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Abstract-Individual differences in vulnerability to sleep loss 

can be considerable, and thus, recent efforts have focused on 

developing individualized models for predicting the effects of 

sleep loss on performance. Individualized models constructed 

using a Bayesian formulation, which combines an individual's 

available performance data with a priori performance 

predictions from a group-average model, typically need at least 

40 h of individual data before showing significant improvement 

over the group-average model predictions. Here, we improve 

upon the basic Bayesian formulation for developing 

individualized models by observing that individuals may be 

classified into three sleep-loss phenotypes: resilient, average, 

and vulnerable. For each phenotype, we developed a phenotype

specific group-average model and used these models to identify 

each individual's phenotype. We then used the phenotype

specific models within the Bayesian formulation to make 

individualized predictions. Results on psychomotor vigilance 

test data from 48 individuals indicated that, on average, -85% 

of individual phenotypes were accurately identified within 30 h 

of wakefulness. The percentage improvement of the proposed 

approach in 10-h-ahead predictions was 16% for resilient 

subjects and 6% for vulnerable subjects. The trade-off for these 

improvements was a slight decrease in prediction accuracy for 

average subjects. 

I. INTRODUCTION 

N
UMERO US studies have demonstrated that there is 
significant inter-individual variability in psychomotor 

performance when humans are sleep deprived [1, 2]. In 
particular, it is believed that individuals can be broadly 
categorized into three sleep-loss phenotypes, resilient, 
average, and vulnerable, where the percentage of individuals 
in each category can vary from 20% to 40% in a given study 
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due to the relatively small sample size of each investigation 
[3]. This realization has led to a shift in the development of 
biomathematical performance models away from "group
average" models, which represent the average performance 
of a group of individuals, and toward "individualized" 
models, where models are customized to capture the sleep
loss phenotype variability of each individual. 

Recently, our group developed individualized 
performance models that use previous measurements of 
performance from a specific individual to customize the 
model, i.e., to adjust the model parameters, to that individual 
and estimate future performance values for a given 
prediction horizon [4, 5]. The model requires a minimum of 
13 prior performance observations [4], but because we wish 
to individualize the model and make predictions as soon as 
the first measurement of performance becomes available, we 
employed a Bayesian approach [5]. Our Bayesian 
formulation combines performance data from the available 
measurements with a priori performance data, which, in their 
absence, are estimated from afixed group-average prediction 
model. 

Although our individualized performance models 
improved predictions by as much as 43% for a 1O-h-ahead 
prediction horizon, the results indicate that the rate at which 
the model "learns" the sleep-loss phenotype of an individual 
is highly dependent on how representative the a priori 
group-average model is to the individual's phenotype [5]. In 
this study, we investigate whether in our Bayesian 
formulation we can accelerate the learning rate of the 
individualized models by using phenotype-specific (resilient, 
average, and vulnerable) a priori group-average models 
instead of a fixed, a priori group-average model. We used 
laboratory study data from 48 subjects exposed to 64.5 h of 
total sleep deprivation, where performance was measured 
through psychomotor vigilance tests ( PVTs) [6]. 

II. METHODS 

A. Individualized Two-Process Prediction Model 

We used the two-process model of sleep-regulation [7] as 
the underlying model for our individualized prediction of 
performance impairment P(k) due to sleep loss, where k is a 
discrete-time index. The model represents performance as an 
additive interaction of two processes [8]: the sleep 
homeostatic Process S, which increases exponentially with 
time awake and decreases exponentially with time asleep [9], 
and the circadian Process C, which is independent of 
sleep/wake history [10]. During total sleep deprivation, 
performance P(k) is described as follows [4]: 
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P(k) = a -aSo exp[- (k -1)pTsl 

+ f3tai sin{ 2; i [(k -IFs + rp l} , 
(1) 

where a and f3 are parameters that control the relative effect 
of the Processes Sand C on performance, respectively, p 
denotes the buildup rate of homeostatic pressure, T, denotes 
the sampling period, So denotes the initial homeostatic state 
and rp denotes the initial circadian phase. These fiv � 
parameters are individual specific, constant, and have 
unknown values. The parameter r denotes the time period of 
the circadian clock (24 h), and the parameters ai, i = 1, ...  ,5, 
define the amplitudes of the five harmonics of Process C (al 

= 0.97, a2 = 0.22, a3 = 0.07, a4 = 0.03, and a5 = 0.001) [10]. 

In our prior work [5], we used a Bayesian formulation, 
which combines available performance data from an 
individual with hislher a priori performance predictions from 
a group-average model, to obtain individualized two-process 
model parameter estimates. The process of model 
individualization begins when the first performance 
measurement is taken and an individual's parameter 
estimates are updated recursively as each new performance 
measurement becomes available. After any number of 
measurements, we used the individualized two-process 
model obtained by this procedure to predict P(k) for any 
desired future value of k. 

In our prior work, the group-average model, also based 
on Eq. (l), has fixed model parameters obtained from Van 
Dongen et al. [2]. In this paper, however, we used 
phenotype-specific group-average model parameters instead 
of fixed parameters to accelerate the rate at which models 
learn an individual's phenotype, and thus, improve 
prediction accuracy. 

B. Phenotype-specific Group-average Model 

We used performance data from 48 individuals [11] to 
formulate three phenotype-specific group-average models 
corresponding to three sleep-loss phenotypes. To do so, we 
first used the K-means clustering scheme [12], a popular 
unsupervised learning algorithm, to classify the temporal 
performance profiles of the 48 subjects into three classes, 
which we then labeled as resilient, average, and vulnerable 
based on the energy of their centroids. For each class, we 
randomly separated the individuals into training (-60%) and 
validation (-40%) sets. Using data from each of the three 
training sets, we developed a phenotype-specific group
average model for each class by performing mixed-effects 
regression [2, 13]. Using this procedure, we obtained the 
means and variances of the group-average model parameters 
for each of the three phenotype-specific classes. 

We assumed that individuals in the validation sets had 
unknown sleep-loss phenotypes that needed to be identified 
from their performance measurements. To use an 

individual's phenotype-specific group-average model 
parameters, we determined hislher phenotype by computing 
the log-likelihood distance dp(n) between the available 
measurements and the three phenotype-specific group
average model predictions as follows: 

dp (n) = �log(21l-)+�IOgILn,pl 
(2) 

+�[(Yn -,un,prL��p(Yn - ,un)] , 
where n denotes the number of available measurements, Yn 
denotes the vector of available performance measurements, 
,un,p and Ln,p denote the mean vector and covariance matrix of 
the n predictions of the p-th phenotype-specific group
average model, respectively, and p is an index corresponding 
to the resilient, average, or vulnerable phenotype classes, We 
then classified an individual as a member of the phenotype 
corresponding to the smallest dp • 

Each time a new performance measurement became 
available, we repeated the above scheme of identifying the 
unknown phenotype and using the corresponding phenotype
specific group-average model predictions to individualize the 
model. If an individual is close to the boundary between two 
classes, his/her phenotype classification may change as new 
measurements become available. If an individual's 
phenotype was reclassified, we switched the phenotype
specific group-average model accordingly to make 
predictions. 

C. Model Prediction Peiformance 

We compared the performance predictions for a desired 
horizon obtained using the proposed scheme with those 
obtained using the previous individualization approach that 
uses a fixed group-average model. To obtain the fixed model 
in this paper, we used the same training sets as described in 
Section ll.B, pooled in data from all three classes, and 

performed mixed-effects regression to obtain the fixed 
group-average model parameters. 

We used the root mean squared error (RMSE) between 
the data and the model predictions to compare the prediction 
accuracy of the two approaches. We performed 20 cross
validation trials, with each trial using a randomly selected set 
of 28 individuals for training and the remaining 20 
individuals for validation. We then computed an average 
RMSE estimate of the prediction errors for each of the 
phenotype classes across the 20 validation sets. 

III. RESULTS 

A. Study Data 

We validated the phenotype-specific prediction 
methodology using data from a controlled laboratory 
experiment [11]. In this experiment, 48 healthy adult 
subjects were kept awake for 64.5 h before being 
administered various pharmacological countermeasures to 
fatigue. Here, we considered only the data collected before 
the countermeasures were applied. Each subject completed a 
lO-min PVT session every 2 h, starting one hour after 
waking at 07:00 on the first day and finishing at 00:00 on the 
fourth day. During the 64.5-h time period of continuous 
wakefulness, a total of 32 PVT sessions were administered to 
each subject. The study was approved by the Walter Reed 
Army Institute of Research Human Use Committee and the 
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United States Army Medical Research and Materiel 
Command Human Subjects Review Board. Written informed 

consent was obtained from all subjects prior to their 
participation. 

We used PVT lapses, defined by the number of response 
times greater than 500 ms, as our metric to quantify 
performance impairment. A larger number of lapses during a 
PVT session indicates greater impairment. 

B. Phenotype Identification Accuracy 

Figure 1 shows the results of the fixed model generated 
using all 28 subjects in the training set and the three 
phenotype-specific models generated using only the resilient, 
average, and vulnerable subjects. The resilient individual 
model predicts fewer PVT lapses than the fixed model, the 
vulnerable individual model predicts more PVT lapses than 
the fixed model, and the average individual model predicts 
about the same number of PVT lapses as the fixed model. 

The performance of the phenotype-specific individualized 
model relies on accurate phenotype identification, especially 
when few measurements are available. We assessed the 
accuracy of phenotype identification as a function of the 
number of available measurements. Figure 2 shows the 
fraction of subjects in the validation set, averaged across 20 

cross-validation trials, which were correctly classified. 

We observe from Fig. 2 that the accuracy of phenotype 
identification is -70% after 10 h of wakefulness and rapidly 
improves to -85% after 30 h. Also, by 40 h, or equivalently 
with 20 available measurements, the phenotype detection 
accuracy is -90%. The largest increase in accuracy, from the 
8th to the 11 th measurement, correspond to the time period 
(15-21 h) at which the phenotype-specific models were most 

separated from each other due to the circadian variation in 
performance (cf. Fig. 1). 

C. Individualized Model Predictions 

Table I compares the 6-, 10-, and 24-h-ahead prediction 
accuracy of the original approach, which uses a fixed group
average model, and the proposed approach, which uses a 
phenotype-specific group-average model. The two 
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Figure I. Phenotype-specific and fixed group-average models (mean ± 
standard error) obtained from a training set of psychomotor vigilance 
test (PVT) lapse data from 28 subjects. The standard errors were 
obtained from the diagonal elements of the models' covariance 
matrices. 
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Figure 2. Accuracy of phenotype identification (mean ± standard 
deviation) obtained by averaging over 20 cross-validation trials. 

approaches are compared for each of the three sleep-loss 
phenotypes in terms of the RMSE (in PVT lapses) between 
the data and model predictions. For each of the prediction 
horizons, the phenotype-specific models performed better 
than the fixed model for the resilient subjects; for the 10- and 
24-h prediction horizons, the improvement in performance 
was 16% and 20%, respectively, and reached statistical 
significance (P < 0.05) using a paired, two-sided sign test 
[14]. For the vulnerable subjects, the phenotype-specific 

model outperformed the fixed model, but the improvements 
of 6% and 8% for the 10- and 24-h prediction horizons, 
respectively, did not reach statistical significance. 
Conversely, for the average subjects, the phenotype-specific 

model performed slightly worse than the fixed model, but the 
difference again did not reach statistical significance. 

Figure 3 shows the measured PVT performance (in PVT 
lapses), the fixed model 10-h-ahead prediction, and the 
phenotype-specific model lO-h-ahead prediction for an 
individual from each of the three phenotypes. We observe 
that the decrease in RMSE of -2.5 lapses for resilient and 
vulnerable subjects using the phenotype-specific model is 
largely due to the improvement in predictions when the 
subjects were awake from 18 to 28 h. For the average 
subject, however, we observe no significant (P 2: 0.05) 
difference between the two model's predictions. 

TABLE I. AVERAGE ROOT MEAN SQUARED ERRORS (RMSES) IN 6-, 10-, 
AND 24-H-AHEAD PERFORMANCE (PSYCHOMOTOR VIGILANCE TEST LAPSES) 

PREDICTIONS USING FIXED AND PHENOTYPE-SPECIFIC MODELS. NUMBERS 

IN PARANTHESES ARE STANDARD ERRORS IN THE RMSEs. (* INDICATES P < 
0.05 BASED ON A PAIRED, TWO-SIDED SIGN TEST). 

Subject Fixed model Phenotype-specific model 
Phenotype 6h 10h 24h 6h 10h 24h 

Resilient 7.54 8.27 9.53 6.67 6.96* 7.64* 
(n=22) (0.36) (0.28) (0.32) (0.55) (0.51) (0.55) 

Average 11.01 11.49 12.91 11.68 12.47 14.50 
(n=14) (0.78) (0.77) ( 1.13) (0.78) (0.79) ( 1.06) 

Vulnerable 15.40 16.86 18.89 14.87 15.93 17.29 
(n=12) (0.85) 0.04) 0.27) (0.74) (0.85) (1.24) 

5576 



DISCUSSIONS AND CONCLUSION 

In this work, we developed a set of phenotype-specific 
group average models based on a previously observed set of 
individual sleep-loss phenotypes. Using these phenotype
specific models, we improved upon the traditional Bayesian 
approach of using a single fixed model as a prior estimate for 
all individuals. Our proposed approach showed significant (P 
< 0.05) improvement in the accuracy of predictions for 
resilient subjects, modest improvement in accuracy for 
vulnerable subjects, and a slight decrease in accuracy for 
average subjects. We believe that the slight decrease in 
accuracy, due to the similarity between the fixed model and 
the average phenotype model, is a small trade-off in return 
for the much-improved predictions for resilient individuals. 

For our proposed approach to perform most effectively, it 
is essential that an individual's phenotype be accurately 
determined as early as possible. Here, we use the minimum 
log-likelihood distance as our metric for determining an 
individual's phenotype. Alternate methods for determining 
the phenotype, such as the sequential probability ratio test 
[15], may provide rapid detection of phenotype and we 
intend to investigate their effectiveness as well. 

Another avenue for future investigation is the effect of 
metric choice on phenotype selection. PVT lapses are just 
one of many metrics available for evaluating PVT 

performance [3]. Alternative metrics may show additional 
separation between the phenotypes after few measurements, 
resulting in more rapid phenotype classification and more 
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Figure 3. Comparison of 10-h-ahead psychomotor vigilance test (PVT) 
lapse predictions of individualized models that used the fixed and 
phenotype-specific group-average models for subjects of three sleep
loss phenotypes: resilient (top), average (middle), and vulnerable 

(bottom). Root mean squared errors (RMSEs) between the data and the 
model predictions are also provided. 

accurate performance predictions. We intend to investigate 
the properties of different PVT metrics in order to optimize 
the efficacy of our approach. 
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