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ance.

This research was partly funded by ARO grant W911NF-08-1-0242, ONR grant

N00014-11-10417, OSD grant W81XWH-08-C0740, NSF SES-1110625 and NSF IIS-

1012017. The views and conclusions contained in this document are those of the authors

and should not be interpreted as necessarily representing the official policies, either

expressed or implied, of any of these organizations.



v

Abstract

Until recently, complex phenomena—such as human behavior and disease

epidemics—have been modeled primarily at an aggregate level. Detailed studies have

been limited to small domains encompassing only a few subjects, as scaling the methods

involved poses considerable challenges in terms of cost, human effort required, compu-

tational bottlenecks, and data sources available. With the surge of online social media

and sensor networks, the abundance of interesting and publicly accessible data is begin-

ning to increase. However, we also need the ability to reason about it efficiently. The

underlying theme of this thesis is the unification and data mining of diverse, noisy, and

incomplete sensory data over large numbers of individuals. We show that the mined

patterns can be leveraged in predictive models of human behavior and other phenomena

at a large scale. We find that raw sensory data linked with the content of users’ online

communication, the explicit as well as the implicit online social interactions, and inter-

personal relationships are rich information sources upon which strong machine learning

models can be built. Example domains where such models apply include understanding

human activities, predicting people’s location and social ties from their online behav-

ior, and predicting the emergence of global epidemics from day-to-day interpersonal

interactions.
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precision and 0.18 recall (AUC of 0.85). . . . . . . . . . . . . . . . . . . 148
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7.8 Visualization of a sample of Twitter users (yellow pins) at an airport.

The highlighted person X says he will be back in 16 days and mentions

specific friends for whom this message is relevant. We immediately see the

people at the airport who could have come into contact withX. This work

shows that we can accurately predict the health of X from his co-location

with other individuals and the heath of his friends. However, additional

information can be inferred using methods developed by previous work

(Crandall et al., 2010; Backstrom and Leskovec, 2011; Cho et al., 2011;

Sadilek et al., 2012a). It can be expected that putting all this information

together will yield even stronger and more comprehensive predictions

about the spread of an infection. . . . . . . . . . . . . . . . . . . . . . . 155
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1 Foreword

Chapter 4 is based on our work published in Sadilek and Kautz (2010a,b, 2012a,b).

Chapter 5 is based on collaboration with John Krumm while at Microsoft Research

(Sadilek and Krumm, 2012). Chapter 6 includes our work previously published in

Sadilek et al. (2012a). Finally, Chapter 7 builds on results reported in Sadilek et al.

(2012b,c).
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2 Introduction

With the boom of information technology we experience today comes an explosion in the

amount and richness of data recorded. The necessary ingredients for this phenomenon

have been fully realized only recently: ubiquitous Internet connectivity, virtually limit-

less data storage, and powerful mobile devices. Crucially, all the ingredients are inex-

pensive, widely available, and the technology behind them reached a level of maturity

where the general population—not just a handful of hackers—uses the devices in ev-

eryday life. As a result, Internet-enabled phones and other mobile computers are used

by nearly everyone, even in less developed parts of the world. A typical phone has a

large array of sensors that can record location, orientation, acceleration, light intensity,

Bluetooth and Wi-Fi neighborhoods, temperature, and of course audio. Images and

video can often be captured as well.

At the same time, the social aspects of computing are gaining prominence. Accord-

ing to a recent Nielsen study,1 the average Facebook user spent nearly 7 hours and 45

minutes on the site per month—more than on any other single site on the Internet. To

put these statistics in context, the average amount of time a person spends online per

month is 30 hours.

Since more than 30% of smart phone users access online social networks from their

phone,2 some of the fine-grained sensory data the mobile devices record is now linked

to the rich structured data in people’s online profiles. This includes the text of their

1http://blog.nielsen.com/nielsenwire/online mobile/august-2011-top-us-web-brands
2http://www.comscore.com/
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messages, tags attached to photos and status updates, and the structure of their social

network. For instance, we will see that a large fraction of online communication is geo-

tagged with precise GPS coordinates and interlinked with information about related

people, their location, their friends’ location and content, and so on.

Since most of us carry a phone in our pockets virtually all the time, and since a

large fraction of the population participates in online social media, it becomes possible

to quantify—at a planetary scale—phenomena that have been elusive until now. As

we will see, predicting the spread of disease is a specific instance of phenomena in this

class. For example, 1 in 30 New York City residents appears in the Twitter dataset

we collected in May 2010. This sampling ratio increases over time as more people

join the social network and with more extensive data collection periods. This means

that we have real-time access to detailed information about a significant fraction of

the population. We can additionally view these individuals as “noisy sensors” of their

surroundings, thereby enabling inference even about phenomena not directly recorded

online or in government statistics.

A combination of machine learning and crowd sourcing is now poised to effectively

answer questions that, at present, require years of laborious and expensive data col-

lection. Moreover, we are no longer limited by the static and coarse-grained nature of

the traditional statistics. However, new challenges are introduced as well. This thesis

focuses on methods that overcome these challenges and enable us to capture impor-

tant phenomena with a significantly increased level of detail, timeliness, and predictive

power.

The underlying theme of our work is the unification and data mining of diverse,

noisy, and incomplete sensory data over large numbers of individuals. We show that the

mined patterns can be leveraged in predictive models of human behavior at a large scale.

We find that the raw sensory data linked with the content of users’ online communica-

tion, the explicit as well as the implicit online social interactions, and relationships are

extremely rich information sources. Furthermore, this data is now available to machines

in massive volumes and at ever-increasing real-time streaming rate.

The first portion of this thesis concentrates on modeling human behavior based on
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location data in the form of raw GPS coordinates collected at regular intervals (e.g.,

every second) by our subjects carrying GPS loggers. Perhaps surprisingly, rich models—

both descriptive and predictive—of people’s activities can be learned from this data

source alone. Specifically, we show that we can reliably recognize fine-grained multi-

agent activities in the game of capture the flag, even though the signal to noise ratio

is very low. We then turn to location prediction and show that our “eigenday” model

describes the typical day of a person in a meaningful way and enables accurate location

prediction, even far into the future.

In the second half of the thesis, we transition from pure location-based domains to

richer—but more noisy, irregular, and incomplete—datasets derived from online social

media, including Twitter and FourSquare. The social and textual components of these

data sources allow us to model phenomena, such as the disease epidemics, that would

be out of reach for pure location-based systems. As we mentioned, accurate location

is often embedded in this online data as well, as a large fraction of users access online

services from their phones that often automatically attach GPS tags to user messages

and photos.

We will see that people’s social ties as well as their location are readily predictable

from their online interactions. We then show that by unifying GPS traces revealed

in people’s online messages, along with text analysis of those messages, enables us to

predict the progress of a contagion from person to person at a population scale and

without any active user participation. Additionally, by leveraging the explicit social

structure recorded in the data, we begin to quantify answers to important questions in

public health. This includes the relationship between the number of sick people you

encounter and the probability of you contracting the disease in the future, and the

impact of the health of your social milieu on your own heath.
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3 Background

This chapter reviews the context of the probabilistic models developed and applied in

this thesis. We discuss both relational and propositional types of models, directed and

undirected graphical models, as well as generative and discriminative. Additionally,

we review decision trees, support vector machine classifiers, and introduce Twitter—a

popular online social network.

3.1 Markov Logic

The cores of our activity recognition models described below are implemented in Markov

logic (ML), a statistical-relational language. In this section, we provide a brief overview

of ML, which extends finite first-order logic (FOL) to a probabilistic setting. For a

more detailed (and excellent) treatment of FOL, ML, and inductive logic programming

see the work of Shoenfield (1967); Domingos et al. (2008), and De Raedt and Kersting

(2008), respectively.

Given the inherent uncertainty involved in reasoning about real-world activities as

observed through noisy sensor readings, we looked for a methodology that would provide

an elegant combination of probabilistic reasoning with the expressive, relatively natural,

and compact but unfortunately strictly true or false formulas of first-order logic. And

that is exactly what Markov logic provides and thus allows us to elegantly model complex

finite relational non-i.i.d. domains. A Markov logic network (MLN) consists of a set of

constants C and of a set of pairs 〈Fi, wi〉 such that each FOL formula Fi has a weight
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wi ∈ R associated with it. Optionally, each weight can be further scaled by a real-

valued function of a subset of the variables that appear in the corresponding formula.

Markov logic networks that contain such functions are called hybrid MLNs (Wang and

Domingos, 2008).

A MLN can be viewed as a template for a Markov network (MN) as follows: the

MN contains one node for each possible ground atom of MLN. The value of the node

is 0 if the corresponding atom is false and 1 otherwise. Two nodes are connected by

an edge if the corresponding atoms appear in the same formula. Thus, the MN has a

distinct clique corresponding to each grounding of each formula. By Fgji we denote the

j-th grounding of formula Fi. The MN has a feature value fi,j for each Fgji such that

fi,j =


1 if Fgji is true

0 otherwise

Each weight wi intuitively represents the relative “importance” of satisfying (or

violating, if the weight is negative) the corresponding formula Fi. More formally, the

weight scales the difference in log-probability between a world that satisfies n groundings

of the corresponding formula and one that results in m true groundings of the formula,

all else being equal (cf. Equation 3.1). Thus the problem of satisfiability is relaxed in

MLNs. We no longer search for a satisfying truth assignment as in traditional FOL.

Instead, we are looking for a truth assignment that maximizes the sum of the weights

of all satisfied formulas.

The weights can be either specified by the knowledge base engineer or, as in our

approach, learned from training data. That is, we provide the learning algorithm with

labeled capture instances and pairs of raw and corresponding denoised trajectories along

with labeled instances of game events and it finds an optimal set of weights that maxi-

mize the likelihood of the training data. Weight learning can be done in either generative

or discriminative fashion. Generative training maximizes the joint probability of ob-

served (evidence) as well as hidden (query) predicates, whereas discriminative learning

directly maximizes the conditional likelihood of the hidden predicates given the ob-

served predicates. Since prior work demonstrated that Markov network models learned
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discriminatively consistently outperform their generatively trained counterparts (Singla

and Domingos, 2005), we focus on discriminative learning in our activity recognition

domain.

Once the knowledge base with weights has been specified, we can ask questions about

the state of hidden atoms given the state of the observed atoms. Let X be a vector

of random variables (one random variable for each possible ground atom in the MN)

and let χ be the set of all possible instantiations of X. Then, each x ∈ χ represents

a possible world. If (∀x ∈ χ)[Pr(X = x) > 0] holds, the probability distribution over

these worlds is defined by

(3.1) Pr(X = x) =
1

Z
exp

(∑
i

wini
(
x{i}

))
where ni(x{i}) is the number of true groundings of i-th formula with wi as its weight in

a world x and

(3.2) Z =
∑
x∈χ

exp

(∑
i

wini
(
x{i}

))
.

Equation 3.1 can be viewed as assigning a “score” to each possible world and dividing

each score by the sum of all scores over all possible worlds (the constant Z) in order to

normalize.

Maximum a posteriori (MAP) inference in Markov logic given the state of the ob-

served atoms reduces to finding a truth assignment for the hidden atoms such that

the weighed sum of satisfied clauses is maximal. Even though this problem is NP-

complete, we achieve reasonable run times by applying Cutting Plane MAP Inference

(CPI) (Riedel, 2008). CPI can be thought of as a meta solver that incrementally grounds

a Markov logic network, at each step creating a Markov network that is subsequently

solved by any applicable method—such as MaxWalkSAT or via a reduction to an integer

linear program. CPI refines the current solution by searching for additional groundings

that could contribute to the objective function.

Up to this point, we have focused on first-order Markov logic. In first-order ML,

each variable ranges over objects present the domain (e.g., apples, players, or cars).
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On the other hand, in finite second-order Markov logic, we variabilize not only objects

but also predicates (relations) themselves (Kok and Domingos, 2007b). Our CTF model

contains a predicate variable for each type of activity. For example, we have one variable

captureType whose domain is {capturing, failedCapturing} and analogously for freeing

events. When grounding the second-order ML, we ground all predicate variables as well

as object variables. There has also been preliminary work on generalizing ML to be

well-defined over infinite domains, which would indeed give it the full power of FOL

(Singla and Domingos, 2007).

Implementations of Markov logic include Alchemy1 and theBeast2. Our experiments

used a modified version of theBeast.

3.2 Probabilistic Models of Sequential Data

Much of our work concentrates on spatio-temporal sequences of data. In this section,

we review the context of probabilistic models that are amiable to this type of data, and

discuss, in more detail, several specific instances of this family of models we heavily use

in our work.

Two broad classes of probabilistic models appear in machine learning literature:

generative and discriminative. Generative models aim at compactly representing a full

joint probability distribution Pr(x, y) where x and y denote vectors of observed (e.g.,

data coming directly from the sensors, such as current GPS reading) and hidden (e.g.,

the actual true location of the player) random variables, respectively. The well-known

hidden Markov model (HMM) is an example generative model.

On the other hand, discriminative models deal with conditional probability distribu-

tions in the form of Pr(y | x). Since our goal is to detect and recognize “hidden” events

from GPS data and not to, for instance, create synthetic GPS traces, we do not need

to model the statistical dependencies among the sensor data x. The state of x is always

known and we only need to infer the state of the hidden variables y. This “specializa-

1http://alchemy.cs.washington.edu/

2http://code.google.com/p/theBeast/
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tion” renders the inference problem more tractable while requiring less training data,

since we have to consider and model fewer parameters and dependencies. A conditional

random field (CRF) is a type of discriminative model.

Further, we distinguish between directed and undirected probabilistic models. This

nomenclature is based on the observation that the models can be conceptually repre-

sented as a graph where each node of the graph corresponds to a random variable and

for each pair of nodes, there is an edge between them if the corresponding random vari-

ables are dependent in some way. If these edges are directed, we say that the model is

a directed model and otherwise, we say it is a undirected model. A dynamic Bayesian

network (DBN) is an example of directed model, whereas a Markov random field (MRF)

is an undirected model.

A variety of specific probabilistic models has been applied to activity recognition.

There are trade-offs to consider when choosing a particular model for the problem at

hand. For instance in the case of DBNs, cyclicity of the the model is problematic, and

further, the parameters of the model are conditional probability tables, which are quite

unnatural for people to specify or review. By contrast, in MRFs, we can encode the

parameters more intuitively by defining a set of feature functions fi (one for each (type

of) clique i in the graph), such that each function maps from the state of the random

variables in its domain to a non-negative real value. A weighted sum of these functions

then defines the probability distribution induced by a particular MRF as follows.

(3.3) P (X = x, Y = y) =
1

Z
exp

(∑
i

wifi
(
x{i}, y{i}

))
,

where Z denotes a partition function (a normalizing constant) given by

(3.4) Z =
∑
x∈χ

exp

(∑
i

wifi
(
x{i}, y{i}

))
.

Thus, MRFs allow us to define quite complex parameters of our models in a natural

way and, as opposed to DBNs, they facilitate modeling long-range (irregular) depen-

dencies.
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3.2.1 Dynamic Bayesian Networks

A Bayesian network (BN) is a directed probabilistic graphical model (Jordan, 1998).

Nodes in the graph represent random variables and edges represent conditional depen-

dencies (cf. Figure 4.4). For a BN with n nodes, the joint probability distribution is

given by

(3.5) Pr(X1, . . . , Xn) =
n∏
i=1

Pr
(
Xi|Pa(Xi)

)
,

where Pa(Xi) denotes the parents of node Xi. In a typical setting, a subset of the

random variables is observed (we know their actual values), while the others are hidden

and their values need to be inferred.

A dynamic Bayesian network (DBN) is a BN that models sequential data. A DBN

is composed of slices—in our case each slice represents a one second time interval. In

order to specify a DBN, we either write down or learn intra- and inter-slice conditional

probability distributions (CPDs). The intra-slice CPDs typically constitute the obser-

vation model while the inter-slice CPDs model transitions between hidden states. For

an extensive treatment of DBNs, see the work of Murphy (2002).

There are a number of parameter learning and inference techniques for DBNs. To

match the Markov logic-based framework, in the experiments with the DBN model

presented below, we focus on a supervised learning scenario, where the hidden labels are

known at training time and therefore a maximum likelihood estimate can be calculated

directly.

We find a set of parameters (discrete probability distributions) θ that maximize the

log-likelihood of the training data. This is achieved by optimizing the following objective

function.

(3.6) θ? = argmax
θ

log
(
Pr
(
x1:t, y1:t|θ)

)
,

where x1:t and y1:t represent the sequence of observed and hidden values, respectively,

between times 1 and t, and θ? is the set of optimal model parameters. In our implemen-



11

tation, we represent probabilities and likelihoods with their log-counterparts to avoid

arithmetic underflow.

At testing time, we are interested in the most likely explanation of the observed

data. That is, we want to calculate the most likely assignment of states to all the

hidden nodes (i.e., Viterbi decoding of the DBN) given by

(3.7) y?1:t = argmax
y1:t

log
(
Pr(y1:t|x1:t)

)
,

where Pr(y1:t|x1:t) is the conditional probability of a sequence of hidden states y1:t given

a concrete sequence of observations x1:t between times 1 and t. We calculate the Viterbi

decoding efficiently using dynamic programming (Jordan, 1998).

We apply DBNs in our work because they naturally model time series data (time

flows in one direction), we can highly optimize both learning and inference. Since the

hidden nodes in our models are discrete, we perform both parameter learning and exact

inference efficiently by customized versions of the Baum-Welch algorithm and Viterbi

decoding, respectively. For a detailed treatment of these methods see (Jordan, 1998).

We exaplain how we apply DBNs to our Twitter domain in Section 6.6.2.

3.2.2 Conditional Random Fields

A conditional random field (CRF) is a discriminative undirected graphical model (Laf-

ferty, 2001). CRFs have been successfully applied in a wide range of domains from

language understanding (Sha and Pereira, 2003; Roark et al., 2004) to robotics (Ramos

et al., 2007). They systematically outperform alternative approaches, such as hidden

Markov models, in domains where it is unrealistic to assume that observations are

independent given the hidden state. Instead of applying Bayes’ theorem to estimate

the distribution over hidden states y given observations x, CRFs explicitly encode the

conditional distribution Pr(y|x).

CRFs factorize the conditional distribution into a product of clique potentials as

follows

(3.8) Pr(y|x) =
1

Z(x)

∏
c∈C

φc(xc, yc)
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(3.9) Z(x) =
∑
y

∏
c∈C

φc(xc, yc),

where C is the set of cliques within the graph that defines the structure of the CRF,

and xc and yc are the observed and hidden nodes, respectively, in a particular clique c.

Since evaluation of the normalizing constant Z(x) is exponential in the size of y,

exact inference is feasible only in small domains or for specific classes of CRF structures,

such as trees.

In practice, the clique potentials φ are further decomposed into a log-linear weighted

combination of feature functions f :

(3.10) φc(xc, yc) = exp
{
wTc fc(xc, yc)

}
.

We can now express the conditional probability in terms of feature functions

(3.11) Pr(y|x) =
1

Z(x)
exp

{∑
c∈C

wTc fc(xc, yc)

}
.

Learning and inference in conditional random fields applies analogous techniques

discussed in the previous section on DBNs.

3.3 Support Vector Machines

Support vector machine (SVM) is an established model of data in machine learning

(Cortes and Vapnik, 1995). In this work, we learn SVMs for linear binary classifica-

tion that accurately distinguish between tweets indicating the author is afflicted by an

infectious ailment (we call such tweets “sick”), and all other tweets (called “other” or

“normal”).

Linear binary SVMs are trained by finding a hyperplane defined by a normal vector

w with the maximal margin separating it from the positive and negative datapoints.

Finding such a hyperplane is inherently a quadratic optimization problem given by the

following objective function

(3.12) min
w

λ

2
||w||2 + L(w,D),
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where λ is a regularization parameter controlling model complexity, and L(w,D) is the

hinge-loss over all training data D given by

(3.13) L(w,D) =
∑
i

max
(
0, 1− yiwTxi

)
.

The optimization problem in Equation 3.12 can be solved efficiently and in a parallel

fashion using stochastic gradient descend methods (Shalev-Shwartz et al., 2007).

Class imbalance, where the number of examples in one class is dramatically larger

than in the other class, complicates virtually all machine learning. For SVMs, prior

work has shown that transforming the optimization problem from the space of individ-

ual datapoints 〈xi, yi〉 in matrix D to one over pairs of examples
〈
x+
i − x

−
j , 1

〉
yields

significantly more robust results (Joachims, 2005). (x+
i denotes feature vectors from the

positive class (yi = +1), whereas x−j denotes negatively labeled data points (yj = −1).)

This method is often referred to as ROC Area SVM because it directly maximizes

the area under the ROC curve of the model. By bundling examples into pairs, we

effectively find a w that minimizes the number ns of incorrectly ranked (swapped) pairs

in the training data given by

(3.14) ns =
∣∣{(i, j) : (yi > yj) ∧ (wTxi < wTxj)

}∣∣ .
At testing time, a feature vector xt is classified simply by a dot product multiplica-

tion with the weight vector: ỹ = sign(wTxt).

3.4 Decision Trees

Decision trees are models of data encoded as rules induced from examples (Breiman

and others, 1984). Intuitively, in the Twitter domain, a decision tree represents a series

of questions that need to be asked and answered in order to estimate the probability

of friendship between any two people, based on their attributes. During decision tree

learning, features are evaluated in terms of information gain with respect to the labels
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and the best candidates are subsequently selected for each inner node of the tree. Our

implementation uses regression decision trees, where each leaf contains the probability

of a friendship. As described below, we also employ decision trees for feature selection,

since they intrinsically rank features by their information content.

3.5 Twitter

Our social network experiments are based on data obtained from Twitter, a popular

micro-blogging service where people post message updates at most 140 characters long.

The forced brevity encourages frequent mobile updates. Relationships between users on

Twitter are not necessarily symmetric. One can follow (subscribe to receive messages

from) a user without being followed back. When users do reciprocate following, we say

they are friends on Twitter. There is anecdotal evidence that Twitter friendships have

a substantial overlap with offline friendships (Gruzd et al., 2011). Twitter launched

in 2006 and has been experiencing an explosive growth since then. As of June 2011,

over 300 million accounts are registered on Twitter. FourSquare and Gowalla are the

most prominent location-based social networks that allow people to share their location,

and to “check-in” at various venues near them. A subset of these check-ins appears in

our Twitter dataset, as some users link their Twitter accounts with one or more other

services.
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4 Relational Activity Recognition

Figure 4.1: A snapshot of a game of capture the flag that shows most of the game area.

Players are represented by pins with letters. In our version of CTF, the two “flags” are

stationary and are shown as white circles near the top and the bottom of the figure.

The horizontal road in the middle of the image is the territory boundary. The data is

shown prior to any denoising or corrections for map errors.
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4.1 Overview

Recent research has shown that surprisingly rich models of human activity can be

learned from GPS (positional) data. However, most effort to date has concentrated

on modeling single individuals or statistical properties of groups of people. Moreover,

prior work focused solely on modeling actual successful executions (and not failed or

attempted executions) of the activities of interest. We, in contrast, take on the task of

understanding human interactions, attempted interactions, and intentions from noisy

sensor data in a fully relational multi-agent setting.

We use a real-world game of capture the flag to illustrate our approach in a well-

defined domain that involves many distinct cooperative and competitive joint activities.

We model the domain using Markov logic, a statistical-relational language, and learn a

theory that jointly denoises the data and infers occurrences of high-level activities, such

as a player capturing an enemy. Our unified model combines constraints imposed by

the geometry of the game area, the motion model of the players, and by the rules and

dynamics of the game in a probabilistically and logically sound fashion.

We show that while it may be impossible to directly detect a multi-agent activity

due to sensor noise or malfunction, the occurrence of the activity can still be inferred by

considering both its impact on the future behaviors of the people involved as well as the

events that could have preceded it. Further, we show that given a model of successfully

performed multi-agent activities, along with a set of examples of failed attempts at the

same activities, our system automatically learns an augmented model that is capable of

recognizing success and failure, as well as goals of people’s actions with high accuracy.

We compare our approach with other alternatives and show that our unified model,

which takes into account not only relationships among individual players, but also re-

lationships among activities over the entire length of a game, although more compu-

tationally costly, is significantly more accurate. Finally, we demonstrate that explic-

itly modeling unsuccessful attempts boosts performance on other important recognition

tasks.
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4.2 Motivation

Our society is founded on the interplay of human relationships and interactions. Since

every person is tightly embedded in our social structure, the vast majority of human

behavior can be fully understood only in the context of the actions of others. Thus, not

surprisingly, more and more evidence shows that when we want to model behavior of a

person, the single best predictor is often the behavior of people in her social network.

For instance, behavioral patterns of people taking taxis, rating movies, choosing a cell

phone provider, or sharing music are best explained and predicted by the habits of

related people, rather than by all the “single person” attributes such as age, race, or

education (Bell et al., 2007; Pentland, 2008).

In contrast to these observations, most research effort on activity recognition to date

has concentrated on modeling single individuals (Bui, 2003; Liao et al., 2004, 2005), or

statistical properties of aggregate groups of individuals (Abowd et al., 1997; Horvitz et

al., 2005), or combinations of both (Eagle and Pentland, 2006). Notable exceptions to

this “isolated individuals” approach includes the work of Kamar and Horvitz (2009) and

Gupta et al. (2009), where simple relationships among people are just starting to be

explicitly considered and leveraged. For instance, Eagle and Pentland (2006) elegantly

model the location of individuals from multi-modal sensory data, but their approach is

oblivious to the explicit effects of one’s friends, relatives, etc. on one’s behavior. The

isolated individuals approximations are often made for the sake of tractability and rep-

resentational convenience. While considering individuals independently of each other is

sufficient for some constrained tasks, in many interesting domains it discards a wealth

of important information or results in an inefficient and unnatural data representation.

On the other hand, decomposing a domain into a set of entities (representing for in-

stance people, objects in their environment, or activities) that are linked by various

relationships (e.g., is-a, has-a, is-involved-in) is a natural and clear way of representing

data.

To address the shortcomings of nonrelational behavior modeling, we introduce the

capture the flag domain (described below), and argue for a statistical-relational approach
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to learning models of multi-agent behavior from raw GPS data. The CTF dataset is

on one hand quite complex and recorded by real-world sensors, but at the same time

it is well-defined (as per the rules of the game), thereby allowing for an unambiguous

evaluation of the results.

Being able to recognize people’s activities and reason about their behavior is a nec-

essary precondition for having intelligent and helpful machines that are aware of “what

is going on” in the human-machine as well as human-human relationships. There are

many exciting practical applications of activity recognition that have the potential to

fundamentally change people’s lives. For example, cognitive assistants that help people

and teams be more productive, or provide support to (groups of) disabled individuals, or

efficiently summarize a long complex event to a busy person without leaving out essen-

tial information. Other important applications include intelligent navigation, security

(physical as well as digital), human-computer interaction, and crowdsourcing. All these

applications and a myriad of others build on top of multi-agent activity recognition

and therefore require it as a necessary stepping stone. Furthermore, as a consequence

of the anthropocentrism of our technology, modeling human behavior plays—perhaps

surprisingly—a significant role even in applications that do not directly involve people

(e.g., unmanned space probes).

Furthermore, reasoning about human intentions is an essential element of activity

recognition, since if we can recognize what a person (or a group of people) wants to do,

we can proactively try to help them (or—in adversarial situations—hinder them). Intent

is notoriously problematic to quantify (Baldwin and Baird, 2001, e.g.,), but we show

that in the capture the flag domain, the notion is naturally captured in the process of

learning the structure of failed activities. We all know perhaps too well that a successful

action is often preceded—and unfortunately sometimes also followed—by multiple failed

attempts. Therefore, reasoning about attempts typically entails high practical utility,

but not just for their relatively high frequency. Consider, for example, a task of real-

time analysis of a security video system. There, detecting that a person or a group of

people (again, relations) intend to steal something is much more important and useful

than recognizing that a theft has taken (or even is taking) place, because then it is
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certainly too late to entirely prevent the incident, and it may also be too late or harder

to merely stop it. We believe that recognition of attempts in people’s activities is a

severely underrepresented topic in artificial intelligence that needs to be explored more

since it opens a new realm of interesting possibilities.

Before we delve into the details of our approach in Sections 4.5 and 4.6, we briefly

introduce the CTF dataset (Section 4.3), highlight the main contributions of our work

(Section 4.4). Background material has been reviewed in Chapter 3. We discuss related

work, conclude, and outline future work in Sections 4.7, 4.8 and 4.9 respectively.

4.3 Capture The Flag Domain

Imagine two teams—seven players each—playing capture the flag (CTF) on a university

campus, where each player carries a consumer-grade global positioning system (GPS)

that logs its location (plus noise) every second (see Figure 4.1). The primary goal is to

enter the opponent’s flag area. Players can be captured only while on enemy territory by

being tagged by the enemy. Upon being captured, they must remain in place until freed

(tagged by a teammate) or the game ends. The games involve many competitive and

cooperative activities, but here we focus on (both successful and attempted) capturing

and freeing. Visualization of the games is available from the first author’s website.

We collected four games of CTF on a portion of the University of Rochester campus

(about 23 acres) with Columbus V-900 GPS loggers (one per player) with 1 GB memory

card each that were set to a sampling rate of 1 Hz. The durations of the games ranged

approximately from 4 to 15 minutes.

Our work is not primarily motivated by the problem of annotating strategy games,

although there are obvious applications of our results to sports and combat situations.

We are, more generally, exploring relational learning and inference methods for rec-

ognizing multi-agent activities from location data. We accept the fact that the GPS

data at our disposal is inherently unreliable and ambiguous for any one individual. We

therefore focus on methods that jointly and simultaneously localize and recognize the

high-level activities of groups of individuals.
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Although the CTF domain doesn’t capture all the intricacies of life, it contains

many complex, interesting, and yet well-defined (multi-agent) activities. Moreover, it

is based on extensive real-world GPS data (total of 40,000+ data points). Thus most

of the problems that we are addressing here clearly have direct analogs in everyday-life

situations that ubiquitous computing needs to address—imagine people going about

their daily lives in a city instead of CTF players, and their own smart phones instead

of GPS loggers.

One of the main challenges we have to overcome if we are to successfully model

CTF is the severe noise present in the data. Accuracy of the GPS data varies from 1

to more than 10 meters. In open areas, readings are typically off by 3 meters, but the

discrepancy is much higher in locations with tall buildings (which are present within the

game area) or other obstructions. Compare the scale of the error with the granularity

of the activities we concern ourselves with: both capturing and freeing involves players

that are within reaching distance (less than 1 meter) apart. Therefore, the signal to

noise ratio in this domain is daunting.

The error has a systematic component as well as a significant stochastic component.

Errors between devices are poorly correlated, because subtle differences between players,

such as the angle at which the device sits in the player’s pocket, can dramatically affect

accuracy. Moreover, since we consider multi-agent scenarios, the errors in individual

players’ readings can add up, thereby creating a large discrepancy between the reality

and the recorded dataset. Because players can move freely through open areas, we

cannot reduce the data error by assuming that the players move along road or walkways,

as is done in much work on GPS-based activity recognition (Liao et al., 2004, e.g.,).

Finally, traditional techniques for denoising GPS data, such as Kalman filtering, are of

little help, due to the low data rate (1 sample per second) relative to the small amount

of time required for a player to completely change her speed or direction.

If we are to reliably recognize events that happen in these games in the presence of

such severe noise, we need to consider not only each player, but also the relationships

among them and their actions over extended periods of time (possibly the whole length

of the game). Consider a concrete task of inferring the individual and joint activities
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Figure 4.2: Three snapshots of a game situation where both successful and failed cap-

turing occur. This example also illustrates the need for an approach that exploits both

the relational and the far reaching temporal structure of our domain. (See text for

explanation.)

and intentions of the CTF players from their GPS traces. For example, suppose the

GPS data shows player A running toward a stationary teammate B, then moving away.

What occurred? Possibly player A has just “freed” player B, but GPS error has hidden

the fact that player A actually reached B. Another possibility is that player A had the

intention of freeing player B, but was scared off by an opponent at the last second. Yet

another possibility is that no freeing occurred nor was even intended, because player B

had not been previously captured.

Understanding a game thus consists of inferring a complex set of interactions among

the various players as well as the players’ intentions. The conclusions drawn about what

occurs at one point in time affect and are affected by inferences about past and future

events. In the example just given, recognizing that player B is moving in the future

reinforces the conclusion that player A is freeing player B, while failing to recognize

a past event of player B being captured decreases confidence in that conclusion. The

game of CTF also illustrates that understanding a situation is as much or more about

recognizing attempts and intentions as about recognizing successfully executed actions.

For example, in course of a 15 minute game, only a handful of capture or freeing events

occur. However, there are dozens of cases where one player unsuccessfully tries to

capture an opponent or to free a teammate. A description of a game that was restricted

to what actually occurred would be only a pale reflection of the original.
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As a concrete example, consider a real game situation illustrated in Figure 4.2.

There we see three snapshots of a game projected over a map of the campus before any

modification of the GPS data. The game time is shown on each snapshot. Players D,

F, and G are allies and are currently on their home territory near their flag, whereas

players L and M are their enemies. In the first snapshot, players L and M head for the

opponent’s flag but then—in the second frame—they are intercepted by G. At this point

it is unclear what is happening because of the substantial error in the GPS data—the

three players appear to be very close to each other, but in actuality they could have

been 20 or more meters apart. However, once we see the third snapshot (note that tens

of seconds have passed) we realize that player G actually captured only player M and

didn’t capture L since G is evidently still chasing L. The fact that player M remains

stationary coupled with the fact that neither D nor F attempt to capture him suggests

that M has indeed been captured. We show that it is possible to infer occurrences

of capturing events even for complex situations like these whereas limited approaches

largely fail. However, we need to be able to recognize not just individual events, we also

need to discover new activities, identify their respective goals, and distinguish between

events based on whether their outcomes are favorable or negative. For instance, in the

second frame, player G tries to capture both L and M. Although he succeeded in the

former case, he failed in the latter.

Many different kinds of cooperative and competitive multi-agent activities occur in

the games. The lowest-level joint activities are based on location and movement, and

include “approaching” and “being at the same location.” Note, that noise in the GPS

data often makes it difficult or impossible to directly detect these simple activities. At

the next level come competitive multi-agent activities including capturing and attack-

ing; cooperative activities include freeing; and there are activities, such as chasing and

guarding, that may belong to either category or to both categories. There are also more

abstract tactical activities, such as making a sacrifice, and overall strategies, such as

playing defensively. In this chapter, we concentrate on activities at the first two levels.
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4.4 Our Contributions

The main contributions of this chapter are as follows. We first present a novel method

that simultaneously denoises positional data and learns a model of multi-agent activities

that occur there. We subsequently evaluate the model on the CTF dataset and show

that it achieves high accuracy in recognizing complex game events.

However, creating a model by manually writing down new rules or editing existing

axioms is laborious and prone to introduction of errors or unnecessarily complex theories.

Thus, we would like to automate this process by learning (or inducing) new axioms from

training data. For people, it is much easier to provide or validate concrete examples

than to directly modify a model. This leads us to our second contribution: We show

how to automatically augment a preexisting model of (joint) activities so that it is

capable of not only recognizing successful actions, but also identifies failed attempts at

the same types of activities. This line of work also demonstrates that explicitly modeling

attempted interactions in a unified way improves overall model performance.

As our third contribution, we demonstrate that the difference (discussed below)

between the newly learned definitions of a failed activity and the original definition

of the corresponding successful activity directly corresponds to the goal of the given

activity. For instance, as per the rules of the capture the flag game, a captured player

cannot move until freed. When our system induces the definition of failed capture, the

new theory does not contain such a constraint on the movement of the almost-captured

player, thereby allowing him to move freely.

4.5 Methodology

In this section, we describe the three major components of our approach. In short,

we first manually construct a model of captures and freeings in CTF and optimize its

parameters in a supervised learning framework (Section 4.5.1). This constitutes our

“seed” theory that is used for denoising raw location data and recognition of successful

multi-agent activities. We then show, in Section 4.5.2, how to automatically extend the
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seed theory by inducing the structure and learning the importance of failed captures

and freeings as well as the relationships to their successful counterparts. Finally, in

Section 4.5.3, we use the augmented theory to recognize this richer set of multi-agent

activities—both successful and failed attempts—and extract the goals of the activities.

Specifically, we investigate the following four research questions:

Q1. Can we reliably recognize complex multi-agent activities in the CTF dataset even

in the presence of severe noise?

Q2. Can models of attempted activities be automatically learned by leveraging existing

models of successfully performed actions?

Q3. Does modeling both success and failure allow us to infer the respective goals of

the activities?

Q4. Does modeling failed attempts of activities improve the performance on recogniz-

ing the activities themselves?

We now elaborate on each of the three components of our system in turn, and

subsequently discuss, in light of the experimental results and lessons learned, our answers

to the above research questions.

4.5.1 Recognition of Successful Activities

In this section, we present our unified framework for intelligent relational denoising of

the raw GPS data while simultaneously labeling instances of a player being captured by

an enemy or freed by an ally. Both the denoising and the labeling are cast as a learning

and inference problem in Markov logic. By denoising, we mean modifying the raw GPS

trajectories of the players such that the final trajectories satisfy constraints imposed by

the geometry of the game area, the motion model of the players, as well as by the rules

and the dynamics of the game. In this chapter, we refer to this trajectory modification

as “snapping” since we tile the game area with 3 by 3 meter cells and snap each raw

GPS reading to an appropriate cell. By creating cells only in unobstructed space, we

ensure the final trajectory is consistent with the map of the area.
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We begin by modeling the domain via a Markov logic theory, where we write the

logical formulas that express the structure of the model by hand, and learn an optimal

set of weights on the formulas from training data in a supervised discriminative fashion

(details on the experimental set-up are in Section 4.6). In the following two subsections,

we will show how to augment this seed Markov logic theory to recognize a richer set of

events and extract the goals of players’ multi-agent activities.

In order to perform data denoising and recognition of successful capturing and free-

ing, we model the game as weighted formulas in Markov logic. Some of the formulas

are “hard,” in the sense that we are only interested in solutions that satisfy all of them.

Hard formulas capture basic physical constraints (e.g., a player is only at one location

at a time) and inviolable rules of the game (e.g., a captured player must stand still

until freed or the game ends).1 The rest of the formulas are “soft,” meaning there is

a finite weight associated with each one. Some of the soft constraints correspond to a

traditional low-level data filter, expressing preferences for smooth trajectories that are

close to the raw GPS readings. Other soft constraints capture high-level constraints

concerning when individual and multi-agent activities are likely to occur. For example,

a soft constraint states that if a player encounters an enemy on the enemy’s territory,

the player is likely to be captured. The exact weights on the soft constraints are learned

from labeled data, as described below.

We distinguish two types of atoms in our models: observed (e.g., GPS(P1, 4, 43.13◦,

−77.71◦) and hidden (e.g., freeing(P1, P8, 6)). The observed predicates in the CTF do-

main are: GPS, enemies, adjacent, onHomeTer, and onEnemyTer;2 whereas capturing,

freeing, isCaptured, isFree, samePlace, and snap are hidden. Additionally, the set of

hidden predicates is expanded by the structure learning algorithm described below (see

Table 4.1 for predicate semantics). In the training phase, our learning algorithm has

access to the known truth assignment to all atoms. In the testing phase, it can still

1Cheating did not occur in our CTF games, but in principle could be accommodated by making the

rules highly-weighted soft constraints rather than hard constraints.
2While the noise in the GPS data introduces some ambiguity to the last two observed predicates, we

can still reliably generate them since the road that marks the boundary between territories constitutes

a neutral zone.
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Hard Rules:

H1. Each raw GPS reading is snapped to exactly one cell.

H2. (a) When player a frees player b, then both involved players must be snapped to a

common cell at that time.

(b) A player can only be freed by a free ally.

(c) A player can be freed only when he or she is currently captured.

(d) Immediately after a freeing event, the freed player transitions to a free state.

(e) A player can only be freed while on enemy territory.

H3. (a) When player a captures player b, then both involved players must be snapped to a

common cell at that time.

(b) A player can only be captured by a free enemy.

(c) A player can be captured only if he or she is currently free.

(d) Immediately after a capture event, the captured player transitions to a captured

state.

(e) A player can be captured only when standing on enemy territory.

H4. All players are free at the beginning of the game.

H5. At any given time, a player is either captured or free but not both.

H6. A player transitions from a captured state to a free state only via a freeing event.

H7. A player transitions from a free state to a captured state only via a capture event.

H8. If a player is captured then he or she must remain in the same location.

Soft Rules:

S1. Minimize the distance between the raw GPS reading and the snapped-to cell.

S2. Minimize projection variance, i.e., two consecutive “snappings” should be generally correlated.

S3. Maximize smoothness (both in terms of space and time) of the final player trajectories.

S4. If players a and b are enemies, a is on enemy territory and b is not, b is not captured already,

and they are close to each other, then a probably captures b.

S5. If players a and b are allies, both are on enemy territory, b is currently captured and a is not,

and they are close to each other, then a probably frees b.

S6. Capture events are generally rare, i.e., there are typically only a few captures within a game.

S7. Freeing events are also generally rare.

Figure 4.3: Descriptions of the hard and soft rules for capture the flag.
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Predicate Type Meaning

capturing(a, b, t) hidden Player a is capturing b at time t.

enemies(a, b) observed Players a and b are enemies.

adjacent(c1, c2) observed Cells c1 and c2 are mutually adjacent, or c1 = c2.

failedCapturing(a, b, t) hidden Player a is unsuccessfully capturing b at time t.

failedFreeing(a, b, t) hidden Player a is unsuccessfully freeing b at time t.

freeing(a, b, t) hidden Player a is freeing b at time t.

isCaptured(a, t) hidden Player a is in captured state at time t.

isFailedCaptured(a, t) hidden At time t, player a is in a state that follows

an unsuccessful attempt at capturing a.

a in this state has the same capabilities as when free.

isFailedFree(a, t) hidden At time t, player a is in a state that follows

an unsuccessful attempt at freeing a.

a in this state has the same capabilities as when captured.

isFree(a, t) hidden Player a is in free state at time t

(isFree(a, t) ≡ ¬ isCaptured(a, t)).

onEnemyTer(a, t) observed Player a in on enemy territory at time t.

onHomeTer(a, t) observed Player a in on home territory at time t.

samePlace(a, b, t) hidden Players a and b are either snapped to a common cell

or to two adjacent cells at time t.

snap(a, c, t) hidden Player a is snapped to cell c at time t.

Table 4.1: Summary of the logical predicates our models use. Predicate names contain-

ing the word “failed” are introduced by the Markov logic theory augmentation method

described in Section 4.5.2.
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access the state of the observed atoms, but it has to infer the assignment to the hidden

atoms.

Figure 4.3 gives an English description of our hard and soft rules for the low-level

movement and player interactions within capture the flag. Corresponding formulas in

the language of ML are shown in Figures 4.5 and 4.6.

We compare our unified approach with four alternative models. The first two models

(baseline and baseline with states) are purely deterministic and they separate the

denoising of the GPS data and the labeling of game events. We implemented both of

them in Perl. They do not involve any training phase. The third alternative model is a

dynamic Bayesian network shown in Figure 4.4. Finally, we have two models cast

in Markov logic: the two-step ML model and the unified ML model itself. The

unified model handles the denoising and labeling in a joint fashion, whereas the two-

step approach first performs snapping given the geometric constraints and subsequently

labels instances of capturing and freeing. The latter three models are evaluated using

four-fold cross-validation where in order to test on a given game, we first train a model

on the other three games.

All of our models can access the following observed data: raw GPS position of each

player at any time and indication whether they are on enemy or home territory, location

of each 3 by 3 meter cell, cell adjacency, and list of pairs of players that are enemies. We

tested all five models on the same observed data. The following describes each model

in more detail.

• Baseline Model (B)

This model has two separate stages. First we snap each reading to the nearest

cell and afterward we label the instances of player a capturing player b. The

labeling rule is simple: we loop over the whole discretized (via snapping) data set

and output capturing(a, b, t) every time we encounter a pair of players a and b

such that they were snapped (in the first step) to either the same cell or to two

mutually adjacent cells at time t, they are enemies, and a is on its home territory

while b is not. Freeing recognition is not considered in this simple model since
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we need to have a notion of persisting player states (captured or free) in order to

model freeing in a meaningful way.

• Baseline Model with States (B+S)

This second model builds on top of the previous one by introducing a notion that

players have states. If player a captures player b at time t, b enters a captured

state (in logic, isCaptured(b, t + 1)). Then b remains in captured state until he

moves (is snapped to a different cell at a later time) or the game ends. As per

rules of CTF, a player who is in captured state cannot be captured again.

Thus, this model works just like the previous one except whenever it is about to

label a capturing event, it checks the states of the involved players and outputs

capturing(a, b, t) only if both a and b are not in captured state.

Freeing recognition is implemented in an analogous way to capturing recognition.

Namely, every time a captured player b is about to transition to a free state, we

check if b has a free teammate a nearby (again, within the adjacent cells). If that

is the case, we output freeing(a, b, t).

• Dynamic Bayesian Network Model (DBN)

The dynamic Bayesian network model can be viewed as a probabilistic general-

ization of the above baseline model with states. The structure of the DBN model

for one player is shown in Figure 4.4. In each time slice, we have one hidden node

and four observed nodes, all of which represent binary random variables. We want

to infer the most likely state S for each player at any given time t over the course

of a game. The state is either free or captured and is hidden at testing time.

There are four observed random variables per time step that model player’s mo-

tion (M), presence or absence of at least one enemy (EN) and ally (AN) player

nearby, and finally player’s location on either home or enemy territory (ET ). Each

player is modeled by a separate DBN. Therefore, there are fourteen instantiated

DBNs for each game, but within any one game, all the DBNs share the same set

of parameters.

Note that the DBN model does not perform any GPS trajectory denoising itself.
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Figure 4.4: Two consecutive time slices of our dynamic Bayesian network for modeling

the state of an individual player P from observations. Shaded nodes represent observed

random variables, unfilled denote hidden variables. All random variables are binary.

(ETt = 1 when P is on enemy territory at time t, ENt = 1 when there is an enemy

nearby at time t, ANt = 1 when there is an ally nearby at time t, and finally Mt = 1 if

P has moved between time t−1 and t. The value of hidden state St is 1 if P is captured

at time t and 0 when P is free.)

To make a fair comparison with the Markov logic models, we use the denoising

component of the Markov logic theory using only constraints H1 and S1–S3 (in

Figure 4.3). This produces a denoised discretization of the data that is subse-

quently fed into the DBN model. The random variables within the DBN that

capture the notion of player “movement” and players being “nearby” one another

is defined on the occupancy grid of the game area, just like in the two determin-

istic baseline models. Namely, a player is said to be moving between time t and

t+ 1 when he or she is snapped to two different nonadjacent cells at those times.

Similarly, two players are nearby if they are snapped either to the same cell or to

two adjacent cells.

• Two-Step ML Model (2SML)

In the two-step approach, we have two separate theories in Markov logic. The

first theory is used to perform a preliminary snapping of each of the player tra-
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jectories individually using constraints H1 and S1–S3 (in Figure 4.3). This theory

is identical to the one used in the discretization step in the DBN model above.

The second theory then takes this preliminary denoising as a list of observed atoms

in the form preliminarySnap(a, c, t) (meaning player a is snapped to cell c at time

t) and uses the remaining constraints to label instances of capturing and freeing,

while considering cell adjacency in the same manner as the previous three models.

The two-step model constitutes a decomposition of the unified model (see below)

and overall contains virtually the same formulas, except 2SML operates with an

observed preliminarySnap predicate, whereas the unified model contains a hidden

snap predicate instead. Thus we omit elaborating on it further here.

• Unified ML Model (UML)

In the unified approach, we express all the hard constraints H1–H8 and soft con-

straints S1–S7 (Figure 4.3) in Markov logic as a single theory that jointly denoises

the data and labels game events. Selected interesting formulas are shown in Fig-

ure 4.6—their labels correspond to the listing in Figure 4.3. Note that formulas

S1–S3 contain real-valued functions d1, d2, and d3 respectively. d1 returns the dis-

tance between agent a and cell c at time t. Similarly, d2 returns the dissimilarity

of the two consecutive “snapping vectors”3 given agent a’s position at time t and

t + 1 and the location of the centers of two cells c1 and c2. Finally, since people

prefer to move in straight lines, function d3 quantifies the lack of smoothness of

any three consecutive segments of the trajectory. Since wp, ws, and wt are all

assigned negative values during training, formulas S1–S3 effectively softly enforce

the corresponding geometric constraints.

The presence of functions d1 through d3 renders formulas S1–S3 hybrid formulas.

This means that at inference time, the instantiated logical part of each formula

evaluates to either 1 (true) or 0 (false), which is in turn multiplied by the product

of the corresponding function value and the formula weight.

3The initial point of each snapping (projection) vector is a raw GPS reading and the terminal point

is the center of the cell we snap that reading to.
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We will see how we train, test, and evaluate these four models, and how they per-

form on the multi-agent activity recognition task in Section 4.6. Next, we turn to our

supervised learning method for augmenting the unified ML model in order to recognize

both successful and failed attempts at multi-agent activities.

4.5.2 Learning Models of Failed Attempts

In the work described above, we manually designed the structure of a Markov logic

network that models the capture the flag domain and allows us to jointly denoise the raw

GPS data and recognize instances of actual capturing and freeing. Now we show how to

automatically—in a supervised learning setting—extend this theory to encompass and

correctly label not only successful actions, but also failed attempts at those interactions.

That is, given the raw GPS data that represent the CTF games, we want our new model

to label instances where player a captures (or frees) player b as successful captures

(successful frees) and instances where player a almost captures (or frees) player b as

failed captures (failed frees). For example, by “failed capturing” we mean an instance of

players’ interactions where—up to a point—it appeared that a is capturing b, but when

we carefully consider the events that (potentially) preceded it as well as the impacts of

the supposed capture on the future unfolding of the game, we conclude that it is a false

alarm and no capture actually occurred. In other words, the conditions for a capture

were right, but later on, there was a pivotal moment that foiled the capturing agent’s

attempt.

For both activities (capturing and freeing), our model jointly finds an optimal sep-

aration between success and failure. Note that since we cast our model in second-order

Markov logic, we do not learn, e.g., an isolated rule that separates successful freeing from

a failed attempt at freeing. Rather—since capturing and freeing events (both actual and

failed) are related and thus labeling an activity as, say, “successful capturing” has far-

reaching impact on our past, present, and future labeling—we learn the separations

in a joint and unified way. Namely, both the structure (logical form) and importance

(weight) of each formula in our theory is considered with all its consequences and influ-

ence on other axioms in the theory. Our system thus finds an optimal balance between
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Hard formulas:

∀a, t ∃c : snap(a, c, t)(H1)

∀a, c, c′, t : (snap(a, c, t) ∧ c 6= c′)⇒ ¬snap(a, c′, t)

∀a1, a2, t : freeing(a1, a2, t)⇒
(
samePlace(a1, a2, t) ∧ isFree(a1, t)∧(H2)

¬enemies(a1, a2) ∧ isCaptured(a2, t) ∧ isFree(a2, t+ 1)∧

onEnemyTer(a1, t) ∧ onEnemyTer(a2, t)
)

∀a1, a2, t : capturing(a1, a2, t)⇒
(
samePlace(a1, a2, t) ∧ isFree(a1, t)∧(H3)

enemies(a1, a2) ∧ isFree(a2, t) ∧ isCaptured(a2, t+ 1)∧

onHomeTer(a1, t) ∧ onEnemyTer(a2, t)
)

∀a1, a2, t : samePlace(a1, a2, t)⇒
(
∃c1, c2 : snap(a1, c1, t) ∧ snap(a2, c2, t) ∧ adjacent(c1, c2)

)
∀a, t : (t = 0)⇒ isFree(a, t)(H4)

∀a, t : isCaptured(a, t)⊕ isFree(a, t)(H5)

∀a, t : (isFree(a, t) ∧ isCaptured(a, t+ 1))⇒ (∃=1a1 : capturing(a1, a, t))(H6)

∀a, t : (isCaptured(a, t) ∧ isFree(a, t+ 1))⇒ (∃=1a1 : freeing(a1, a, t))(H7)

∀a, t, c : (isCaptured(a, t) ∧ isCaptured(a, t+ 1) ∧ snap(a, c, t))⇒ snap(a, c, t+ 1)(H8)

Figure 4.5: Our hard formulas in Markov logic. See corresponding rules in Figure 4.3

for an English description and Table 4.1 for explanation of the predicates. In our

implementation, the actual rules are written in the syntax used by theBeast, a Markov

logic toolkit. (∃=1 denotes unique existential quantification, ⊕ designates exclusive or.)
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Soft formulas:

∀a, c, t :
[
snap(a, c, t)

]
· d1(a, c, t) · wp(S1)

∀a,c1, c2, t :
[
snap(a, c1, t) ∧ snap(a, c2, t+ 1)

]
· d2(a, c1, c2, t) · ws(S2)

∀a,c1, c2, c3, t :
[
snap(a, c1, t) ∧ snap(a, c2, t+ 1) ∧ snap(a, c3, t+ 2)

]
· d3(a, c1, c2, c3, t) · wt

(S3)

∀a1, a2, t : [(enemies(a1, a2) ∧ onHomeTer(a1, t)∧(S4)

onEnemyTer(a2, t) ∧ isFree(a2, t)∧

samePlace(a1, a2, t))⇒ capturing(a1, a2, t)] · wc

∀a1, a2, t : [(¬enemies(a1, a2) ∧ onEnemyTer(a1, t)∧(S5)

onEnemyTer(a2, t) ∧ samePlace(a1, a2, t) ∧ isFree(a1, t)

∧ isCaptured(a2, t))⇒ freeing(a1, a2, t)] · wf

∀a, c, t :
[
capturing(a, c, t)

]
· wcb(S6)

∀a, c, t : [freeing(a, c, t)] · wfb(S7)

Figure 4.6: Soft formulas in Markov logic. See corresponding rules in Figure 4.3 for

an English description. Each soft formula is written as a traditional quantified finite

first-order logic formula (e.g., ∀a, c, t :
[
snap(a, c, t)

]
), followed by an optional function

(e.g., d1(a, c, t)), followed by the weight of the formula (e.g., wp). This syntax denotes

that at inference time, the instantiated logical part of each formula evaluates to either 1

(true) or 0 (false), which is then effectively multiplied by the product of corresponding

function value and formula weight.
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success and failure in capturing and freeing activities with respect to the training data.

The Theory Augmentation Algorithm

In what follows, we will describe our Markov logic theory augmentation algorithm (Al-

gorithm 1). For clarity, we will explain how it works in concrete context of the ML

models of capture the flag we discussed in previous sections. However, the underlying

assumption that successful actions are in many ways similar to their failed counterparts,

and that minor—but crucial—deviations cause the failure to occur, often hold beyond

capture the flag. Therefore, the same algorithm is applicable to other domains with

different activities, as long as they are modeled in Markov logic.

Algorithm 1 : Extend a ML theory to model successful as well as failed activities.

Input: A: set of activities

MS : ML theory that models successful instances of activities in A

S: set of examples of successful activities

F : set of examples of failed activities

Output: MS+F : augmented ML model with learned weights that models both suc-

cessful and attempted activities in A

I: intended goals of the activities

1: M2
S ⇐ liftToSecondOrderML(MS , A)

2: M′S ⇐ instantiate(M2
S , A)

3: I ⇐ findIncompatibleFormulas(F , M′S)

4: MS+F ⇐ M′S \I

5: MS+F ⇐ learnWeights(S, F , MS+F )

6: MS+F ⇐ removeZeroWeightedFormulas(MS+F )

7: return MS+F , I

At a high-level, the augmentation algorithm belongs to the family of structure learn-

ing methods. Starting with a seed model of successful actions, it searches for new for-

mulas that can be added to the seed theory in order to jointly model both successfully

and unsuccessfully carried out actions. The declarative language bias—essentially rules
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for exploring the hypothesis space of candidate structures—is defined implicitly by the

notion that for any given activity, the structure of unsuccessful attempts is similar to

the successful attempts. Therefore, the augmentation algoritm goes through an “infla-

tion” stage, where formulas in the seed theory are generalized, followed by a refinement

stage, where superfluous and incompatible formulas in the inflated model are pruned

away. The refinement step also optimizes the weights within the newly induced theory.

We will now discuss this process in more detail.

The input of our theory augmentation algorithm consists of an initial first-order

ML theory MS that models successful capturing and freeing (such as the unified ML

model defined in Section 4.5.1 that contains formulas shown in Figures 4.5 and 4.6),

a set of activities of interest A, and a set of examples of successful (S) as well as

failed (F ) captures and frees. MS does not need to have weights for its soft formulas

specified. In case they are missing, we will learn them from scratch in the final steps of

the augmentation algorithm. If the weights are specified, the final weight learning step

for MS+F can leverage them to estimate the initial weight values. A can be specified

as a set of predicate names, e.g., {capturing, freeing}. Each example in sets S and

F describes a game segment and constitutes a truth assignment to the appropriate

literals instantiated from MS . Table 4.2 shows two toy examples of sets S and F for

three time steps. Since the goal is to learn a model of failed (and successful) attempts

in a supervised way, the example game segment in F contain activities labeled with

predicates failedCapturing() and failedFreeing().

IfMS contains hybrid formulas (such our formulas S1–S3 in Figure 4.6), the appro-

priate function definitions are provided as part of S and F as well. Each definition con-

sists of implicit mapping from input arguments to function values. For instance, function

d1 in formula S1 quantifies the L2 distance between the agent a and cell c at time t in the

projected Mercator space: d1(a, c, t) =
√

(a.gpsXt − c.gpsX)2 + (a.gpsYt − c.gpsY )2.

Our system goes through the following process in order to induce a new theory

MS+F that augmentsMS with a definition of failed attempts for each activity already

defined in MS .

First we lift MS to second-order Markov logic by variabilizing all predicates that
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Set S : Successful Capture Set F : Failed Capture

enemies(P1, P2) enemies(P4, P5)

enemies(P2, P1) enemies(P5, P4)

onEnemyTer(P5, 1)

onEnemyTer(P2, 2) onEnemyTer(P5, 2)

onEnemyTer(P2, 3) onEnemyTer(P5, 3)

capturing(P1, P2, 2) failedCapturing(P4, P5, 2)

isFree(P1, 1) isFree(P4, 1)

isFailedCaptured(P4, 1)

isFree(P1, 2) isFree(P4, 2)

isFailedCaptured(P4, 2)

isFree(P1, 3) isFree(P4, 3)

isFailedCaptured(P4, 3)

isFree(P2, 1) isFree(P5, 1)

isFailedCaptured(P5, 1)

isFree(P2, 2) isFree(P5, 2)

isFailedCaptured(P5, 2)

isCaptured(P2, 3) isFree(P5, 3)

isFailedCaptured(P5, 3)

snap(P1, C5, 1) snap(P4, C17, 1)

snap(P1, C10, 2) snap(P4, C34, 2)

snap(P1, C10, 3) snap(P4, C0, 3)

snap(P2, C9, 1) snap(P5, C6, 1)

snap(P2, C10, 2) snap(P5, C34, 2)

snap(P2, C10, 3) snap(P5, C7, 3)

samePlace(P1, P2, 2) samePlace(P4, P5, 2)

samePlace(P2, P1, 2) samePlace(P5, P4, 2)

samePlace(P1, P2, 3)

samePlace(P2, P1, 3)

Table 4.2: Two examples of a logical representation of successful (S) as well as failed (F )

capture events that are input to Algorithm 1. The closed-world assumption is applied,

therefore all atoms not listed are assumed to be false. For clarity, we omit listing the

adjacent() predicate.
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correspond to the activities of interest (step 1 of Algorithm 1). This yields a lifted the-

oryM2
S . More concretely, in order to apply this technique in our domain, we introduce

new predicate variables captureType (whose domain is {capturing, failedCapturing}),

freeType (over {freeing, failedFreeing}), and stateType (over {isCaptured, isFailedCap-

tured, isFree, isFailedFree}). For instance, variabilizing a first-order ML formula

freeing(a, b, t) ⇒ ¬enemies(a, b) yields a second-order ML formula freeType(a, b, t) ⇒

¬enemies(a, b) (note that freeType is now a variable). Instantiating back to first-

order yields two formulas: freeing(a, b, t) ⇒ ¬enemies(a, b) and failedFreeing(a, b, t) ⇒

¬enemies(a, b).

As far as agents’ behavior is concerned, in the CTF domain, isCaptured is equivalent

to isFailedFree, and isFree is equivalent to isFailedCaptured. As we will soon see, the

theory augmentation process learns these equivalence classes and other relationships

between states from training examples by expanding and subsequently refining formula

H5 in Figure 4.5. While we could work with only the isCaptured predicate and its

negation to represent agents’ states, we feel that having explicit failure states makes

our discussion clearer. Furthermore, future work will need to address hierarchies of

activities, including their failures. In that context, a representation of explicit failure

states may not only be convenient, but may be necessary.

Next, we instantiate all predicate variables in M2
S to produce a new first-order ML

theoryM′S that contains the original theoryMS in its entirety plus new formulas that

correspond to failed captures and frees (step 2). Since events that are, e.g., near-captures

appear similar to actual successful captures, our hypothesis is that we do not need to

drastically modify the original “successful” formulas in order to model the failed activi-

ties as well. In practice, the above process of lifting and instantiating indeed results in a

good seed theory. While we could emulate the lifting and grounding steps with a scheme

of copying formulas and renaming predicates in the duplicates appropriately, we cast our

approach in principled second-order Markov logic, which ties our work more closely to

previous research and results in a more extensible framework. Specifically, second-order

Markov logic has been successfully used in deep transfer learning (Davis and Domingos,

2009) and predicate invention (Kok and Domingos, 2007a). Therefore, an interesting
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direction of future work is to combine our theory augmentation and refinement with

transfer and inductive learning—operating in second-order ML—to jointly induce mod-

els of failed attempts of different activities in different domains, while starting with a

single model of only successful activities in the source domain.

Typical structure learning and inductive logic programming techniques start with an

initial (perhaps empty) theory and iteratively grow and refine it in order to find a form

that fits the training data well. In order to avoid searching the generally huge space of

hypotheses, a declarative bias is either specified by hand or mined from the data. The

declarative bias then restricts the set of possible refinements of the formulas that the

search algorithm can apply. Common restrictions include limiting formula length, and

adding a new predicate to a formula only when it shares at least one variable with some

predicate already present in the formula. On the other hand, in our approach, we first

generate our seed theory by instantiating all the activity-related predicate variables. To

put it into context of structure learning, we expand the input model in order to generate

a large seed theory, and then apply bottom-up (data-driven) learning to prune the seed

theory, whereby the training data guides our search for formulas to remove as well as

for an optimal set of weights on the remaining formulas. We conjecture that any failed

attempt at an activity always violates at least one constraint that holds for successful

executions of the activity. The experiments below support this conjecture.

The pruning is done in steps 3 and 4 of Algorithm 1. The function

findIncompatibleFormulas(F , M′S) returns a set of hard formulas in M′S that are in-

compatible with the set of examples of failed interactions F . We say that a formula

c is compatible with respect to a set of examples F if F logically entails c (F |= c).

Conversely, if F does not entail c, we say that c is incompatible w.r.t. F . We explain

how to find incompatible formulas in the next section.

In step 4 of Algorithm 1, we simply remove all incompatible formulas (I) from the

theory. At this point, we have our MS+F model, where hard formulas are guaranteed

logically consistent with the examples of failed activities (because we removed the in-

compatible hard formulas), as well as with the successful activities (because they were

logically consistent to start with). However, the soft formulas in MS+F are missing
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properly updated weights (in Markov logic, the weight of each hard formula is simply

set to +∞). Therefore, we run Markov logic weight learning using theBeast package

(step 5).

Recall that theBeast implements the cutting plane meta solving scheme for inference

in Markov logic, where the ground ML network is reduced to an integer linear program

that is subsequently solved by the LpSolve ILP solver. We chose this approach as op-

posed to, e.g., MaxWalkSAT that may find a solution that is merely locally optimal,

since the resulting run times are still relatively short (under an hour even for training

and testing even the most complex model). Weights are learned discriminatively, where

we directly model the posterior conditional probability of the hidden predicates given

the observed predicates. We set theBeast to optimize the weights of the soft formu-

las via supervised on-line learning using margin infused relaxed algorithm (MIRA) for

weight updates while the loss function is computed from the number of false positives

and false negatives over the hidden atoms. Note that if any of the soft formulas are

truly irrelevant with respect to the training examples, they are not picked out by the

findIncompatibleFormulas() function, but their weights are set to zero (or very close

to zero) in the weight learning step (line 5 in Algorithm 1). These zero-weighted for-

mulas are subsequently removed in the following step. Note that the weight learning

process does not need to experience a “cold” start, as an initial setting of weights can

be inherited from the input theory MS .

Finally, we return the learned theoryMS+F , whose formulas are optimally weighted

with respect to all training examples. In the Experiments and Results section below,

we will use MS+F to recognize both successful and failed activities. Algorithm 1 also

returns the incompatible hard formulas I. We will see how I is used to extract the

intended goal of the activities in the Section 4.5.3, but first, let us discuss step 3 of

Algorithm 1 in more detail.

Consistency Check: Finding Incompatible Formulas

Now we turn to our method for finding incompatible formulas (summarized in Al-

gorithm 2). Since our method leverages satisfiability testing to determine consistency
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between candidate theories and possible worlds (examples),4 Algorithm 2 can be viewed

as an instance of learning from interpretations—a learning setting in the inductive logic

programming literature (De Raedt, 2008).

Algorithm 2 (findIncompatibleFormulas). Find formulas in a ML theory that are

logically inconsistent with examples of execution of failed activities.

Input: F : a set of examples of failed activities

T : unrefined ML theory of successful and failed activities

Output: smallest set of formulas that appear in T and are unsatisfiable in the worlds

in F

1: O ⇐ extractObjects(F )

2: Thard ⇐ T \ Tsoft

3: integer n⇐ 0

4: boolean result ⇐ false

5: while result == false do

6: T c ⇐ Thard

7: remove a new n-tuple of formulas from T c

8: if for the current n, all n-tuples have been tested then

9: n⇐ n+ 1

10: end if

11: result ⇐ testSAT(F , T c, O)

12: end while

13: return Thard \ T c

As input, we take a set of examples of failed activities F and a seed theory T (e.g.,

produced in step 2 of Algorithm 1). The output is the smallest set of hard formulas

that appear in T and are logically inconsistent with F . The algorithm first extracts the

set of all objects O that appear in F (step 1 in Algorithm 2), while keeping track of

the type of each object. For example, suppose there are only two example worlds in F

shown in Table 4.3. Then extractObjects(F ) returns {P1, P2, P7, P8, C3, C5, 1, 2}.

4This is often referred to as the covers relation in inductive logic programming.
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Example 1 Example 2

snap(P1, C5, 1) snap(P7, C3, 2)

snap(P2, C5, 1) snap(P8, C3, 2)

failedCapturing(P1, P2, 1) failedFreeing(P2, P5, 2)

Table 4.3: Two simple examples of a logical representation a failed capture event.

In step 2, we limit ourselves to only hard formulas when testing compatibility. We

do so since we can prove incompatibility only for hard formulas. Soft constraints can be

violated many times in the data and yet we may not want to eliminate them. Instead,

we want to merely adjust their weights, which is exactly what we do in our approach.

Therefore, Thard contains only hard formulas that appear in T . Next, on lines 5 through

12, we check if the entire unmodified Thard is compatible (since for n = 0, we do not

remove any formulas). If it is compatible, we return an empty set indicating that all

the hard formulas in the original seed theory T are compatible with the examples. If

we detect incompatibility, we will need to remove some, and perhaps even all, hard

formulas in order to arrive at a logically consistent theory. Therefore, we incrementally

start removing n-tuples of formulas. That is, in the subsequent |Thard| iterations of the

while loop, we determine if we can restore consistency by removing any one of the hard

formulas in Thard. If we can, we return the set Thard \ fi, where fi is the identified and

removed incompatible formula. If consistency cannot be restored by removing a single

formula, we in turn begin considering pairs of formulas (n = 2), triples (n = 3), etc.

until we find a pruned theory T c that is consistent with all examples.

In general, we do need to consider n-tuples of formulas, rather than testing each

formula in isolation. This is due to disjunctive formulas in conjunction with an possibly

incomplete truth assignment in the training data. Consider the following theory in
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propositional logic:

f1 = ¬a ∨ b

f2 = ¬b ∨ c

Data: a ∧ ¬c

(Following the closed-world assumption, the negated atom c would actually not appear

in the training data, but we explicitly include it in this example for clarity.) While f1

and f2 are each individually consistent with the data, f1 ∧ f2 is inconsistent with the

data. More complicated examples can be constructed, where every group of k formulas

is inconsistent with the data, even though the individual formulas are. In a special case

where the truth values of all atoms in the training examples are known, the formulas can

be tested for consistency individually, which reduces the original exponential number of

iterations Algorithm 2 executes, in the worst case, to a linear complexity. An interesting

direction for future work is to explore applications of logical methods to lower the

computational cost for the general case of partially observed data.

We also note that some hard formulas model physical constraints or inviolable rules

of capture the flag, and therefore hold universally. Appropriately, these formulas are not

eliminated by Algorithm 2. As an example, consider formula H1 in Figure 4.5, which

asserts that each player occupies exactly one cell at any given time. This formula is

satisfied in games that include both successful and failed activities. On the other hand,

consider formula H8 in the same figure. It contains a captured player to the cell he was

captured in (following the “captured players cannot move” rule of CTF). While this

holds for successful capturing events, it does not necessarily hold for failed attempts at

capturing. Therefore, when rule H8 is expanded via second-order ML, only some of the

derived formulas are going to be consistent with the observations.

Specifically, the candidate formula in Equation 4.1 will be pruned away, as it is

inconsistent with the training examples, i.e., players that were only nearly captured

continue to be free to move about. However, the remaining three variants of formula

H8 will not be pruned away. Equation 4.2 will always evaluate to true, since if someone

attempts to re-capture an already captured player a, a does indeed remain stationary.
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Similarly, Equation 4.3 is also consistent with all the example CTF games because

if there is a failed attempt at capture immediately followed by a successful capture,

the captured player does remain in place from time t onward. Finally, Equation 4.4

is compatible as well, since it is the original formula H8 that is consistent with the

observations.

(4.1)

∀a, t, c :
(
isFailedCaptured(a, t)∧isFailedCaptured(a, t+1)∧snap(a, c, t)

)
⇒ snap(a, c, t+1)

(4.2)

∀a, t, c :
(
isCaptured(a, t)∧ isFailedCaptured(a, t+ 1)∧ snap(a, c, t)

)
⇒ snap(a, c, t+ 1)

(4.3)

∀a, t, c :
(
isFailedCaptured(a, t)∧ isCaptured(a, t+ 1)∧ snap(a, c, t)

)
⇒ snap(a, c, t+ 1)

(4.4) ∀a, t, c :
(
isCaptured(a, t)∧ isCaptured(a, t+ 1)∧ snap(a, c, t)

)
⇒ snap(a, c, t+ 1)

The function testSAT() (line 11 in Algorithm 2) checks whether a given candidate

theory T c is compatible with the examples F by the following process. First, we ground

T c using the objects in O, thereby creating a ground theory G. For example, if T c =

{p(x) ⇒ q(x)} and O = {B,W}, the grounding would be G = {p(B) ⇒ q(B), p(W ) ⇒

q(W )}. Then we check if G ∪ Fhidden is satisfiable using the miniSAT solver, where

Fhidden is simply the set of hidden atoms that appear in F . Intuitively, this corresponds

to testing whether we can “plug in” the worlds in F into T c while satisfying all the hard

constraints. Though satisfiability is an NP-complete problem, in practice testSAT()

completes within tenths of a second even for the largest problems in our CTF domain.

For instance, suppose Fhidden = {p(B),¬q(B)}. Then we test satisfiability of the

formula (
p(B)⇒ q(B)

)
∧
(
p(W )⇒ q(W )

)
∧ p(B) ∧ ¬q(B).



45

In this case we cannot satisfy it since we are forced to set p(B) to true and q(B) to

false, which renders the first clause—and therefore the whole formula—false.

An alternative approach to pruning formulas via satisfiability testing, as we have just

described, would be to treat both types of formulas (hard and soft) in the inflated theory

M′S as strictly soft formulas and learning a weight for each formula from examples of

both successful and failed game events. However, this introduces several complications

that negatively impact the system’s performance as well as model clarity. First, the

number of formulas in the inflated theory can be exponentially larger than in the seed

theory. While the instantiation of the second-order ML representation can be quanti-

fied to limit this expansion, we still have worst-case exponential blow-up. By treating

all formulas as soft ones, we now need to potentially learn many more weights. This

is especially problematic for activities that occur rarely, as we may not have enough

training data to properly learn those weights. Eliminating the hard candidate formu-

las by proving them inconsistent dramatically reduces the number of parameters we

have to model. While satisfiability testing is NP-complete, weight learning in Markov

logic entails running inference multiple times, which is itself in general a #P-complete

problem.

The second reason for distinguishing between soft and hard formulas is the resulting

clarity and elegance of the final learned modelMS+F . Even in situations when we have

enough training data to properly learn a large number of weights, we run into overfitting

problems, where neither the structure nor the parameters of the model represent the

domain in a natural way. Our experiments have shown that if we skip the pruning stage

(steps 3 and 4 in Algorithm 1), the model’s recognition performance does not differ from

that of a pruned model in a significant way (p-value of 0.45). However, we end up with

a large number of soft formulas with a mixture of positive and negative weights that the

learning algorithm carefully tuned and balanced to fit the training data. They however

bear little relationship to the concepts in the underlying domain. Not only does this

make it very hard for a human expert to analyze the model, but it makes it even harder

to modify the model.

For these reasons, softening all hard formulas is, in general, infeasible. An interesting
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direction of future work will be to identify a small amount of key inconsistent hard

formulas to soften, while eliminating the rest of the inconsistent hard formulas. This

however entails searching in a large space of candidate subsets of softened formulas,

where each iteration requires expensive re-learning of all weights.

Note that Algorithm 2 terminates as soon as it finds a compatible theory that

requires the smallest number of formula-removals. We also experimented with an active

learning component to our system, where we modify Algorithms 1 and 2 such that they

present several possible refinements of the theory to the user who then selects the one

that looks best. The proposed modifications are shown both at the ML theory level with

modified sections (formulas) highlighted as well as at the data level where the program

shows the inferred consequences of those modifications. For each candidate modification,

the corresponding consequences are displayed as a collection of animations where each

animation shows what the results of activity recognition would be if we committed to

that particular candidate theory. Note that even people who do not have background

in ML can interact with such a system since the visualization is easy to understand.

Interestingly, in the case of captures and frees, the least modified theory that the “off-

line” version of the algorithm finds is also the best one and therefore there is no need to

query the user. One can view this as a differential variant of Occam’s razor. However,

for different activities or other domains, the active learning approach may be worth

revisiting and we leave its exploration for future work.

Finally, general structure learning techniques from statistical-relational AI and from

inductive logic programming are not applicable as a substitute for our theory augmen-

tation algorithm for several reasons. The main reason is that, for efficiency reasons,

existing techniques in the literature typically operate over a very restricted set of for-

mula templates. That is, they consider only Horn clauses, or only formulas without an

existential quantifier, or only formulas with at most k literals or with at most l variables,

and so on. This set of restrictions is part of the language bias of any given approach.

While in principle, structure learning is possible without a language bias, one often has

to carefully define one for the sake of tractability (see the Section 4.7 for details). In

our approach, the language bias is defined implicitly as discussed in Section 4.5.2.
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4.5.3 Extracting The Goal From Success and Failure

Recall that applying the theory augmentation process (Algorithm 1) on the CTF seed

theory of successful interactions (shown in Figures 4.5 and 4.6) induces a new set of

formulas that capture the structure of failed activities and ties them together with the

existing formulas in the seed theory.

The logically inconsistent formulas I that Algorithm 2 returns are ones that are

not satisfiable in the worlds with failed activities. At the same time, variants of those

formulas were consistent with the examples of successful actions occurring in the games.

Therefore, I represents the difference between a theory that models only successful

activities and the augmented theory of both successful and failed actions, that has been

derived from it. Intuitively, the difference between success and failure can be viewed as

the intended purpose of any given activity a rational agent executes, and consequently

as the goal the agent has in mind when he engages in that particular activity. In the

next section, we will explore the goals extracted from the CTF domain in this fashion.

This concludes discussion of our models and methodology, and now we turn to

experimental evaluation of the framework presented above.

4.6 Experiments and Results

We evaluate our approach along the three major directions outlined in Section 4.5

(Methodology), while focusing on answering the four research questions formulated ibi-

dem. The structure of this section closely follows that of the Methodology section.

In a nutshell, we are first interested in how our Markov logic models perform on

the standard multi-agent activity recognition task—labeling successful activities—and

how their performance compares to the alternative models. Second, we examine the

augmented model that captures both successful and failed attempts at activities. This

is the modelMS+F induced by Algorithm 1, which also lets us extract the intended goal

of the activities in question. Third, we compare the performance of MS+F on the task

of jointly recognizing all four activities with that of an alternative model. Finally, we
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investigate to what extent the reasoning about failed attempts does help in recognition

of successfully executed activities.

All experiments are performed on our capture the flag dataset consisting of four

separate games. The dataset is summarized in Table 4.4, where for each game we list

the number of raw GPS readings and the number of instances of each activity of interest.

We evaluate the models via four-fold cross-validation, always training on three games (if

training is required for a model) and testing against the fourth. For each experimental

condition below, we report precision, recall, and F1 scores attained by each respective

model over the four cross-validation runs. We have purposefully chosen to split the data

so that each cross-validation fold directly corresponds to a separate game of CTF for

conceptual convenience and clarity. As we discussed above, the events occurring in the

games often have far-reaching consequences. For example, most captured players are

never freed by their allies. Therefore, a capture at the beginning of a game typically

profoundly influences the entire rest of the game. For this reason, splitting the games

randomly or even manually would introduce unnecessary complications, as most of the

segments would have dependencies on other segments. By enforcing that each fold

exactly corresponds with a different game, we make each fold self-contained.

To quantify the statistical significance of the pair-wise differences between models,

we use a generalized probabilistic interpretation of F1 score (Goutte and Gaussier,

2005). Namely, we express F1 scores in terms of gamma variates derived from models’

true positives, false positives, and false negatives (Goutte and Gaussier, 2005, λ = 0.5,

h = 1.0, cf.,). This approach makes it possible to compare our results to future work

that may apply alternative models on similar, but not identical, datasets. A future

comparison may, for instance, include additional games or introduce random splits of

the data. We note that standard statistical significance tests cannot be applied in

those situations. All p-values reported are one sided, as we are interested if models’

performance significantly improves as their level of sophistication increases.



49

#GPS #AC #FC #AF #FF

Game 1 13,412 2 15 2 1

Game 2 14,420 2 34 2 1

Game 3 3,472 6 12 0 2

Game 4 10,850 3 4 1 0

Total 42,154 13 65 5 4

Table 4.4: CTF dataset overview: #GPS is the total number of raw GPS readings,

#AC and #FC is the number actual (successful) and failed captures respectively, and

analogously for freeings (#AF and #FF).

4.6.1 Recognition of Successful Activities

Recall that for both our two-step (2SML) and unified (UML) Markov logic models, we

specify the Markov logic formulas by hand and optimize the weights of the soft formulas

via supervised on-line learning. We run a modified version of theBeast software package

to perform weight learning and MAP inference. theBeast implements the cutting plane

meta solving scheme for inference in Markov logic, where the ground ML network is

reduced to an integer linear program that is subsequently solved by the LpSolve ILP

solver. We chose this approach as opposed to, e.g., MaxWalkSAT that can get “stuck”

at a local optimum, since the resulting run times are still relatively short (under an

hour even for training and testing even the most complex model).

At weight learning time, we use the margin infused relaxed algorithm (MIRA) for

weight updates while the loss function is computed from the number of false positives

and false negatives over the hidden atoms, as described in the Methodology section.

The discretization step for the dynamic Bayesian network model (DBN) is implemented

in Markov logic and is also executed in this fashion. The DBN model is trained via

maximum likelihood as described in Section 3.2.1. The two deterministic baselines (B

and B+S) do not require any training phase.

At inference time, we are interested in the most likely explanation of the data. In
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Markov logic, maximum a posteriori inference reduces to finding a complete truth as-

signment that satisfies all the hard constraints while maximizing the sum of the weights

of the satisfied soft formulas. At testing time, theBeast Markov logic solver finds the

most likely truth assignment to the hidden atoms as described above, and in this section

we are specifically interested in the values of the capturing and freeing atoms.

In DBNs, the most likely explanation of the observations is equivalent to Viterbi

decoding. The DBN model assigns either free or captured state to each player for every

time step. We then label all transitions from free to captured state as capturing and

all transitions from captured to free as freeing. Note that the DBN model is capable of

determining which player is being freed or captured, but it does not model which player

does the freeing or capturing. In our evaluation, we give it the benefit of the doubt and

assume it always outputs the correct actor.

For all models, inference is done simultaneously over an entire game (on average,

about 10 minutes worth of data). Note that we do not restrict inference to a (small)

sliding time window. As the experiments described below show, many events in this

domain can only be definitely recognized long after they occur. For example, GPS noise

may make it impossible to determine whether a player has been captured at the moment

of encounter with an enemy, but as the player thereafter remains in place for a long

time, the possibility of his capture becomes certain.

Figures 4.7 and 4.8 summarize the performance of our models of successful capturing

and freeing in terms of precision, recall, and F1 score calculated over the four cross-

validation runs. For clarity, we present the results in two separate plots, but each

model was jointly labeling both capturing and freeing activities. We do not consider

the baseline model for freeing recognition as that activity makes little sense without

having a notion of player state (captured or free).

We see that the unified approach yields the best results for both activities. Let us

focus on capturing first (Figure 4.7). Overall, the unified model labels 11 out of 13

captures correctly—there are only two false negatives. In fact, these two capture events

are missed by all the models because they involve two enemies that appear unusually

far apart (about 12 meters) in the raw data. Even the unified approach fails on this
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Figure 4.7: Comparison of performance of the five models on capturing recognition

while doing joint inference over both capturing and freeing events. See Table 4.5 for

statistical significance analysis of the pairwise differences between models. (B = baseline

model, B+S = baseline model with states, 2SML = two-step Markov logic model, UML

= unified Markov logic model)

instance since the cost of adjusting the players’ trajectories—thereby losing score due

to violation of the geometry-based constraints—is not compensated for by the potential

gain from labeling an additional capture.

Note that even the two-step approach recognizes 10 out of 13 captures. As compared

to the unified model, it misses one additional instance in which the involved players,

being moderately far apart, are snapped to mutually nonadjacent cells. On the other

hand, the unified model does not fail in this situation because it is not limited by prior

nonrelational snapping to a few nearby cells. However, the difference between their

performance on our dataset is not statistically significant even at the 0.05 level (p-value

of 0.32).

Both deterministic baseline models (B and B+S) perform very poorly. Although

they yield a respectable recall, they produce an overwhelming amount of false positives.

This shows that even relatively comprehensive pattern matching does not work at all
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Figure 4.8: Comparison of performance of our three models on freeing recognition while

doing joint inference over both capturing and freeing events. See Table 4.6 for statistical

significance analysis of the pairwise differences between models. (B+S = baseline model

with states, 2SML = two-step Markov logic model, UML = unified Markov logic model)

in this domain. Interestingly, the performance of the DBN model leaves much to be

desired as well, especially in terms of precision. While the DBN model is significantly

better than both baselines (p-value less than 5.9 × 10−5), it also achieves significantly

worse performance than both the Markov logic models (p-value less than 0.0002; see

Table 4.5).

Table 4.5 summarizes p-values of pairwise differences between models of actual (i.e.,

successful) capturing. While the difference between the Markov logic-based models

(2SML and UML) are not statistically significant (p-value of 0.32), pairwise differences

in F1 scores between all other models are significant at the 0.02 level, and most often

even at much lower p-values.

Though the unified model still outperforms its alternatives in the case of freeing

recognition as well, its performance is further from ideal as compared to the capture

recognition case (Figure 4.8). It correctly identifies only 3 out of 5 freeing events in the

games, but does not produce any false positives. This is partly due to the dependency of
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B+S DBN 2SML UML

B 0.0192 3.6× 10−6 5.1× 10−7 2.9× 10−7

B+S - 5.9× 10−5 9.4× 10−6 1.4× 10−6

DBN - - 0.0002 8.0× 10−5

2SML - - - 0.3230

Table 4.5: Summary of statistical significance (one sided p-values) of the pairwise dif-

ferences between F1 scores for models of actual capturing. (B = baseline model, B+S =

baseline model with states, DBN = dynamic Bayesian network model, 2SML = two-step

Markov logic model, UML = unified Markov logic model)

DBN 2SML UML

B+S 0.2739 0.0733 0.0162

DBN - 0.1672 0.0497

2SML - - 0.2743

Table 4.6: Summary of statistical significance (one sided p-values) of the pairwise dif-

ferences between F1 scores for models of actual freeing. (B+S = baseline model with

states, DBN = dynamic Bayesian network model, 2SML = two-step Markov logic model,

UML = unified Markov logic model)
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freeing on capturing. A failure of a model to recognize a capture precludes its recognition

of a future freeing. Another reason is the extreme sparseness of the freeing events (there

are only five of them in 40,000+ datapoints). Finally, in some instances players barely

move after they had been freed. This may occur for a number of reasons ranging from

already occupying a strategic spot to simply being tired. Such freeing instances are

very challenging for any automated system, and even people familiar with the game

to recognize (several situations would have been extremely hard to disambiguate if we

didn’t have access to our notes about data collection).

The two-step ML model does a slightly worse job than the unified model on freeing

recognition. It correctly identifies only 2 out of 5 freeings for the same reasons as in

the capturing recognition case. Similarly to models of actual captures, the difference

between the unified and two-step freeing models is not statistically significant (p-value

of 0.27).

Table 4.6 summarizes p-values of pairwise differences between models of actual (i.e.,

successful) freeing. Here we see that only the difference between B+S and UML models

is statistically significant (p-value of 0.01), whereas the differences between the rest of

the model pairs are not statistically significant. Since there are only five instances of

successful freeing, the 2SML model does not perform significantly better than the B+S

model at the 0.05 significance level (p-value of 0.07). However, the UML model achieves

better recognition results than even the DBN model with high confidence (p-value less

than 0.05). Therefore, we see that although the 2SML model strictly dominates the

non-Markov logic models when evaluated on capturing recognition, we need the full

power of the unified ML model to strictly outperform the nonrelational alternatives

for freeing. This suggests that as we move to more complex and more interdependent

activities, relational and unified modeling approaches will be winning by larger and

larger margins.

Even though the statistical significance tests suggest that 2SML is likely to give

similar results to UML, it is important to note that 2SML, by design, precludes recog-

nition of the activities in question in certain situations. Namely, as our experiments

demonstrate, when the players are snapped to cells that are too far apart, the two-step
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model does not even consider those instances as candidates for labeling, and inevitably

fails at recognizing them. Therefore, one needs to look beyond the p-values obtained

when comparing the fully unified models to various alternatives.

As expected from the experiments with capturing recognition, both deterministic

baseline models perform very poorly on freeing recognition as well. Not only do they

produce an overwhelming amount of false positives, they also fail to recognize most of

the freeing events.

Thus, we see that the models cast in Markov logic perform significantly better than

both of the deterministic baseline models, and also better than the probabilistic, but

nonrelational, DBN model. We note that the DBN model has the potential to be quite

powerful and similar DBNs have been applied with great success in previous work on

activity recognition from location data (Eagle and Pentland, 2006; Liao et al., 2007b).

It also has many similarities with the two-step ML model. They both share the same

denoising and discretization step, and they both operate on the same observed data.

The key difference is that the DBN model considers players individually, whereas the

two-step ML model performs joint reasoning.

Looking at the actual CTF game data, we see several concrete examples of how

this hurts DBN’s labeling accuracy. For instance, consider a situation where two allies

had been captured near each other. Performing inference about individual players in

isolation allows the DBN model to infer that the two players effectively free each other,

even though in reality they are both captured and cannot do so. This occurs because the

DBN model is oblivious to the explicit states of one’s teammates as well as opponents.

Since capturing and freeing are interdependent, the obliviousness of the DBN model to

the state of the actors negatively impacts its recognition performance for both activities.

The example we just gave illustrates one type of freeing false positives. The hallucinated

freeings create opportunities that often lead to false positives of captures, creating a

vicious cycle. False negatives of freeing (capturing) events often occur for players who

the model incorrectly believes have already been freed (captured) at a prior time.

Since the Markov logic based models are significantly better—with a high level of

confidence—than the alternatives that are not fully relational, the experiments above
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validate our hypothesis that we need to exploit the rich relational and temporal struc-

ture of the domain in a probabilistic way and at the same time affirmatively answer

research question Q1 (Can we reliably recognize complex multi-agent activities in the

CTF dataset even in the presence of severe noise? ). Namely, we show that although

relatively powerful probabilistic models are not sufficient to achieve high labeling accu-

racy, we can gain significant improvements by formulating the recognition problem as

learning and inference in Markov logic networks.

Now we turn to the evaluation of our method of learning models of both success and

failure in people’s activities.

4.6.2 Learned Formulas and Intentions

Applying the theory augmentation process (Algorithm 1) on the CTF seed theory

(shown in Figures 4.5 and 4.6) induces a new set of formulas that capture the structure

of failed activities and ties them together with the existing formulas in the theory. We

call this model MS+F . Figure 4.9 shows examples of new weighted formulas modeling

failed freeing and capturing attempts that appear in MS+F .

First, note that our system correctly carries over the basic preconditions of each

activity (contrast formulas S4 with S4′ and S5 with S5′ in Figures 4.6 and 4.9 respec-

tively). This allows it to reliably recognize both successful and failed actions instead of,

e.g., merely labeling all events that at some point in time appear to resemble a capture

as near-capture. This re-use of preconditions directly follows from the language bias of

the theory augmentation algorithm.

Turning our attention to the learned hard formulas, we observe that the system cor-

rectly induced equivalence classes of the states, and also derived their mutual exclusion

relationships (H5′). It furthermore tied the new failure states to their corresponding

instantaneous interactions (H6′ and H7′).

Finally, the algorithm correctly discovers that the rule “If a player is captured then

he or she must remain in the same location” (H8, Figure 4.5) is the key distinction

between a successful and failed capture (since players who were not actually captured
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can still move). Therefore, it introduces an appropriate rule for the failed captures (H8′,

Figure 4.9) explicitly stating that failed capturing does not confine the near-captured

player to remain in stationary. An analogous process yields a fitting separation between

failed and successful freeings. Namely, our model learns that an unsuccessfully freed

player remains stationary. This learned difference between success and failure in players’

actions directly corresponds to the goal of the activity and consequently the intent of

rational actors. This difference is what our system outputs as the intended goal of

capturing activity (and analogously for freeing).

These experimental results provide an evidence for a resounding “yes” to both Q2

(Can models of attempted activities be automatically learned by leveraging existing mod-

els of successfully performed actions? ) and Q3 (Does modeling both success and failure

allow us to infer the respective goals of the activities? ) within the CTF domain.

We note that instead of applying our automated theory augmentation method, a

person could, in principle, manually formulate a Markov logic theory of successful as

well as failed activities by observing the games. After all, this is how we designed the

initial seed model of successful events. However, this process is extremely time consum-

ing, as one tends to omit encoding facts that to us, humans, seem self-evident but need

to be explicitly articulated for the machine (e.g., a single person cannot be at ten dif-

ferent places at once, or that a player is either free or captured but not both). It is also

surprisingly easy to introduce errors in the theory, that are difficult to debug, mostly

because of the complex weight learning techniques involved. Therefore, we believe that

the theory augmentation method is a significant step forward in enhancing models’ ca-

pabilities while requiring small amounts of human effort. As the complexity of domains

and their models increases, this advantage will gain larger and larger importance.

4.6.3 Recognition of Both Successful and Failed Activities

We now compare the performance of our model MS+F to an alternative (baseline)

method that labels all four activities in the following way. Similarly to the baseline

with states model for successful interactions defined in Section 4.5.1, there are two

separate stages. First we snap each GPS reading to the nearest cell by applying only
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∀a1, a2, t : [(enemies(a1, a2) ∧ onHomeTer(a1, t)∧(S4′)

onEnemyTer(a2, t) ∧ samePlace(a1, a2, t) ∧ isFree(a1, t)

∧ isFree(a2, t))⇒ failedCapturing(a1, a2, t)] · 11.206

∀a1, a2, t : [(¬enemies(a1, a2) ∧ onEnemyTer(a1, t)∧(S5′)

onEnemyTer(a2, t) ∧ samePlace(a1, a2, t) ∧ isFree(a1, t)

∧ isCaptured(a2, t))⇒ failedFreeing(a1, a2, t)] · 1.483

∀a1, a2, t : [failedCapturing(a1, a2, t)] · (−0.0001)(S6′)

∀a1, a2, t : [failedFreeing(a1, a2, t)] · (−0.002)(S7′)

¬∀a, t : isFailedCaptured(a, t)⊕ isFree(a, t)(H5′)

¬∀a, t : isCaptured(a, t)⊕ isFailedFree(a, t)

∀a, t : isFailedCaptured(a, t)⇔ isFree(a, t)

∀a, t : isCaptured(a, t)⇔ isFailedFree(a, t)

∀a, t : (isFree(a, t) ∧ isFailedCaptured(a, t+ 1))⇒ (∃=1a1 : failedCapturing(a1, a, t))(H6′)

∀a, t : (isCaptured(a, t) ∧ isFailedFree(a, t+ 1))⇒ (∃=1a1 : failedFreeing(a1, a, t))(H7′)

¬∀a, t, c : (isFailedCaptured(a, t) ∧ isFailedCaptured(a, t + 1) ∧ snap(a, c, t))⇒ snap(a, c, t + 1)

(H8′)

Figure 4.9: Example formulas, learned by Algorithm 1, that model unsuccessful cap-

turing and freeing events. The crucial intent recognition formula (H8′) is highlighted

in bold. Formulas eliminated by Algorithm 2 are preceded by the ¬ symbol, and are

not included in the induced modelMS+F . The identity isCaptured(a, t) = ¬isFree(a, t)

is applied throughout refining to show the formulas in a more intuitive fashion. For

concreteness sake, the values of the learned weights here come from one cross-validation

run (and are similar in other runs).
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Figure 4.10: Performance of the baseline and augmented (MS+F ) models on joint

recognition of successful and failed capturing and freeing. The F1 score of the augmented

model is significantly better than that of the baseline for all four target activities (p-

value less than 1.3× 10−4). AC = actual (successful) capturing, FC = failed capturing,

AF = actual freeing, FF = failed freeing.
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the geometric constraints (H1 and S1–S3) of our theory, and afterward we label the

instances of our activities. The following labeling rule is applied. We loop over the

whole discretized (via snapping) data set and look for instances where a pair of players

a and b were snapped (in the first step) to either the same cell or to two adjacent cells

at time t, they are enemies, b is not captured already, and a is on its home territory

while b is not. If b moves (is snapped to a different cell at a later time) without having

an ally nearby, we output failedCapturing(a,b,t), otherwise we output capturing(a,b,t).

The labeling rule for freeing is defined analogously and all four events are tied together.

We also tested a variant of the DBN model introduced in Section 4.5.1 that has two

additional hidden state values for node St: isFailedFree and isFailedCaptured. However,

the difference in the results obtained with this model was not statistically significant (p-

value of 0.38), and therefore we focus on the conceptually more straightforward baseline

model described above.

ModelMS+F is evaluated using four-fold cross-validation (always training on three

games and testing against the fourth). Figure 4.10 compares both models in terms of

precision, recall, and F1 score. Note that all four activities are modeled jointly in both

models. The F1 score of the augmented model is significantly better than that of the

baseline for all four target activities (p-value less than 1.3× 10−4).

We see that the baseline model has, in general, a respectable recall but it produces

a large number of false positives for all activities. The false positives stem from the fact

that the algorithm is “greedy” in that it typically labels a situation where several players

appear close to each other for certain period of time as a sequence of many captures

and subsequent frees even though none of them actually occurred. Model MS+F gives

significantly better results because it takes full advantage of the structure of the game

in a probabilistic fashion. It has a similar “over labeling” tendency only in the case of

failed captures, where a single capture attempt is often labeled as several consecutive

attempts. While this hurts the precision score, it is not a significant deficiency, as in

practice, having a small number of short game segments labeled as possible near-captures

is useful as well.

We also note that even though the original model (UML) did not contain any infor-
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mation on failed capturing nor failed freeing, the performance of MS+F is respectable

even for those two newly introduced activities. We only provided examples of game sit-

uations where those attempts occur and the system augmented itself and subsequently

labeled all four activities. Thus, we see that we can indeed extend preexisting models

in an automated fashion so that the unified model is capable of recognizing not only

individual activities, but also both success and failure in people’s behavior.

4.6.4 The Effect of Modeling Failed Attempts on Recognition of Suc-

cessful Activities

To address research question Q4 (Does modeling failed attempts of activities improve the

performance on recognizing the activities themselves? ), we want to see how much does

the recognition of attempted activities help in modeling the successful actions (the latter

being the standard activity recognition problem). Toward that end, we compare the

Markov logic model MS that jointly labels only successful capturing and freeing with

model MS+F that jointly labels both successful and failed attempts at both capturing

and freeing (see Section 4.5.2 for a detailed description of the two models). However, we

evaluate them in terms of precision, recall, and F1 score only on successful interactions,

not all four types of activities.

Figure 4.11 summarizes the results. We see that when evaluated on actual capturing,

MS+F performs better thanMS , and similarly for freeing. However, the difference in F1

scores between a model that captures both attempted and successful activities (MS+F )

and a model of only successful activities (MS) is not statistically significant (p-value

of 0.20). This is partly because MS already produces very solid results, leaving little

room for improvement. Additionally, the CTF dataset contains relatively few events of

interest. In terms of labeling performance at testing time, the difference between the

two models is more than 11% (MS andMS+F recognize, respectively, 14 and 16 out of

18 successful activities correctly). Thus, we believe the trends shown in Figure 4.11 are

promising and modeling attempted actions does improve recognition performance on

both capturing and freeing, but evaluation on a dataset with a larger number of events

is needed to show the difference to be statistically significant at a higher confidence
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Figure 4.11: Considering unsuccessfully attempted activities strictly improves perfor-

mance on standard activity recognition. Blue bars show scores obtained with the unified

Markov logic model that considers only successful activities (MS). The red bars indi-

cate the additive improvement provided by the augmented model that considers both

successful and failed activities (MS+F , the output of Algorithm 1). Each model labels

its target activities jointly, we separate capturing and freeing in the plot for clarity.

Precision has value of 1 for both models. F1 scores obtained when explicitly modeling

failed attempts are not statistically different from F1 scores obtained without modeling

attempts at a high confidence level (p-value of 0.20). However, these results still show

the importance of reasoning about people’s attempts when recognizing their activities;

see text for details.
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level. However, this does not mean that recognizing attempts is unimportant. As we

show above, our induced augmented model does recognize failed (as well as successful)

activities in the complex CTF domain with high accuracy, and we argue this to be a

significant contribution.

Finally, the comparison of MS and MS+F shows that applying our learning algo-

rithm that augments a model with more recognition capabilities does not hurt model

labeling performance. The fact that binary classification problems are typically easier

to solve than their multi-class counterparts has been well reported on in machine learn-

ing literature (Allwein et al., 2001). Therefore, introducing new activities into a model,

especially in an automated way, is likely to degrade its performance. Contrary to this

intuition, our experiments show thatMS+F is no worse thanMS on successful activity

recognition (i.e., their intersection) with high confidence, even thoughMS+F is clearly

richer and more useful.

4.7 Related Work

In the world of single-agent location-based reasoning, the work of Bui (2003) presents

and evaluates a system for probabilistic plan recognition cast as an abstract hidden

Markov memory model. Subsequently, the work of Liao et al. (2004) implements a

system for denoising raw GPS traces and simultaneously inferring individuals’ mode of

transportation (car, bus, etc.) and their goal destination. They cast the problem as

learning and inference in a dynamic Bayesian network and achieve encouraging results.

In a follow-up work, Liao et al. (2005) introduce a framework for location-based activity

recognition, which is implemented as efficient learning and inference in a relational

Markov network.

The work of Ashbrook and Starner (2003) focuses on inferring significant locations

from raw GPS logs via clustering. The transition probabilities between important places

are subsequently used for a number of user modeling tasks, including location prediction.

The work of Eagle and Pentland (2006) explores harnessing data collected on regular

smart phones for modeling human behavior. Specifically, they infer individuals’ general
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location from nearby cell towers and Bluetooth devices at various times of day. Applying

a hidden Markov model (HMM), they show that predicting if a person is at home, at

work, or someplace else can be achieved with more than 90% accuracy. Similarly,

the work of Eagle and Pentland (2009) extracts significant patterns and signatures in

people’s movement by applying eigenanalysis to smart phone logs.

The work of Hu et al. (2008) concentrates on recognition of interleaving and overlap-

ping activities. They show that publicly available academic datasets contain a significant

number of instances of such activities, and formulate a conditional random field (CRF)

model that is capable of detecting them with high (more than 80%) accuracy. However,

they focus solely on single-agent household activities.

People’s conversation has been the primary focus of multi-agent modeling effort

(Barbuceanu and Fox, 1995). In the fields of multi-agent activity recognition and studies

of human behavior, researchers have either modeled conversation explicitly (Busetta

et al., 2001, e.g.,), or have leveraged people’s communication implicitly via call and

location logs from mobile phones. This data has been successfully used to infer social

networks, user mobility patterns, model socially significant locations and their dynamics,

and others (Eagle and Pentland, 2006; Eagle et al., 2009). This is arguably an excellent

stepping stone for full-fledged multi-agent activity recognition since location is, at times,

practically synonymous with one’s activity (e.g., being at a store often implies shopping)

(Tang et al., 2010), and our social networks have tremendous influence on our behavior

(Pentland, 2008).

Additionally, a number of researchers in machine vision have worked on the problem

of recognizing events in videos of sporting events, such as impressive recent work on

learning models of baseball plays (Gupta et al., 2009). Most work in that area has

focused on recognizing individual actions (e.g., catching and throwing), and the state

of the art is just beginning to consider relational actions (e.g., the ball is thrown from

player A to player B). The computational challenges of dealing with video data make

it necessary to limit the time windows of a few seconds. By contrast, we demonstrate

in this work that many events in the capture the flag data can only be disambiguated

by considering arbitrarily long temporal sequences. In general, however, both our work
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and that in machine vision rely upon similar probabilistic models, and there is already

some evidence that statistical-relational techniques similar to Markov logic can be used

for activity recognition from video (Biswas et al., 2007; Tran and Davis, 2008).

Looking beyond activity recognition, recent work on relational spatial reasoning in-

cludes an attempt to locate—using spatial abduction—caches of weapons in Iraq based

on information about attacks in that area (Shakarian et al., 2009). Additionally, the

work of Abowd et al. (1997) presents a location- and context-aware system, Cyberguide,

that helps people explore and fully experience foreign locations. Other researchers ex-

plore an intelligent and nonintrusive navigation system that takes advantage of pre-

dictions of traffic conditions along with a model of user’s knowledge and competence

(Horvitz et al., 2005). Finally, the work of Kamar and Horvitz (2009) explore automatic

generation of synergistic plans regarding sharing vehicles across multiple commuters.

An interesting line of work in cognitive science focuses on intent and goal recognition

in a probabilistic framework (Baker et al., 2006, 2007). Specifically, they cast goal infer-

ence as inverse planning problem in Markov decision processes, where Bayesian inversion

is used to estimate the posterior distribution over possible goals. Recent extensions of

this work begin to consider simulated multi-agent domains (Baker et al., 2008; Ullman et

al., 2010; Baker et al., 2011). Comparison of the computational models against human

judgement in synthetic domains shows a strong correlation between people’s predicted

and actual behavior. However, the computational challenges involved in dealing with

the underlying partially observable Markov decision processes are prohibitive in more

complex domains with large state spaces, such as ours.

The focus of our work is on a different aspect of reasoning about people’s goals.

Rather than inferring a distribution over possible, a priori known goals, we automati-

cally induce the goals of complex multi-agent activities themselves.

Other researchers have concentrated on modeling behavior of people and general

agents as reinforcement learning problems in both single-agent and multi-agent set-

tings. The work of Ma (2008) proposes a system for household activity recognition cast

as a single-agent Markov decision process problem that is subsequently solved using

a probabilistic model checker. Wilson and colleagues address the problem of learning
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agents’ roles in a multi-agent domain derived from a real-time strategy computer game

(Wilson et al., 2008, 2010). Experiments in this synthetic domain show strongly en-

couraging results. While we do not perform role learning ourselves, we anticipate that

the work of Wilson et al. is going to play an important role in learning hierarchies

of people’s activities. In our capture the flag domain, one can imagine automatically

identifying a particular player as, for example, a defender and subsequently leveraging

this information to model his or her behavior in a more “personalized” way.

The work of Hong (2001) concentrates on recognizing the goal of an agent in the

course of her activities in a deterministic, but relational setting. Interesting work on goal

recognition has been also applied to computer-aided monitoring of complex multi-agent

systems, where relationships between agents are leveraged to compensate for noise and

sparse data (Kaminka et al., 2002). By contrast, in our work we focus on learning the

respective goals of a given set of multi-agent activities in a probabilistic setting. The

knowledge is in turn leveraged to achieve a stronger robustness of the other recognition

tasks. Similarly to the approach of Hong, our system does not need a supplied plan

library either.

Our work also touches on anomaly detection since our system reasons about the

failed attempts of the players. Anomaly detection concerns itself with revealing segments

of the data that in some way violate our expectations. For an excellent survey of the

subject, we refer the reader to the results of Chandola et al. (2009). In the realm

of anomaly detection within people’s activities, the work of Moore and Essa (2001)

addresses the problem of error detection and recovery card games that involve two

players recorded on video. Their system models the domain with a stochastic context-

free grammar and achieves excellent results.

We note that recognizing a failed attempt at an activity is more fine-grained a

problem than anomaly detection. The failed event is not just anomalous in general.5

Rather, it is the specific distinction between success and failure in human activities that

5A situation where a player in CTF moves through the campus at a speed of 100 mph and on her

way passes an enemy player is certainly anomalous (and probably caused by GPS sensor noise), but we

do not want to say that it is a failed attempt at capturing.
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we are interested in. And the distinction lies in the fact that an unsuccessful attempt

does not yield a certain desired state whereas a successful action does. This desired state

is exactly what our approach extracts for each activity in question. To our knowledge,

there exists no prior work on explicit modeling and recognition of attempted activities

or on learning the intended purpose of an activity in a multi-agent setting.

One of the components of our contribution focuses on joint learning and inference

across multiple tasks (capturing, freeing, and their respective attempted counterparts).

This is in contrast with the traditional “pipeline” learning architecture, where a system

is decomposed into a series of modules and each module performs partial computation

and passes the result on to the next stage. The main benefits of this set-up are reduced

computational complexity and often higher modularity. However, since each stage is

myopic, it may not take full advantage of dependencies and broader patterns within the

data. Additionally, even though errors introduced by each module may be small, they

can accumulate beyond tolerable levels as data passes through the pipeline.

An extensive body of work has shown that joint reasoning improves model perfor-

mance in a number of natural language processing and data mining tasks including

information extraction (i.e., text segmentation coupled with entity resolution) (Poon

and Domingos, 2007), co-reference resolution (Poon and Domingos, 2008), information

extraction coupled with co-reference resolution (Wellner et al., 2004), temporal relation

identification (Yoshikawa et al., 2009; Ling and Weld, 2010), and record de-duplication

(Domingos, 2004; Culotta and McCallum, 2005). Similarly to our work, some of the

above models are cast in Markov logic. However, prior work uses sampling techniques

to perform learning and inference, whereas we apply a reduction to integer linear pro-

gramming. Interestingly, the work in Denis and Baldridge (2007) jointly addresses the

problems of anaphoricity and co-reference via a manual formulation of an integer linear

program.

Joint activity modeling has also been shown to yield better recognition accuracy,

as compared to “pipeline” baselines as well as baselines that make strong inter-activity

independence assumptions. The work of Wu et al. (2007) performs joint learning and

inference over concurrent single-agent activities using a factorial conditional random
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field model. Similarly, the work of Helaoui et al. (2010) models interleaved activities

in Markov logic. They distinguish between foreground and background activities and

infer a time window in which each activity takes place from RFID sensory data. By

contrast, we focus on joint reasoning about multi-agent activities and attempts in a

fully relational—and arguably significantly more noisy—setting.

The work of Manfredotti et al. (2010) propose a hierarchical activity recognition

system formulated as learning and inference in relational dynamic Bayesian networks.

Their model jointly leverages observed interactions with individual objects in the domain

and the relationships between objects. Since their method outperforms a hidden Markov

model by a significant margin, it contributes additional experimental evidence that a

relational decomposition of a domain improves model quality.

The work of Landwehr et al. (2007) casts single-agent activity recognition as a rela-

tional transformation learning problem, building on transformation-based tagging from

natural language processing. Their system induces a set of transformation rules that are

then used to infer activities from sensory data. Since the transformation rules are applied

adaptively, at each step, the system leverages not only observed data, but also currently

assigned labels (inferred activities). However, the transformation rules are learned in

a greedy fashion and experiments show that the model does not perform significantly

better than a simple HMM. On the other hand, their representation is quite general,

intuitive, and extensible. As we will see, our Markov logic model has a similar level of

representational convenience while performing global—instead of greedy—optimization

in a significantly more complex domain.

The denoising component of our model can be formulated as a tracking problem.

Prior work proposed a relational dynamic Bayesian network model for multi-agent track-

ing (Manfredotti and Messina, 2009). Their evaluation shows that considering relation-

ships between tracked entities significantly improves model performance, as compared

to a nonrelational particle filter baseline. By contrast, our work explores joint tracking

and activity recognition. However, each GPS reading is annotated with the identity

of the corresponding agent. The work of Manfredotti and Messina suggests that our

model can be generalized, such that the associations between GPS and agent identities
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are inferred and need not be observed.

Our Markov logic theory can be viewed as a template for a conditional random field

(Lafferty, 2001), an undirected graphical model that captures the conditional probability

of hidden labels given observations, rather than the joint probability of both labels and

observations, as one would typically do in a directed graphical model. In the relational

world, directed formalisms include relational Bayesian networks (Jaeger, 1997) and their

dynamic counterparts (Manfredotti, 2009), probabilistic relational models (Koller, 1999;

Friedman et al., 1999), Bayesian logic programs (Kersting and De Raedt, 2000), and

first-order conditional influence language (Natarajan et al., 2005). Conditional random

fields have been extensively applied to activity recognition, and their superior labeling

performance over generative models has been demonstrated in a number of both single-

agent and multi-agent domains (Liao et al., 2005; Limketkai et al., 2007; Vail, 2008; Vail

and Veloso, 2008; Hu et al., 2008). Since MLNs are often solved as propositionalized

CRFs, and the directed alternatives can be compiled into a Bayesian network, it can

be expected that discriminative relational models generally outperform their generative

counterparts on labeling tasks. However, more work needs to be done to answer this

question in its entirety.

Since Markov logic is based on, and in fact subsumes, finite first-order logic, we

immediately gain access to a number of techniques developed in the rich field of tra-

ditional logic. Current Markov logic solvers take advantage of the underlying logical

structure to perform more powerful optimizations, such as Alchemy’s lifted inference

in belief propagation and MC-SAT (Poon and Domingos, 2006). Additionally, domain

pruning, where one uses hard constraints to infer reduced domains for predicates, has

been shown to lead to significant speed-ups (Papai et al., 2011).

We also leverage this relationship between Markov and first-order logic when in-

ducing an augmented model. Furthermore, presence of dependency cycles introduces

additional problems in directed graphical (relational) models. Thus, the fact that, in

Markov logic, knowledge can be expressed as weighted first-order formulas combined

with the above factors make it a powerful framework best suited for the multi-agent

reasoning tasks considered in this work.
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Traditional hidden Markov models operate over an alphabet of unstructured (i.e.,

“flat”) symbols. This makes relational reasoning difficult, as one has to either propo-

sitionalize the domain, thereby incurring combinatorial increase in the number of sym-

bols and model parameters, or ignore the relational structure and sacrifice information.

Logical hidden Markov models (LHMMs) have been proposed to address this problem

(Kersting et al., 2006). LHMMs are a generalization of standard HMMs that com-

pactly represents probability distributions over sequences of logical atoms rather than

flat symbols. LHMMs have been proven strictly more powerful than their propositional

counterparts (HMMs). By applying techniques from logic-based reasoning, such as uni-

fication, while leveraging the logical structure component of the model, Kersting et al.

show that LHMMs often require fewer parameters and achieve higher accuracy than

HMMs.

LHMMs have been recently applied to activity recognition. In the context of intel-

ligent user interfaces, the work of Shen (2009) designs and evaluates a LHMM model

for recognition of people’s activities and workflows carried out on a desktop computer.

Other researchers proposed a hierarchical extension of LHMMs along with an efficient

particle filter-based inference technique, and apply it to activity recognition problems

in synthetic domains (Natarajan et al., 2008). Both lines of work show that LHMMs

can be learned and applied efficiently, and perform better than plain HMMs.

However, LHMMs are a generative model and therefore are not ideal for pure label-

ing and recognition tasks, where we typically do not want to make strong independence

assumptions about the observations, nor do we want to explicitly model dependencies

in the input space. TildeCRF—a relational extension of traditional conditional random

fields—has been introduced to address this issue (Gutmann and Kersting, 2006). Tilde-

CRF allows discriminative learning and inference in CRFs that encode sequences of

logical atoms, as opposed to sequences of unstructured symbols. TildeCRF specifically

focuses on efficient learning of models of sequential data via boosting, and is subsumed

by Markov logic, which can produce both discriminative and generative models. We cast

our model in the latter framework to make it more general, extensible, and interpretable.

PRISM, a probabilistic extension of Prolog, has been shown to subsume a wide
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variety of generative models, including Bayesian networks, probabilistic context-free

grammars, HMMs (along with their logical extension) (Sato and Kameya, 2001, 2008).

However, since the focus of PRISM is on representational elegance and generality, rather

than scalability, the sheer size of the state space and complexity of our CTF domain

precludes its application here.

Finally, our Markov logic theory augmentation process is related to structure learn-

ing, transfer learning, and inductive logic programming. In fact, Algorithm 1 imple-

ments a special case of structure learning, where we search for a target theory that

explains the training data well, while our declarative bias forces the target theory to

differ from the source theory only as much as necessary. Again, with the intuition that

failed attempts are similar to their failed counterparts. A number of researchers have

focused on structure learning specifically in Markov logic networks. This includes early

work on top-down structure learning, where clauses in the knowledge base are greedily

modified by adding, flipping, and deleting logical literals (Kok and Domingos, 2005).

This search is guided by the likelihood of the training data under the current model.

The work of Mihalkova and Mooney (2007) exploit patterns in the ground Markov logic

networks to introduce a bottom-up declarative bias that makes their algorithm less

susceptible to finding only local optima, as compared to alternative greedy methods.

Similarly, the work of Kok and Domingos (2009) introduce a bottom-up declarative

bias based on lifted hypergraph representation of the relational database. This bias

then guides search for clauses that fit the data. Since the hypergraph is lifted, rela-

tional path finding tractable. Interesting work on predicate invention applies relational

clustering technique formulated in second-order Markov logic to discover new predicates

from relational databases (Kok and Domingos, 2007a). The above systems are capable

of modeling relatively rich family of logical formulas. Other approaches perform dis-

criminative structure learning and achieve excellent results, but focus on a restricted set

of types of formulas (e.g., Horn clauses) (Huynh and Mooney, 2008; Biba et al., 2008).

The work of Davis and Domingos (2009) successfully uses second-order Markov logic in

deep transfer learning. They lift the model of the source domain to second-order ML

and identify high-level structural patterns. These subsequently serve as declarative bias
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for structure learning in the target domain.

By its very nature, the inductive logic programming discipline has extensively stud-

ied structure learning in deterministic, as well as probabilistic settings (Muggleton,

2002; De Raedt, 2008; De Raedt et al., 2008, e.g.,). In fact, our theory augmentation

algorithm can be viewed as an efficient Markov logic based version of theory refinement,

a well-established ILP technique that aims to improve the quality of a theory in terms

of simplicity, fit to newly acquired data, efficiency or other factors (Wrobel, 1996).

Our approach differs from all this work in three main points. First, our declarative

bias is defined implicitly by the seed theory of successful activities. Therefore, our

theory augmentation algorithm is not limited to any hard-wired set of formula types it

can consider. Rather, the search space is defined at run time by extracting motifs from

the seed theory. The second distinction lies in computational tractability and exactness

of the results. By distinguishing between soft and hard formulas, we are able to search

through candidate formulas in a systematic, rather than greedy manner. Consequently,

our final learned model requires fewer parameters, which is especially important when

the amount of training data is relatively small. Additionally, our weight learning does

not experience cold starts, as we leverage the seed theory. The final difference is that, to

our knowledge, we are the first to explore structure learning in the context of interplay

of success and failure, and their relationship to the intended goals of people’s actions.

4.8 Conclusions

This chapter took on the task of understanding the game of capture the flag from

GPS data as an exemplar of the general problem of inferring human interactions and

intentions from sensor data. We have presented a novel methodology—cast in Markov

logic—for effectively combining data denoising with higher-level relational reasoning

about a complex multi-agent domain. Specifically, we have demonstrated that given raw

and noisy data, we can automatically and reliably detect and recognize both successful

and failed interactions in adversarial as well as cooperative settings. Additionally, we

have shown that success, failure, and the goal of an activity are intimately tied together



73

and having a model for successful events allows us to naturally learn models of the other

two important aspects of life. Specifically, we have demonstrated that the intentions of

rational agents are automatically discovered in the process of resolving inconsistencies

between a theory that models successful instances of a set of activities and examples of

failed attempts at those activities.

We have formulated four research questions and designed experiments within the

CTF domain that empirically answer them. Compared to alternative approaches to solv-

ing the multi-agent activity recognition problem, our augmented Markov logic model,

which takes into account not only relationships among individual players, but also rela-

tionships among activities over the entire length of a game, although computationally

more costly, is significantly more accurate on real-world data. Furthermore, we have

illustrated that explicitly modeling unsuccessful attempts boosts performance on other

important recognition tasks.

4.9 Future Work

Multi-agent activity recognition is especially interesting in the context of current un-

precedented growth of on-line social networks—in terms of their size, popularity, and

their impact on our “off-line” lives. In this chapter, we show that location information

alone allows for rich models of people’s interactions, but in the case of on-line social

networks, we additionally have access to the content of users’ posts and both the explicit

and the implicit network interactions. For instance, our recent study shows that, in-

terestingly, about 30% of Twitter status updates reveal their authors’ location (Sadilek

et al., 2012a). These data sources are now available to machines in massive volumes

and at ever-increasing real-time streaming rate. We note that a substantial fraction of

posts on services such as Facebook and Twitter talk about everyday activities of the

users (Naaman et al., 2010), and this information channel has become available to the

research community only very recently. Thus, if we are able to reason about human

behavior and interactions in an automated way, we can tap the colossal amounts of

knowledge that is—at present—distributed across the whole population.
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In Chapter 6, we will see how we can not only reason about explicit GPS traces, but

also be able to infer and predict the location of people who do not broadcast their GPS

coordinates. The basic idea is, again, to leverage the structure of relationships among

people. The vast majority of us participate in on-line social networks and typically some

of our friends there do publish their location. We thus view the GPS-enabled people as

noisy location sensors and use the network interactions and dynamics to estimate the

location of the rest of the users.
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5 Far Out: Long-Term Location

Prediction

Figure 5.1: This screenshot of our visualization tool shows mobility patterns of one

of our subjects living in the Seattle metropolitan area. The colored triangular cells

represent a probability distribution of the person’s location given an hour of a day and

day type.
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5.1 Overview

Much work has been done on predicting where is one going to be in the immediate future,

typically within the next hour. By contrast, we address the open problem of predicting

human mobility far into the future, a scale of months and years. We propose an efficient

nonparametric method that extracts significant and robust patterns in location data,

learns their associations with contextual features (such as day of week), and subsequently

leverages this information to predict the most likely location at any given time in the

future. The entire process is formulated in a principled way as an eigendecomposition

problem. Evaluation on a massive dataset with more than 32,000 days worth of GPS

data across 703 diverse subjects shows that our model predicts the correct location with

high accuracy, even years into the future. This result opens a number of interesting

avenues for future research and applications.

5.2 Motivation

Where are you going to be 285 days from now at 2PM? This work explores how ac-

curately such questions can be answered across a large sample of people. We propose

a novel model of long-term human mobility that extracts significant patterns shaping

people’s lives, and helps us understand large amounts of data by visualizing the patterns

in a meaningful way. But perhaps most importantly, we show that our system, Far Out,

predicts people’s location with high accuracy, even far into the future, up to multiple

years.

Such predictions have a number of interesting applications at various scales of the

target population size. We will give a few examples here. Focusing on one individual at a

time, we can provide better reminders, search results, and advertisements by considering

all the locations the person is likely to be close to in the future (e.g., “Need a haircut?

In 4 days, you will be within 100 meters of a salon that will have a $5 special at that

time.”). At the social scale (people you know), we can leverage Far Out’s predictions to

suggest a convenient place and time for everybody to meet, even when they are dispersed
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throughout the world. We also envision a peer-to-peer package delivery system, but

there one would heavily rely on a reliable set of exchange locations, where people are

likely to meet in the future. Far Out can provide these. Finally, at the population

scale, Far Out is the first step towards bottom-up modeling of the evolution of an

entire metropolitan area. By modeling long-term mobility of individuals, emergent

patterns, such as traffic congestion, spread of disease, and demand for electricity or

other resources, can be predicted a long time ahead as well. These applications motivate

the predictive aspect of Far Out, but as we will see, the patterns it finds are also useful

for gaining insight into people’s activities and detecting unusual behavior. Researchers

have recently argued for a comprehensive scientific approach to urban planning, and

long-term modeling and prediction of human mobility is certainly an essential element

of such a paradigm (Bettencourt and West, 2010).

Techniques that work quite well for short-term prediction, such as Markov models

and random walk-based models, are of little help for long-term inference. Both classes

of models make strong independence assumptions about the domain, and one often

postulates that a person’s location at time t only depends on her location at time t− 1.

Such models give increasingly poorer and poorer predictions as they are forced to evolve

the system further into the future (Musolesi and Mascolo, 2009). Although one can

improve the performance by conditioning on a larger context and structure the models

hierarchically, learning and inference quickly become intractable or even infeasible due

to computational challenges and lack of training data (Liao et al., 2007b,a).

While your recent location is in general highly independent of your location in the

distant future, as we will see, it is likely to be a good predictor of your location exactly

one week from now. Therefore, we view long-term prediction as a process that identifies

strong motifs and regularities in subjects’ historical data, models their evolution over

time, and estimates future locations by projecting the patterns into the future. Far Out

implements all three stages of this process.
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Figure 5.2: The distribution of the bounding rectangular geographical areas and longest

geodesic distances covered by individual subjects.

5.3 The Data

We evaluate our models on a large dataset consisting of 703 subjects of two types: people

(n = 307) and vehicles (n = 396). The people include paid and unpaid volunteers who

carried consumer-grade GPS loggers while going about their daily lives. Vehicles consist

of commercial shuttles, paratransit vans, and personal vehicles of our volunteers, and

had the same GPS unit installed on their dashboard. While some of the shuttles follow

a relatively fixed schedule, most of them are available on demand and, along with the

paratransit vans, flexibly cover the entire Seattle metropolitan area.

Since this work focuses on long-term prediction, we need to consider only datasets

that span extensive time periods, which are rare. The number of contiguous days

available to us varies across subjects from 7 to 1247 (µ = 45.9, σ = 117.8). Overall, our

dataset contains 32,268 days worth of location data. Fig. 5.2 shows the distribution of

the area (bounding rectangle) and distances covered by our subjects. We observe high

variance in the area across subjects, ranging from 30 to more than 108 km2. To put

these numbers in perspective, the surface area of the entire earth is 5.2× 108 km2.
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5.4 Methodology and Models

Our models leverage Fourier analysis to find significant periodicities in human mobility,

and principal component analysis (PCA) to extract strong meaningful patterns from

location data, which are subsequently leveraged for prediction.

To enable Fourier analysis, we represent each GPS reading, consisting of a latitude,

longitude pair for each time t, as a complex number zt = latitudet + (longitudet)i. This

allows us to perform Fourier analysis jointly over both spatial dimensions of the data,

thereby extracting significant periods in a principled way (see Fig. 5.6).

We can transform a function f from time domain to frequency domain using Fourier

transform, and subsequently formulate f as a weighted sum of harmonic basis functions.

In this work, we deal with GPS coordinates uniformly sampled in time, and therefore

apply the discrete Fourier transform (DFT) given by

(5.1) Zk = Ft

[
{zt}T−1

t=0

]
(k) =

T−1∑
t=0

zte
(−2πk t

T )i

where z0, . . . zT−1 is a sequence of complex numbers representing a subject’s location

over T seconds. We refer the reader to (Brigham and Morrow, 1967) for more details

on DFT.

PCA is a dimensionality reduction technique that transforms the original data into a

new basis, where the basis vectors are, in turn, aligned with the directions of the highest

remaining variance of the data. PCA can be performed by eigendecomposition of the

data covariance matrix, or by applying singular value decomposition (SVD) directly on

the data matrix. Our implementation uses the latter approach, as it’s more numerically

stable. PCA has a probabilistic interpretation as a latent variable model, which endows

our model with all the practical advantages stemming from this relationship, such as

efficient learning and dealing with missing data (Tipping and Bishop, 1999). For a

thorough treatment of PCA, see (Jolliffe, 2002).

We consider continuous (GPS coordinates) as well as discrete (occupancy grid) data,

and our models work with both modalities without any modification to the mathematics

or the algorithms. In both cases we represent each day as a vector of features. In the
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continuous representation, we have a 56-element vector shown in Fig. 5.3. The first 24

elements capture the subject’s median latitude for each hour of the day, the next 24

elements correspond to the median longitude, the following 7 elements encode the day of

week (in 1-out-of-7 binary code, since it’s a categorical variable), and the final element

is 1 if the day is a national holiday in the subject’s current locale (e.g., Christmas,

Thanksgiving) and 0 otherwise. This representation helps us capture the dependence

between the subject’s location and the hour of the day, day of week, and whether or

not the day is a holiday. The continuous representation is best suited for predicting

a subject’s single, approximate location for a given time, possibly for finding nearby

people or points of interest. This representation is not probabilistic, as the discretized

representation we describe next.

In the discretized condition, we divide the surface of the globe into equilateral trian-

gular cells of uniform size (side length of 400 meters), and assign each GPS reading to

the nearest cell. We then induce an empirical probability distribution over the ten most

frequently visited cells and one “other” location that absorbs all GPS readings outside

of the top ten cells. Our analysis shows that the 10 discrete locations capture the vast

majority of an individual’s mobility, and each such cell can often be semantically labeled

as home, work, favorite restaurant, etc.

Fig. 5.1 shows the occupancy probability distribution over the cells for one of our

subjects, given by

(5.2) Pr(C = c | T = t,W = w) =
count(c, t, w)∑

c′∈ΩC
count(c′, t, w)

where C, T , and W are random variables representing cells, time of day, and day type,

respectively. ΩC is the set of all cells.

We construct a feature vector for each day from this probability distribution as

shown in Fig. 5.4, where the first 11 elements model the occupancy probability for the

11 discrete places between 00:00 and 00:59 of the day, the next 11 elements capture

01:00 through 01:59, etc. The final 8 elements are identical to those in the continuous

representation. The discretized representation sacrifices the potential precision of the

continuous representation for a richer representation of uncertainty. It does not con-
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Figure 5.3: Our continuous vector representation of a day d consists of the median

latitude and longitude for each hour of the day (00:00 through 23:59), binary encoding

of the day of week, and a binary feature signifying whether a national holiday falls on

d.
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Figure 5.4: Our cell-based vector representation of a day d encodes the probability

distribution over dominant cells conditioned on the time within d, and the same day-

of-week and holiday information as the continuous representation (last 8 elements).

strain the subject’s location to a single location or cell, but instead represents the fact

that the subject could be in one of several cells with some uncertainty for each one.

The decision to divide the data into 24-hour segments is not arbitrary. While a

day is a natural measure of time, perhaps it is not the most appropriate time period

to model. Applying Fourier analysis to the raw GPS data as described above yields a

power spectrum, an example of which we show in Fig. 5.6. We see that most of the

powerful periods are shorter or equal to 24 hours, and the longer ones (e.g., 42, 48)

tend to be integer multiples of the shorter periods. Therefore, day-long segments are

convenient both conceptually and numerically.

The decision to divide the data into 24-hour segments is not arbitrary. Applying

DFT to the raw GPS data as described above shows that most of the energy is concen-

trated in periods shorter or equal to 24 hours.

Now we turn our attention to the eigenanalysis of the subjects’ location, which

provides further insights into the data. Each subject is represented by a matrix D,
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Figure 5.5: Visualization of GPS data as a dynamic sequence of complex numbers, where

the real part of each number represents latitude and the imaginary part longitude. The

grey line shows the original data, the blue line its approximation using only the top

thousand most powerful frequencies. We see that much effort is spent on modeling the

constant segments of the trajectories (e.g., when a person is sleeping at home).

where each row is a day (either in the continuous or the cell form). Prior to computing

PCA, we apply Mercator cylindrical projection on the GPS data and normalize each

column of observations by subtracting out its mean µ and dividing by its standard

deviation σ. Normalizing with the mean and standard deviation scales the data so

values in each column are in approximately the same range, which in turn prevents any

columns from dominating the principal components.

Applying SVD, we effectively find a set of eigenvectors of D’s covariance matrix,

which we call eigendays (Fig. 5.7). As we see in Fig. 5.8, a few top eigendays with

the largest eigenvalues induce a subspace, onto which a day can be projected, and that

captures most of the variance in the data. For virtually all subjects, ten eigendays
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Figure 5.6: A typical power spectrum of an individual obtained by Fourier analysis

of his GPS data represented on a complex plane. Note that the two most prominent

periods are 8 and 24 hours (exactly). The relatively strong periods of 21 and 28 hours

show that this person probably exhibits multiple modes of behavior, switching between

“short” and “long” days as time goes on.

are enough to reconstruct their entire location log with more than 90% accuracy. In

other words, we can accurately compress an arbitrary day d into only n� |d| weights

w1, . . . , wn that induce a weighted sum over a common set of ten most dominant eigen-

days E i:

(5.3) d ∼=

[(
n∑
i=1

wiE i

)
+ µ

]
diag(σ).

This applies to both continuous and discretized data. The reason for this is that

human mobility is relatively regular, and there is a large amount of redundancy in

the raw representation of people’s location. Note that unlike most other approaches,

such as Markov models, PCA captures long-term correlations in the data. In our case,

this means patterns in location over an entire day, as well as joint correlations among

additional attributes (day of week, holiday) and the locations.

Our eigenanalysis shows that there are strong correlations among a subject’s lati-

tudes and longitudes over time, and also correlations between other features, such as the
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day-of-week, and raw location. Let’s take eigenday #2 (E2) in Fig. 5.7 as an example.

From the last 8 elements, we see that PCA automatically grouped holidays, weekends,

and Tuesdays within this eigenday. The location pattern for days that fit these criteria

is shown in the first 48 elements. In particular, E2 makes it evident that this person

spends her evenings and nights (from 16:00 to 24:00) at a particular constant location

in the North-West “corner” of her data, which turns out to be her home.

The last 8 elements of each eigenday can be viewed as indicators that show how

strongly the location patterns in the rest of the corresponding eigenday exhibit them-

selves on a given day-of-week × holiday combination. For instance, E3 is dominant on

Saturdays, E7 on Fridays, and E10 on Tuesdays that are not holidays (compare with

E2).

Fig. 5.9 shows the top ten eigendays for the cell-based representation. Now we

see patterns in terms of probability distributions over significant cells. For instance,

this subject exhibits a strong “baseline” behavior (E1) on all days—and especially non-

working days—except for Tuesdays, which are captured in E2. Note that the complex

patterns in cell occupancy as well as the associated day types can be directly read off

the eigendays.

Our eigenday decomposition is also useful for detection of anomalous behavior.

Given a set of eigendays and their typical weights computed from training data, we

can compute how much a new day deviates from the subspace formed by the histori-

cal eigendays. The larger the deviation, the more atypical the day is. We leave this

opportunity for future work.

So far we have been focusing on the descriptive aspect of our models—what types

of patterns they extract and how can we interpret them. Now we turn to the predictive

power of Far Out.

5.4.1 Predictive Models

We consider three general types of models for long-term location prediction. Each type

works with both continuous (raw GPS) as well as discretized (triangular cells) data, and
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Figure 5.7: Visualization of the top ten most dominant eigendays (E1 through E10).

The leftmost 48 elements of each eigenday correspond to the latitude and longitude

over the 24 hours of a day, latitude plotted in the top rows, longitude in the bottom.

The next 7 binary slots capture the seven days of a week, and the last element models

holidays versus regular days (cf. Fig. 5.3). The patterns in the GPS as well as the

calendar features are color-coded using the mapping shown below each eigenday.

all our models are directly applied to both types of data without any modification of the

learning process. Furthermore, while we experiment with two observed features (day of

week and holiday), our models can handle arbitrary number of additional features, such

as season, predicted weather, social and political features, known traffic conditions,

information extracted from the power spectrum of an individual, and other calendar

features (e.g., Is this the second Thursday of a month? ; Does a concert or a conference

take place? ). In the course of eigendecomposition, Far Out automatically eliminates

insignificant and redundant features.
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Figure 5.8: This Pareto plot shows a pattern in the analysis of variance typical for all

subjects in our dataset: a handful of eigendays account for vast majority of the total

variance in the data.

Mean Day Baseline Model

For the continuous GPS representation, the baseline model calculates the average lat-

itude and longitude for each hour of day for each day type. In the discrete case, we

use the mode of cell IDs instead of the average. To make a prediction for a query with

certain observed features o, this model simply retrieves all days that match o from the

training data, and outputs their mean or mode. Although simple, this baseline is quite

powerful, especially on large datasets such as ours. It virtually eliminates all random

noise for repeatedly visited places. Additionally, since the spatial distribution of spo-

radic and unpredictable trips is largely symmetric over long periods of time, the errors

these trips would have caused tend to be averaged out by this model (e.g., a spontaneous

trip Seattle-Las Vegas is balanced by an isolated flight Seattle-Alaska).
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Figure 5.9: Visualization of the top six most dominant eigendays (E1 through E6). The

larger matrix within an eigenday shows cell occupancy patterns over the 24 hours of a

day. Patterns in the calendar segment of each eigenday are shown below each matrix

(cf. Fig. 5.4).

Projected Eigendays Model

First, we learn all principal components (a.k.a. eigendays) from the training data as

described above. This results in a n× n matrix P , with eigendays as columns, where n

is the dimensionality of the original representation of each day (either 56 or 272).

At testing time, we want to find a fitting vector of weights w, such that the observed

part of the query can be represented as a weighted sum of the corresponding elements of

the principal components in matrix P . More specifically, this model predicts a subject’s

location at a particular time tq in the future by the following process. First, we extract

observed features from tq, such as which day of week tq corresponds to.The observed

feature values are then written into a query vector q. Now we project q onto the eigenday

space using only the observed elements of the eigendays. This yields a weight for each

eigenday, that captures how dominant that eigenday is given the observed feature values:

(5.4) w = (q − µ) diag(σ−1)P c
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where q is a row vector of length m (the number of observed elements in the query

vector), P c is a m × c matrix (c is the number of principal components considered),

and w is a row vector of length c. Since we implement PCA in the space of normalized

variables, we need to normalize the query vector as well. This is achieved by subtracting

the mean µ, and component-wise division by the variance of each column σ.

Note that finding an optimal set of weights can be viewed as solving (for w) a system

of linear equations given by

(5.5) wP T
c = (q − µ) diag(σ−1).

However, under most circumstances, such a system is ill-conditioned, which leads to

an undesirable numerical sensitivity and subsequently poor results. The system is either

over- or under-determined, except when c = m. Furthermore, P T
c may be singular.

Theorem 1. The projected eigendays model learns weights by performing a least-squares

fit.

Proof. If P has linearly independent rows, a generalized inverse (e.g., Moore-Penrose)

is given by P+ = P ∗(PP ∗)−1 (Ben-Israel and Greville, 2003). In our case, P ∈ Rm×c

and by definition forms an orthonormal basis. Therefore PP ∗ is an identity matrix

and it follows that P+ = P T . It is known that pseudoinverse provides a least-squares

solution to a system of linear equations (Penrose, 1956). Thus, equations 5.4 and 5.5

are theoretically equivalent, but the earlier formulation is significantly more elegant,

efficient, and numerically stable.

Using Eq. 5.3, the inferred weights are subsequently used to generate the prediction

(either continuous GPS or probability distribution over cells) for time tq. Note that

both training and testing are efficient (O(cdm), where d is the number of days) and

completely nonparametric, which makes Far Out very easy to apply to other domains

with different features.
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Figure 5.10: Comparison in terms of absolute prediction error over all subjects as we

vary the number of eigendays we leverage.

Segregated Eigendays Model

While the last two models induced a single set of eigendays, this model learns a sepa-

rate library of eigendays for each day type, e.g., eigen-holiday-mondays, over only the

location elements of the day vectors d. Prediction is made using Eq. 5.3, where the

weights are proportional to the variance each eigenday explains in the training data.

5.4.2 Adapting to Pattern Drift

Since our models operate in a space of normalized variables, we can adapt to the drift of

mean and variance of each subject’s locations, which does occur over extended periods

of time. The basic idea is to weigh more recent training data more heavily than older

ones when de-normalizing a prediction (see Eq. 5.3). We achieve this by imposing a

linear decay when learning µ and σ from the training data.
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Figure 5.11: Accuracy of cell-based predictions varies across subject types, but the

projected eigendays model outperforms its alternatives by a significant margin.

5.5 Experiments and Results

In this section, we evaluate our approach, compare the performance of the proposed

models, and discuss insights gained. Unless noted otherwise, for each subject, we always

train on the first half of her data (chronologically) and test on the remaining half.

First, let’s look at the predictions in the continuous GPS form, where the crucial

metric is the median absolute error in distance. Fig. 5.10 shows the error averaged over

all subjects as a function of the number of eigendays leveraged. We show our three

model types, both with and without addressing pattern drift. We see that the segre-

gated eigendays model is not significantly better than the baseline. One reason is that it

considers each day type in isolation and therefore cannot capture complex motifs span-

ning multiple days. Additionally, it has to estimate a larger number of parameters than

the unified models, which negatively impacts its performance, especially for subjects

with smaller amounts of training data.

By considering only the strongest eigendays, we extract the dominant and, in a

sense, most dependable patterns, and filter out the volatile, random, and less significant

signals. This effect is especially strong in the projected model. Finally, we see that

modeling pattern drift systematically reduces the error by approximately 27%.
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Now we focus on the evaluation of the same models, but this time they operate on

the cell representation. We additionally consider a trivial random baseline that guesses

the possible discrete locations uniformly at random. Our eigenday-based models predict

based on maximum likelihood:

c?t,w = argmax
c

(
Pr(C = c | T = t,W = w)

)
.

For the sake of brevity, we will focus on the projected eigendays model adapted to

pattern drift (with results averaged over c, the number of eigendays used), as our eval-

uation on the cell-based representation yields the same ordering in model quality as in

Fig. 5.10.

In Fig. 5.11, we see that the eigenday model clearly dominates both baselines, achiev-

ing up to 93% accuracy. Personal cars are about as predictable as pocket loggers (84%),

and paratransit vans are significantly harder (77%), as they don’t have any fixed sched-

ule nor circadian rhythms.

Since we evaluate on a dataset that encompasses long periods of time, we have a

unique opportunity to explore how the test error varies as we make predictions progres-

sively further into the future and increase the amount of training data. Fig. 5.12 shows

these complex relationships for one of our subjects with a total of 162 weeks of recorded

data. By contrast, virtually all work to date has concentrated on the first column of

pixels on the left-hand side of the plot. This is the region of short-term predictions,

hours or days into the future.

We see that the projected eigenday model systematically outperforms the baseline

and produces a low test error for predictions spanning the entire 81 week testing period

(cf. Figs. 5.12a and 5.12b). In general, as we increase the amount of training data, the

error decreases, especially for extremely long-term predictions.

Fig. 5.12c shows that not all weeks are created equal. There are several unusual

and therefore difficult weeks (e.g., test week #38), but in general our approach achieves

high accuracy even for predictions 80 weeks into the future. Subsequent work can take

advantage of the hindsight afforded by Fig. 5.12, and eliminate anomalous or confusing

time periods (e.g., week #30) from the training set.
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Figure 5.12: How test error varies depending on how far into the future we predict

and how much training data we use. Each plot shows the prediction error, in km,

as a function of the amount of training data in weeks (vertical axes), and how many

weeks into the future the models predict (horizontal axes). Plots (a) and (b) visualize

cumulative error, where a pixel with coordinates (x, y) represents the average error over

testing weeks 1 through x, when learning on training weeks 1 through y. Plot (c) shows,

on a log scale, the error for each pair of weeks separately, where we train only on week

y and test on x.
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Finally, decomposition of the prediction error along day types shows that for human

subjects, weekends are most difficult to predict, whereas work days are least entropic.

While this is to be expected, we notice a more interesting pattern, where the further away

a day is from a nonworking day, the more predictable it is. For instance, Wednesdays in

a regular week are the easiest, Fridays and Mondays are harder, and weekends are most

difficult. This motif is evident across all human subjects and across a number of metrics,

including location entropy, KL divergence and accuracy (cell-based representation), as

well as absolute error (continuous data). Shuttles and paratransit exhibit the exact

inverse of this pattern.

5.6 Related Work

There is ample previous work on building models of short-term mobility, both individual

and aggregate, descriptive as well as predictive. But there is a gap in modeling and

predicting long-term mobility, which is our contribution (see Table 5.1).

Short Term Long Term

Descriptive Previous work Previous work

Predictive Previous work Only Far Out

Unified Previous work Only Far Out

Table 5.1: The context of our contributions.

Recent research in location-based reasoning has shown that surprisingly rich models

of human behavior can be learned from GPS data alone, for example (Ashbrook and

Starner, 2003; Liao et al., 2005; Krumm and Horvitz, 2006; Eagle and Pentland, 2006;

Horvitz et al., 2005; Sadilek and Kautz, 2010b). However, previous work largely focused

on making predictions at fixed, and relatively short, time scales. Consequently, questions

such as “where is Karl going to be in the next hour?” can often be answered with

high accuracy. By contrast, this work explores the predictability of people’s mobility

at varying temporal resolutions, and far into the future. While short-term prediction
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is often sufficient for routing in wireless networks, one of the major applications of

location modeling, long-term modeling is crucial in ubiquitous computing, infrastructure

planning, traffic prediction, and in both personal and digital security.

The study of high-level statistical properties of human mobility has received con-

siderable attention in recent years (Kim et al., 2006; Hsu et al., 2007b; González et

al., 2008; Lee et al., 2009; Musolesi and Mascolo, 2009) present a number of generative

models of people’s location that are capable of synthesizing GPS traces that accurately

mimic observed statistics of real GPS trajectories. Subsequently, (Rhee et al., 2011)

show that human walking behavior is statistically similar to Levy walks, characterized

by its heavy-tailed (power law) distribution of lengths of the individual walk segments.

The main motivation for this line of work is to improve performance of wireless networks.

Interestingly, (Jiang et al., 2009) argue that human mobility can be, at least at an

aggregate level, modeled even when no knowledge about people’s goals is given. They

show that Levy flight characteristics emerge simply from randomized navigation within

typical road networks.

(Jardosh et al., 2003) add the notion of obstacles (e.g., buildings) that limit both

mobility and signal strength. Walkways are synthesized by a Voronoi diagram over user-

defined obstacles. Jardosh et al. show that the presence of obstacles makes a significant

difference in the efficiency of wireless routing protocols.

(Ekman et al., 2008) suggest a modular framework of human mobility, where various

sub-models are invoked at different times of day (e.g., “at home” sub-model dominates

at night) to generate user movement that is statistically similar to real location traces.

By analyzing connections to Wi-Fi access points on a university campus, (Kim and

Kotz, 2007) extract different types of people’s mobility using unsupervised clustering.

To remove the dependency of location on absolute time, they transform the data into

frequency domain using discrete Fourier transform. Similarly, (Kim and Kotz, 2011)

perform dynamic moving-average profiling to induce typical mobility patterns of users

of a large Wi-Fi network. Wireless access points are used as sensors of user location,

and Pearson coefficient governs if a new trace matches an existing profile, or should
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form a basis for a novel pattern. Applying matrix decomposition techniques, (Hsu et

al., 2007a) also extract significant mobility patterns (in this case, eigen-behaviors) from

Wi-Fi connection logs. (Moon and Helmy, 2010) study the patterns of encounters of

mobile devices. Applying discrete Fourier transform, they categorize pairs of devices

based on their periodicity of encounters. (Bar-David et al., 2009) apply Fourier analysis

to study movement of herds of Buffalo. (Noulas et al., 2011) study patterns of human

mobility within a large Foursquare dataset spanning diverse areas of the globe. They

show that the probability of transition between two places bears an inverse power rela-

tion to the number of competing opportunities between them to their plain geographical

distance. This metric was introduced by (Stouffer, 1940). They subsequently leverage

this property to generate realistic synthetic movement of people in urban areas. How-

ever, all works above do not address the problem of location prediction, which is the

primary focus of this chapter.

(Scellato et al., 2011a) concentrate on predicting a person’s next significant location

while explicitly modeling the time of arrival along with the duration of stay. Similarly

to (Scott et al., 2011), the prediction is based on finding the best match for partial

sequence of observations within logs of historical data. However, both works address

only short-term predictions. On the other hand, (Krumm and Brush, 2011) model

probability of being at home at any given hour of a day, thereby allowing longer-term

predictions by leveraging periodic patterns in human mobility. We, in contrast, focus on

capturing both periodic and irregular behavior including long-term complex correlations

and patterns in the data that encompasses a large number of places, not just one’s home.

A number of researchers characterized the location prediction problem as various

forms of random walk. (Fulop et al., 2007) compare the traditional Brownian motion-

type model to a lifted Markov random walk, where a particle samples from cells to its

left, right, or remains stationary. The sampling parameters are learned from historical

trajectories. Their results show that in the context of cell phone networks the Markovian

representation achieves significantly higher accuracy. Similarly, (Chiang and Shenoy,

2004) represent a random walk in two dimensions as a Markov model and focus on

minimizing the number of states by coalescing equivalent states. Additionally, they
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model dwell time in the Markovian setting by an absorbing state. In general, studies

of people as well as animals demonstrate that vanilla random walk models achieve

respectable accuracy for short-term prediction, they dramatically diverge as we increase

the time offset (Bergman et al., 2000; Fulop et al., 2007; Musolesi and Mascolo, 2009).

Assuming people drive the posted speed limit, (Liu and Karimi, 2006) approximate

the area in which a person can appear within the next time step and predict the per-

son’s location within it. The GPS trace leading to each intersection is represented by

features—such as its duration and number of turns—which are subsequently leveraged

in a logistic regression model to predict the direction of the next turn. Liu et al. show

that this approach is significantly better than having an explicit conditional probability

table for each intersection. Future work may generalize the uniform circle of reach-

able location used by Liu et al. into a maximal mobility cone, where candidate future

locations are strictly constrained by one’s current position along with means of trans-

portation available (e.g., bike, car, airplane). This builds on the notion of light cone

from special relativity, where due to finite speed of light, one can only affect certain

regions of space-time.

(Liu et al., 1998) propose a two-level hierarchical model of location of wireless net-

work users. The top level captures people’s regular behavior at the level of fairly large

cells, while the low level models movement within a cell as a stochastic process based

on Kalman filter.

While not focusing on location prediction per se, (Jiang et al., 2001) address a related

problem of link availability in wireless networks. Experiments on synthetic data show

this to be a very challenging problem.

(Li et al., 2010) propose a model for extracting significant and meaningful periodic

mobility patterns of individuals. They first discretize the raw location data by finding

frequently visited places. Then each GPS trace is represented as n 0-1 functions, where

n is the number of discrete locations. Li et al. subsequently apply Fourier transform

coupled with auto-correlation to extract dominant frequency components and the cor-

responding time periods. Finally, they cluster periodic behaviors (e.g., “vacation days”

versus “work days”) and learn a probabilistic representation of activities in each cluster.
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(Vlachos et al., 2005) synergetically combine DFT with autocorrelation to detect

periodic patterns in search queries with higher accuracy and elegance, as compared

to results achieved by either method alone. DFT suffers from spectral leakage and

low resolution at long time periods, whereas autocorrelation fares worse in detecting

which periods are significant. Vlachos et al. also define a general similarity measure for

periodic signals, which is based on the power spectrum of the respective signals.

(Yang et al., 2003) detect surprising repeating sequences of events by dividing the

observations into contiguous chunks of constant length and calculating the information

gain of each. Surprising patterns are detected by thresholding the information gain.

(Cao et al., 2007) concentrate on mining periodic location motifs while adaptively

discretizing the data via clustering. By performing data duplication based on time

slack parameter θ, their method discovers recurring patterns even when they are slightly

shifted, distorted, or occur only within a limited time period. Our method goes beyond

pattern mining, into actual location prediction.

In the realm of very long-tem predictions (in the order of decades), (Clarke and Gay-

dos, 1998) analyze a cellular automaton parametrized with historical data that models

evolution and spread of urban agglomerations. However, they capture only aggregate,

coarse, and high-level patterns, whereas we model fine-grained mobility of individuals.

(Jeung et al., 2008) evaluate a hybrid location model that invokes two different predic-

tion algorithms, one for queries that are temporally close, and the other for predictions

further into the future. Short-term inference is based on matching recent trajectory

patterns, while the long-term alternative focuses on leveraging time periodicity exclu-

sively. However, their approach requires selecting a large number of parameters and

metrics (e.g., when to switch from short- to long-term predictor) Additionally, Jeung

et al. take only very small amount of actual location data (typically several hours) and

synthesize 200 days worth of data. This makes their evaluation limited, especially for

the case of long-term predictions. By contrast, we present a unified mobility model that

elegantly captures and leverages varying levels of both spatial and temporal resolution.

Furthermore, we evaluate on data entirely recorded by real-world sensors.

Recent surge of online social networks sparked interest in predicting people’s location
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from their online behavior and interactions. (Backstrom et al., 2010) predict home

address of Facebook users based on provided addresses of one’s friends. An empirically

extracted relationship between geographical distance and the probability of friendship

between pairs of users is leveraged in order to find a maximum likelihood assignment

of addressed to hidden users. The authors show that their method of localizing users

is in general more accurate than an IP address-based alternative. However, even their

strongest approach captures only a single static home location for each user and the

spatial resolution is low. For example, less than 50% of the users are localized within

10 miles of their actual home. Very recently, (Cho et al., 2011) focus on modeling

user location in social networks as a dynamic Gaussian mixture, a generative approach

postulating that each check-in is induced from the vicinity of either a person’s home,

work, or is a result of social influence of one’s friends. At a larger scale, interesting work

by Lee and Sumiya shows it is possible to detect and roughly geo-locate significant

social events via Twitter by analyzing patterns in people’s tweeting behavior (Lee and

Sumiya, 2010).

(Hao et al., 2010) augment traditional topic models with location information, which

makes it possible to capture topics specific to only certain places (e.g., airports). The

inferred topics are subsequently used to enrich travelogues.

(Tao et al., 2004) characterize virtually any motion by expressing location at time

t by a polynomial function of n past positions. They show that such a representation

can be expressed in recurrent matrix form, and the parameters can be found efficiently.

However, Tao et al. concentrate on near-term location prediction based on few consec-

utive past observations. Their main focus is leveraging the predictions in a client-server

architecture resolving spatio-temporal queries.

(Bettencourt and West, 2010) argue for a comprehensive scientific approach to urban

planning. They show there are underlying patterns that tie together the size of a

city with its emergent characteristics, such as crime rate, number of patents produced,

walking speed of its inhabitants, and GDP. The authors argue that cities are the source

of many major problems, but also contain the solutions because of their concentrated

creativity and productivity.
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(Song et al., 2010) take an information-theoretic approach to study the upper and

lower bounds on the predictability of people’s future location. Borrowing ideas from

data compression and applying Fano’s inequality, Song et al. show that for their cell

phone dataset, location is predictable, on average, 93% of the time when using the most

powerful algorithm that performs maximum-likelihood predictions based on historical

data. That is, people’s mobility appears truly random only 7% of the time. Furthermore,

the variance in predictability across subjects is surprisingly small, and even notoriously

strong factors, such as age and gender, do not significantly affect the predictability. A

generous lower bound on predictability is derived from a model that takes advantage

only of information in the bucket of data recorded in the n-th hour of a week when

making a prediction about user location at the n-th hour. This isolation of data within

buckets precludes any algorithm from leveraging temporal correlations.

(Grenfell et al., 2001) study the dynamics of measles epidemics using wavelet anal-

ysis, which allows them to extract spatio-temporal periodic patterns even when they

change over time. Furthermore, for each absolute time unit, we know the frequency

spectrum that generated it. The approximate phase of the disease trend lines is used

to relate different stages of the epidemics to each other.

5.7 Conclusions and Future Work

This work is the first to take on understanding and predicting long-term human mobility

in a unified way. We show that it is possible to predict location of a wide variety of

hundreds of subjects even years into the future and with high accuracy. We propose and

evaluate an efficient and nonparametric model based on eigenanalysis, and demonstrate

that it systematically outperforms other strong candidates. Since our model operates

over continuous, discrete, and probabilistic data representations, it is quite versatile.

Additionally, it has a high predictive as well as descriptive power, since the eigendays

capture meaningful patterns in subjects’ lives. As our final contribution, we analyze

the difficulty of location prediction on a continuum from short- to long-term, and show

that Far Out’s performance is not significantly affected by the temporal distances.
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The cell-based modeling is especially amenable to improvements in future work.

Namely, since frequently visited cells have a semantic significance, our probabilis-

tic interpretation can be combined in a Bayesian framework with prior probabili-

ties from large-scale surveys1 and additional constraints, such as physical limits on

mobility, where candidate future locations are strictly constrained by one’s current

position along with means of transportation available. Finally, it would be inter-

esting to generalize the eigenday approach with a hierarchy of nested eigen-periods,

where each level captures only the longer patterns the previous one couldn’t (e.g.,

eigendays→eigenweeks→eigenmonths. . . ).

1e.g., American Time Use Survey, National Household Travel Survey



101

6 Social Network Analysis

Figure 6.1: A snapshot of a heatmap animation of Twitter users’ movement within New

York City that captures a typical distribution of geo-tagged messaging on a weekday

afternoon. The hotter (more red) an area is, the more people have recently tweeted

from that location. Full animation is at http://cs.rochester.edu/u/sadilek/research/.
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6.1 Overview

Location plays an essential role in our lives, bridging our online and offline worlds. This

chapter explores the interplay between people’s location, interactions, and their social

ties within a large real-world dataset. We present and evaluate Flap, a system that

solves two intimately related tasks: link and location prediction in online social net-

works. For link prediction, Flap infers social ties by considering patterns in friendship

formation, the content of people’s messages, and user location. We show that while each

component is a weak predictor of friendship alone, combining them results in a strong

model, accurately identifying the majority of friendships. For location prediction, Flap

implements a scalable probabilistic model of human mobility, where we treat users with

known GPS positions as noisy sensors of the location of their friends. We explore super-

vised and unsupervised learning scenarios, and focus on the efficiency of both learning

and inference. We evaluate Flap on a large sample of highly active users from two

distinct geographical areas and show that it (1) reconstructs the entire friendship graph

with high accuracy even when no edges are given; and (2) infers people’s fine-grained

location, even when they keep their data private and we can only access the location

of their friends. Our models significantly outperform current comparable approaches to

either task.

6.2 Motivation

As we noted earlier, our society is founded on the interplay of human relationships and

interactions. Since every person is tightly embedded in our social structure, the vast

majority of human behavior can be fully understood only in the context of the actions

of others. Thus, not surprisingly, more and more evidence shows that when we want to

model the behavior of a person, the best predictors are often not based on the person

herself, but rather on her friends, relatives, and other connected people. For instance,

behavioral patterns of people taking taxis, rating movies, choosing cell phone providers,

or sharing music are often best predicted by the habits of related people, rather than
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by the attributes of the individual such as age, ethnicity, or education (Bell et al., 2007;

Pentland, 2008).

Until recently, it was nearly impossible to gather large amounts of data about the

connections that play such important roles in our lives. However, this is changing with

the explosive increase in the use, popularity, and significance of online social media and

mobile devices.1 The online aspect makes it practical to collect vast amounts of data,

and the mobile element bridges the gap between our online and offline activities. Unlike

other computers, phones are aware of the location of their users, and this information

is often included in users’ posts. In fact, major online social networks are fostering

location sharing. Twitter added an explicit GPS tag that can be specified for each

tweet (AKA Twitter message update) in early 2010 and is continually improving the

location-awareness of its service. Google+, Facebook, FourSquare, and Gowalla allow

people to share their location, and to “check-in” at venues. With Google Latitude and

Bliin, users can continually broadcast their location.

Thus, we now have access to colossal amounts of real-world data containing not just

the text and images people post, but also their location. Of course, these three data

modalities are not necessarily mutually independent. For instance, photos are often

GPS-tagged and locations can also be mentioned, or alluded to, in text.

While the information about users’ location and relationships is important to accu-

rately model their behavior and improve their experience, it is not always available. This

chapter explores novel techniques of inferring this latent information from a stream of

message updates. We present a unified view on the interplay between people’s location,

message updates, and their social ties on a large real-world dataset. Our approaches are

robust and achieve significantly higher accuracy than the best currently known methods,

even in difficult experimental settings spanning diverse geographical areas.

1http://www.comscore.com/
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6.3 Significance of Results

Consider the task of determining the exact geographic location of an arbitrary user of

an online social network. If she routinely geo-tags her posts and makes them public,

the problem is relatively easy. However, suppose the location information is hidden,

and you only have access to public posts by her friends. By leveraging social ties, our

probabilistic location model—the first component of this work—infers where any given

user is with high accuracy and fine granularity in both space and time even when the

user keeps his or her posts private. Since this work shows that once we have location

information for some proportion of people, we can infer the location of their friends,

one can imagine doing this recursively until the entire target population is covered. To

our knowledge, no other work attempts to predict locations in a comparably difficult

setting.

The main power of our link prediction approach—the second major component of

this work—is that it accurately reconstructs the entire friendship graph even when

no “seed” ties are provided. Previous work either obtained very good predictions at

the expense of large computational costs (e.g., (Taskar et al., 2003)), thereby limiting

those approaches to very small domains, or sacrificed orders of magnitude in accuracy

for tractability (e.g., (Liben-Nowell and Kleinberg, 2007; Crandall et al., 2010)). By

contrast, we show that our model’s performance is comparable to the most powerful

relational methods applied in previous work (Taskar et al., 2003), while at the same

time being applicable to large real-world domains with tens of millions (as opposed to

hundreds) of possible friendships. Since our model leverages users’ locations, it not only

encompasses virtual friendships, but also begins to tie them together with their real-life

groundings.

Prediction of people’s location and social ties—especially when considered

together—has a number of important applications. They range from improved local

content with better social context, through increased security (both personal and elec-

tronic) via detection of abnormal behavior tied with one’s location, to better organiza-

tion of one’s relationships and connecting virtual friendships with the real-world. We
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note that even when friends participate in the same social networking platform, their

relationship may not be exposed—either because the connections are hidden or because

they have not yet connected online. Flap can also help contain disease outbreaks (Eu-

bank et al., 2004). Our model allows identification of highly mobile individuals as well

as their most likely meeting points, both in the past and in the future. These people

can be subsequently selected for targeted treatment or preemptive vaccination. Given

people’s inferred locations, and limited resource budget, a decision-theoretic approach

can be used to select optimal emergency policy. Clearly, strong privacy concerns are

tied to such applications, as we discuss in the conclusions.

6.4 Related Work

Recent research in location-based reasoning explored harnessing data collected on

regular smart phones for modeling human behavior (Eagle and Pentland, 2006). Specif-

ically, they model individuals’ general location from nearby cell towers and Bluetooth

devices at various times of day. Eagle et al. show that predicting if a person is at home,

at work, or someplace else can be achieved with more than 90% accuracy. Besides scal-

ability and practicality—social network data is much more readily available than cell

phone logs—our work differs in that we include dynamic relational features (location

of friends), focus on a finer time granularity, and consider a substantially larger set of

locations (hundreds per user, rather than three). Additionally, the observations in our

framework (people’s self-published locations) are significantly noisier and less regular

than cell tower and Bluetooth readings. Finally, our location estimation applies even in

situations, where the target people decide to keep their data private.

Backstrom et al. predict the home address of Facebook users based on provided

addresses of one’s friends (Backstrom et al., 2010). An empirically extracted relation-

ship between geographical distance and the probability of friendship between pairs of

users is leveraged in order to find a maximum likelihood assignment of addresses to

hidden users. The authors show that their method of localizing users is in general more

accurate than an IP address-based alternative. However, even their strongest approach
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captures only a single static home location for each user and the spatial resolution is

low. For example, less than 50% of the users are localized within 10 miles of their actual

home. By contrast, we consider much finer temporal resolution (20 minute intervals)

and achieve significantly greater spatial precision, where up to 84% of people’s exact

dynamic location is correctly inferred.

Very recently, Cho et al. focus on modeling user location in social networks as

a dynamic Gaussian mixture, a generative approach postulating that each check-in is

induced from the vicinity of either a person’s home, work, or is a result of social influence

of one’s friends (Cho et al., 2011). By contrast, our location model is inherently discrete,

which allows us to predict the exact location rather than a sample from a generally high-

variance continuous distribution; operates at a finer time granularity; and learns the

candidate locations from noisy data. Furthermore, our approach leverages the complex

temporal and social dependencies between people’s locations in a more general, discrete

fashion. We show that our model outperforms that of Cho et al. in the experiments

presented below.

A number of geolocating applications demonstrate emerging privacy issues in this

area. The most impactful ones are arguably Creepy2, ICanStalkU.com, and PleaseR-

obMe.com (currently disabled). The purpose of these efforts is to raise awareness about

the lack of location privacy in online social networks. Given a username from an on-

line social network, Creepy aggregates location information about the target individual

from her GPS-tagged posts and photos, and displays it on a map. ICanStalkU.com scans

public Twitter timeline, and extracts GPS metadata from uploaded photos, which often

reveal people’s current location without them realizing it. PleaseRobMe.com used to

extract people’s geographic check-ins that imply they are not at home and therefore

vulnerable to burglaries.

However, all these applications work only with publicly available data. By contrast,

this chapter shows that we can infer people’s precise location even when they keep their

data private, as long as some of their friends post their location publicly. Therefore,

simply turning off the geolocation features of your phone—which may seem to be a

2https://github.com/ilektrojohn/creepy



107

reliable way to keep your whereabouts secret—does not really protect your privacy

unless your friends turn theirs off as well.

While our work concentrates on Twitter users, recent research shows that the pre-

dictability of human mobility remains virtually unchanged across a number of demo-

graphical attributes such as age and gender (Song et al., 2010). This strongly suggests

that our approach achieves similar accuracy for other geographical areas and different

samples of users. Finally, we note that although it has been shown that possibly as

many as 34% of accounts provide either wrong or misleading symbolic (e.g., city, state)

location information in their profiles, our work is largely shielded from this phenomenon

since we focus only on raw GPS data that can be more readily verified and is not fed

into a geocoder (Hong et al., 2011).

Link prediction is a broad class of extensively studied problems in data mining and

graph theory. The general premise is that we want to reconstruct missing edges, or to

predict latent or future edges in a graph. Link prediction has important applications in

a number of fields including social sciences, physics, and biology. Many variants of link

prediction exist that differ in the type of graph modelled (e.g., directed vs. undirected,

static vs. evolving), the amount of known existing edges, and the availability of node

attributes. In this work, we focus on link prediction in undirected static graphs while

leveraging their topological features as well as pairwise attributes of the nodes. For

an excellent general overview of computational analysis of social networks at large see

(Easley and Kleinberg, 2010).

The problem of link prediction has been studied in a large number of domains and

contexts; here we mention the ones that are most relevant to our work. Liben-Nowell et

al. models the evolution of a graph solely from its topological properties (Liben-Nowell

and Kleinberg, 2007). The authors evaluate a number of methods of quantifying the

probability of a link in large graphs, and conclude that while no single technique is

substantially better than the rest, their models outperform a random predictor by a

significant margin. This shows that there is important information to be mined from

the graph structure alone.

An alternative approach is to leverage the topology as well as attributes of the
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individual entities (Taskar et al., 2003). They model friendships of students in an online

university community using relational Markov networks. Similarly to our approach,

their probabilistic model encompasses a number of features, some of which are based

on the attributes of individual users while others model the structure of the friendship

graph. Their inference method is standard belief propagation (BP), whereas we develop

an efficient and specialized version of BP, which in practice quickly converges. Their

domain contains only several hundred candidate social ties. This size restriction is

apparently due to the computational challenges posed by their relational model. We, in

contrast, consider thousands of individuals who can be connected in arbitrary fashion,

which results in tens of millions potential friendships. Furthermore, Taskar et al. assume

that some friendships are given to the model at testing time. In this work, we show

that it is possible to achieve good performance even with no observed links.

Crandall et al. explore the relationship between co-location of Flickr users and

their social ties (Crandall et al., 2010). They model the relationship as an exponential

probability distribution and show it fits well to the observed, empirical distribution.

They show that the number of distinct places where two users are co-located within

various periods of time has the potential to predict a small fraction of the ties quite

well. However, the recall is dramatically low. In their Flickr data, only 0.1% of the

friendships meet the condition for being predicted with at least 60% confidence. By

contrast, with our approach we can predict over 90% of the friendships with confidence

beyond 80% (see Figure 6.5). This is consistent with our experiments, where we show

that location alone is generally a poor predictor of friendship (consider the “commuter

train” example described below on one end of the spectrum, and a pair of friends that

never share their location on the other end). We therefore leverage textual similarity

and network structure as well, and evaluate the predictive power of our model in terms

of AUC while inferring the friendship graph. Additionally, our model does not require

setting subtle parameters, such as cell size and time granularity. When we apply the

method of Crandall et al. to our Twitter data, the results are (as one would expect)

poor; see Figure 6.6 and its analysis in text.

The relationship between social ties and distance has recently received considerable
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attention (Liben-Nowell et al., 2005; Backstrom et al., 2010; Scellato et al., 2011b).

Even though online interactions are in principle not hampered by physical distance, all

works agree that in any social network studied, the probability of friendship generally

decreases as the distance between people increases. However, a significant portion of

social ties often cannot be explained by location alone. We observe the same pattern

in our Twitter data and show that location can be augmented with text and structural

features to infer social ties with high accuracy.

Backstrom et al. present a method for predicting links cast as a random walk

problem (Backstrom and Leskovec, 2011). A key difference between our approaches is

that we can construct the entire social network with high accuracy even when none

of the edges are observed, whereas Backstrom et al.’s approach depends upon already

knowing most of the links in the network along with a set of source and candidate

nodes, and only needs to predict relatively few new links. Furthermore, unlike our work,

Backstrom et al.’s approach requires many parameters to be selected. In contrast with

random walks, approaches related to our belief propagation method for enforcing and

chaining soft transitive constraints have been validated in many areas in the machine

learning literature, and are implicitly used in many works on link prediction as a way to

solve the underlying probabilistic models (Smith and Eisner, 2008; Taskar et al., 2003).

We note that no work to date focused on capturing both directions of the relationship

between location and social ties. This chapter concentrates on predicting, in turn, both

location and social structure from the remaining data modality.

6.5 The Data

Using the Twitter Search API3, we collected a sample of public tweets that originated

from two distinct geographic areas: Los Angeles (LA) and New York City (NYC). The

collection period was one month long and started on May 19 2010. Using a Python

script, we periodically queried Twitter with requests of all recent tweets within 150

kilometers of LA’s city center, and 100 kilometers within the NYC city center. In order

3http://search.twitter.com/api/
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to avoid exceeding Twitter’s query rate limits and subsequently missing some tweets,

we distributed the work over a number of machines with different IP addresses that

asynchronously queried the server and merged their results. Twitter does not provide

any guarantees as to what sample of existing tweets can be retrieved through their API,

but a comparison to official Twitter statistics shows that our method recorded nearly

all of the publicly available tweets in those two regions. Altogether, we have logged

over 26 million tweets authored by more than 1.2 million unique users (see Table 6.1).

To put these statistics in context, the entire NYC metropolitan area has an estimated

population of 19 million people.4 We concentrate on accounts that posted more than

100 GPS-tagged tweets during the one-month data collection period. We refer to them

as geo-active users. The social network of the 6,237 geo-active users is shown in Fig. 6.2.

6.6 The System: Flap

Flap (Friendship + Location Analysis and Prediction) has three main components re-

sponsible for downloading Twitter data, visualization, and learning and inference. The

data collection component was described in the previous section. Figure 6.3 shows

Flap’s visualization a sample of geo-active users in NYC. People are represented by

pins on the map and the red links denote friendships (either ground truth or inferred).

Beyond standard Google Maps user interface elements, the visualization is controlled

via the black toolbar in the upper-right corner. Flap can animate arbitrary segments

of the data at various speeds. Selecting a user displays additional information such as

his profile, time and text of his recent tweets, and a more detailed map of his current

surroundings.

Now we turn to the third—machine learning—module of Flap that has two main

tasks. First, it is responsible for learning a model of people’s friendships and subse-

quently revealing hidden friendships. And second, it learns models of users’ mobility

and predicts their location at any given time. We will now discuss these two tasks and

our solutions in turn.

4http://www.census.gov/popest/metro/
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Figure 6.2: Visualization of the social network consisting of the geo-active users. Edges

between nodes represent friendships on Twitter. The image has been created using

LaNet-vi package implementing k-core decomposition (Beiró et al., 2008). The coreness

of nodes is color-coded using the scale on the right. The degree of a node is represented

by its size shown on the left. We see that there are relatively few important “hubs” in

the central area, and a large number of less connected individuals on the fringes.
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New York City & Los Angeles Dataset

Unique users 1,229,611

Unique geo-active users 11,380

Tweets total 26,118,084

GPS-tagged tweets 7,566,569

GPS-tagged tweets by geo-active users 4,016,286

Unique locations 89,077

Significant locations 25,830

“Follows” relationships 123,182

between geo-active users

“Friends” relationships 52,307

between geo-active users

Table 6.1: Summary statistics of the data collected from NYC and LA. Geo-active

users are ones who geo-tag their tweets relatively frequently (more than 100 times per

month). Note that following reciprocity is about 42%, which is consistent with previous

findings (Kwak et al., 2010; Java et al., 2007). Unique locations are the result of iterative

clustering that merges (on a per-user basis) all locations within 100 meters of each other.

Significant location is defined as one that was visited at least five times by at least one

person.

6.6.1 Friendship Prediction

The goal of friendship prediction is to reconstruct the entire social graph, where vertices

represent users and edges model friendships. We achieve this via an iterative method

that operates over the current graph structure and features of pairs of vertices. We first

describe the features used by our model of social ties, and then focus on its structure,

learning, and inference. In agreement with prior work, we found that no single property

of a pair of individuals is a good indicator of the existence or absence of friendship

(Liben-Nowell et al., 2005; Cho et al., 2011). Therefore, we combine multiple disparate

features—based on text, location, and the topology of the underlying friendship graph.
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Figure 6.3: Flaps’s visualization of a sample of geo-active friends in NYC. Red links

between users represent friendships.

Features

The text similarity coefficient quantifies the amount of overlap in the vocabularies of

users u and v, and is given by

(6.1) T (u, v) =
∑

w∈W (u)∩W (v)\S

fu(w)fv(w),

where W (u) is the set of words that appear in user u’s tweets, S is the set of stop-words

(it includes the standard stop words augmented with words commonly used on Twitter,

such as RT, im, and lol), and fu(w) is the frequency of word w in u’s vocabulary.

Interestingly, in the Twitter domain, the mentions tags (@) give a clue to user’s

friendships. However, in the experiments presented here, we eliminate all user names

that appear in the tweets in order to report results that generalize to other social

networks.

Our co-location feature (C) is based on the observation that at least some people

who are online friends also meet in the physical world (Gruzd et al., 2011). We make an
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assumption that once a user tweets from a location, he or she remains at that location

until they tweet again. Even though people generally do not tweet from every single

place they visit, this approximate co-location measure still captures how much time

pairs of users tend to spend close to each other. The co-location score is given by

(6.2) C(u, v) =
∑

`u,`v∈L

t(`u, `v)

d(`u, `v)
,

where L is the union of all locations from which users u and v send messages, t(`u, `v) is

the amount of time u spends at location `u while v is at location `v. In short, we add up

the time overlaps two users spend at their respective locations and we scale each overlap

by the distance between the locations. Thus, two individuals spending a lot of common

time at nearby places receive a large co-location score, while people who always tweet

from two opposite ends of a city have a small co-location score. We have implemented

an efficient algorithm that calculates C(u, v) for a pair of users in time O(n) where n is

the minimum number of GPS-tagged messages created by either user u or v. Note that

unlike previous work (e.g., (Crandall et al., 2010; Backstrom and Leskovec, 2011)), our

co-location feature is continuous and does not require discretization, thresholding, or

parameter selection.

As a graph structure feature, we use the meet/min coefficient (M) and its generalized

version (ME) defined in equations 6.3 and 6.4 respectively.

(6.3) M(u, v) =

∣∣N(u) ∩N(v)
∣∣

min

(∣∣N(u)
∣∣, ∣∣N(v)

∣∣)

(6.4) ME(u, v) =

∑
n∈N(u)∩N(v)

pnupnv

min

( ∑
n∈N(u)

pnu,
∑

n∈N(v)

pnv

)

N(u) is the set of neighbors of node u and pnu is the probability of edge (n, u).

The standard meet/min coefficient counts the number of common neighbors of u and

v (this quantity is equal to the number of triads that the edge (u, v) would complete,

an important measure in structural balance theory (Easley and Kleinberg, 2010)), and



115

scales by the size of the neighborhood of either u or v, whichever is smaller. Intuitively,

M(u, v) expresses how extensive is the overlap between friendlists of users u and v

with respect to the size of the shorter friendlist. The expectation of the meet/min

coefficientME calculates the same quantities but in terms of their expected values on a

graph where each edge is weighted by its probability. Neither measure depends on the

existence or probability of edge (u, v) itself.

Since the T and C scores are always observed, we use a regression decision tree to

unify them, in a pre-processing step, into one feature DT (u, v), which is the decision

tree’s prediction given T (u, v) and C(u, v). Thus, we end up with one feature function

for the observed variables (DT ) and one for the hidden variables (ME).

We have experimented with other features, including the Jaccard coefficient, prefer-

ential attachment, hypergeometric coefficient, and others. However, our work is moti-

vated by having an efficient and scalable model. A decision tree-based feature selection

showed that our three measures (T , C, and ME) jointly represent the largest informa-

tion value. Finally, while calculating the features for all pairs of n users is an O(n2)

operation, it can be significantly sped up via locality-sensitive hashing (Datar et al.,

2004).

Learning and Inference

Our probabilistic model of the friendship network is a Markov random field that has a

hidden node for each possible friendship. Since the friendship relationship is symmetric

and irreflexive, our model contains n(n− 1)/2 hidden nodes, where n is the number of

users. Each hidden node is connected to an observed node (DT ) and to all other hidden

nodes.

Ultimately, we are interested in the probability of existence of an edge (friendship)

given the current graph structure and the pairwise features of the vertices (users) the

edge is incident on. Applying Bayes’ theorem while assuming mutual independence of
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features DT and ME, we can write

(6.5)
P (E = 1|DT = d,ME = m) =

= P (DT = d|E = 1)P (E = 1|ME = m)/Z

where

Z =
∑

i∈{0,1}

P (DT = d|E = i)P (E = i|ME = m).

E, DT , and ME are random variables that represent edge existence, DT score, and

ME score, respectively. In equation 6.5, we applied the equality

P (ME|E) = P (E|ME)P (ME)/P (E)

and subsequent simplifications so that we do not need to explicitly model P (E).

At learning time, we first train a regression decision tree DT and prune it using

ten-fold cross-validation to prevent overfitting. We also perform maximum likelihood

learning of the parameters P (DT |E) and P (E|ME). We chose the decision tree pre-

processing step for several reasons. First, the text and location-based features considered

individually or independently have very poor predictive power. Therefore, models such

as logistic regression tend to have low accuracy. Furthermore, the relationships between

the observed attributes of a pair of users and the their friendship is often quite complex.

For example, it is not simply the case that a friendship is more and more likely to

exist as people spend larger and larger amounts of time near each other. Consider two

strangers that happen to take the same train to work, and tweet every time it goes

through a station. Our dataset contains a number of instances of this sort. During the

train ride, their co-location could not be higher and yet they are not friends on Twitter.

This largely precludes success of classifiers that are looking for a simple decision surface.

At inference time, we use DT to make preliminary predictions on the test data.

Next, we execute a customized loopy belief propagation algorithm that is initialized

with the probabilities estimated by DT (see Algorithm 1). Step 6 is where an edge

receives belief updates from the other edges as well as the DT prior.

Belief propagation (BP) is a family of message passing algorithms that perform

inference in graphical models. BP is applicable to all models discussed above. BP
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iinterplays proven to be exact and to converge for certain classes of graphs, such as

trees, but its behavior on general cyclic graphs is poorly understood (Pearl, 1988).

However, in many practical applications, BP performs surprisingly well (Murphy et al.,

1999).

Even though the graphical model is dense, our algorithm converges within several

hundred iterations, due in part to the sufficiently accurate initialization and regular-

ization provided by the decision tree. Note that the algorithm can also function in

an online fashion: as new active users appear in the Twitter public timeline, they are

processed by the decision tree and added to Q. This is an attractive mode, where the

model is always up to date and takes advantage of all available data.

Algorithm 3 : refineEdgeProbabilities(Q)

Input: Q: list containing all potential edges between pairs of vertices along with their

preliminary probabilities

Output: Q: input list Q with refined probabilities

1: while Q has not converged do

2: sort Q high to low by estimated edge probability

3: for each 〈e, P (e)〉 in Q do

4: dt ⇐ DT (e)

5: m ⇐ ME(e)

6: P (e) ⇐ P (DT=dt|E=1)P (E=1|ME=m)∑
i∈{0,1} P (DT=dt|E=i)P (E=i|ME=m)

7: end for

8: end while

9: return Q

6.6.2 Location Prediction

The goal of Flap’s location prediction component is to infer the most likely location

of person u at any time. The input consists of a sequence of locations visited by u’s

friends (and for supervised learning, locations of u himself over the training period),
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Figure 6.4: Two consecutive time slices of our dynamic Bayesian network for modeling

motion patterns of Twitter users from n friends. All nodes are discrete, shaded nodes

represent observed random variables, unfilled denote hidden variables.

along with corresponding time information. The model outputs the most likely sequence

of locations u visited over a given time period.

We model user location in a dynamic Bayesian network shown in Figure 6.4. In each

time slice, we have one hidden node and a number of observed nodes, all of which are

discrete. The hidden node represents the location of the target user (u). The node td

represents the time of day and w determines if a given day is a work day or a free day

(weekend or a national holiday). Each of the remaining observed nodes (f1 through fn)

represents the location of one of the target user’s friends. Since the average node degree

of geo-active users is 9.2, we concentrate on n ∈ {0, 1, 2, . . . , 9}, although our approach

works for arbitrary nonnegative values of n. Each node is indexed by time slice.

The domains of the random variables are generated from the Twitter dataset in the

following way. First, for each user, we extract a set of distinct locations they tweet

from. Then, we iteratively merge (cluster) all locations that are within 100 meters

of each other in order to account for GPS sensor noise, which is especially severe in

areas with tall buildings, such as Manhattan. The location merging is done separately

for each user and we call the resulting locations unique. We subsequently remove all

merged locations that the user visited fewer than five times and assign a unique label to

each remaining place. These labels are the domains of u and fi’s. We call such places
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significant.

The above place indexing yields a total of 89,077 unique locations, out of which

25,830 were visited at least five times by at least one user. There were 2,467,149 tweets

total posted from the significant locations in the 4 week model evaluation period. Ta-

ble 6.1 lists summary statistics.

We model each person’s location in 20 minute increments, since more than 90% of

the users tweet with lower frequency. Therefore, the domain of the time of day random

variable td is {0, . . . , 71} (total of 24/0.3 time intervals in any given day).

Learning

We explore both supervised and unsupervised learning of user mobility. In the earlier

case, for each user, we train a DBN on the first three weeks of data with known hidden

location values. In the latter case, the hidden labels are unknown to the system.

During supervised learning, we find a set of parameters (discrete probability distri-

butions) θ that maximize the log-likelihood of the training data. This is achieved by

optimizing the following objective function.

(6.6) θ? = argmax
θ

log
(
Pr
(
x1:t, y1:t|θ)

)
,

where x1:t and y1:t represent the sequence of observed and hidden values, respectively,

between times 1 and t, and θ? is the set of optimal model parameters. In our implemen-

tation, we represent probabilities and likelihoods with their log-counterparts to avoid

arithmetic underflow.

For unsupervised learning, we perform expectation-maximization (EM) (Dempster

et al., 1977). In the E step, the values of the hidden nodes are inferred using the current

DBN parameter values (initialized randomly). In the subsequent M step, the inferred

values of the hidden nodes are in turn used to update the parameters. This process

is repeated until convergence, at which point the EM algorithm outputs a maximum
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likelihood point estimate of the DBN parameters. The corresponding optimization

problem can be written as

(6.7) θ? = argmax
θ

log
∑
y1:t

Pr
(
x1:t, y1:t|θ)

)
,

where we sum over all possible values of hidden nodes y1:t. Since equation 6.7 is com-

putationally intractable for sizable domains, we simplify by optimizing its lower bound

instead, similar to (Ghahramani, 1998).

The random initialization of the EM procedure has a profound influence on the final

set of learned parameter values. As a result, EM is prone to getting “stuck” in a local

optimum. To mitigate this problem, we perform deterministic simulated annealing

(Ueda and Nakano, 1998). The basic idea is to reduce the undesirable influence of

the initial random set of parameters by “smoothing” the objective function so that it

hopefully has fewer local optima. Mathematically, this is written as

(6.8) θ?(τ1, . . . , τm) = argmax
θ

τi log
∑
y1:t

Pr
(
x1:t, y1:t|θ

) 1
τi .

Here, τ1, . . . , τm is a sequence of parameters, each of which corresponds to a different

amount of smoothing of the original objective function (shown in equation 6.7). The

sequence is often called a temperature schedule in the simulated annealing literature,

because equation 6.8 has analogs to free energy in physics. Therefore, we start with a

relatively high temperature τ1 and gradually lower it until τm = 1, which recovers the

original objective function.

Inference

At inference time, we are interested in the most likely explanation of the observed data.

That is, given a sequence of locations visited by one’s friends, along with the corre-

sponding time and day type, our model outputs the most likely sequence of locations

one visited over the given time period.

Flap runs a variant of Viterbi decoding to efficiently calculate the most likely state

of the hidden nodes. In our model, Viterbi decoding is given by

(6.9) y?1:t = argmax
y1:t

log
(
Pr(y1:t|x1:t)

)
,
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where Pr(y1:t|x1:t) is conditional probability of a sequence of hidden states y1:t given a

concrete sequence of observations x1:t between times 1 and t.

In each time slice, we coalesce all observed nodes with their hidden parent node, and

since we have one hidden node in each time slice, we apply dynamic programming and

achieve polynomial runtimes in a way similar to (Jordan, 1998). Specifically, the time

complexity of our inference is O(T |Y |2), where T is the number of time slices and Y is

the set of possible hidden state values (potential locations).

Therefore, the overall time complexity of learning and inference for any given target

user is O(kT |Y |2), where k is the number of EM iterations (k = 1 for supervised

learning). This renders our model tractable even for very large domains that evolve

over long periods of time with fine granularity. Next, we turn to our experiments, and

analysis of results.

6.7 Evaluation

For clarity, we discuss experimental results for each of the two Flap’s tasks separately.

6.7.1 Friendship Prediction

We evaluate Flap on friendship prediction using two-fold cross-validation in which we

train on LA and test on NY data, and vice versa. We average the results over the two

runs. We varied the amount of randomly selected edges provided to the model at testing

time from 0 to 50%.

Flap reconstructs the friendship graph well over a wide range of conditions—even

when given no edges (Figure 6.5 and Table 6.2). It far outperforms the baseline model

(decision tree) and the precision/recall breakeven points are comparable to those of

(Taskar et al., 2003), even though our domain is orders of magnitude larger and our

model is more tractable.

We also compare our model to that of Crandall et al. (Crandall et al., 2010), sum-

marized in Section 6.4. Figure 6.6 shows the results of their contemporaneous events
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Figure 6.5: Averaged ROC curves for decision tree baseline, Crandall et al.’s model with

the most favorable setting of parameters (s = 0.001 and t = 4 hours), and Flap.

counting procedure on our Twitter data for various spatial and temporal resolutions.

We see that in our dataset, the relationship between co-location and friendship is much

more complex and non-monotonic as compared to their Flickr dataset. As a result, the

predictive performance of Crandall et al.’s model on our data is poor. When proba-

bilistically predicting social ties based on the number of contemporaneous events, the

accuracy is 0.001%, precision 0.008, and recall 0.007 (in the best case, where s = 0.001

and t = 4 hours). There are two conclusions based on this result. First, similarly to

Liben-Nowell et al. (Liben-Nowell et al., 2005), we observe that geographic distance

alone is not sufficient to accurately model social ties. And second, looking at the per-

formance of (Crandall et al., 2010)’s approach on the Flick data comprising the entire

world, versus its performance on our LA and NYC data, we see that inferring rela-

tionships from co-location data in dense and relatively small geographical areas can be

a more challenging task. This is important, as the majority of population lives and

interacts in such metropolitan areas. However, our work shows that when we leverage
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#E 0% 10% 25% 50%

AUC Flap 6.5× 107 0.78 0.82 0.88 0.95

AUC Crandall et al. 6.5× 107 0.55 - - -

P=R Flap 6.5× 107 0.28 0.36 0.47 0.64

P=R Crandall et al. 6.5× 107 0.05 - - -

P=R Taskar et al. ∼ 4× 102 N/A 0.47 0.58 0.73

Table 6.2: Summary of model evaluation. The #E column represents the number

of candidate edges that exist in the social graph. The remaining columns denote the

proportions of friendships given to the models at testing time. AUC is the area under the

ROC curve; P=R denotes precision/recall breakeven points. All results are based on our

Twitter dataset, except for the P=R results for Taskar et al., which are based on their—

much smaller—university dataset as their model does not scale to larger networks; see

text for details.

additional information channels beyond co-location, and embed them in a probabilistic

model, we can infer social ties quite well.

In order to explore how our model performs in the context of strong ties, in both

LA and NYC, we selected a subgraph that contains only active users who are members

of a clique of size at least eight. We again evaluated via cross-validation as above.

Flap reconstructs the friendship network of the 83 people with 0.92 precision and 0.85

recall, whereas the baseline decision tree achieves precision of 0.83 and recall of 0.51.

Interestingly, the co-location feature plays a major role here because the cliques of

friends spend most of their time in relatively small areas.

6.7.2 Location Prediction

Our evaluation is done in terms of accuracy—the percentage of timeslices for which the

model infers the correct user location. We have a separate dynamic Bayesian network

model for each user.

In order to evaluate the models learned in a supervised fashion, we train each model
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Figure 6.6: Comparison of the intensity of co-location of pairs of users versus the prob-

ability of their friendship in our Twitter and Crandall et al.’s Flickr datasets. We see

that the relationship is more complex on Twitter, causing a simple model of social ties

to achieve very low predictive accuracy. s is the size of cells in degrees in which we

count the co-located events and t is the time slack; compare with Figure 2 in (Crandall

et al., 2010).

on three weeks worth of data (5/19/2010 00:00:00 – 6/8/2010 23:59:59) and test on the

following fourth week (6/9/2010 00:00:00 – 6/15/2010 23:59:59). We always use the

respective local time: PDT for LA, and EDT for NYC. We vary the number of friends

(n) that we harness as sensors for each individual from 0 to 9. We always use the n

most geo-active friends, and introduce a special missing value for users who have fewer

than n friends. We evaluate the overall performance via cross-validation. In each fold

of cross-validation, we designate a target user and run learning and inference for him.

This process is repeated for all users, and we report the average results over all runs for

a given value of n (Figure 6.7).

For models learned in an unsupervised manner, we also apply cross-validation as

above. The hidden locations are learned via unsupervised clustering as described above.

The temperature schedule for the EM procedure is given by τi+1 = τi× 0.8, with initial
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temperature τ1 = 10 (see equation 6.8). This results in calculating the likelihood at 11

different temperatures for each EM run. The EM procedure always converged within

one thousand iterations, resulting in runtimes under a minute per user even in the

largest domain.

We compare the results obtained by our DBN models to random and näıve baselines,

and to the currently strongest mobility model of Cho et al. (Cho et al., 2011). The

random model is given the number of hidden locations for each user and guesses target

user’s location uniformly at random for each time slice. The näıve model always outputs

the location at which the target user spends most of his time in the training data. We

consider a prediction made by Cho et al.’s model accurate if it lies within 100 meters

(roughly a city block) of the true user location.

Figure 6.7 summarizes the results. As expected, the supervised models perform

better than their unsupervised counterparts. However, given the complexity of the

domain and the computational efficiency of our models during training as well as testing,

even the unsupervised models achieve respectable accuracy. The DBN approaches are

significantly better than both random and näıve baselines, and they also dominate

(Cho et al., 2011)’s social mobility model (PSMM) by a large margin. We believe this is

mainly because people’s mobility in condensed metropolitan areas often does not nicely

decompose into “home” and “work” states, and the social influence on user location is

not simply an attractive force (i.e., one does not necessarily tend to appear closer to

one’s friends). For instance, consider two co-workers, one having a morning shift and

the other a night shift in the same store. Their mobility is certainly intertwined, but

the force between their location is a repulsive one, as when the first one is working, the

other is sleeping at home. Unlike other approaches, our DBN model correctly learns

such nonlinear patterns (both temporal and social).

The results are very encouraging. For example, even when the model is given in-

formation only about one’s two friends, and no information about the target user (Un-

supervised, n = 2 in Figure 6.7), it infers the correct location 47% of the time. As we

increase the number of available friends to nine (Unsupervised, n = 9), we achieve 57%

accuracy. When historical data about the mobility of the target user and his friends is
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Figure 6.7: Predictive accuracy of location models. The performance of the two baseline

models is by design independent of number of friends considered.

available, we can estimate the correct location 77% of the time when two friends are

available (Supervised, n = 2) and 84.3% with nine friends (Supervised, n = 9). As n

increases, the accuracy generally improves. Specifically, we see that there is a significant

boost from n = 0 to n = 2, after which the curves plateau. This suggests that a few

active friends explain one’s mobility well. We also see that simply outputting the most

commonly visited location (Näıve) yields poor results since people tend to lead fairly

dynamic lives.

6.8 Conclusions and Future Work

Location information linked with the content of users’ messages in online social networks

is a rich information source that is now accessible to machines in massive volumes and at

ever-increasing real-time streaming rates. This data became readily available only very

recently. In this work, we show that there are significant patterns that characterize lo-

cations of individuals and their friends. These patterns can be leveraged in probabilistic

models that infer people’s locations as well as social ties with high accuracy. Moreover,
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the prediction accuracy degrades gracefully as we limit the amount of observed data

available to the models, suggesting successful future deployment of Flap at a scale of an

entire social network.

Our approach is quite powerful, as it allows us to reason even about the location of

people who keep their messages and GPS data private, or have disabled the geo-features

on their computers and phones altogether. Furthermore, unlike all existing approaches,

our model of social ties reconstructs the entire friendship network with high accuracy

even when the model is not “seeded” with a sample of known friendships. At the same

time, we show that the predictions improve as we provide more observed edges at testing

time.

By training the model on one geographical area and testing on the other using cross-

validation (total of 4 million geo-tagged public tweets we collected from Los Angeles

and New York City metropolitan areas), we show that Flap discovers robust patterns

in the formation of friendships that transcend diverse and distant areas of the USA.

We conclude that no single property of a pair of individuals is a good indicator of

the existence or absence of friendship. And no single friend is a good predictor of

one’s location. Rather, we need to combine multiple disparate features—based on text,

location, and the topology of the underlying friendship graph—in order to achieve good

performance.

In our current work, we are extending the model to leverage the textual content of

the tweets, as it contains hints about locations that are not captured by our existing

features. We are currently exploring language understanding and toponym resolution

techniques vital for tapping this information. We also focus on casting the two problems

explored in this chapter in a unified formalism and solving them jointly, perhaps in a

recursive fashion.

We recognize that there are substantial ethical questions ahead, specifically con-

cerning tradeoffs between the values our automated systems create versus user privacy.

For example, our unsupervised experiments show that location can be inferred even for

people who keep their tweets and location private, and thus may believe that they are

“untrackable.” These issues will need to be addressed in parallel with the development
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of our models. Other researchers have started exploring solutions to privacy concerns

through data obfuscation (Brush et al., 2010).

However, we believe that the benefits of Flap—in helping to connect and localize

users, and in building smarter systems—outweigh the possible dangers. There are many

exciting practical applications that have the potential to change people’s lives that rely

on location and link estimation. These include context-aware crowdsourcing, timely and

accurate recommendations, better local content, disease prevention and containment,

security, traffic modeling, emergency response, and others. In the next chapter, we will

discuss applications of our models in the public health domain, where we show that

social media can be used to reason and predict disease epidemics with little delay and

with fine granularity.
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7 Fine-Grained Computational

Epidemiology

Figure 7.1: Visualization of a sample of friends in New York City. The red links between

users represent friendships, and the colored pins show their current location on a map.

We see the highlighted person X complaining about her health, and hinting about the

specifics of her ailment. This chapter investigates to what extent can we predict the

day-to-day health of individuals by considering their physical encounters and social

interactions with people like X.
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7.1 Introduction

Given that five of your friends have flu-like symptoms, and that you have recently

met eight people, possibly strangers, who complained about having runny noses and

headaches, what is the probability that you will soon become ill as well? This chapter

explores how accurately such questions can be answered across a large sample of people

participating in online social media (see Fig. 7.1).

Imagine Joe is about to take off on an airplane and quickly posts a Twitter update

from his phone. He writes that he has a fever and feels awful. Since Joe has a public

Twitter profile, we know who some of his friends are, and from his GPS-tagged messages

we see some of the places he has recently visited. Additionally, we can infer a large

fraction of the hidden parts of Joe’s social network and his latent locations by applying

the results of previous work, as we discuss below. In the same manner, we can identify

other people who are likely to be at Joe’s airport, or even on the same flight. Using

both the observed and inferred information, we can now monitor individuals who likely

came into contact with Joe, such as the passengers seated next to him. Joe’s disease

may have been transmitted to them, and vice versa, though they may not exhibit any

symptoms yet. As people travel to their respective destinations, they may be infecting

others along the way. Eventually, some of the people will tweet about how they feel,

and we can observe at least a fraction of the population that actually contracted the

disease.

The example just given illustrates our vision of how public health modeling may

look like in the near future. In this chapter, we report on our initial progress towards

making this vision a reality.

Research in computational epidemiology to date has concentrated on coarse-grained

statistical analysis of populations, often synthetic ones. By contrast, our work focuses on

fine-grained modeling of the spread of infectious diseases throughout a large real-world

social network. Specifically, we study the roles that social ties and interactions between

specific individuals play in the progress of a contagion. We focus on public Twitter data,

where we find that for every health-related message there are more than 1,000 unrelated
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ones. This class imbalance makes classification particularly challenging. Nonetheless,

we present a framework that accurately identifies sick individuals from the content of

online communication. Evaluation on a sample of 2.5 million geo-tagged Twitter mes-

sages shows that social ties to infected, symptomatic people, as well as the intensity

of recent co-location, sharply increase one’s likelihood of contracting the illness in the

near future. To our knowledge, this work is the first to model the interplay of social

activity, human mobility, and the spread of infectious disease in a large real-world popu-

lation. Furthermore, we provide the first quantifiable estimates of the characteristics of

disease transmission on a large scale without active user participation—a step towards

our ability to model and predict the emergence of global epidemics from day-to-day

interpersonal interactions.

Traditionally, public health is monitored via surveys and by aggregating statistics

obtained from healthcare providers. Such methods are costly, slow, and may be biased.

For instance, a person with flu is recorded only after he or she visits a doctor’s office

and the information is sent to the appropriate agency. Affected people who do not

seek treatment, or do not respond to surveys are virtually invisible to the traditional

methods.

Recently, digital media has been successfully used to significantly reduce the latency

and improve the overall effectiveness of public health monitoring. Perhaps most notably,

Google Flu Trends1 models the prevalence of flu via analysis of geo-located search queries

(Ginsberg et al., 2008). Other researchers leverage news articles and associated user

discussions to monitor infectious diseases (Cui et al., 2011).

Twitter itself has been recently shown to accurately assess the overall prevalence of

flu independently in a number of countries with accuracy comparable to current state

of the art methods including Google Flu and Center for Disease Control and Prevention

(CDC) statistics2 (Lampos et al., 2010; Culotta, 2010; Signorini et al., 2011). However,

even the state of the art systems suffer from two major drawbacks. First, they produce

only coarse, aggregate statistics, such as the expected number of people afflicted by flu

1http://www.google.org/flutrends/
2http://www.cdc.gov/datastatistics/
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in Texas. Furthermore, they often perform mere passive monitoring, and prediction is

severely limited by the low resolution of the aggregate approach.

By contrast, our work takes a bottom-up approach, where we take into account the

fine-grained interactions between individuals. We apply machine learning techniques to

the difficult task of detecting ill individuals based on the content of their Twitter status

updates. We are then able to estimate the physical interactions between healthy and

sick people via their online activities, and model the impact of these interactions on

public health.

Recent work has demonstrated that micro-blogging data can be used to predict a

variety of phenomena, including movie box-office revenues (Asur and Huberman, 2010),

elections (Tumasjan et al., 2010), and flu epidemics (Lampos et al., 2010). Most research

to date has focused on predicting aggregate properties of the population from the activity

of the bloggers. A different kind of problem one can pose, however, is to predict the

behavior or state of particular individuals within the social network. For instance, one

could try to predict whether a person will go to a movie or vote for a particular candidate

based on micro-blog data. The individual’s own data may or may not be accessible. At

one extreme, the task is to predict his behavior or state by considering only data from

other people. For example, Sadilek et al. (2012a) show that a person’s location can

be predicted with a high degree of accuracy based on only the geo-tagged posts (a.k.a.

tweets) of his friends on Twitter.

This chapter explores fine-grained prediction of the health of individuals on the basis

of such social network data—an important instance of the general problem of modeling

dynamic properties of participants in large real-world social networks. We begin by

building upon previous work on classification of health-related text messages (Culotta,

2010; Paul and Dredze, 2011a; Sadilek et al., 2012b), to learn a robust SVM classifier

that infers the health state of a person based on the content of his tweets. We then

learn a conditional random field (CRF) model that predicts an individual’s health status,

using features derived from the tweets and locations of other people. Performance of

the CRF is significantly enhanced by including features that are not only based on the

health status of friends, but are also based on the estimated encounters with already
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sick, symptomatic individuals in the dataset, including non-friends. Thus, the model is

able to capture the role of location in the spread of an infectious disease, the impact

of the duration of co-location on disease transmission, as well as the delay between a

contagion event and the onset of the symptoms. Using the Viterbi algorithm to infer

the most likely sequence of a subject’s health states over time, we are able to predict

the days a person is ill with 0.94 precision and 0.18 recall. These results far outperform

alternative models.

This work is an important step towards the development of automated methods

that identify disease vectors, trace the transmission between concrete individuals, and

ultimately help us understand and predict the spread of infectious diseases with fine

granularity. It provides a foundation for research on fundamental questions of public

health, such as: What roles do co-location and social ties play in the spread of infectious

diseases from person to person? How does an epidemic on a population scale emerge

from low-level interactions between people in the course of their everyday lives? Can we

identify a potentially non-cooperative individual who is a vector of a dangerous disease,

i.e., a “Typhoid Mary”? What is the interaction between friendship, location, and

co-location in the spread of communicable diseases?

Our results also prove useful for deploying sickness prevention resources, and for

applications that help an individual maintain his or her health. For example, a person

predicted to be at high risk of the flu could be specifically encouraged to get the flu

vaccine, and recommendations can be made about which places pose a high risk of

getting infected. Finally, the kinds of models we explore are not limited to the health

domain. For instance, a recent study showed that the spread of cheating behavior in

online computer games exhibits patterns similar to the spread of a disease (Blackburn

et al., 2011). The close relationship between the spread of disease and information in

general is well known (Easley and Kleinberg, 2010). By changing the mapping from text

to features, the same approach can be used to model and predict the transmission of

political ideas, purchasing preferences, or practically any other behavioral phenomena.
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7.2 The Data

We use a subset of the dataset introduced in the previous chapter. We briefly review

it here. Using the Twitter Search API3, we collected a sample of public tweets that

originated from the New York City (NYC) metropolitan area shown in Fig. 6.1. The

collection period was one month long and started on May 18, 2010. Using a Python

script, we periodically queried Twitter for all recent tweets within 100 kilometers of the

NYC city center. In order to avoid exceeding Twitter’s query rate limits and subse-

quently missing some tweets, we distributed the work over a number of machines with

different IP addresses that asynchronously queried the server and merged their results.

Twitter does not provide any guarantees as to what sample of existing tweets can be re-

trieved through their API, but a comparison to official Twitter statistics shows that our

method recorded the majority of the publicly available tweets in the region. Altogether,

we have logged nearly 16 million tweets authored by more than 630 thousand unique

users (see Table 6.1). To put these statistics in context, the entire NYC metropolitan

area has an estimated population of 19 million people.4 We concentrate on accounts

that posted more than 100 GPS-tagged tweets during the one-month data collection

period. We refer to them as geo-active users. The social network of the 6,237 geo-active

users is shown in Fig. 6.2.

In the remainder of this chapter, we review our method for automatic detection of

Twitter messages that suggest the author contracted an infectious disease5 (Sadilek et

al., 2012b). We then show how this information can be unified with geo, social, and

temporal Twitter data to extract a strong signal of the impact of various previously

elusive factors on human health. Finally, we develop a CRF model that leverages the

labeled tweets and makes accurate predictions about people’s health state.

3http://search.twitter.com/api/
4http://www.census.gov/popest/metro/
5In this work, such diseases include those with symptoms that overlap with, but are not necessarily

limited to, influenza-like illness (http://en.wikipedia.org/wiki/Influenza-like illness).
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Figure 7.2: A diagram of our cascade learning of SVMs. The  and ! symbols denote

thresholding of the classification score, where we select the bottom 10% of the scores

predicted by Co (i.e., tweets that are normal with high probability), and the top 10%

of scores predicted by Cs (i.e., likely “sick” tweets).

7.3 Detecting Illness-Related Messages

As a first step, we need to identify Twitter messages that indicate the author is infected

with a disease of interest at the time of posting. Based on the results of previous work,

we expect that health-related tweets are relatively scarce as compared to other types of

messages (Culotta, 2010; Paul and Dredze, 2011a). Given this class imbalance problem,

we formulate a semi-supervised cascade-based approach (shown in Fig. 7.2) to learning a

robust support vector machine (SVM) classifier with a large area under the ROC curve

(i.e., consistently high precision and high recall). SVM is an established model of data

in machine learning (Cortes and Vapnik, 1995). We learn an SVM for linear binary

classification to accurately distinguish between tweets indicating the author is afflicted

by an infectious ailment (we call such tweets “sick”), and all other tweets (called “other”

or “normal”).

In order to learn such classifier, we ultimately need to effortlessly obtain a high-

quality set of labeled training data. We achieve this via the following “bootstrapping”

process. We begin by training two different binary SVM classifiers, Cs and Co, using
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the SVMlight package.6 Cs is highly penalized for inducing false positives (mistakenly

labeling a normal tweet as one about sickness), whereas Co is heavily penalized for

creating false negatives (labeling symptomatic tweets as normal). For both classifiers,

the misclassification penalty for one direction was always a hundred times larger than

in the opposite direction. We train Cs and Co using a dataset of 5,128 tweets, each

labeled as either “sick” or “other” by multiple Amazon Mechanical Turk workers and

carefully checked by the authors. After training, we used the two classifiers to label

a set of 1.6 million tweets that are likely health-related, but contain some noise. We

obtained both datasets from (Paul and Dredze, 2011a), and they are completely disjoint

from our NYC data.

The intuition behind this cascading process is to extract tweets that are with high

confidence about sickness with Cs, and tweets that are almost certainly about other

topics with Co from the corpus of 1.6 million tweets. We further supplement the final

corpus with messages from a sample of 200 million tweets (also disjoint from all other

corpora considered here) that Co classified as “other” with high probability. We apply

thresholding on the classification score to reduce the noise in the cascade, as shown in

Fig. 7.2.

The cascade yields a final corpus with over 700 thousand “sick” messages and 3

million “other” tweets, which we use for training the final SVM Cf . We will discuss

how we leverage Cf to model the disease spread below, but first let us describe the

feature space and our learning methodology in more detail.

As features, we use all unigram, bigram, and trigram word tokens that appear in

the training data. For example, a tweet “I feel sick.” is represented by the following

feature vector: (
i, feel, sick, i feel, feel sick, i feel sick

)
.

Before tokenization, we convert all text to lower case, strip punctuation and special

characters, and remove mentions of user names (the “@” tag). All re-tweets (analogous

to email forwarding) have been removed as well, since those messages typically refer

6http://svmlight.joachims.org/
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to popular news and social games, and rarely describe the current state of the author.

However, we do keep hashtags (such as “#sick”), as those are often relevant to the

author’s health state, and are particularly useful for disambiguation of short or ill-

formed messages. When learning the final SVM Cf , we only consider tokens that

appear at least three times in the training set.

While our feature space has a very high dimensionality (Cf operates in more than

1.7 million dimensions), with many possibly irrelevant features, support vector machines

with a linear kernel have been shown to perform very well under such circumstances

(Joachims, 2006; Sculley et al., 2011; Paul and Dredze, 2011a).

To overcome the class imbalance problem, where the number of tweets about an

illness is much smaller than the number of other messages, we apply the ROCArea SVM

learning method that directly optimizes the area under the ROC curve, as described in

(Joachims, 2005). Traditional objective functions, such as the 0-1 loss perform poorly

under severe class imbalance. For instance, a trivial model that labels every example

as belonging to the majority class has an excellent accuracy, because it misses only the

relatively few minority examples. By contrast, the ROCArea method works by implicitly

transforming the classical SVM learning problem over individual training examples into

one over pairs of examples. This allows efficient calculation of the area under the ROC

curve from the predicted ranking of the examples.

7.4 Patterns in the Spread of Disease

Human contact is the single most important factor in the transmission of infectious dis-

eases (Clayton et al., 1993). Since the contact is often indirect, such as via a doorknob,

we focus on a more general notion of co-location. We consider two individuals co-located

if they visit the same 100 by 100 meter cell within a time window (slack) of length T .

For clarity, we show results for T ∈ {1, 4, 12} hours. We use the 100 meter threshold, as

that is the typical lower bound on the accuracy of a GPS sensor in obstructed areas, such

as Manhattan. Since we focus on geo-active individuals, we can calculate co-location

with high accuracy. The results below are for a condition, where a person is ill up to
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two days after they write a “sick” tweet. It is important to note that the relationships

among friendship, co-location, and health are consistent over a wide range of duration

of contagiousness (from 1 to 7 days). Most infectious illnesses produce influenza-like

symptoms that stop within a few days, and thus within these temporal bounds.

To quantify the effect of social ties on disease transmission, we leverage users’ Twitter

friendships. Clearly, there are complex events and interactions that take place “behind

the scenes”, which are not directly recorded in online social media. However, this work

posits that these latent events often exhibit themselves in the activity of the sample

of people we can observe. For instance, as we will see, having social ties to infected

people significantly increases your chances of becoming ill in the near future. However,

we do not believe that the social ties themselves cause or even facilitate the spread of an

infection. Instead, the Twitter friendships are proxies and indicators for a complex set

of phenomena that may not be directly accessible. For example, friends often eat out

together, meet in classes, share items, and travel together. While most of these events

are never explicitly mentioned online, they are crucial from the disease transmission

perspective. However, their likelihood is modulated by the structure of the social ties,

allowing us to reason about contagion.

Evaluation of the final SVM Cf described in the previous section on a held-out test

set of 700,000 tweets shows 0.98 precision and 0.97 recall. This evaluation run also

allows us to choose an optimal threshold on the classification score that separates the

normal tweets from sick tweets. Table 7.2 lists the most significant features Cf found.

Table 7.1 shows examples of tweets that Cf identified as “sick”. We now apply Cf to

modeling the spread of infectious diseases throughout the sampled population of NYC

described above.

The correlation between the prevalence of infectious diseases predicted by our model

and the predictions made by Google Flu Trends specifically for New York City is 0.73.

The official CDC data for NYC is not available with sufficiently fine granularity, but

previous work has shown that Google’s predictions closely correspond to the official

statistics for larger geographical areas (Ginsberg et al., 2008). Google Flu Trends may

have greater specificity to “influenza-like illness”, whereas our approach may be less
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Came home sick today from work with a killer headache and severe nausea, took 2 advil

and slept for 6 hours. I feel much better now.

Meh I actually have to go to school tomorrrow.. #sick

Not feeling good at all...that sucks because I plans with my bff and job interviews set up

until Tuesday. Stomach is killing me

I’m feeling better today still stuffed up but my nose isn’t running like it was yesterday and

my cough is better as well it hurts.

Guys I’m sorry. I’m really have to get some rest. I have nausea, headache, is tired, freezing

& now have I got fever. Good Night! :-*

It hurts to breathe, swallow, cough or yawn. I must be getting sick, though because my

ear feels worse than my throat.

I just sneezed 6 times in a row. i hate being sick.

feeling misserable. stomach hurts, headache, and no, I’m not pregnant.

Been sleep all day smh.... Currently soothing my jimmy frm α headache as I go back to

sleep

Just not feeling it today. Looks like man flu has come back for a visit. I need to be well

and have work - is that too much to ask?

Table 7.1: Example tweets that our SVM model Cf identified as “sick”. Note the high

degree of variability, and sometimes subtlety, in the way different people describe their

health.



140

specific, but more sensitive to detect other, related infectious processes exhibiting these

nonspecific features in Twitter content. Furthermore, the only overlap between our

predictions and those of Google is for May 18 through 23, 2010. Thus, the correlation

between the two needs to be interpreted with this context in mind.

Figures 7.3a and 7.3b show the impact of co-location and friendship with infected

people on a given day on one’s health the following day. We analyze both the individual

and joint effects of the two factors on disease transmission. For brevity, we include plots

only for a 1-day lag, since other time offsets result in a similar relationship.

Looking at co-location effect alone, we observe a definite exponential relationship

between probable physical encounters and ensuing sickness. All three curves in Fig. 7.3a

consistently fit f(x) = C e(0.055x), where C is a constant that captures the length of

time overlap T (note that C ' 0.011/T ; thus the larger the slack the smaller the effect).

For instance, having 40 encounters with sick individuals with a 1-hour slack makes one

ill with 20% probability. With a more lenient slack, such as 4 hours, one needs over 80

encounters to reach the same level of risk.

In Fig. 7.3b, we see that the number of sick friends also has an exponential effect

on the probability of getting sick: f(x) = 0.003 e(0.413x). By contrast, the number of

friends in any health state (i.e., the size of one’s friend list) has no impact on one’s

health. In fact, the conditional probability of getting sick given n friends (the blue line

in Fig. 7.3b) is virtually identical to the prior probability of getting sick (the black line).

We have discussed the latent influence of friendships earlier. This is quantitatively

shown as the green line in Fig. 7.3b, where we subtract out the effect of co-location

from the influence of social ties. We do this by counting only sick friends who have not

been encountered. Comparison with the red curve shows that for smaller numbers of

friends (n ≤ 6), co-location has a weak additional effect over the proxy effect of social

ties. However, for larger n, the residual impact of friendships plateaus, and co-location

begins to dominate.

The ability to effortlessly quantify the sickness level for each individual in a large

population enables us to gain insights into phenomena that were previously next to
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Positive Features Negative Features

Feature Weight Feature Weight

sick 0.9579 sick of −0.4005

headache 0.5249 you −0.3662

flu 0.5051 of −0.3559

fever 0.3879 your −0.3131

feel 0.3451 lol −0.3017

cough 0.3062 who −0.1816

feeling 0.3055 u −0.1778

coughing 0.2917 love −0.1753

throat 0.2842 it −0.1627

cold 0.2825 her −0.1618

home 0.2107 they −0.1617

still 0.2101 people −0.1548

bed 0.2088 shit −0.1486

better 0.1988 smoking −0.0980

being 0.1943 i’m sick of −0.0894

being sick 0.1919 so sick of −0.0887

stomach 0.1703 pressure −0.0837

and my 0.1687 massage −0.0726

infection 0.1686 i love −0.0719

morning 0.1647 pregnant −0.0639

Table 7.2: Top twenty most significant negatively and positively weighted features of

our SVM model.
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Figure 7.3: Being co-located with ill, symptomatic individuals, and having sick friends

on a given day (t) makes one more likely to get sick the next day (t+1). On the horizontal

axis in (a), we plot the amount of co-location of an asymptomatic user with known sick

people on a given day. In (b), we show the number of friends (of an asymptomatic

user); either only sick ones or any depending on the curve. The vertical axes show the

conditional probability of getting sick the next day. We also plot the prior probability

of being sick. For co-location, results for three slack time windows, within which we

consider an appearance of two users close together as co-location, are shown (1, 4, and

12 hours).
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impossible to capture. For instance, Fig. 7.4 shows the relationship between the health

of New Yorkers inferred from social media by our system, and pollution sources in the

city provided by the U.S. Environmental Protection Agency. We envision that unifica-

tions of rich datasets with inferred information in this fashion will empower individuals,

organizations, as well as governments to make better informed data-driven decisions.

We can furthermore explore complex geographical and social patterns with fine-

granularity and at a large scale as shown in Fig. 7.5. The United States has the world’s

largest health inequality across the social spectrum, where the gap of life expectancy of

the most and the least advantaged segments of the population is over 20 years (Truman

and others, 2011). It has been well-reported on that this difference is to a large part

due to differences in social status. Our work is the first to enable the government as

well as individuals to model the interplay between health, location, environment, and

social factors effectively and with fine granularity.

Since we harness the sea of information in online social networks, we can infer and

display the health of one’s friends and people you encountered in a meaningful way. As a

result, you can discover factors that impact your health and the health of people relevant

to you. Once discovered, undesirable factors can be minimized while maximizing the

positive variables.

In the remainder of this chapter, we show how the patterns revealed above can be

leveraged in fine-grained predictive models of contagion.

7.5 Predicting the Spread of Disease

Human contact is the single most important factor in the transmission of infectious dis-

eases (Clayton et al., 1993). Since the contact is often indirect, such as via a doorknob,

we focus on a more general notion of co-location. We consider two individuals co-located

if they visit the same 100 by 100 meter cell within a time window (slack) of length T .

For clarity, we show results for T = 12 hours, but we obtained virtually identical pre-

diction performance for T ∈ {1, . . . , 24} hours. We use the 100m threshold, as that is

the typical lower bound on the accuracy of a GPS sensor in obstructed areas, such as
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Figure 7.4: Visualization of the health and location of a sample of Twitter users (colored

circles) and major pollution sources (purple pins) in New York City. Each circle shows

a person’s location on a map. Sick people are colored red, whereas healthy individuals

are green. Since we are interested in pollution, by “sick” we mean people who exhibit

upper respiratory tract symptoms, as inferred by our machine learning model. Time is

displayed with opacity—the brightest markers have been infected most recently. Click-

ing on a pollution source displays information about the specific emissions it produces,

and other information.
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Figure 7.5: This figure shows the health status of people within a social network of

the user at the center. Each lines represents a co-location relationship between two

people, and the color denotes a person’s health status. Note the patterns in geo-social

distribution of sickness. For instance, people on the east side of the Hudson River tend

to be more sick than nearby users from Manhattan.
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Manhattan. Since we focus on geo-active individuals, we can calculate co-location with

high accuracy. The results below are for a condition, where we consider a person ill up

to four days after they write a “sick” tweet. As with the parameter T , it is important

to note that the results are consistent over a wide range of duration of contagiousness

(from 1 to 7 days). Few diseases with influenza-like symptoms are contagious for periods

of time beyond these bounds.

Statistical analysis of the data shows that avoiding encounters with infected people

generally decreases your chances of becoming ill, whereas a large amount of contact

with them makes an onset of a disease almost certain (Sadilek et al., 2012b). We find a

definite exponential relationship between the intensity of co-location and the probability

of getting ill. Similarly, by interpreting a Twitter friendship as a proxy for unobservable

phenomena and interactions, we see that the likelihood of becoming ill increases as the

number of infected friends grows. For example, having more than 5 sick friends increases

one’s likelihood of getting sick by a factor of 3, as compared to prior probability, and

even more with respect to the probability given no sick friends. Additionally, we model

the joint influence of co-location and social ties, and conclude that the latent impact of

friendships is weaker (linear in the number of sick friends), but nonetheless important,

as some observed patterns cannot be explained by co-location alone (Sadilek et al.,

2012b).

Our goal now is to leverage the interplay of co-location and friendships to predict

the health state of any individual on a given day. For this purpose, we learn a dynamic

conditional random field (CRF), a discriminative undirected graphical model (Lafferty,

2001). CRFs have been successfully applied in a wide range of domains from language

understanding to robotics. They can systematically outperform alternative approaches,

such as hidden Markov models, in domains where it is unrealistic to assume that obser-

vations are independent given the hidden state.

In our approach, each person X is captured by one dynamic CRF model with a

linear chain structure shown in Fig. 7.6. Each time slice t contains one hidden binary

random variable (X is either “healthy” or “sick” on day t), and a 25-element vector of
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ht +1htht −1

Ot +1OtOt −1

. . . . . .

Figure 7.6: This conditional random field models the health of an individual over a

number of days (ht). The observations for each day (ot) include day of week, history

of sick friends in the near past, the intensity of recent co-location with sick individuals,

and the number of such individuals encountered.

observed discrete random variables ot given by

ot =
(
weekday, c0, . . . , c7, u0, . . . , u7, f0, . . . , f7

)
,

where cn denotes the number of estimated encounters (co-locations) with sick individuals

n days ago. For example, the value of c1 indicates the number of co-location events a

person had a day ago (t − 1), and c0 shows co-location count for the current day t.

Analogously, un and fn denote the number of unique sick individuals encountered, and

the number of sick Twitter friends, respectively, n days ago. For all random variables

in our model, we use a special missing value to represent unavailable data.

7.5.1 Experiments and Results

In this section, we evaluate our approach in a number of experimental conditions, com-

pare the results of our CRF models with a baseline, and discuss insights gained. We

perform 6237-fold cross-validation (the number of geo-active users), where in order to

make predictions for a given user, we train and test the CRF while treating all other

users as observed. We report results aggregated over all cross-validation runs.
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Figure 7.7: Summary of results. Each plot shows the precision and recall of our three

models for predictions made with hindsight (x = 0), and up to 8 days into the future

(x = 8). We see that when leveraging the effect of social ties or co-locations individ-

ually (plots (a) and (b), respectively) the CRF models perform inconsistently as we

make predictions further into the future. By contrast, when considering friendships and

co-location jointly (c), the performance stabilizes and improves, achieving up to 0.94

precision and 0.18 recall (AUC of 0.85).

While the structure of the CRF model remains constant across our experiments, we

consider two types of inference: Viterbi decoding, and the forwards-backwards algorithm

(smoothing). While the former finds the most likely sequence of hidden variables (health

states) given observations, the latter infers each state by finding maximal marginal

probabilities. The tree structure of our CRF allows for scalable, yet exact, learning and

inference by applying dynamic programming (Sutton and McCallum, 2006), while the

rich temporal features capture longer-range dependencies in the data. L1 regularization

is used to limit the number of parameters in our model. Maximum-likelihood parameter

estimation is done via quasi-Newton method, and we are guaranteed to find a global

optimum since the likelihood function is convex.

As a baseline, we consider a model that draws its predictions from a Bernoulli

distribution with the “success” parameter p set to the prior probability of being sick

learned from the training data.

Fig. 7.7 summarizes the performance of our models (Bernoulli baseline, and CRF
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with Viterbi and forwards-backwards inference, respectively) in terms of precision and

recall along two main dimensions. The first dimension is the type of features the CRF

leverges: only information about sick friends (plus weekday) is observed in Fig. 7.7a;

only co-location (plus weekday) is leveraged in Fig. 7.7b; and the full observation set ot

is available in Fig. 7.7c. The second dimension is the time for which we make predictions,

shown on the horizontal axes (x) in Fig. 7.7. For x = 0, the plots show the performance

when inferring the most likely health state for the entire observation sequence (i.e., up

to the present day). For x > 0, we show the precision and recall when predicting x days

into the future, where observations are not available. (As described in the previous

section, variables corresponding to future observations are simply set to the special

“missing” value.)

We see that the results of our CRFs significantly outperform the baseline model.

When leveraging the effect of social ties or co-locations individually (Figs. 7.7a and 7.7b,

respectively), the CRF models perform inconsistently as we make predictions further

into the future. By contrast, when considering friendships and co-location jointly, the

performance stabilizes and improves, achieving up to 0.94 precision and 0.18 recall

(Fig. 7.7c).

In general, we see that Viterbi decoding results in better precision and worse recall,

whereas forwards-backwards inference yields slightly worse precision, but improves re-

call. The relatively low recall indicates that about 80% of infections occur without any

evidence in social media as reflected in our features. For example, there are a number

of instances of users getting ill even though they had no recent encounters with sick

individuals and all their friends have been healthy for a long time.

Clearly, there are complex events and interactions that take place “behind the

scenes”, which are not directly recorded in online social media. However, this work

posits that these latent events often exhibit themselves in the activity of the sample

of people we can observe. For instance, we have seen that having online social ties to

infected people significantly increases one’s chances of becoming ill in the near future

(Sadilek et al., 2012b). However, we do not believe that the social ties themselves cause

or even facilitate the spread of an infection. Instead, the Twitter friendships are proxies
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and indicators for a complex set of phenomena that may not be directly accessible. For

example, friends often eat out together, meet in classes, share items, and travel together.

While most of these events are never explicitly mentioned online, they are crucial from

the disease transmission perspective. However, their likelihood is modulated by the

structure of the social ties, allowing us to reason about contagion.

7.6 Limitations

Our observations are limited by the prevalence of public tweets in which users talk about

their health, and by our ability to identify them in the flood of other types of messages.

Both these factors contribute to the fact that the number of infected individuals is

systematically underestimated, but evaluation of Cf suggests that the latter effect is

small. We can approximate the magnitude of this bias using the statistics presented

earlier. We see that about 1 in 30 residents of NYC appears in our dataset. If we strictly

focus on the geo-active individuals, the ratio is roughly 1:3,000. However, the results

in this chapter indicate, that by leveraging the latent effects of our observations, such

a sampling ratio is sufficient to predict the health state of a large fraction of the users

with high precision.

We note that currently used methods suffer from similar biasing effects. For exam-

ple, infected people who do not visit a doctor, or do not respond to surveys are virtually

invisible to the traditional methods. Similarly, efforts such as Google Flu Trends can

only observe individuals who search the web for certain types of content when sick. A

fully comprehensive coverage of a population will require a combination of diverse meth-

ods, and application of AI techniques—like the ones presented in this work—capable of

inferring the missing information.

7.7 Related Work

Since the famous cholera study by John Snow (1855), much work has been done in

capturing the mechanisms of epidemics. There is ample previous work in computa-
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tional epidemiology on building models of coarse-grained disease spread via differential

equations (Anderson and May, 1979), by harnessing simulated populations (Eubank et

al., 2004), and by analysis of official statistics (Grenfell et al., 2001). Such models are

typically developed for the purposes of assessing the impact a particular combination

of an outbreak and a vaccination or containment strategy would have on humanity, a

country’s defense, or ecology (Chen et al., 2010). However, the above works focus on

simulated populations and hypothetical scenarios. By contrast, we address the problem

of assessing and modeling the health of real-world populations composed of individuals

embedded in a fine social structure. As a result, our work is a major step towards

prediction of actual threats and instances of disease outbreaks.

(Eubank et al., 2004) are beginning to leverage more fine-grained information, in-

cluding people’s activities. They developed a simulation tool (EpiSims) that leverages

synthetic—but statistically realistic—human mobility to study the spread of infectious

diseases over a metropolitan area. They show their simulation-based approach is a

viable alternative to the classical models formulated using differential equations. Cru-

cially, Eubank et al. (2004) demonstrate that their methods enable accurate modeling

a hypothetical spread of disease throughout a large, although in many ways artificial,

population. This knowledge can in turn be used to seek an optimal emergency response

policy.

In the context of social media, (Krieck et al., 2011) explore augmenting the tradi-

tional notification channels about a disease outbreak with data extracted from Twitter.

By manually examining a large number of tweets, they show that self-reported symp-

toms are the most reliable signal in detecting if a tweet is relevant to an outbreak or not.

This is because people often do not know what their true problem is until diagnosed

by an expert, but they can readily write about how they feel. Researchers have also

concentrated on capturing the overall trend of a particular disease outbreak, typically

influenza, by monitoring social media (Culotta, 2010; Lampos et al., 2010; Chunara et

al., 2012). Interesting work of (Ritterman et al., 2009) shows that noisy Twitter data is

a valuable information channel for predicting public opinion regarding the likelihood of a

pandemic. (Freifeld et al., 2010) use information actively submitted by cell phone users
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to model aggregate public health. However, scaling such systems poses considerable

challenges.

Other researchers focus on a more detailed modeling of the language of the tweets

and its relevance to public health in general (Paul and Dredze, 2011a), and to influenza

surveillance in particular (Collier et al., 2011). Paul et al. develop a variant of topic

models that captures the symptoms and possible treatments for ailments, such traumatic

injuries and allergies, that people discuss on Twitter. In a follow-up work (Paul and

Dredze, 2011b) begin to consider the geographical patterns in the prevalence of such

ailments, and show a good agreement of their models with official statistics and Google

Flu Trends. There is a potential for synergy between the work of Paul et al. and

ours that would allow us to model the spread of specific diseases by leveraging the rich

language models.

However, all these works consider only aggregate patterns captured by coarse-grained

statistics, whereas the primary contribution of our work is a more detailed study of

the interplay among human mobility, social structure, and disease transmission. Our

framework allows us to track—without active user participation—specific likely events

of contagion between individuals, and model the relationship between an epidemic and

self-reported symptoms of actual users of online social media.

Even the state of the art systems suffer from two major drawbacks. First, they

produce only coarse, aggregate statistics, such as the expected number of people af-

flicted by flu in Texas. Furthermore, they often perform mere passive monitoring, and

prediction is severely limited by the low resolution of the aggregate approach, or by

scalability issues. By contrast, the primary contribution of our work is a fine-grained

analysis of the interplay among human mobility, social structure, and disease transmis-

sion. Our framework allows us to make predictions about likely events of contagion

between specific individuals without active user participation.

While we concentrate on “traditional” infectious diseases, such as flu, similar tech-

niques can be applied to study mental health disorders, such as depression, that have

strong contagion patterns as well. Pioneering work in this broad area includes (Silenzio

et al., 2009), which studies characteristics of young lesbian, gay, and bisexual individuals
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in online social networks. They focus on discovering such members of a community, and

design methods for effective peer-driven information diffusion and preventative care,

focusing specifically on suicide. Twitter has also been used to monitor the seasonal

variation in affect around the globe (Golder and Macy, 2011).

Looking at a more global scale, (Bettencourt and West, 2010) argue for a compre-

hensive scientific approach to urban planning. They show there are underlying patterns

that tie together the size of a city with its emergent characteristics, such as crime rate,

number of patents produced, walking speed of its inhabitants, and prevalence of epi-

demics. The authors argue that cities are the source of many major problems, but also

contain the solutions because of their concentrated creativity and productivity.

Since this work leverages social ties and user location, the large body of prior work on

inferring and predicting these characteristics becomes relevant. A number of researchers

have demonstrated that it is possible to accurately predict people’s fine-grained location

from their online behavior and interactions (Cho et al., 2011; Sadilek et al., 2012a).

Much progress has been made in predicting the social structure of participants in online

media, including Twitter, from various types of observed data (Crandall et al., 2010;

Backstrom and Leskovec, 2011; Sadilek et al., 2012a). Applying these machine learning

techniques will significantly expand the breadth of data available by allowing us to

consider not only declared friendships and public check-ins, but also their inferred—

though more ambiguous—counterparts.

Finally, we note that the spread of disease is closely tied to the study of influence

in social networks, where the usual goal is to identify the most influential members to

facilitate information diffusion (Domingos and Richardson, 2001; Kempe et al., 2003;

Mossel and Roch, 2007). However, in conjunction with our previous work on location

prediction and social network analysis, similar techniques can be applied to detect and

treat key people in an epidemic. Both social structure and location of individuals—the

two main focus areas of our unified model—have been shown to play major roles in

epidemiology (Anderson and May, 1979; Keeling and Eames, 2005; Shakarian et al.,

2010), but have been studied only at an aggregate level.
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7.8 Conclusions and Future Work

This work is the first to take on prediction of the spread of infectious diseases throughout

a real-world population with fine granularity. We focus on self-reported symptoms that

appear in people’s Twitter status updates, and show that although such messages are

rare, we can identify them with systematically high precision and high recall.

The key contribution of this work is a scalable probabilistic model that demonstrates

that the health of a person can be accurately inferred from her location and social

interactions observed via social media. Furthermore, we show that future health states

can be predicted with consistently high accuracy more than a week into the future. For

example, over 10% of cases of sickness are predicted with 90% confidence even a week

before they occur. For predictions one day into the future, our model covers almost

20% of cases with the same confidence.

An early identification of infected individuals is especially crucial in preventing and

containing devastating disease outbreaks. Important work by Eubank et al. (2004) shows

that by far the most effective way to fight an epidemic in urban areas is to quickly

confine infected individuals to their homes. However, this strategy is truly effective

only when applied early on in the outbreak. The speed of targeted vaccination ranks

second in effectiveness. This chapter shows that finding some of these key symptomatic

individuals, along with other people that may have already contracted the disease, can

be done effectively and in a timely manner through social media.

In future work, we will focus on larger geographical areas (including airplane travel),

while maintaining the same level of detail (i.e., social ties between concerete individuals

and their fine-grained location). This will allow us to model and predict the emergence

of global epidemics from the day-to-day interactions of individuals, and subsequently

answer questions such as “How did the current flu epidemic in city A start and where

did it come from?” and “How likely I am to catch a cold if I visit the mall?”

For example, Fig. 7.8 illustrates an instance in our dataset, where a sick person at an

airport posts a message, and we can see other people nearby with whom he could have

come into contact. Prior work has developed a repertoire of powerful AI techniques for
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Figure 7.8: Visualization of a sample of Twitter users (yellow pins) at an airport. The

highlighted person X says he will be back in 16 days and mentions specific friends for

whom this message is relevant. We immediately see the people at the airport who could

have come into contact with X. This work shows that we can accurately predict the

health of X from his co-location with other individuals and the heath of his friends.

However, additional information can be inferred using methods developed by previous

work (Crandall et al., 2010; Backstrom and Leskovec, 2011; Cho et al., 2011; Sadilek et

al., 2012a). It can be expected that putting all this information together will yield even

stronger and more comprehensive predictions about the spread of an infection.
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revealing hidden social ties and predicting user location—two features heavily leveraged

by our public health model. Therefore, there are opportunities for great synergy in

these areas.
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8 Conclusions

This thesis focuses on data mining of diverse, noisy, and incomplete sensory data over

large numbers of individuals. We show that the mined patterns can be subsequently

leveraged in predictive models of human activities, location, social interactions, and

health at a large scale. We find that the raw sensory data linked with the content of

users’ online communication, the explicit as well as the implicit online social interactions,

and relationships are extremely rich information sources. The fine granularity and

pervasiveness of the data allows us to model phenomena that have been out of reach

thus far. Furthermore, we can do so with a high degree of detail and at a population

scale.

We recognize that there are substantial privacy questions ahead. For example, our

work shows that much information can be inferred even for people who enabled privacy

filters in their online profiles. We believe the privacy and “big brother” issues ultimately

reduce to a cost-benefit analysis. Specifically, by quantifying the tradeoffs between the

value our automated systems create versus loss of user privacy. In the future, we envision

each person will be able to set a dollar valuation on his or her privacy, and online services

will take that preference into account when collecting, analyzing, and using customer

data. In one extreme, one may decide to risk sharing all data, make money on it, and

get more personalized services. On the other hand, one may set tight privacy filters and

pay for online services. This may lead to a new open marketplace with public data.



158

Bibliography

Gregory D. Abowd, Christopher G. Atkeson, Jason Hong, Sue Long, Rob Kooper, and

Mike Pinkerton. Cyberguide: a mobile context-aware tour guide. Wirel. Netw.,

3(5):421–433, 1997.

E.L. Allwein, R.E. Schapire, and Y. Singer. Reducing multiclass to binary: A unifying

approach for margin classifiers. The Journal of Machine Learning Research, 1:113–

141, 2001.

R.M. Anderson and R.M. May. Population biology of infectious diseases: Part I. Nature,

280(5721):361, 1979.

Daniel Ashbrook and Thad Starner. Using GPS to learn significant locations and predict

movement across multiple users. Personal Ubiquitous Comput., 7:275–286, October

2003.

S. Asur and B.A. Huberman. Predicting the future with social media. In Web Intelli-

gence and Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM Interna-

tional Conference on, volume 1, pages 492–499. IEEE, 2010.

L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending

links in social networks. In WSDM 2011, pages 635–644. ACM, 2011.

L. Backstrom, E. Sun, and C. Marlow. Find me if you can: improving geographical

prediction with social and spatial proximity. In Proceedings of the 19th international

conference on World wide web, pages 61–70. ACM, 2010.



159

C. Baker, J. Tenenbaum, and R. Saxe. Bayesian models of human action understanding.

Advances in Neural Information Processing Systems, 18:99, 2006.

C.L. Baker, J.B. Tenenbaum, and R.R. Saxe. Goal inference as inverse planning. In

Proceedings of the 29th annual meeting of the cognitive science society, 2007.

C.L. Baker, N.D. Goodman, and J.B. Tenenbaum. Theory-based social goal inference.

In Proceedings of the thirtieth annual conference of the cognitive science society, pages

1447–1452, 2008.

C.L. Baker, R.R. Saxe, and J.B. Tenenbaum. Bayesian theory of mind: Modeling joint

belief-desire attribution. In Proceedings of the Thirty-Second Annual Conference of

the Cognitive Science Society, 2011.

Dare A. Baldwin and Jodie A. Baird. Discerning intentions in dynamic human action.

Trends in Cognitive Sciences, 5(4):171 – 178, 2001.

Shirli Bar-David, Israel Bar-David, Paul C. Cross, Sadie J. Ryan, Christiane U. Knech-

tel, and Wayne M. Getz. Methods for assessing movement path recursion with appli-

cation to african buffalo in south africa. In Ecology, 2009.

M. Barbuceanu and M.S. Fox. COOL: a language for describing coordination in multi

agent systems. In Proceedings of the First International Conference on Multi-Agent

Systems (ICMAS-95), pages 17–24, 1995.
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