paper Award (for an ASE 2009 paper)

2009 National Science Foundation Faculty Early Career Development (CAREER) Award

2009 Inducted into Sigma Xi, the Scientific Research Society

2009 IBM Faculty Award

Graduate Students

DisciplinePERCENT_SUPPORTEDNAME

Rahul Pandita 0.50

Kunal Taneja 0.75

Yoonki Song 0.50

Xusheng Xiao 0.50

JeehHyun Hwang 0.25

Suresh Thummalapenta 0.40

Mithun Acharya 0.20

 3.10FTE Equivalent:

 7Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Names of Faculty Supported

National Academy MemberPERCENT_SUPPORTEDNAME

Tao Xie 0.04

 0.04FTE Equivalent:

 1Total Number:

Names of Under Graduate students supported

DisciplinePERCENT_SUPPORTEDNAME

Justin Gorham 0.25 Computer and Computational Sciences

 0.25FTE Equivalent:

 1Total Number:

The number of undergraduates funded by this agreement who graduated during this period with a degree in

science, mathematics, engineering, or technology fields:

The number of undergraduates funded by your agreement who graduated during this period and will continue

to pursue a graduate or Ph.D. degree in science, mathematics, engineering, or technology fields:

Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale):

Number of graduating undergraduates funded by a DoD funded Center of Excellence grant for

Education, Research and Engineering:

The number of undergraduates funded by your agreement who graduated during this period and intend to

work for the Department of Defense

The number of undergraduates funded by your agreement who graduated during this period and will receive

scholarships or fellowships for further studies in science, mathematics, engineering or technology fields:

 1.00

 1.00

 0.00

 0.00

 0.00

 0.00

......

......

......

......

......

......

Student Metrics
This section only applies to graduating undergraduates supported by this agreement in this reporting period

The number of undergraduates funded by this agreement who graduated during this period: 1.00......

Names of Personnel receiving masters degrees

NAME

Total Number:

Names of personnel receiving PHDs

NAME

Mithun Acharya

Suresh Thummalapenta

 2Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)

Scientific Progress

Because software plays a critical role in businesses, governments, and societies, improving software productivity and quality is

an important goal of software engineering. Mining software engineering data has recently emerged as a promising means to

meet this goal due to two main trends: the increasing abundance of such data and its demonstrated helpfulness in solving

numerous real-world problems. Our research on mining SE data in this year has advanced this area in the following primary

dimensions.

(1) To assure high quality and security of software systems, our research has contributed a series of new approaches on

mining textual software artifacts along the theme of recovering semantic information out of textual software artifacts. In

particular, our research [ICSE 2012] developed natural language processing techniques to mine code contracts out of API

documents. Our research [FSE 2012] developed natural language processing techniques to mine access control policies from

requirements documents. Our contributed research is the first of such kind in the reserach literature.

(2) To address business requirements and to survive in competing markets, companies or open source organizations often

have to release different versions of their projects in different languages. Manually migrating projects from one language to

another (such as from Java to C#) is a tedious and error-prone task. To reduce manual effort or human errors, tools can be

developed for automatic migration of projects from one language to another. However, these tools require the knowledge of

how Application Programming Interfaces (APIs) of one language are mapped to APIs of the other language, referred to as API

mapping relations.

Our research [ICSE 10] is the first to mine API mapping relations from one language to another using API client code. MAM

accepts a set of projects each with two versions in two languages and mines API mapping relations between those two

languages based on how APIs are used by the two versions. These mined API mapping relations assist in migration of projects

from one language to another. We implemented a tool and conducted two evaluations to show the effectiveness of MAM. The

results show that our tool mines 25,805 unique mapping relations of APIs between Java and C# with more than 80% accuracy.

The results also show that mined API mapping relations help reduce 54.4% compilation errors and 43.0% defects during

migration of projects with an existing migration tool, called Java2CSharp. The reduction in compilation errors and defects is due

to our new mined mapping relations that are not available with the existing migration tool.

(3) In order to improve ineffective warning prioritization of static analysis tools, various approaches have been proposed to

compute a ranking score for each warning. In these approaches, an effective training set is vital in exploring which factors

impact the ranking score and how. While manual approaches to build a training set can achieve high effectiveness but suffer

from low efficiency (i.e., high cost), existing automatic approaches suffer from low effectiveness.

Our research [ASE 10a] proposes an automatic approach for constructing an effective training set. In our approach, we select

three categories of impact factors as input attributes of the training set, and propose a new heuristic for identifying actionable

warnings to automatically label the training set. Our empirical evaluations show that the precision of the top 22 warnings for

Lucene, 20 for ANT, and 6 for Spring can achieve 100% with the help of our constructed training set.

(4) A bug-tracking system such as Bugzilla contains bug reports (BRs) collected from various sources such as development

teams, testing teams, and end users. When bug reporters submit bug reports to a bug-tracking system, the bug reporters need

to label the bug reports as security bug reports (SBRs) or not, to indicate whether the involved bugs are security problems.

These SBRs generally deserve higher priority in bug fixing than not-security bug reports (NSBRs). However, in the

bug-reporting process, bug reporters often mislabel SBRs as NSBRs partly due to lack of security domain knowledge. This

mislabeling could cause serious damage to software-system stakeholders due to the induced delay of identifying and fixing the

involved security bugs.

Our research [MSR 10] proposes a new approach that applies text mining on natural-language descriptions of BRs to train a

statistical model on already manually-labeled BRs to identify SBRs that are manually-mislabeled as NSBRs. Security engineers

can use the model to automate the classification of BRs from large bug databases to reduce the time that they spend on

searching for SBRs. We evaluated the model's predictions on a large Cisco software system with over ten million source lines

of code. Among a sample of BRs that Cisco bug reporters manually labeled as NSBRs in bug reporting, our model successfully

classified a high percentage (78%) of the SBRs as verified by Cisco security engineers, and predicted their classification as

SBRs with a probability of at least 0.98.

(5) To improve software quality, static or dynamic verification tools accept programming rules as input and detect their

violations in software as defects. As these programming rules are often not well documented in practice, previous work

developed various approaches that mine programming rules as frequent patterns from program source code. Then these

approaches use static defect-detection techniques to detect pattern violations in source code under analysis. These existing

approaches often produce many false positives due to various factors.

Our research [ASE 09a] proposes a novel approach, called Alattin, to reduce false positives produced by these mining

approaches. Alattin includes a new mining algorithm and a technique for detecting neglected conditions based on our mining

algorithm. Our new mining algorithm mines alternative patterns in example form “P1 or P2”, where P1 and P2 are alternative

rules such as condition checks on method arguments or return values related to the same API method. We conduct two

evaluations to show the effectiveness of our Alattin approach. Our evaluation results show that (1) alternative patterns reach

more than 40% of all mined patterns for APIs provided by six open source libraries; (2) the mining of alternative patterns helps

reduce nearly 28% of false positives among detected violations.

(6) Typically, software libraries provide API documentation, through which developers can learn how to use libraries correctly.

However, developers may still write code inconsistent with API documentation and thus introduce bugs, as existing research

shows that many developers are reluctant to carefully read API documentation. To find those bugs, researchers have proposed

various detection approaches based on known specifications. To mine specifications, many approaches have been proposed,

and most of them rely on existing client code. Consequently, these mining approaches would fail to mine specifications when

client code is not available.

Our research [ASE 09b] we propose an approach, called Doc2Spec, that infers resource specifications from API

documentation. For our approach, we implemented a tool and conducted an evaluation on Javadocs of five libraries. The

results show that our approach infers various specifications with relatively high precisions, recalls, and F-scores. We further

evaluated the usefulness of inferred specifications through detecting bugs in open source projects. The results show that

specifications inferred by Doc2Spec are useful to detect real bugs in existing projects.

This paper received the ASE 2009 Best Paper Award and ACM SIGSOFT Distinguished Paper Award.

(7) An objective of unit testing is to achieve high structural coverage of the code under test. Achieving high structural coverage

of object-oriented code requires desirable method-call sequences that create and mutate objects. These sequences help

generate target object states such as argument or receiver object states (in short as target states) of a method under test.

Automatic generation of sequences for achieving target states is often challenging due to a large search space of possible

sequences. On the other hand, code bases using object types (such as receiver or argument object types) include sequences

that can be used to assist automatic test-generation approaches in achieving target states.

Our research [ESEC/FSE 09] proposes a novel approach, called MSeqGen, that mines code bases and extracts sequences

related to receiver or argument object types of a method under test. Our approach uses these extracted sequences to enhance

two state-of-the-art test-generation approaches: random testing and dynamic symbolic execution. We conduct two evaluations

to show the effectiveness of our approach. Using sequences extracted by our approach, we show that a random testing

approach achieves 8.7% (with a maximum of 20.0% for one namespace) higher branch coverage and a

dynamic-symbolic-execution-based approach achieves 17.4% (with a maximum of 22.5% for one namespace) higher branch

coverage than without using our approach. Such an improvement is significant as the branches that are not covered by these

state-of-the-art approaches are generally quite difficult to cover.

(8) Our research [ASE 08a, ASE 09a, ICSE 09a] is the first to expand the mining scope from one or a few local project code

bases (often not sufficient for mining real API properties) to the Internet-scale open source repositories for API property mining.

In particular, our research has exploited code search engines such as Google code search to collect a sufficiently large number

of client code examples for a specific API under analysis, and mine API properties from these client code examples.

(9) Our research (described in preliminary work [ESEC/FSE 07] for this project) is the first to exploit and adapt advanced data

mining techniques (such as partial order mining) to address unique mining requirements (such as expressing properties for

APIs as partial orders), which cannot be satisfied by basic mining techniques commonly used by previous research.

(10) Our research [ICSE 09a, ASE 09a] has investigated complex patterns in common types of API properties and contributed

new mining techniques to effectively mine these patterns, without being constrained by available mining techniques from the

data mining community. In particular, we have developed novel techniques [ICSE 09a] that mine sequence association rules, a

new pattern proposed in our research, for expressing exception-handling properties. We have developed novel techniques

[ASE 09a] that mine alternative patterns, a new pattern proposed in our research, for detecting neglected conditions. Our

research has detected a significant number of real defects in open source projects with these new mined patterns.

The PI is one of leading researchers in actively promoting this area on mining software engineering data within and even

outside the SE community. He has constructed and maintained the first and only comprehensive bibliography on mining SE

data. He co-presented tutorials or technical briefings on software

analytics or mining software engineering data at top software engineering venues (7 times at ICSE, 1 time at FSE, and 1 time at

ASE) and data mining venues (KDD and ICDM). He will co-organize the 2013 NII Shonan Meeting on Software Analytics:

Principles and Practice. He co-organized the 2007 Dagstuhl Seminar on Mining Programs and Processes.

Our research has also improved the Microsoft Research Pex tool for testing of Object-Oriented (OO) Software. Testing OO

software (such as those written in C#) is critical because OO languages have been increasingly used in developing modern

software systems, and assuring these systems’ reliability is very important. In unit testing of OO software, one important and yet

challenging problem is to generate desirable method sequences to produce specific receiver or argument object states to find

bugs or achieve new code coverage. The search space for such desirable method sequences is huge and there existed no

previous techniques to effectively address this problem. We have developed various novel techniques for improving the

effectiveness of symbolic execution in method-sequence generation. Our MSeqGen technique [ESEC/FSE 09] is the first to use

code mining to gather already used method sequences to guide method-sequence generation. We have also collaborated with

Microsoft Research on developing techniques for security testing [ASE 10b], database application testing [ASE 10c], advanced

coverage criteria [ICSM 10a], mutation testing [ICSM 10b], string operations [ASE 09c].

The PI is one of leading researchers in actively promoting this area of automated software testing. He had co-presented

tutorials on automated software testing at top SE venues (ICSE 2009 and 2010, and OOPSLA 2009). He co-organized 2010

Dagstuhl Seminar on Practical Software Testing: Tool Automation and Human Factors.

Technology Transfer

