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Because software plays a critical role in businesses, governments, and societies, improving software productivity and quality is 

an important goal of software engineering. Mining software engineering data has recently emerged as a promising means to 

meet this goal due to two main trends: the increasing abundance of such data and its demonstrated helpfulness in solving 

numerous real-world problems. Our research on mining SE data in this year has advanced this area in the following primary 

dimensions. 

(1) To assure high quality and security of software systems, our research has contributed a series of new approaches on 

mining textual software artifacts along the theme of recovering semantic information out of textual software artifacts. In 

particular, our research [ICSE 2012] developed natural language processing techniques to mine code contracts out of API 

documents. Our research [FSE 2012] developed natural language processing techniques to mine  access control policies from 

requirements documents. Our contributed research is the first of such kind in the reserach literature.

(2) To address business requirements and to survive in competing markets, companies or open source organizations often 

have to release different versions of their projects in different languages. Manually migrating projects from one language to 

another (such as from Java to C#) is a tedious and error-prone task. To reduce manual effort or human errors, tools can be 

developed for automatic migration of projects from one language to another. However, these tools require the knowledge of 

how Application Programming Interfaces (APIs) of one language are mapped to APIs of the other language, referred to as API 

mapping relations.

Our research [ICSE 10] is the first to mine API mapping relations from one language to another using API client code. MAM 

accepts a set of projects each with two versions in two languages and mines API mapping relations between those two 

languages based on how APIs are used by the two versions. These mined API mapping relations assist in migration of projects 

from one language to another. We implemented a tool and conducted two evaluations to show the effectiveness of MAM. The 

results show that our tool mines 25,805 unique mapping relations of APIs between Java and C# with more than 80% accuracy. 

The results also show that mined API mapping relations help reduce 54.4% compilation errors and 43.0% defects during 

migration of projects with an existing migration tool, called Java2CSharp. The reduction in compilation errors and defects is due 

to our new mined mapping relations that are not available with the existing migration tool.

(3) In order to improve ineffective warning prioritization of static analysis tools, various approaches have been proposed to 

compute a ranking score for each warning. In these approaches, an effective training set is vital in exploring which factors 

impact the ranking score and how. While manual approaches to build a training set can achieve high effectiveness but suffer 

from low efficiency (i.e., high cost), existing automatic approaches suffer from low effectiveness. 

Our research [ASE 10a] proposes an automatic approach for constructing an effective training set. In our approach, we select 

three categories of impact factors as input attributes of the training set, and propose a new heuristic for identifying actionable 

warnings to automatically label the training set. Our empirical evaluations show that the precision of the top 22 warnings for 

Lucene, 20 for ANT, and 6 for Spring can achieve 100% with the help of our constructed training set.

(4) A bug-tracking system such as Bugzilla contains bug reports (BRs) collected from various sources such as development 

teams, testing teams, and end users. When bug reporters submit bug reports to a bug-tracking system, the bug reporters need 

to label the bug reports as security bug reports (SBRs) or not, to indicate whether the involved bugs are security problems. 

These SBRs generally deserve higher priority in bug fixing than not-security bug reports (NSBRs). However, in the 

bug-reporting process, bug reporters often mislabel SBRs as NSBRs partly due to lack of security domain knowledge. This 

mislabeling could cause serious damage to software-system stakeholders due to the induced delay of identifying and fixing the 

involved security bugs. 

Our research [MSR 10] proposes a new approach that applies text mining on natural-language descriptions of BRs to train a 

statistical model on already manually-labeled BRs to identify SBRs that are manually-mislabeled as NSBRs. Security engineers 

can use the model to automate the classification of BRs from large bug databases to reduce the time that they spend on 

searching for SBRs. We evaluated the model's predictions on a large Cisco software system with over ten million source lines 

of code. Among a sample of BRs that Cisco bug reporters manually labeled as NSBRs in bug reporting, our model successfully 

classified a high percentage (78%) of the SBRs as verified by Cisco security engineers, and predicted their classification as 

SBRs with a probability of at least 0.98.

(5) To improve software quality, static or dynamic verification tools accept programming rules as input and detect their 

violations in software as defects. As these programming rules are often not well documented in practice, previous work 

developed various approaches that mine programming rules as frequent patterns from program source code. Then these 

approaches use static defect-detection techniques to detect pattern violations in source code under analysis. These existing 

approaches often produce many false positives due to various factors. 

Our research [ASE 09a] proposes a novel approach, called Alattin, to reduce false positives produced by these mining 



approaches. Alattin includes a new mining algorithm and a technique for detecting neglected conditions based on our mining 

algorithm. Our new mining algorithm mines alternative patterns in example form “P1 or P2”, where P1 and P2 are alternative 

rules such as condition checks on method arguments or return values related to the same API method. We conduct two 

evaluations to show the effectiveness of our Alattin approach. Our evaluation results show that (1) alternative patterns reach 

more than 40% of all mined patterns for APIs provided by six open source libraries; (2) the mining of alternative patterns helps 

reduce nearly 28% of false positives among detected violations.

(6) Typically, software libraries provide API documentation, through which developers can learn how to use libraries correctly. 

However, developers may still write code inconsistent with API documentation and thus introduce bugs, as existing research 

shows that many developers are reluctant to carefully read API documentation. To find those bugs, researchers have proposed 

various detection approaches based on known specifications. To mine specifications, many approaches have been proposed, 

and most of them rely on existing client code. Consequently, these mining approaches would fail to mine specifications when 

client code is not available. 

Our research [ASE 09b] we propose an approach, called Doc2Spec, that infers resource specifications from API 

documentation. For our approach, we implemented a tool and conducted an evaluation on Javadocs of five libraries. The 

results show that our approach infers various specifications with relatively high precisions, recalls, and F-scores. We further 

evaluated the usefulness of inferred specifications through detecting bugs in open source projects. The results show that 

specifications inferred by Doc2Spec are useful to detect real bugs in existing projects.

This paper received the ASE 2009 Best Paper Award and ACM SIGSOFT Distinguished Paper Award.

(7) An objective of unit testing is to achieve high structural coverage of the code under test. Achieving high structural coverage 

of object-oriented code requires desirable method-call sequences that create and mutate objects. These sequences help 

generate target object states such as argument or receiver object states (in short as target states) of a method under test. 

Automatic generation of sequences for achieving target states is often challenging due to a large search space of possible 

sequences. On the other hand, code bases using object types (such as receiver or argument object types) include sequences 

that can be used to assist automatic test-generation approaches in achieving target states. 

Our research [ESEC/FSE 09] proposes a novel approach, called MSeqGen, that mines code bases and extracts sequences 

related to receiver or argument object types of a method under test. Our approach uses these extracted sequences to enhance 

two state-of-the-art test-generation approaches: random testing and dynamic symbolic execution. We conduct two evaluations 

to show the effectiveness of our approach. Using sequences extracted by our approach, we show that a random testing 

approach achieves 8.7% (with a maximum of 20.0% for one namespace) higher branch coverage and a 

dynamic-symbolic-execution-based approach achieves 17.4% (with a maximum of 22.5% for one namespace) higher branch 

coverage than without using our approach. Such an improvement is significant as the branches that are not covered by these 

state-of-the-art approaches are generally quite difficult to cover. 

(8) Our research [ASE 08a, ASE 09a, ICSE 09a] is the first to expand the mining scope from one or a few local project code 

bases (often not sufficient for mining real API properties) to the Internet-scale open source repositories for API property mining. 

In particular, our research has exploited code search engines such as Google code search to collect a sufficiently large number 

of client code examples for a specific API under analysis, and mine API properties from these client code examples. 

(9) Our research (described in preliminary work [ESEC/FSE 07] for this project) is the first to exploit and adapt advanced data 

mining techniques (such as partial order mining) to address unique mining requirements (such as expressing properties for 

APIs as partial orders), which cannot be satisfied by basic mining techniques commonly used by previous research. 

(10) Our research [ICSE 09a, ASE 09a] has investigated complex patterns in common types of API properties and contributed 

new mining techniques to effectively mine these patterns, without being constrained by available mining techniques from the 

data mining community. In particular, we have developed novel techniques [ICSE 09a] that mine sequence association rules, a 

new pattern proposed in our research, for expressing exception-handling properties. We have developed novel techniques 

[ASE 09a] that mine alternative patterns, a new pattern proposed in our research, for detecting neglected conditions. Our 

research has detected a significant number of real defects in open source projects with these new mined patterns. 

The PI is one of leading researchers in actively promoting this area on mining software engineering data within and even 

outside the SE community. He has constructed and maintained the first and only comprehensive bibliography on mining SE 

data. He co-presented tutorials or technical briefings on software

analytics or mining software engineering data at top software engineering venues (7 times at ICSE, 1 time at FSE, and 1 time at 

ASE) and data mining venues (KDD and ICDM). He will co-organize the 2013 NII Shonan Meeting on Software Analytics: 

Principles and Practice. He co-organized the 2007 Dagstuhl Seminar on Mining Programs and Processes.



Our research has also improved the Microsoft Research Pex tool for testing of Object-Oriented (OO) Software. Testing OO 

software (such as those written in C#) is critical because OO languages have been increasingly used in developing modern 

software systems, and assuring these systems’ reliability is very important. In unit testing of OO software, one important and yet 

challenging problem is to generate desirable method sequences to produce specific receiver or argument object states to find 

bugs or achieve new code coverage. The search space for such desirable method sequences is huge and there existed no 

previous techniques to effectively address this problem. We have developed various novel techniques for improving the 

effectiveness of symbolic execution in method-sequence generation. Our MSeqGen technique [ESEC/FSE 09] is the first to use 

code mining to gather already used method sequences to guide method-sequence generation. We have also collaborated with 

Microsoft Research on developing techniques for security testing [ASE 10b], database application testing [ASE 10c], advanced 

coverage criteria [ICSM 10a], mutation testing [ICSM 10b], string operations [ASE 09c].

The PI is one of leading researchers in actively promoting this area of automated software testing. He had co-presented 

tutorials on automated software testing at top SE venues (ICSE 2009 and 2010, and OOPSLA 2009). He co-organized 2010 

Dagstuhl Seminar on Practical Software Testing: Tool Automation and Human Factors.
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