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0. Preamble & Introduction  
 
The ability to optimize behavior in the face of uncertainty and competing goals is of crucial 
importance to national defense. Theoretical and experimental investigation of the dynamic 
processes underlying human decisions should increase understanding of human decision 
making abilities, how these abilities can be optimized, and what the limits are of these abilities. 
In our MURI project, we have continued to develop a neurodynamic theory of decision making, 
using a combination of computational and experimental approaches, to address these issues.  
We pursued a three-pronged approach, (1) extending existing models of dynamic decision 
making to address the integration of outcome value, reward rate, perceptual uncertainty, and 
other factors in the decision making process, and assessing these models through behavioral 
investigations; (2) employing single and multi-single unit recording techniques to investigate 
the roles of neurons in several brain areas in the representation of decision relevant 
information and its use in the dynamical process leading to leading to overt decision in varying 
task situations; and (3) using fMRI, EEG, and MEG to monitor the real-time dynamics of the 
distributed neural processes underlying decision making in the brain.  We pursued this 
three-pronged approach initially through investigations (Task 1) of fairly standard decision 
making task situations while also (Task 2) exploring more complex task situations and (Task 3) 
developing tasks motivated explicitly to address real-world decision-making situations facing 
aviators, in collaboration with scientists at the NASA Ames research laboratory at Moffett Field.  
While the specific tasks initially envisioned under Tasks 2 and 3 morphed into others in the 
course of the research, we feel we were able to address the goal in the call for the MURI 15 
competition, of contributing to the integration of theory and experimental investigation across 
a broad range of levels of analysis, from single neurons to brain areas to the dynamic processes 
that unfold in real time through human behavior under time pressure. 
 
A great deal of progress has been made developing and extending models of decision making 
and testing them against other models and against detailed aspects of experimental data, 
including data from human behavior, primate behavior and neurophysiology, and human brain 
activation studies.  A total of 34 research articles have been published with support from this 
MURI award, and another 9 articles are still being completed, describing findings obtained 
during the final year of funding under this project.  In addition, several book chapters and 
review articles have appeared providing synthetic overviews related to the themes of our 
proposal. 
 
A central element of the progress made under this MURI Grant was the development of the 
Leaky Competing Accumulator (LCA) model that provided the theoretical foundation around 
which the proposal was originally developed.  As detailed in Progress Made and Results 
Obtained below, findings from several studies conducted under support from this grant 
support the view that decision making arises as a result of a competition among alternatives, 
rather than from a race to a decision bound; that decision states both in the model and in 
participants’ responses exhibit a hybrid blend of elements of discreteness and continuity; and 
that decision making does not stop after an initial decision state is reached but is subject to 
reversal, should later evidence strongly and persistently support a competing alternative, at 
least for some participants.  The implications of this theory for future research investigating 
individual differences in the parameters of this complex, interactive and dynamic process and 
for research on how parameters of this process may be tuned by experience or task constraints 
to avoid some of its potential pitfalls are discussed in the Significance of Results and Impact 
on Science section. 
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1. Scientific Objectives of Research 
 
Research on decision making has a long history in the field of human cognitive psychology.  
The theoretical foundations of this research can be traced back to signal detection theory 
(Tanner, & Swets, 1954) and the random walk model, providing the basis of the sequential 
probability ratio test (Wald and Wolfowitz, 1948).  These two landmark theoretical 
innovations became interwoven in the drift diffusion model of Ratcliff (1978), which unified 
them in a theory of the time course of the integration of continuous noisy perceptual 
information toward a binary decision for or against a two-alternative forced-choice decision. 
 
Subsequent investigations sought to build bridges between these abstract models of decision 
making and underlying neurophysiological mechanisms.  In the mid 1990’s, research in the 
Newsome lab led to the hypothesis that neurons in the lateral intra-parietal cortex in macaque 
monkeys functioned essentially as integrators like those described in the drift diffusion model 
(Shadlen & Newsome, 2001).  Research in McClelland’s lab, in collaboration with Marius 
Usher, and parallel work in the laboratory of XJ Wong led to neurally inspired models of 
decision making that incorporated known properties of neurophysiology to predict novel 
features of decision dynamics not captured by the earlier more abstract models.  Research in 
the laboratories of Philip Holmes and Jonathan Cohen at Princeton (Bogacz et al, 2006) 
explicitly explored the links between all of these approaches and proposed a lattice of models 
extending from detailed physiological models such as that of Wong (2002) through the Leaky 
Competing Accumulator model of Usher and McClelland (2001) to the more abstract models of 
Ratcliff (1978) and of Busemeyer and colleagues (Busemeyer & Townsend, 1993; Roe et al, 
2001). 
 
This research set the stage for the MURI Topic #15 announced for competition in fall, 2006 for 
funding in 2007.  This Topic called for a project designed to lead toward “a complete and 
thorough understanding of basic human decision making processes ranging from neuroscience 
through cognition to behavior”.  This was to be done “building a lattice of theoretical models 
with bridges that span across … neural recording and brain imaging in elementary decision to 
human … decision making with complex dynamic tasks.” 
 
The PI approached Usher, Newsome, Holmes, and Cohen with the goal of responding to this 
challenge, to build effectively on the theoretical foundations discussed above.  The Newsome 
lab also brought neurophysiology while my laboratory and Usher’s brought human behavioral 
investigations and Cohen’s provided expertise in human functional brain imaging.  We also 
solicited the collaboration of Dr. Nathan Urban at Carnegie Mellon in an effort to exploit his 
interest in brain dynamics and his access to the MEG facility at the University of Pittsburgh, as 
well as the collaboration of Drs. James Johnston and Joel Lachter of the NASA Ames Research 
Laboratories to confront our efforts with some of the complexities that face human decision 
makers (aviators) in real-life decision making situations, where decisions much be made in an 
constantly changing task situation against a backdrop of competing demands on attention. 
 
In line with the MURI Topic Announcement, our goal was to develop and extend existing 
models of decision making to address issues that were only beginning to be considered by 
researchers investigating the process of decision making.  Task 1 of our research sought to 
address the integration of outcome value, reward rate, perceptual uncertainty, and other 
factors including time pressure into theories and models of the decision making process, 
constraining the development of these models through experiments employing behavioral 
investigations in humans, single- and multi-single neuron recording studies in primates, and 
EEG, fMRI, and MEG studies in humans.  A central focus under this task was the investigation 
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of the role of prior reward bias in shaping the time course and outcome of the decision making 
process.  To this end we built upon a study already underway in the Newsome laboratory, 
proposing to collect additional behavioral and physiological data; to test alternative models as 
possible accounts of the behavioral and physiological data; to vary the behavioral task in 
further experiments with human participants to more directly assess the time course of 
information integration, and to investigate the brain basis of this process in humans. 
 
As originally proposed, Task II involved the extension of the study of decision making to 
continuous time and space, as an example of extending our investigations into more complex 
task settings.  As we will detail in the sections that follow, our investigations did consider a 
number of more complex task settings than those described under Task I.  Among the more 
complex task settings considered were: Decision making tasks with three or more alternatives; 
decision making tasks in which the basis for the decision can change from trial to trial; and 
tasks in which there are multiple display elements and the (human or primate) participant 
must find the target element as well as make a decision about its identity. 
 
Under Task III, in collaboration with Johnston and Lachter at NASA Ames research laboratories, 
we initially proposed to extend our effort to investigate real-world situations faced by aviators 
– in particular, situations posing the need to continually re-assess the state of a decision in real 
time, such as the extent to which a plane is on course of make a smooth landing. As we 
proceeded toward the design of specific studies to investigate this matter, the collaborative 
team became convinced that more work was needed addressing a basic question whose 
answer could help inform how decision makers allocate their resources when several aspects 
of a situation are in contention for their attention.  We therefore focused this part of the effort 
on addressing whether human decision makers are able to monitor their own decision states to 
the extent of being able to indicate, in real time, the state of their certainty about a noisy and 
ambiguous perceptual variable. 
 
2. Technical Approach  
 
Since our effort focused around the development of dynamical models of decision making, we 
focus here primarily on the model that served as the central theoretical organizing idea for our 
project: The leaky, competing accumulator model of Usher & McClelland (2001).  In particular, 
we briefly describe the model and then discuss several questions that were completely open at 
the outset of our research on which we have now been able to make a great deal of progress.  
This progress is distributed across the research within the Tasks described above, and 
employed behavioral research in primates and human, neurophysiology in non-human 
primates, and non-invasive brain activation studies in humans using EEG and fMRI.  After 
describing the modeling framework we will then describe the behavioral, neurophysiological, 
and non-invasive brain activation methods. 
 
The leaky competing accumulator model. The leaky competing accumulator model serves as a 
bridge between detailed biological models on the one hand and completely abstract 
‘information processing’ models on the other.  The LCA posits that decision making involves 
the accumulation of noisy information by an ensemble of accumulators, one for each 
alternative in a decision-making situation.  Each accumulator is thought to correspond to a 
large population of neurons likely to be distributed across multiple brain areas, all working in 
concert with each other and in competition with the neurons in other populations.  The 
pattern of activation across the ensemble of accumulators in this model corresponds to the 
decision maker’s decision state. We summarize the state of each accumulator with a single 
activation value, and describe the dynamics of accumulator activation, ultimately serving as a 
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basis for decision, through coupled differential equations capturing the forces operating on 
each decision variable.  Specifically, each accumulator’s time evolution is described by the 
differential equation: 
 

𝑑𝑥𝑖 =  �𝐼𝑖 − 𝑘𝑥𝑖 − 𝛽� 𝑥𝑗
𝑗≠𝑖

� 𝑑𝑡 +  𝜎𝑑𝑊 

 
The term Ii represents the external input to the accumulator which may include a common 
drive B shared by all accumulators plus an additional drive that depends on the input arising 
from a (possibly time-varying) external stimulus. The term -kxi captures the tendency of the 
state of the accumulator ‘leak’ or decay back toward 0, with k > 0 representing the strength of 
this tendency, and the final term represents the competition from other accumulators, with 
β > 0 corresponding to the magnitude of the competition. In the formulation of the model that 
we currently favor for reasons explained below, the values of the accumulator values are 
subject to a ‘reflecting bound’ at 0; that is, if the equation above would result in a negative value 
for xi it is instead simply set to 0. The term dt represents the time step while the term σdW 
represents zero-mean Gaussian noise with standard deviation σ. The reflecting bound on 
activations at 0 makes the model non-linear and therefore challenging to understand 
analytically while also introducing very interesting features that have found support from the 
data in our studies. 
 
Not all of the modeling work carried out in our studies used the LCA but a great deal of it was 
strongly influences by its tenets; and furthermore, several studies, to be described below, 
specifically addressed assumptions of this model.  Another important body of work under our 
grant examines how performance can be optimized under the LCA, relying on simplified 
versions of the full model. 
 
Behavioral methods. All of our studies employed behavioral decision making paradigms, 
sometimes in conjunction with primate neurophysiological investigations or human brain 
activation measurements.  A typical study involved the collection of an extensive data set 
from each of a moderate number of non-human primate or adult human research 
participants.  This approach differs from that of many investigators in the human decision 
making literature who collect at most a few score of trials from each participant in each 
experimental condition.  Our approach makes it possible to provide detailed assessments 
of the goodness of fit of particular models to each individual participant, avoiding the need 
to pool data over participants, a process that necessarily obscures individual differences 
and makes model assessment far more difficult.  Many studies are conducted using the 
free response paradigm, in which participants determine the timing of their responses, 
while other studies employ some variant of a time-controlled paradigm, in which the state 
of evidence accumulation at one or (better) many points after stimulus onset is used. One 
variant of this approach we have found particularly useful is the interrogation procedure, in 
which an imperative signal to respond within a very brief interval (250-300) msec is 
presented at different times post stimulus onset.  In this way we have been able to trace 
separately the dynamics of the effect of reward and stimulus information on decision 
making.  Complimentary work using the free response paradigm allows assessment of the 
optimization of decision criteria, a subject of many of the studies supported under this 
grant. 
 
Neurophysiological and human brain activation methods. In conjunction with behavioral 
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testing studies in the Newsome lab employ single or multi-single unit recording methods in 
non-human primates.  These methods provide evidence about the ways in which individual 
neurons or ensembles of neurons encode information relevant to a decision.  The single unit 
method involves isolating one neuron then recording while the monkey carries out hundreds of 
trials in a behavioral study.  The electrode is removed from the brain overnight, and the 
process is repeated until a substantial set of individual neurons has been recorded from, 
usually over the course of years.  Newer multi-single unit approaches rely on the implantation 
of an electrode array that remains implanted for an extended period, allowing many neurons to 
be recorded simultaneously.  However, with this method is it not easy to establish that one is 
recording from the same individual neurons in different days. 
 
The human brain activation methods we intended to employ in our studies included 
Electroencephalography (EEG), Magnetoencephalography (MEG), and functional magnetic 
resonance imaging (fMRI), based on the blood oxygenation level dependent (BOLD) magnetic 
susceptibility of the hemoglobin molecule.  Both EEG and MEG can track brain activity at high 
temporal frequency in real time while the BOLD response is sluggish and delayed with respect 
to the underlying brain activity.  Initially, one of the subprojects in our grant was dedicated to 
the use of MEG to track the temporal dynamics of decision making, but this part of the project 
proved infeasible.  A lack of progress with this subproject was identified at the mid-term 
review of our MURI project, and the project was then wound down.  A portion of the funding 
for that subproject was used to fund a new subproject added to our MURI grant in year four to 
fund neurophysiological investigations in the laboratory of Jochen Ditterich at UC Davis, and a 
portion has been returned to the Air Force. 
 
3. Progress Made & Results Obtained 
 
We begin by describing the progress made on exploring and testing the implications of the 
specific assumptions of the LCA that differentiate it from other models using human behavioral 
data. These assumptions include the presence of leakage and inhibition and the presence of a 
floor or reflecting bound on activation at 0.  An emergent consequence of this constellation of 
assumptions is new characterization of the concept of ‘decision state’ and of what it means to 
‘make a decision’.  Following this, we describe a substantial body of work exploring the 
optimization of decision processes and the neural mechanisms underlying this optimization, as 
explored in work on human participants.  A third section describes neurophysiogical 
investigations of factors affecting decision making, with cross-reference to relevant human 
neuroscience studies.  Studies relevant to both Tasks 1 and 2 described under scientific goals 
are integrated into all three sections of this narrative.  The studies under Task 3 (Lachter et al, 
in preparation) are integrated into the first section. 
 
Implications of the LCA. We begin by considering the roles of leakage and inhibition somewhat 
separately from the remaining issues.  A mathematical analysis of the two-alternative version 
of the model in Usher and McClelland (2001), building on earlier work by Busemeyer & 
Townsend (1993) established that, whenever there is an imbalance between leak and 
inhibition in the model (i.e., whenever 𝑘 ≠ 𝛽 or equivalently whenever 𝜆 = (𝑘 − 𝛽) ≠ 0), 
performance in a decision making task levels off below the level of 100% correct responding, at 
a level reflecting an interplay between the degree of imbalance and the strength of sensory 
evidence favoring the correct alternative.  In particular the growth of accuracy as a function of 
processing time follows an exponential approach to asymptote, where the rate of approach to 
asymptote is determined by the degree of imbalance (|λ|)and the asymptotic accuracy 
measured by the signal detection variable d’ is proportional to the signal strength of stimulus 
support divided by |λ|.  Interestingly, however, leveling off occurs for qualitatively different 
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reasons when λ is positive (i. e., leak is stronger than inhibition so that the process is leak 
dominant) or negative (inhibition stronger than leak, so the process is inhibition dominant).  
In the leak dominant case, early information entering the accumulators effectively decays away, 
favoring evidence coming in the recent period before a decision is required; while in the 
inhibition dominant case, evidence coming into the process early in a trial can give one 
alternative the upper hand, and the resulting inhibition can thereafter suppress the other 
alternative, even if on balance the evidence favors it.  To investigate this issue, it is necessary 
to manipulate when during an evidence accumulation period critical stimulus information is 
presented.  While Usher & McClelland (2001) made a preliminary investigation of this issue, 
studies supported by our MURI grant have considerably extended the investigation of this 
issue.  Tsotsos, Gao, McClelland and Usher (2012) used random dot motion stimuli of the sort 
used in many primate neurophysiology studies.  Evidence favoring a left or right response, in 
the form of different degrees of stimulus coherence, was presented either throughout the 
viewing period on a given trial (the constant condition), or either during only the first or only 
the second half of the trial (early and late conditions).  Participants were required to respond 
within 300 msec of a go cue that occurred immediately after the end of the stimulus, which 
varied in duration from 300 to 1500 or 2000 msec.  All participants showed a primacy effect 
(greater accuracy in the early vs the late condition) consistent with inhibition dominance.  An 
alternative to inhibition dominance is the idea that evidence integration stops when a decision 
bound is reached (Kiani et al, 2008). Several aspects of the findings in Tsetsos et al (2012) and 
others of our studies (Gao, Totell & McClelland, 2010; Tsetsos et al 2011; Gao and McCelland, 
submitted) favor the inhibition dominance interpretation, including both qualitative and 
quantitative signatures of goodness of fit in Gao et al. and in Gao and McClelland. 
 
A further subtlety not predicted by bounded integration arises from the presence of the 
reflecting bound at 0 in the inhibition-dominant LCA.  This is the fact that this reflecting 
bound makes possible the reversal of decision states when evidence changes, albeit subject to a 
delay in in the reversal process due to inhibition.  Consider a situation in which evidence 
switches half way through a trial from favoring one alternative to favoring the other. For some 
levels of stimulus strength and a moderate degree of inhibition dominance, the LCA will favor 
the alternative that received greater support during the first half of the short trial, but favors 
the alternative that received greater support during the second half of the long trial.  This 
feature of the model thus predicts an interaction, such that early is favored over late in short 
trials and late is favored over early in long trials.  Although this pattern was seen in only a 
subset of participants in Tsetsos et al, it cannot be explained by a bound on information 
integration.  Further evidence consistent with the reversibility of decision states and 
inconsistent with bounded integration models is also provided in Tsetsos, McClelland & Usher, 
2011. 
 
With this support for basic features of the LCA in place, we now turn to a consideration of the 
study of Gao, Tortell & McClelland (2012), which explored the role of reward and stimulus 
information using the interrogation protocol.  This study built on the neurophysiological 
study the effects of reward on decision making of Rorie, Gao, Newsome, and McClelland (2010) 
and the model of the behavioral data from that study presented in Feng, Rorie, Newsome & 
Holmes (2008).  Taken together, these studies provided support for the view that, at least 
under the task conditions used by Rorie et al, payoff information presented prior to the onset of 
stimulus information affected the starting activation of putative accumulator neurons so that 
their activation favored the higher reward alternative even before stimulus input began to 
influence these neurons’ activation.  The study by Gao et al. compared the predictions of this 
hypothesis with the predictions of two other plausible alternative accounts for the effect of 
prior reward information, and, further, assessed the overall adequacy of an account based on 
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the inhibition-dominant LCA (with a reflecting bound on activation at 0) to capture the details 
of the pattern of choice responses exhibited in the extensive data sets from each of the five 
participants in the experiment.  The LCA model provide an excellent fit to the data, accounting 
for the qualitative and quantitative form of the pattern of the effect of reward bias on response 
choices made to go cues presented at different times following stimulus onset, as well as for the 
invariant shape of time-accuracy curves for different levels of stimulus difficulty, a feature not 
predicted by bounded integration models. 
 
With several studies pointing toward the inhibition-dominant LCA with a reflecting bound at 0 
as a model capturing several features of data that other existing approaches could not explain, 
we began to consider the nature of decision states in the model and how these are translated 
into action – and we began also to consider the implications of this version of the LCA for what 
it means to ‘make a decision’.  In many models, to make a decision is to accumulate evidence 
over time until a decision bound is reached.  In the inhibition dominant LCA, however, there is 
an alternative to this idea, namely that ‘to make a decision’ is to resolve a competition in favor 
of one or the other choice alternative, so that one accumulator remains active while the 
other(s) are suppressed to an activation of zero.  Under this conception of what it means to 
‘make a decision’, a decision state has a mixture of discrete and continuous properties.  In 
particular, one accumulator wins and the other looses – a feature of a discrete decision – while 
the winner’s activation remains a continuous random variable, whose mean value is a function 
of the support it receives from the sensory stimulus.  The mean activation level of the winning 
accumulator is no longer dependent on inhibition from other accumulators once it has won the 
competition and the other’s activations have been suppressed to 0.  In this situation, however, 
it state is still dependent on leak, so activation levels off at a point reflecting the balance 
between stimulus support for the alternative on the one hand and leak on the other.  The 
stronger the stimulus support, the stronger the activation of the winning accumulator.  This 
then is the element of continuity remaining in the decision state. 
 
Three further studies not yet published provide two very different kinds of support for the 
predictions of this version of the LCA.  In one of these studies (Gao & McClelland, submitted) 
we further examined the data from the Gao et al (2010) study, looking at the time taken to 
respond to after the presentation of the go cue at different times after stimulus onset and with 
different stimulus conditions.  Assuming, in accordance with the above discussion, that the 
decision state remains continuous until the go cue occurs, we considered how the exact level of 
accumulator activation would influence the time to respond following the go cue.  Based on 
qualitative features of our own data as well as other recent studies, we proposed that the 
activation of each of the accumulators at the time the go cue occurs determines the strength of 
input to a response activation accumulator; this in turn determines the rate of activation of the 
response accumulator, so that stronger activation of the evidence accumulator will result in 
faster responding (modeled as a race between the response accumulators such that the 
response is determined by the first one to reach the bound).  This then led to several specific 
implications for response times based on the model of the evidence accumulation process 
previously laid out in Gao et al.  Three points, in particular, are of most interest. (a) the 
assumption that reward affected the starting point of the evidence accumulators meant that 
when the go cue occurred earlier, faster responses were associated with choices of the high 
reward alternative. (b) The assumption that reward affected the starting point of evidence 
accumulation further implied that reward information would influence the likelihood that the 
alternative associated with the higher reward would win the competition, and thus determine 
the response, even at long delays – but that the reward would not affect the degree of activation 
of the winning accumulator at long delays, since it would no longer be providing input to the 
accumulator.  (c) Instead, at long delays, only the strength of stimulus support for the 



9  Final Project Report FA9550-07-1-0537 
 

alternative chosen would affect the time take to respond.  All three of these predictions were 
confirmed:  That is, responses consistent with the reward bias were faster at short delays; 
response probability, but not response speed, was affected by reward bias at long delays; and 
stronger stimulus support was associated with faster responding at long delays. In addition to 
capturing these and other qualitative features of the data, the model also accounted for the 
relative sizes of the reward effect at short lags and the stimulus support effect at long lags.  
Other models appear to predict that reward should affect response speed to the extent that it 
affects response probability, and thus are inconsistent with an important an counter-intuitive 
feature of the data. Second, a recent EEG study conducted in the Holmes-Cohen labs develops a 
chain of LCA models for accumulation, threshold and response areas (van Vugt et al., 
submitted), showing that bistable neural activity can implement decision thresholds, and that 
lateralized readiness potentials (LRPs) reflect its dynamics. 
 
The final type of support for the predictions of the LCA – and in particular, for the mixture of 
discrete and continuous features of decision making – is provided by a study by Lachter, 
Corrado, Johnston & McClelland (in preparation).  In this study, we presented participants 
with two fields of dots, one containing one, three, five, seven or nine more dots than the other, 
and asked participants to indicate the judgment of 
the relative likelihood that there were more dots 
in the left field or in the right field.  The relative 
likelihood scale had a zero point, such that 
responses to the side of the zero point associated 
with the field containing more dots could be 
scored as ‘correct’ while responses to the other 
side of the zero point could be scored as 
‘incorrect’.  On this basis, accuracy as measured 
by d’ increased with the magnitude of the dot 
difference, as all extant theories would expect.  
Relevant to the mixture of discrete and 
continuous features in the decision states of the 
LCA, we observed just these features in the 
distribution of relative likelihood responses 
produced by many of the participants in this 
experiment.  This is illustrated in the inset Figure, where the response distributions for 
each of the five stimulus difference levels (one, three, five, seven or nine dots) produced by 
one of the participants in the study are shown.  Clearly, this participant’s responses show 
a degree of discreteness, in that there were no responses at the point on the scale 
corresponding to equal likelihood of each of the two alternatives.  Yet they also show a 
degree of continuity, in that that they are farther from the indifference point when 
supported by stronger stimulus information. 
 
In general, in this and several others of our studies, not all participants produce a pattern of 
responding that requires the full complexity of the inhibition dominant LCA with a 
reflecting bound at zero.  In this study and is some other earlier studies, some participants 
exhibit a pattern consistent with leak-dominance or equally consistent with inhibition 
dominance and bounded integration.  Over all of these studies (those of Gao et al, 2010, 
Gao and McClelland, submitted; Lachter et al, in preparation; Tsetsos et al, 2011, 2012) 
only the LCA provides a complete account of the full range of patterns seen in the data, 
albeit requiring the full flexibility of the model to address patterns exhibited by different 
individuals.  It should also be noted that there are features of some participants data in 
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Lachter et al. that require additional assumptions about the mapping from internal 
representations to responses to fully explain the pattern of data.  Finally, a combined 
behavioral/EEG study of the role of reward bias in decision making revealed evidence that 
under some task conditions, models such as the LCA or other decision models must be 
supplemented by other assumptions, such as a fast-guess mechanism, to account for all 
aspects of participant’s performance (Noorbaloochi et al, in preparation). 
 
Optimization of decision making and its brain basis: theory, models, behavior, and human 
brain activation studies. A parallel strand of research growing out of the integrated analysis 
of the LCA and its simplified cousin the Drift Diffusion Model (DDM) offered by Bogacz et al 
(2006) explores the optimization of performance in free response settings, in which 
participants must establish a rule for terminating the evidence integration process.  It is 
widely accepted that integration stops when a criterion is reached based on accumulated 
evidence, but whether this criterion is fixed or effectively changes during the course of a 
trial, or whether it is an absolute or relative criterion remains a subject of extensive 
ongoing research.  A large body of theoretical and experimental work, based on the 
normative theory and optimal performance curve (OPC) developed in Bogacz et al. (2006), 
sheds important light on this issue (for review, see Holmes & Cohen, submitted). 
 
One key finding is that participants often fail to achieve optimality, erring on the side of 
collecting evidence beyond the point where the improvement in accuracy is justified by the 
payoff contingencies of an experiment. Several alternative accounts for this effect have 
been considered through theoretical analyses and experiment (Bogacz et al., 2006, 2010; 
Zackenhouse et al., 2009; Simen et al., 2009; Balci et al, 2011).  One possibility is that 
participants over-weight the importance of accuracy, perhaps implicitly assuming there are 
explicit costs (negative earnings) for errors.  While this may be in play in many settings, 
practice tends to reduce this effect, resulting in enhanced reward rate.  Another factor in 
computing optimal settings of response criteria may be the difficulty participants have in 
estimating the passage of time (Zackenhouse et al., 2009; Simen et al., 2011a, 2011b).  
Balci et al (2011) linked variability in participant’s interval timing estimates to their ability 
to optimize reward rates.  A third factor relevant to reward rate optimization is the cost or 
difficulty of exerting control over decision criteria (Todd et al., 2011).  Such control may 
be experienced as effortful and/or can only be optimized by expending time and effort to 
track reward rate and make adjustments, and this may lead participants to adopt a single 
criterion across blocks of trials where adjustments of criteria would lead to greater overall 
reward (Balci et al., 2011).   
 
A fourth factor has also emerged. Bogacz et al. (2006) had already shown that the linearized 
LCA, with large leak and inhibition, reduces to a 1-dimensional Ornstein-Uhlenbeck 
process, but that this is only an optimal DDM when leak and inhibition are balanced. 
Moreover, although biophysically-based spiking neuron models can be reduced to 
nonlinear accumulators (Eckhoff et al, 2009; 2011), these are not DDMs, and they exhibit 
more complex nonlinear dynamics than the LCAs of Usher-McClelland (2001). These 
theoretical studies suggest physiological constraints to optimality.  
 
Other studies supported by this grant also considered how criteria may be adjusted on line 
to achieve, in some cases, a good approximation to optimization based on a fairly simple 
titration policy, or, alternatively, may actually reduce optimality by introducing variation in 
criteria that only serve to degrade performance (Yu et al., 2008). Extensions to LCAs and 
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DDMs that involve trial-to-trial threshold and starting point updates were created to 
account for sequential effects (Gao et al, 2009; Goldfarb et al, 2012), and diffusion models 
of interval timing were developed (Simen et al 2011a; Balci & Simen, submitted). Wong-Lin 
et al (2010) built an LCA model to predict optimal behavior in a countermanding task, and 
Zhou et al (2009) developed methods to distinguish between leak- and 
inhibition-dominated processes by injecting brief pulses of strong evidence, as also 
investigated in Tsetsos et al. (2012).  Studies have also considered the possible neural 
basis of criterion adjustment (van Vugt et al., submitted; Simen et al., in preparation) and 
the relationship between these variables and disorders that affect decision making (Mulder 
et al, 2010).  
 
Neurophysiology of decision making in primates.  As noted above, a study already in 
progress when our grant was submitted explored the behavioral consequences and neural 
basis of reward bias in decision making in a two-alternative forced-choice task in 
non-human primates.  This study led to two important papers, one assessing the 
optimality of the primate’s behavior (Feng et al., 2009) and one reporting the 
neurophysiological findings in relation to the data and offering a mechanistic 
computational model constrained, simultaneously, by both the brain and behavioral data 
(Rorie et al., 2010).  Taken together these investigations clearly showed that under the 
constraints of the particular task used, both monkeys made near optimal use of reward bias 
information.  The data supported the hypothesis that they did so by biasing the starting 
point of the evidence accumulation process; two other alternative accounts could explain 
the behavioral data alone but were ruled out by the combination of the physiological 
evidence.  Specifically, Rorie et al reported that the activation of putative evidence 
accumulator neurons was offset by reward information presented, providing a starting 
point for evidence accumulation at the time of the presentation of the stimulus.  Modeling 
work also reported in the same paper established that this offset was sufficient to explain 
the effect of reward bias on the neural activity data as well as the behavioral choice data.   
 
Additional work from the Newsome lab has explored post-response choice tracking of 
eye-movement base decisions to allow subsequent outcome information to affect future 
choices.  How does the brain track the identity of a stimulus and choice response during 
the period before a reward is received?  How can it update the value of a given 
stimulus-response pairing when the corresponding sensory and motor representations are 
no longer active?  Reppas & Newsome (submitted) describe a frontal-lobe choice-history 
signal that provides an enduring neural trace specific for the just-made eye movement 
during decision-making behavior.  Neurons that carry this history signal are distinct from 
saccade-planning neurons, but exhibit preferential connectivity with those plan neurons 
with which they share a common choice preference.  The history signal they describe may 
enable decisions to be faithfully linked to the outcomes they generate, even when those 
outcomes are deferred by temporal intervals of varying (and sometimes relatively long) 
duration.  Two other studies from the Newsome lab supported by this MURI grant 
examine neural population activity that accounts for variance in saccadic latencies (Kalmar 
et al., submitted; Kiani et al., submitted). 
 
A recent very exciting development in new work from the Newsome lab (Mante et al., 
submitted) applies advanced neural population modeling and analysis methods to reveal 
how the brain adaptively maps sensory information onto a response choice on a trial by 
trial basis.  This work has the potential to link sophisticated ways of representing neural 
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population activity to higher-level characterizations such as those provided by more 
abstract models such as the LCA and the DDM models that have been the backbone of 
brain-decision modeling up to the present.  In particular, the authors study neural activity 
in prefrontal cortex in monkeys trained to flexibly select and integrate noisy sensory inputs 
towards a choice. They find that the observed complexity and functional roles of single 
neurons are readily understood in the framework of a dynamical process unfolding at the 
level of the population. The population dynamics can be reproduced by a trained recurrent 
neural network, which reveals a previously unknown mechanism for selection and 
integration of task-relevant inputs. This mechanism implies that selection and integration 
are two aspects of a single dynamical process unfolding within the same prefrontal circuits, 
and potentially provides a novel, general framework for understanding context-dependent 
computations. 
 
Other neurophysiology studies in the laboratory of Jochen Ditterich explore in detail how 
neurons in parietal cortex compute net sensory evidence for one of several decision 
alternatives.  Bollimunta & Ditterich (2011) trained monkeys on a perceptual decision 
task that allowed simultaneous experimental control over how much sensory evidence was 
provided for each of 3 possible alternative choices and recorded single unit activity and 
local field potentials (LFPs) from the lateral intraparietal area (LIP). While both the 
behavior and the spiking activity were largely determined by the difference between how 
much supporting sensory evidence was provided for a particular choice (pro evidence) and 
how much sensory evidence was provided for the other alternatives (anti evidence), the 
LFP reflected roughly the sum of these 2 components. Furthermore, the firing rates showed 
an earlier influence of the anti-evidence than the pro evidence. These observations indicate 
that LIP does not simply receive already pre-computed decision signals but that it plays an 
active role in computing the decision-relevant net sensory evidence and that this local 
computation is reflected in the LFP.  A second study by Bollimunta et al. (2012) recorded 
simultaneously from multiple decision-related neurons in parietal cortex of monkeys 
performing a perceptual decision task and used these recordings to analyze the neural 
dynamics during single trials.  Decision-related lateral intraparietal area neurons typically 
undergo gradual changes in firing rate during individual decisions, as predicted by 
mechanisms based on continuous integration of sensory evidence. Furthermore, we 
identify individual decisions that can be described as a change of mind: the decision 
circuitry was transiently in a state associated with a different choice before transitioning 
into a state associated with the final choice.  These recent findings from the Ditterich lab 
support some predictions of the Leaky Competing Accumulator model but challenge others, 
and further modeling work assessing exactly how to relate neural activity to decision 
outcome, via population-level models such as the LCA, are underway. 
 
4. Significance of Results & Impact on Science 
 
The goal of developing a lattice of models spanning from neurons to behavior and taking full 
account of the physiological and psychological factors that influence decision outcomes is a 
very long-term goal.  As progress is made toward this goal, we will have a greater and greater 
understanding of the limits of human decision making performance and of the bounds on its 
possible rationality. 
 
The studies reported here reflect an ongoing transition in models of decision dynamics.  While 
simpler perfect integration models can often provide fairly good accounts of the pattern of 
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results in a decision making experiment, the work reported here suggests that a detailed 
consideration of data obtained in both relatively standard decision making settings 
(two-alternative forced-choice tasks with stationary evidence) and in somewhat more complex 
settings (e.g., with three or four alternatives, non-stationary evidence, or with the need to use a 
trial-specific cue to select the appropriate dimension of sensory evidence) has begun to suggest 
that the more complex dynamical characteristics of models like the non-linear Leaky 
Competing Accumulator model are reflected in subtler aspects of behavior and possibly also in 
brain activity.  It is likely that future research will be increasingly influenced by such models, 
and by the effort to identify further behavioral and neural markers of the non-standard 
features of these models. 
 
As our conception of decision dynamics becomes richer, so, too, does our conceptual 
framework for understanding individual differences in decision dynamics.  A highly 
parsimonious model may have only two or three free parameters (a sensitivity, a bias, and an 
integration threshold) allowing for relatively few possible ways for performance to be affected 
by underlying neural mechanisms.  But when the parameter structure is richer (including 
leak, inhibition and a common drive or offset parameter that affects the engagement of the 
reflecting bound at 0) there may be more model freedom but there is also the possibility of 
understanding in a far richer way how individual differences may affect aspects of decision 
performance.  This opens the way for an important body of new research exploring individual 
differences in decision making – both in terms of the behavioral phenotype and the neural 
mechanisms and factors that support this phenotypic variation. 
 
The further prospect of a richer theory of decision dynamics is a greater opportunity to explore 
ways to foster its optimization.  Much of the work discussed here explores how participants 
can control the placement of the decision threshold – but there are many other parameters, 
with identifiably different effects, that also may be tunable, and much remains to be learned 
about the controllability of these parameters and/or what factors influence their values. 
 
The work described above also breaks new ground in linking neural population activity to 
behavioral outcomes.  Most of the models to date have assumed that the members of the 
neural population that support a decision all have the same neural response function, perhaps 
differing in scalar parameters such as gain or variability but otherwise essentially identical.  
The exciting new work by Mante et al (submitted) breaks new ground in this regard, allowing 
us to begin to see how a population of neurons, each with a potentially quite different response 
profile, can each play a part in implementing a population-level computation that affords a 
richer array of computations (selection of the sensory dimension on which a response is based, 
as well as integration of the relevant evidence to a decision bound) than are naturally captured 
by populations made up of essentially identically distributed neurons. 
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