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ABSTRACT

This thesis considers the problem of scaling rule-based inference to large quantities

of RDF data found on the Semantic Web. The general approach is one of data

parallelism, that is, dividing data among processors such that the collective results of

each processor’s individual inference is the same as though inference was performed

sequentially. In this way, theoretically speaking, more processors can be added to

accommodate more data.

The problem is first considered from the perspective of the operational seman-

tics of inference with production rules. The question is asked, under what conditions

is embarrassingly parallel inference guaranteed to be correct? Sufficient conditions

are determined and proven at both a fine-grained level close to the basic operational

semantics and a more coarse-grained level that applies directly to rules. The con-

ditions are placed on the relationship between rules and distribution schemes, that

is, the way in which data is assigned to processors.

Then, a special class of distribution schemes is considered called replication

schemes. Replication schemes require that individual data either be replicated to

all processors or placed arbitrarily on some processor(s). The aforementioned con-

ditions are then reformulated to consider replication schemes which reveals that

testing the conditions for replication schemes is reducible to satisfiability (SAT),

and not only SAT but 2SAT. An augmented version of this reduction which is a

reduction to 3SAT also accounts for the possibility to eliminate some rules in order

to improve parallelization. These reductions along with a proposed methodology for

restricting rules are used to derive restricted versions of the RDFS and OWL2RL

rules that are amenable to parallel inference.

Finally, an evaluation is performed that tests these theoretical findings for re-

stricted versions of RDFS and OWL2RL inference on two large, well-known datasets

exceeding a billion triples: LUBM10K and BTC2012. The LUBM10K dataset repre-

sents an optimistic case, meaning that if performance is poor with LUBM10K, then

it will likely be poor on many datasets. On the other hand, the BTC2012 dataset

x



represents a pessimistic case, meaning that if performance is good with BTC2012,

then it is likely that performance will be good with other datasets. While the usual

scalability metrics are used (speedup, efficiency, etc.), the Karp-Flatt metric reveals

that inference is almost entirely parallel for LUBM10K data, demonstrating the

practical feasibility of the theoretical findings. However, for BTC2012, it must be

ensured that there is sufficient memory and load-balancing to achieve this high level

of scalability on distributed memory architectures. Regardless, for feasible cases,

very low times are achieved for LUBM10K (seconds) and BTC2012 (minutes).
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CHAPTER 1

INTRODUCTION

Since its conception, the World Wide Web (Web) has presented a persistent prob-

lem: given the vast amount of information published, how does one find anything of

a particular interest? Traditionally, the Web has been viewed as a set of interlinked

documents in which the documents are – from the perspective of algorithms – “bags

of words.” Such a view of the Web renders the information meaningless to machines,

compelling the need for algorithms that ignore the inherent meaning of the informa-

tion and instead rely on probabilities or cleverly devised ranking metrics based on

structural characteristics of the Web. Modern search engines have essentially solved

this particular problem.

The Semantic Web [1] – the Web as it is today – contains not only “bags

of words” but also structured data with explicit semantics, in the form of Resource

Description Framework (RDF) [2] triples. These explicit semantics allow algorithms

to discover, in some sense, the precise meaning of the data. Utilizing this information

to improve search and data integration is still an open problem. While the structured

data has an explicit semantics, these semantics often imply other data. In other

words, additional data need to be inferred to more fully reveal the explicit data’s

meaning and entailments.

It is arguably the case that the most common way of semantically enrich-

ing data on the Semantic Web is by providing an ontology in the Web Ontology

Language (OWL) [3] that describes the data. OWL is based on Description Logic

(DL) [4] which has the desirable property of decidability. However, this character-

istic significantly limits expressivity, and so rule-based inference has been turned to

as an alternative. This is particularly evidenced by the recent World Wide Web

Consortium (W3C) Recommendation of the Rule Interchange Format (RIF) [5].

The topic of rule-based inference has a long research history rooted in artificial

intelligence (particularly logic programming and theorem proving) and databases.

Rules can be loosely thought of as If-Then statements in which some condition

1
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implies some consequence. Rules can be roughly categorized into logic rules and

production rules (or more generally, rules with actions). This proposal focuses on

production rules, which are capable of expressing some other forms of rules like

Datalog [6].

The general approach to scaling inference to larger amounts of data has been to

employ parallelism. Scalability of a system is determined based on the kind of scaling

under consideration, traditionally strong scaling in which execution time should

decrease as number of processors increases, holding workload fixed. In strong scaling,

the ideal1 case is that TN = T1
N

where T1 is the execution time on a single processor,

N is a positive number of processors, and TN is the execution time on N processors.

A more appropriate notion of scalability for the Semantic Web is data scaling [7]

in which the ratio of dataset size to number of processors is fixed, and execution

time is desired to remain constant. In this case TN = T1 is the ideal case, where

T1 is the execution time on a single processor at capacity, and TN is the execution

time on N processors at capacity. The reason for this alternative perspective on

scalability is that handling the growth of data is the primary challenge, and reducing

execution time is secondary. Either way, let τN denote the execution time on N

processors, and let τ∗ be its ideal value. In this way, the following arguments can be

made independent of the notion of scalability. τN > τ∗ is an indication that there

is some performance cost to parallelizing the computation. That is, in practice,

τN = τ∗ + cost(N).

Traditional research in parallel, rule-based inference (mostly from the late

1980s to mid-1990s) focused on the general case, making no assumptions about the

rules or data [8, 9, 10, 11, 12, 13, 14, 15, 16]. Handling large amounts of data was

considered a problem of providing correct inference while minimizing cost(N) by

improving load-balancing and reducing communication. Some approaches required

elimination of redundant work [12, 13].

However, compared to the focus of traditional research, the Semantic Web is a

relatively special case in which the amount of data far exceeds the number of rules,

1Ideal in a theoretical sense. In practice, it is possible for TN to be smaller if superlinear
speedup is achieved by spreading out the data enough so that each processor can better utilize
cache.
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and even without consideration of data, the number of rules can be relatively few

as in the RDF Schema (RDFS) [17] rules. This change in focus is expressed in the

cleverly coined hypothesis of the Semantic Web originating with co-inventor James

Hendler: “a little semantics goes a long way” [18]. In the context of this work, the

“little semantics” is the few rules, and the “long way” is the amount of data.

As a result, some recent works in parallel, rule-based inference on the Se-

mantic Web have taken a different perspective of parallelism than in traditional

research on parallel, rule-based inference. In the presence of few rules and relatively

small ontologies, good scalability can sometimes be achieved simply by replicating

portions of the data to all processors and allowing them to perform inference in-

dependently, that is, in an embarrassingly parallel fashion [19, 20, 21]. Therefore,

except for possible contention during the initial data distribution, cost(N) reflects

only data-dependent costs like load imbalance caused by skew in data distribution,

or redundant work caused by replication of (initial or inferred) data. Therefore, as-

suming each processor runs the best sequential inference system, cost(N) is purely

determined by data distribution. Thus, determination of a distribution scheme is

important and leads to the first contribution.

The first, novel contribution of this thesis is to determine suf-

ficient conditions under which a data distribution scheme sup-

ports correct (embarrassingly) parallel inference for a given set

of rules, independent of features of the data.

Previous works on rule-based inference on the Semantic Web have typically

placed restrictions on the data [19, 20, 21] in order to achieve complete parallel

inference with some fixed set of rules. This work instead makes no assumptions

about the data.

In many interesting cases, though, the only solution is to replicate all the data

to all processors, which defeats the purpose of parallelization (which is to either grow

the dataset beyond the capacity of a single machine and/or improve performance).

In such cases, one might consider sacrificing some semantics of the program (rules)

to achieve better parallelization. This leads to the next contribution.
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The second, novel contribution of this thesis is a method – par-

tially formal and partially heuristic – that can be used to re-

strict a set of rules such that the restricted version is amenable

to parallelization.

This second contribution is achieved by considering a special case of data

distribution which allows the conditions for parallelization to be reduced to the

satisfiability problem (SAT). Combined with an intuition-guided methodology and

a few optimization heuristics, this approach is used to derive restricted versions of

the RDFS and OWL 2 Rule Language (OWL2RL) [3] rules that are amenable to

parallelization.

The third, novel contribution of this thesis is a performance

evaluation of parallel inference using restricted RDFS and OWL2RL

rule sets to empirically test the practical value of the aforemen-

tioned theoretical findings.

The evaluation is run on a large symmetric multiprocessing (SMP) machine

and a Blue Gene/Q [22]. The datasets used in the evaluation are the synthetic

Lehigh University Benchmark (LUBM) [23] dataset (unrealistically optimistic, best

case scenario) and the 2012 Billion Triples Challenge dataset (BTC2012, an abysmally

difficult, worst-case scenario) [24]. Performance metrics include execution time, rel-

ative speedup, efficiency, the Karp-Flatt metric [25], and the recently proposed

growth efficiency [7]. It is found that a high degree of scalability is achievable with

these restricted rule sets when there is sufficient memory and load-balancing.



CHAPTER 2

HISTORICAL REVIEW

There are three main categories for historical review: distributed logic programs,

parallel production rule systems, and recent work in scalable, rule-based inference

on the Semantic Web. Before discussing related works in these particular fields,

though, the taxonomy of parallel strategies of deduction given by Bonacina [26] is

discussed to give context to the strategies employed in previous work. Kotoulas et

al. [27] similarly cover the discussion from section 2.1 and the review of related

works in section 2.4.

2.1 Taxonomy of Parallel Deduction

Bonacina [26] describes three levels of parallelism differing in granularity:

term-level parallelism (fine-grained), clause-level parallelism (mid-grained), and

search-level parallelism (course-grained). Term-level parallelism seeks to parallelize

frequent, low-level operations such as term rewriting and unification. For exam-

ple, unifying terms p(a1, . . . , am) and q(b1, . . . , bn) consists of checking to make sure

p = q, m = n, and then attempting to unify each ai and bi for 1 ≤ i ≤ n. If there

exists j, k such that j 6= k and there is no dependency between aj and ak, and there

is no dependency between bj and bk, then aj and bj can be unified independently of

ak and bk, which means the two unifications can be executed in parallel.

Clause-level parallelism seeks to parallelize individual inference steps. This

could be parallelizing search for satisfactions of different subgoals in a rule, or it

could be parallelizing search for satisfactions of the same subgoal. This is discussed

more in section 2.2.1.

Search-level parallelism seeks to divide the entire search space among proces-

sors. Search-level parallelism has the distinguishing characteristic that its coarse-

grained nature lends itself to distributed environments. However, such parallelism

is hardly as straightforward as the previous two. The manner in which the search

space is divided depends on the goal to be achieved and the means by which it is to

5
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be achieved. There are two axes to search-level parallelism: whether the process is

homogeneous or heterogeneous, and whether multi-search or distributed search (or

both) are used.

In homogeneous, search-level parallelism, all processors use the same inference

system. For example, they all use a DL reasoner, or they all use a Prolog engine.

In contrast, heterogeneous systems combine different inference systems.

In multi-search, search-level parallelism, processors may employ different search

plans. In other words, even if each processor has the same inference system (e.g., a

DL reasoner), each processor may apply rewrite rules in different orders or to differ-

ent formulas. The main point is that the processors may handle non-determinism

differently. On the other hand, distributed search has nothing to do with non-

determinism (although it does not preclude multi-search). The defining character-

istic of distributed search is that processors differ in distribution of the problem, for

example, by data and/or rule distribution. Distributed search often requires the pro-

cessors to communicate in order to ensure completeness or improve load-balancing.

Thus, search-level parallelism can differ by diversity of inference systems,

search plans, and/or problem distribution. Since it allows for distribution of data,

search-level parallelism is the form of parallelism focused on herein, specifically ho-

mogenous, non-multi-search, distributed search. In other words, I am seeking to

achieve parallelism solely by means of data distribution. Each processor is assumed

to have the same inference system and the same search plan (i.e., same way of

handling non-determinism).

2.2 Distributed Logic Programs

Parallelism for improving the performance of reasoning with logic programs

has been well-studied as shown in the survey papers [10, 26]. This section considers

the most relevant logic programming, namely Prolog [10] and Datalog [6].

2.2.1 Prolog

Strategies for parallel, backward-chaining inference in Prolog have been sur-

veyed by Gupta et al. [10]. Prolog rules have the form H :- B1, . . . , Bn, where H



7

and each Bi are atomic formulas. H is called the head or consequent, and B1, . . . , Bn

is called the body or antecedent. All variables are implicitly universally quantified to

the scope of the rule. Gupta et al. delineate three forms of parallelism: unification

parallelism, and-parallelism, and or-parallelism.

Unification parallelism is a form of term-level parallelism, an example of which

has already been given in section 2.1. And-parallelism is concerned with satisfying

the subgoals (Bi) in the body of a rule in parallel. Doing so is not necessarily

straightforward since subgoals in the body often share variables, and thus, they

cannot be satisfied independently. In contrast, or-parallelism certainly allows for

independent processing. If a (sub)goal can be unified to the heads of multiple rules,

then search for satisfactions of these rules can be performed independently for each

rule. If the goal is the query being posed to the Prolog engine, then or-parallelism

in this case is search-level parallelism. If the goal is a subgoal of a rule, then or-

parallelism in this case is clause-level parallelism.

Note that of these approaches, none of them use a distributed search strategy.

Thus, these forms of parallelism are orthogonal to the focus of this work.

2.2.2 Datalog

Unlike Prolog, Datalog has a significant history of distributed search. Relevant

works and strategies have been summarized in [11]. The main approaches have been

program restriction and predicate decomposability.

The goal of program restriction is to effectively distribute the firing of rule in-

stances (i.e., the drawing of individual inferences from specific rules) to processors by

appending some conditions to the rule bodies. Such an approach usually uses some

hash-distribution scheme for assigning facts to processors, effectively implementing

a distributed hash-join. Inferences then need to be communicated between proces-

sors to ensure completeness; in other words, inferences are also hash-distributed.

Attempts to optimize restricted programs is by way of minimizing communication.

Restricted programs are an example of distributed search. Unlike embarrassingly

parallel inference, program restriction simply assumes communication between pro-

cessors (although it does not preclude the possibility of restricting a program such
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that no communication is necessary).

In contrast, predicate decomposability as introduced by Wolfson and Silber-

schatz [13] aims to distribute data to processors such that embarrassingly parallel

inference for a given predicate is correct and each processor’s closure for that predi-

cate is disjoint from every other processor’s closure. (Closure is the set of all possible

inferences for the given facts and rules, which is always derivable in Datalog). Thus,

it is also an example of distributed search. In [13], Wolfson and Silberschatz char-

acterized three types of single rule programs (sirups) for which predicate decompos-

ability is achievable. Later, Wolfson and Ozeri [12] added an additional criterion,

that each processor must have at least one fact with the predicate being decom-

posed. In the same paper, they present a theorem with sketch proof stating that it

is undecidable whether a program is decomposable on a given predicate.

In contrast to predicate decomposability, the work proposed herein seeks only

to achieve soundness (implied in Datalog) and completeness; there is no strict re-

quirement of disjointness or whether each processor has at least one fact for some

predicate. The logical desirability behind the disjointness criterion is that if each

inference is drawn by exactly one processor, then no redundant work is performed,

and assuming perfect load-balancing, a high parallel efficiency can be achieved. This

is a very strict requirement, one that surely cannot be met in many cases.

2.3 Parallel Production Rule Systems

Unlike with (typical recursive) Datalog, Production Rule Systems (PRSs) al-

low functions, negation of formulas, and retraction of facts.2 Therefore, inference

in a PRS may not be decidable, and the order in which rule instances (rules with

bound variables) are fired may have an impact on which facts are inferred and when.

A mechanism called a conflict resolution strategy (CRS) is used to define how rule

instances are fired.

PRSs follow a cycle of match, resolve, and fire. First, rules are matched to the

knowledge base (factbase, set of facts) to derive all possible rule instances, then the

2Variants of Datalog also allow forms of negation, but to the best of my knowledge, they have
been generally unstudied in the context of parallelism.
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CRS determines which rule instances should be fired and in what order, and then

the selected rules are fired. Most work in parallel PRSs center around parallelizing

the OPS5 PRS [28] which used the well-known RETE algorithm [29] for the match

phase [8]. Much of the work in parallelizing OPS5 has focused on the match phase

since it accounted for the majority of execution time [9]. Other work has focused on

parallelizing rule firing, a much more difficult problem. If resolution and rule firing

can be parallelized, then the entire inference cycle can be parallelized.

Works on parallelizing the match phase have focused on parallelizing the RETE

algorithm on different architectures. The main advantage of RETE was that it could

quickly match many rules (“productions”), but this advantage is of less importance

in the present landscape given the change of focus from many rules to much data

[8]. Parallelizing the match phase with few rules is well understood, particularly

given the vast research on parallelizing relational queries (to which rule conditions

can typically be reduced).

This thesis focuses on parallelizing the entire inference cycle; therefore, it is

more important to consider previous work toward that end. The difficulty in par-

allelizing the inference cycle is in simultaneous firing of rules such that the effect is

somehow similar to firing the rules under a sequential CRS. In OPS5, in each infer-

ence cycle, only a single rule instance can be selected for firing [28], and therefore,

there is a deterministic order in which individual rule instances are fired. Given this

context, Schmolze proposed the serializability criterion for correctness of parallel

rule firing:

“We say that the coexecution of many instantiations is serializable if and

only if there exists some serial execution that would produce the same

result using the same instantiations.” [14]

In other words, under the serializability criterion, the result of firing multiple

rule instances in parallel must be the same as firing the same instances in some

valid order under the sequential CRS. Schmolze argues that ensuring serializability

is important because developers rely on the CRS to understand and enforce the

semantics of their programs (rules).
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To satisfy the serializability criterion, Kuo and Moldovan [9] define two prob-

lems that, when solved, ensure serializability.

• The compatibility problem is the problem of firing incompatible rule instances.

Conditions are given by Kuo and Moldovan for when rule instances are con-

sidered compatible. One is that the firing of one rule instance before another

should not preclude the firing of the latter rule instance (e.g., one rule instance

retracts a fact that is used to match the condition of the other rule instance).

Another is that the actions of two rule instances should not be contradictory

(e.g., one rule instance asserts a fact that the other retracts).

• The convergence problem is the problem of ordering the individual, parallel rule

firings such that they are serializable. Ensuring compatibility simply means

that a single, simultaneous firing of (compatible) rule instances will have a

valid serialization. However, it does not guarantee that the ordering of such

simultaneous firings will have an overall valid serialization. In other words,

arbitrarily chaining together two valid serializations does not necessarily create

a single valid serialization. This is the convergence problem.

The compatibility problem makes particular sense for the OPS5 PRS which

requires that only a single rule instance be selected for firing in any given cycle.

Thus, the firing of one rule instance can indeed cause another (unfired) rule instance

to be unmatched in subsequent inference cycles. That is, it is actually possible for

the firing of a rule instance to preclude the firing of another rule instance. If the

requirement that only a single rule instance be fired per cycle is relaxed, then the

compatibility problem becomes less of an issue. This will be further addressed in

the next chapter.

Concerning the convergence problem, one possible solution observed by Kuo

and Moldovan [9] is to simply replace the semantics of a sequential CRS with that

of a parallel CRS. The benefits of such an approach is that a parallel CRS can still

provide some semantics on which a developer may rely, argued to be essential by

Schmolze [14]. However, the burden of defining the semantics of the parallel CRS

has commonly been relegated to developers to define so-called “metarules” that
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control the parallel execution of the PRS [8].

Another approach to solving the convergence problem (as observed by Kuo and

Moldovan [9]) is to introduce non-determinism. If the order of firing rule instances

(or some set of rule instances) is completely non-deterministic, then any ordering

satisfies the serializability criterion.

This characteristic – that any ordering produces correct results – is actually

a strong criterion called the commutativity criterion proposed by Ishida and Stolfa

[15]. In the case of a completely non-deterministic CRS, ordering of rule instances

can be arbitrary, and thus any parallel execution can be considered correct. However,

outside of such cases, the developer must prove to him/herself that any ordering of

rule instances would produce “correct” results. As pointed out by Amaral and

Ghosh [16], the commutativity criterion is generally considered too strict.

Returning to the serializability criterion and non-deterministic CRSs, there

have been multiple approaches to introducing non-determinism, but they can be

roughly classified into two cases: providing mechanisms to the developer to effec-

tively direct non-determinism (i.e., introduce some determinism), and to divide rules

into sequential and parallel sets. Sequential sets are always executed sequentially,

but parallel sets are executed either non-deterministically (arbitrary ordering) or si-

multaneously (similar to inflationary semantics in Datalog with negation [6]). These

rulesets are determined by developers, and in some cases, there is a control flow be-

tween active rulesets (called “contexts”) that provides some determinism.

These approaches may have seemed practical when developers were the only

users under consideration. However, given the broad audience of the (Semantic)

Web, it seems unduly onerous to require relatively lay people to understand so

many fine details. The most practical approach seems to be the formulation of a

parallel CRS. A class of CRSs amenable to parallelization is defined in chapter 3.

2.4 Scalable, Rule-based Inference on the Semantic Web

Related works in this area are relatively recent. Perhaps one of the earliest

works, from 2006, is toward partitioning OWL knowledge bases for distributed rea-

soning by Guo and Heflin [30], although it is focused on DLs rather than rules.
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Liebig and Muller [31] as well as Bock [32] considered similar problems.

Regarding parallel rule inference, though, the earliest works specific to the

Semantic Web seem to go back to 2008, focusing exclusively on distributed mem-

ory architectures with the exceptions of [33, 34]. Soma and Prasanna considered

rule partitioning and data partitioning approaches to parallel OWL Horst inference

[35]. OWL Horst is an established, de facto standard set of rules based on the pD∗

fragment [36, 37] of OWL 1 [38]. Kaoudi et al. presented work on RDFS infer-

ence on distributed hash tables (DHTs) [39]. At the 2008 Billion Triples Challenge,

Anadiotis et al. presented MaRVIN, a system for sound and eventually complete

RDFS inference on clusters that won third place [40], which also lead to subsequent

research in 2009 by Oren et al. [41, 42]. MaRVIN was different from previous (and

even subsequent) approaches in that it did not necessarily guarantee completeness,

although evaluation suggested that it would at least come very close, particularly

when using suitable heuristics. Another work distinct from its peers is the work

on approximate reasoning by Rudolph et al. [34] in which multiple inference sys-

tems were combined not to decrease latency but to increase availability and quality

of answers for any given amount of execution time. This is an example of non-

distributed, multi-search, as opposed to all other works presented in this section,

which are distributed, non-multi-search.

In 2009, Hendler and I [21] demonstrated that certain characteristics of the

RDFS rules allow RDFS inference to be performed in an embarrassingly parallel

fashion and still achieve soundness and completeness if the data met some common

conditions (e.g., the rdfs:subPropertyOf property has no subproperties), the re-

sults of which were used in the system that was part of the champion submission to

the 2009 Billion Triples Challenge by Williams et al. [43, 44]. At the same confer-

ence, Urbani et al. presented similar findings regarding parallel RDFS inference in

a MapReduce framework [20]. Quite recently, Patel-Schneider [45] expanded on the

details of the assumed conditions by Hendler and me, and by Urbani et al., showing

that producing the truly complete finite RDFS closure (no assumed conditions on

the data) is inherently serial, where here, “serial” is meant in the theoretical sense,

that is, not being completely parallel.
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In 2010, Urbani et al. extended their work to OWL Horst inference [46],

achieving the largest closures on both real-world (on the order of billions of triples)

and synthetically generated datasets (100 billion triples) to date. Kotoulas et al.

utilized previous MaRVIN work to address the issue of load-balancing in parallel

RDFS inference caused by data skew [47]. Hogan et al. presented optimizations

for distributed, rule-based reasoning using a subset of the OWL2RL rules [19].

This work by Hogan et al. is particularly interesting for two reasons. First, the

inference system disallows inferences resulting from “ontology hijacking” [48], an

apparent misuse of ontologies. Second, this work mathematically derives conditions

for soundness and completeness for rule-based reasoning (specifically Datalog rules

with focus on linear recursion) with ontologies. Goodman and Mizell applied the

findings of [20, 21] to implement and optimize RDFS inference on a Cray XMT [33],

the first work to make significant use of a shared memory architecture. This system

also contributed to the runner up submission to the 2010 Billion Triples Challenge

[49].

All of these previous works on rule-based inference on the Semantic Web had

been forward chaining reasoners, with the exception of [39]. In 2011, Urbani et al.

presented a parallel system for backward-chained inference with RDFS and OWL

Horst rules [50]. The collective works of Urbani to date can be found in his recently

defended doctoral dissertation [51].

In 2012, Heino and Pan demonstrated parallel RDFS inference on graphics

processing units (GPUs) [52].



CHAPTER 3

SUFFICIENT CONDITIONS FOR PARALLEL

INFERENCE

In 2009, Hendler and I showed that a restricted version of the RDFS closure (the

full closure of which is known to be undecidable [37, 45, 53]) can be produced in an

embarrassingly parallel fashion, allowing a high degree of scalability to be achieved

by increasing the number of processors with the amount of data [21]. The formal

basis for this finding was based on inspection of the RDFS rules and the common

assumption that the terminological (then referred to as “ontological”) triples consti-

tute a small part of the overall data. In this chapter, I further develop these notions

beyond specific application to RDFS toward general application to production rules.

First, it must be defined exactly what is meant by rules. In section 3.1,

the notion of rules is defined as a subset of the Production Rule Dialect of RIF

(RIF-PRD) [54] with equivalent operational semantics. Then in section 3.2, formal

definitions are given for parallel inference, including various definitions for what it

means for parallel inference to be “correct”. In section 3.3, sufficient conditions are

proven for correctness of parallel inference, which is the main contribution of this

chapter.

3.1 Rules and their Semantics

In this section, the syntax for rules and the operational semantics of inference

are defined. The basis for these definitions are RIF-PRD [54], and as such, much of

the content of this section is directly derived from that work. However, the defini-

tions are not exactly the same. Not only have they been reworded and reorganized

to fit the language and purpose of this work, but also the definitions herein are

more restrictive. Some of the restrictions are merely syntactic (e.g., forcing normal

form) while others actually reduce the expressive power of the rule language. Foot-

notes are provided with information regarding the differences, although they are not

necessarily an exhaustive accounting of the differences.

14
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Additionally, mathematical notation will periodically be defined in distinct

text blocks to make clear the express intent to use a particular notation throughout

the remainder of this work.

3.1.1 Syntax and Notation

Definition 1. Reserved symbols are any of the following: =, #, ##, ->, [, ], (, ),

List, If, Then, Do, Assert, Retract, And, Not, External.

Definition 2. A variable is a symbol that is not a reserved symbol and is represented

syntactically as a string in typewriter text that does not contain whitespace and that

begins with a question mark. For example, ?v.

Definition 3. A constant is a symbol that is not reserved and not a variable rep-

resented syntactically as "lex"^^<datatype> where lex is an appropriately escaped

string called the lexical representation and datatype is an Internationalized Resource

Identifier (IRI) [55] identifying how lex should be interpreted. Constants are divided

into four disjoint sets: (plain) predicate names, built-in (predicate) names, function

names, and individual names. Each non-individual name has an associated non-

negative integer referred to as its arity. For a non-individual name p, let arity(p)

denote the arity of p.

Notation. Constants with certain datatypes are allowed a syntactic shorthand, as

illustrated by example in the following.

• "http://www.rpi.edu/"^^<http://www.w3.org/2007/rif#iri> can equiv-

alently be represented <http://www.rpi.edu/> or in appropriate cases, using

a Compact URI (CURIE) [56];

• "label"^^<http://www.w3.org/2007/rif#local> can equivalently be rep-

resented label;

• "1"^^<http://www.w3.org/2001/XMLSchema#integer> can equivalently be

represented 1.

Definition 4. Any structure is said to be ground iff it contains no variables. By

definition, constants are ground and variables are not ground.
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Definition 5. A term is recursively defined as any of the following:

• a constant;

• a variable;

• a (finite) list of ground terms, denoted syntactically as List(t1 t2 . . . tn)

where n ≥ 0;

• a function term denoted syntactically as f(a1 a2 . . . aarity(f)) where f is a

function name and each ai for 1 ≤ i ≤ arity(f) is a term.

Definition 6. An atomic formula is any of the following:

• an atom denoted p(a1 . . . aarity(p)) where p is a predicate name and each ai

for 1 ≤ i ≤ arity(p) is a term;

• an equality formula denoted t1=t2 where t1 and t2 are terms;

• a membership formula denoted o#c where o is a term called the object, and c

is a term called the class;

• a subclass formula denoted c1##c2 where c1 is a term called the subclass, and

c2 is a term called the superclass;

• a frame denoted o[a->v] where o is a term called the object, a is a term called

the attribute, and v is a term called the value (a->v is referred to as the slot);3

• a built-in formula4 denoted External(p(a1 . . . aarity(p))) where p is a built-in

predicate name and each ai for 1 ≤ i ≤ arity(p) is a term.

Definition 7. A fact is a ground atomic formula.

Definition 8. An independent fact is a fact that is a built-in formula or an equality

formula in which both terms are identical.

3Unlike RIF-PRD, I restrict frame atomic formulas to a single slot. This is just to simplify the
syntax and does not reduce expressivity since the conjunction of multiple frames with the same
object And(o[a1->v1] . . . o[an->vn]) is effectively the same as a single frame having all slots
o[a1->v1 . . . an->vn].

4I have opted to refer to these kinds of formulas as “built-in formulas” which is the more
traditional terminology. RIF-PRD refers to these as “externally-defined formulas.”
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Definition 9. A dependent fact is a fact that is not an independent fact.

The fact is the fundamental unit of data. The distinction between independent

and dependent facts is not explicit in RIF-PRD. However, such a distinction is useful

when defining the operational semantics. As will be made clearer in section 3.1.2,

an independent fact is a fact that is implicitly assumed, whereas a dependent fact

must be explicitly asserted.

Definition 10. A condition (formula) is any of the following5:

• an atomic formula;

• a negated formula denoted Not(f) where f is an atomic formula;

• a conjunction denoted And(f1 . . . fn) where n ≥ 0 and each fi for 1 ≤ i ≤ n

is either an atomic formula or a negated formula.

Notation. For a formula f , let C+(f) be defined as follows:

• if f is an atomic formula, then C+(f) = {f};

• if f is a negated formula, then C+(f) = ∅;

• if f is a conjunction And(f1 . . . fn), then C+(f) =
⋃n
i=1 C+(fi).

Notation. For a formula f , let C¬(f) be defined as follows:

• if f is an atomic formula, then C¬(f) = ∅;

• if f is a negated formula Not(f ′), then C¬(f) = {f ′};

• if f is a conjunction And(f1 . . . fn), then C¬(f) =
⋃n
i=1 C¬(fi).

Notation. For a formula f , let C(f) = C+(f) ∪ C¬(f).

5The following are differences with RIF-PRD: (1) existential formulas are excluded; (2) dis-
junction formulas are excluded; (3) the subformula of a negated formula must be atomic; (4) the
subformulas of a conjunction must be either atomic or negated formulas. The only apparent re-
duction in expressivity is the absence of existential formulas; the other restrictions simply enforce
that rules be in normal form.
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Definition 11. An action is one of the following6:

• an assertion denoted Assert(f) where f is an atom or frame;

• a retraction denoted Retract(f) where f is an atom or frame.

In either case, f is referred to as the target of the action.

Notation. For an action a, let A+(a) be defined as follows:

• if a is Assert(f), then A+(a) = {f};

• if a is Retract(f), then A+(a) = ∅.

Notation. For an action a, let A¬(a) be defined as follows:

• if a is Assert(f), then A¬(a) = ∅;

• if a is Retract(f), then A¬(a) = {f}.

Notation. For an action a, let A(a) = A+(a) ∪ A¬(a).

Definition 12. An action block is a sequence of actions denoted Do(a1 . . . an)

where n ≥ 1 and each ai for 1 ≤ i ≤ n is an action.7

Notation. For an action block α = Do(a1 . . . an), define the following notation:

• for n = 1, A+(α) = A+(a1) and A¬(α) = A¬(a1);

• for n > 1,

– if an is Assert(f), then

∗ A+(α) = A+(Do(a1 . . . an−1)) ∪ {f},

∗ A¬(α) = A¬(Do(a1 . . . an−1)) \ {f};

– if an is Retract(f), then

6This definition is significantly more restrictive than in RIF-PRD. Specifically, the ability to
retract all frames with a specific object and possibly a specific attribute is excluded; the Execute

action is excluded; compound actions like the Modify action are excluded; and assertion of mem-
bership formulas (which requires action variable declarations) is excluded.

7Unlike RIF-PRD, I exclude action variable declarations. This constitutes a loss of expressivity
taken to avoid the complications of introducing new constants.
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∗ A+(α) = A+(Do(a1 . . . an−1)) \ {f},

∗ A¬(α) = A¬(Do(a1 . . . an−1)) ∪ {f};

• A(α) = A+(α) ∪ A¬(α).

It is important to note that the meaning of the notation A+(α) and A¬(α) is

carefully defined so that (if α is ground) A+(α) does not include asserted facts that

are retracted by subsequent actions and A¬(α) does not include retracted facts that

are asserted by subsequent actions. This will help to avoid discussion of trivial edge

cases in later proofs.

Definition 13. A rule is denoted If f Then a where f is a condition and a is an

action block.8

Notation. For a rule r = If f Then a, define the following notation:

• C+(r) = C+(f), C¬(r) = C¬(f), and C(r) = C(f);

• A+(r) = A+(a), A¬(r) = A¬(a), and A(r) = A(a).

Note that I have placed no significant restrictions on what constitutes a rule.

For example, under this definition, it is possible that C+(r) = ∅, which immediately

raises concern for the reader who is familiar with production rules. Granted, this is

unusual, but there is no reason to restrict the syntax of rules here. Rather, I will

address this issue in definition 24.

3.1.2 Operational Semantics

Whereas the previous section defined the syntax of rules (i.e., what rules look

like), this section provides semantics for how to derive inferences and take action

based on the rules. It should be understood, though, that an operational semantics

differs from a declarative semantics. In a declarative semantics, terms, propositions,

rules, and other structures are first given meaning, and then operations using those

structures are derived which must work within the confines of those semantics. The

advantage of such semantics is that meaning is objectively established. On the

8Unlike in RIF-PRD which uses the Forall keyword to indicate universal quantification of
variables, herein, all variables in a rule are implicitly universally quantified and scoped to the rule.
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other hand, an operational semantics gives meaning to the structures based solely

on operations over the structures, and so the operations are the semantics. The

advantage here is that it is arguably easier (for those who are not trained logicians)

to understand the implications of the rules and data, even if they are not as well-

rooted in a purely logic-based framework. Regardless, rules based on operational

semantics are still powerful and practical, and for some forms of rules (e.g., Datalog),

the declarative and operational semantics are effectively the same.

The operational semantics in this section are ultimately defined in a signif-

icantly different way than in RIF-PRD, although they are equivalent. Here the

semantics are given algorithmically rather than as a labeled terminal transition sys-

tem. The reformulation in this section is meant to simplify later theorems and

proofs.

Definition 14. A factset9 is a set of facts F = FI ∪ FD such that:

• FI is a (possibly infinite) set of independent facts such that f ∈ FI iff one of

the following holds,

– f is a built-in formula that evaluates to true according to the semantics

of its predicate,

– f is an equality formula in which both sides are identical;

• FD is a finite set of dependent facts satisfying the following conditions:

– if c1##c2 ∈ FD and c2##c3 ∈ FD, then c1##c3 ∈ FD;

– if o#c1 ∈ FD and c1##c2 ∈ FD, then o##c2 ∈ FD;

– if t1=t2 ∈ FD and t2=t3 ∈ FD, then t1=t3 ∈ FD;

– if t1=t2 ∈ FD, then t2=t1 ∈ FD.

A factset is the form of dataset for inference as discussed herein. The condi-

tions in definition 14 merely ensure coherence of the factset (e.g., equality should

9RIF-PRD uses a similar notion referred to as a “State of the Fact Base” which effectively
corresponds to FD in the definition of factset. However, keeping independent facts “outside” of
the factset causes pain in later proofs. It is easier and just as valid – or so I claim – to consider
independent facts as being implicitly present in every factset.
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be symmetric and transitive). These are nuances which need to be explicitly stated

for completeness but which will not have much impact hereafter.

Definition 15. A substitution is a finite function σ from variables to terms.

Notation. For any structure (condition, rule, etc.) s, let σ(s) denote s having each

variable v occurring in s that is also in the domain of σ, replaced by σ(v).

Definition 16. A ground substitution is a substitution such that the range consists

only of ground terms.

Definition 17. A ground formula f is said to match a factset F iff one of the

following is true:

• f is a fact and f ∈ F ;

• f = Not(f ′) and f ′ /∈ F ;

• f = And(f1 . . . fn) and for all i such that 1 ≤ i ≤ n, fi matches F .

Proposition 1. A ground formula f matches a factset F iff the following hold:

• C+(f) ⊆ F ;

• C¬(f) ∩ F = ∅.

Definition 18. A non-ground formula f is said to match a factset F iff there exists

a ground substitution σ such that σ(f) is a ground formula that matches F .

Definition 19. The result of applying a ground action a to a factset F , denoted

a(F ), is defined as follows:

• if a = Assert(f), then a(F ) = F ∪ {f};

• if a = Retract(f), then a(F ) = F \ {f}.

From this point on, the definitions differ significantly from RIF-PRD.

Definition 20. The result of applying a ground action block α = Do(a1 . . . an) to

a factset F , denoted α(F ), is defined as α(F ) = an ◦ . . . ◦ a1(F ).
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Definition 21. The result of firing a ground rule ρ = If f Then a on a factset F ,

denoted ρ(F ), is defined as a(F ) (regardless of whether f matches F ).

Definition 22. A ground rule ρ is said to be an instance of a rule r iff there exists

a ground substitution σ such that σ(r) = ρ.

Definition 23. A rule is said to be matchable iff there exists an instance of the rule

ρ and a factset F such that the condition formula of ρ matches F . A rule that is

not matchable is said to be unmatchable.

Definition 24. A rule r is said to be finitely matchable iff r is matchable and for

any factset F , the set of all rule instances of r that match F is finite.

Definition 25. A ruleset is a set of finitely matchable rules.

Definition 26. Given a factset F and a ruleset R, the conflict set wrt R and F ,

denoted conf(R,F ), is the set of all rule instances such that for each ρ ∈ conf(R,F ),

ρ is an instance of a rule in R that has a condition formula that matches F .

Proposition 2. A ground rule ρ is in conf(R,F ) iff the following hold:

• ρ is an instance of some rule in R;

• C+(ρ) ⊆ F ;

• C¬(ρ) ∩ F = ∅.

Earlier in section 3.1.1, I pointed out that it was unusual that by my definition

of rule, it is syntactically valid that a rule have no non-negated subformula in its

condition. The peculiarity there is that it seems as though a rule could have infinitely

many rule instances, and thus a conflict set could be infinite, leading to (as will be

clear from later definitions) non-terminating inference cycles. However, this has been

prevented by definitions 24 and 25. Although the characteristic of being “finitely

matchable” is usually syntactically enforced, the nuances and complexities of the

syntactic restrictions that provide such a guarantee are unnecessary for this work.

All that matters here is that the rules are indeed finitely matchable.
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Definition 27. Additional information is an intentionally vaguely defined notion

of state that an inference system can keep and modify throughout the inference

process, and which may affect the outcome of inference.

As stated in the definition, the idea of “additional information” is intentionally

vague, and I will not make much use of it. However, it is included for compatibility

purposes for the way many systems actually work. For example, in RIF-PRD,

it is assumed that a history of factsets is (effectively) kept as inference progresses.

Such information can be used by conflict resolution strategies and halting conditions

(defined hereafter).

Definition 28. A conflict resolution strategy (CRS) is a function S such that for

any set of matchable ground rules R, any factset F , and some additional information

I, S(I, R, F ) = 〈ρi〉ni=1 where n ≥ 0, |{ρi}ni=1| = n, and {ρi}ni=1 ⊆ conf(R,F ).

The definition of CRS requires some clarification. {ρi}ni=1 ⊆ conf(R,F ) means

that S will select a finite number of rules from the conflict set. |{ρi}ni=1| = n means

that 〈ρi〉ni=1 will not contain any duplicate ground rules.

Definition 29. A halting condition H is a function such that given a CRS S, a

ruleset R, a factset F , and some additional information I, H(I, S,R, F ) is a boolean

value.

Definition 30. An information keeper I is a function such that, given a halting

condition H, a CRS S, a ruleset R, a factset F , and some additional information

I, I(I,H, S,R, F ) returns some additional information. For any information keeper

I, let I∅ denote some initial, additional information.

Definition 31. A program is a quadruple 〈I, H, S,R〉 where I is an information

keeper, H is a halting condition, S is a CRS, and R is a ruleset.

Definition 32. A program instance is a quintuple 〈I, H, S,R, F 〉 where 〈I, H, S,R〉
is a program and F is a factset.

Algorithm 1 provides the operational semantics for a single cycle in the in-

ference process. A CRS is used to determine which rule instances in the conflict
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Algorithm 1: cycle(I, S, R, F )

Data: Additional information I, a CRS S, a ruleset R, and a factset F .
Result: The factset F ′ resulting from a single inference cycle.

1 〈ρj〉nj=1 = S(I, R, F )

2 F ′ = F
3 for j = 1 to n do
4 F ′ = ρj(F

′)
5 end
6 return F ′

set are to be fired, and also in what order they should be fired. Then each rule

instance is fired one at a time in the order determined by the CRS. Traditionally, a

CRS would choose only a single rule [28]. However, the operational semantics here

are fashioned after the operational semantics of RIF-PRD which allows for greater

flexibility. The ability to select more than one rule instance will prove convenient

for parallel inference.

Algorithm 2: infer(π)

Data: A program instance π = 〈I, H, S,R, F 〉.
Result: The closure F ∗, if the procedure terminates.

1 I∗ = I∅
2 F ∗ = F
3 while not H(I∗, S, R, F ∗) do
4 I ′ = I(I∗, H, S,R, F ∗)
5 F ′ = cycle(I∗, S, R, F ∗)
6 I∗ = I ′

7 F ∗ = F ′

8 end
9 return F ∗

Algorithm 2 provides the operational semantics for the entire inference process,

which is straightforward. As long as the halting condition H does not indicate

that inference should stop, additional inference cycles are performed. The result of

algorithm 2 for input π is referred to as the closure of π.

Definition 33. The length ω of infer(π) is a non-negative integer or ∞ such that

ω is the number of times the loop at line 3 iterates.
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Definition 34. The ith factset when calling infer(π) is the factset F ∗ from line

7 during the min{ω, i}th iteration of the loop at line 3, where ω is the length of

infer(π).

Note that even if the length of infer(π) is some integer ω (not ∞), there

is still a meaningful definition for the ith factset when calling infer(π) even when

i > ω, which is the same as the ωth factset. Loosely phrased, the closure is “carried

forward” indefinitely.

Definition 35. A program instance π is said to terminate iff the length of infer(π)

is not ∞.

Definition 36. A program Π is said to terminate iff every instance π of Π termi-

nates.

3.2 Distribution

In this section, I introduce the formal concepts of parallel inference. Unlike

the previous sections in this chapter that introduced variations and reformations on

rules and their operational semantics as defined in RIF-PRD, this section begins the

significantly novel contributions of this chapter.

Definition 37. A distribution scheme is a triple D = 〈N , φ, θ〉 where:

• N = {i}n−1
i=0 for some non-negative integer n;

• φ is a function mapping facts to subsets of N ;

• θ is a function mapping facts to non-empty subsets of N ;

• for any fact f ,

– φ(f) ⊆ θ(f) and

– [φ(f) = ∅]→ [θ(f) = N ].

The intuition behind the definition of distribution scheme is as follows. There

is some finite set of processor identifiers given by N . For any fact f , φ determines
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which processors must have f (should f be present in a factset), and θ determines

which processors may (or are allowed to) have f . Another way to think of it is

that φ(f) is the set of processors guaranteed to have f (should f be present among

the processors), and N \ θ(f) is the set of processors guaranteed not to have f .

The necessity of φ is apparent, but perhaps the utility of θ is less obvious. θ is

important for supporting parallel inference with negation and retraction, as will be

demonstrated in later theorems and proofs. Note that there are two conditions on

the relationship between φ and θ. The first is that, for any fact f , if a processor must

have f , then it must also be allowed to have f . The second is that, if no processor

is required to have f , then any processor is allowed to have f . That is, if D does

not give any guarantee about where f is to be placed, then D must allow f to be

placed arbitrarily.

Definition 38. Given a distribution scheme D = 〈N , φ, θ〉, a D-distribution of a

factset F is a total function F from N to subsets of F such that the following hold:

• if f ∈ F and k ∈ φ(f), then f ∈ F(k);

• if f ∈ F and k /∈ θ(f), then f /∈ F(k);

• F =
⋃
p∈N F(p).

The D-distribution of a factset F is an assignment of facts in F to processors

identified by the integers inN . F(k) is the subset of F assigned to processor k. Note

that there are three conditions on a valid D-distribution of F . First, if a fact f is in

the factset F , and if k must have f , then indeed, processor k is assigned f . Second,

if a fact f is in the factset F , and if k is not allowed to have f , then indeed, processor

k is not assigned f . Finally, the union over the processors’ assigned factsets equals

the (non-distributed) factset F .

Algorithm 3 provides the operational semantics for parallel inference. It is a

variation on algorithm 2 that accounts for distribution of data using the previously

defined concepts. On line 1, the input factset F is distributed among processors

(identified by N ) such that F is a D-distribution of F . The loop at line 2 is executed

in parallel as indicated by the “pardo”. The body of that loop is essentially the same
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Algorithm 3: parinfer(D, π)

Data: A distribution scheme D = 〈N , φ, θ〉 and a program instance
π = 〈I, H, S,R, F 〉.

Result: The parallel D-closure F ∗, if the procedure terminates.
1 let F be any D-distribution of F
2 for p ∈ N pardo
3 I∗p = I∅
4 F ∗p = F(p)

5 while not H(I∗p , S, R, F
∗
p ) do

6 I ′p = I(I∗p , H, S,R, F
∗
p )

7 F ′p = cycle(I∗p , S, R, F
∗
p )

8 I∗p = I ′p
9 F ∗p = {f | f ∈ F ′p ∧ p ∈ θ(f)}

10 end

11 end
12 F ∗ =

⋃
p∈N F

∗
p

13 return F ∗

as the contents of algorithm 2 except for one important difference at line 9. Line 9

amounts to saying that if a processor infers a fact f that it is not allowed to have

(determined by θ), then f is removed directly after the cycle in which it is inferred.

After each processor finishes, then on line 12, the union is taken over the processors’

results, and that is the final result returned on line 13, referred to as the D-closure

of π.

Line 9 makes parallelization of inference slightly non-trivial. If θ(f) = N for

any f (i.e., any processor is allowed to have any fact), then parallelization consists

of merely D-distributing the factset and letting each processor perform sequential

inference using algorithm 2. However, if there exists a fact f such that θ(f) ⊂ N
(i.e., some processor is not allowed to have some fact), then the filtering at line 9

causes algorithm 3 to be effectively different from the case in which each processor

merely executes algorithm 2.

Note also that algorithm 3 does not ensure on its own that the D-closure of

π is the same as the (sequential) closure of π. It merely provides a mechanism of

parallel inference. Whether the D-closure of π is the same as the (sequential) closure

of π (assuming such closures exist) depends on the relationship between D and π,
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which is the topic of section 3.3.

Definition 39. The length ωk of parinfer(D, π) for processor k is a non-negative

integer or ∞ such that ωk is the number of times in algorithm 3 that the loop at

line 5 iterates when the loop at line 2 is on iteration k ∈ N .

Definition 40. The ith factset for processor p when calling parinfer(D, π) is the

factset F ∗p from line 9 in algorithm 3 during the min{ωp, i}th iteration of the loop

at line 5 when the loop at line 2 is on iteration p ∈ N , where ωp is the length of

parinfer(D, π) for processor p.

Put more plainly, the length of parinfer(D, π) for processor k is the number

of inference cycles performed by processor k (which may be ∞). The ith factset for

processor k when calling parinfer(D, π) is the factset held by processor k after the

ith cycle, or if i is greater than the length (number of cycles) ωk for processor k, it is

the factset held by processor k after the ωthk cycle (i.e., processor k’s local closure).

3.2.1 Definitions for Correct Parallel Inference

In this section, definitions are given for correctness10 of parallel inference.

Most intuitively, if the result in parallel is the same as the result in sequential, then

parallel inference is considered correct.

Definition 41. Given a distribution scheme D, a program Π is weakly D-parallel

iff for any instance π of Π, the following hold:

• infer(π) terminates;

• parinfer(D, π) terminates;

• infer(π) = parinfer(D, π).

Definition 41 is the simplest definition for correct parallel inference. It only

cares about the answers. It is not concerned with, for example, order of rule firings

or whether the individual cycles (logically) synchronize in some way. It only cares

that the final results are the same. However, not all programs are guaranteed to

10For logicians, correctness as defined in this section implies soundness and completeness.
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terminate, and so definition 41 is not useful in those cases. Therefore, the following

definition is introduced.

Definition 42. Given a distribution scheme D, a program Π is cyclically D-parallel

iff for any instance π of Π, for all i ≥ 1, letting F ∗i be the ith factset when

calling infer(π), and letting F ∗p,i be the ith factset for processor p when calling

parinfer(D, π), F ∗i =
⋃
p∈N F

∗
p,i.

The intuition behind definition 42 is that the union over the processors’ local

factsets after i cycles should be the same as the (sequentially produced) factset after

i cycles. Therefore, even if a program does not terminate, if the number of cycles

is fixed, then being cyclically D-parallel means that the results will be the same in

parallel as in sequential when the input factset is D-distributed.

Proposition 3. If a program Π is cyclically D-parallel and Π terminates, then Π

is weakly D-parallel.

Proof. Straightforward from definitions 36, 41, and 42.

Definition 42 is a strong enough definition for the goal of this work, but in

traditional, parallel, production rule systems literature, a stronger notion of correct

parallel inference has been used, based on the serializability criterion [14]. Therefore,

one more definition is given for parallel inference.

Definition 43. A set of sequences {〈xp,j〉mp

j=1}p∈N interleaves to a sequence 〈yi〉ni=1

iff one of the following holds:

• if n = 0, then for all p ∈ N , mp = 0;

• if n > 0, then {S ′p}p∈N interleaves to 〈yi〉ni=2 where

– there exists p ∈ N such that mp > 0, xp,1 = y1, and S ′p = 〈xp,j〉mp

j=2,

– for all p ∈ N , either

∗ mp > 0, xp,1 = y1, and S ′p = 〈xp,j〉mp

j=2,

∗ S ′p = 〈xp,j〉mp

j=1.



30

Definition 44. Given a distribution scheme D = 〈N , φ, θ〉, a program Π is strongly

D-parallel iff the following hold:

• Π is cyclically D-parallel;

• for any program instance π of Π wrt to F and any D-distribution F of F ,

letting 〈ρi〉ωi=1 be the sequence of rule instances fired when calling infer(π),

and letting 〈ρp,j〉ωp

j=1 be the sequence of rule instances fired in the p ∈ N
iteration of the call to parinfer(D, π), {〈ρp,j〉ωp

j=1}p∈N interleaves to 〈ρi〉ωi=1.

Definition 44 is the same as definition 42 except with the additional condition

that the rule instance firings of each processor in parallel inference must be able to

interleave to the rule instance firings in sequential inference. Not only then are the

“answers the same” (as required by being cyclically D-parallel), but they can also

be justified in a stronger sense. This notion of correct parallel inference is included

for completeness with respect to previous, related work.

3.3 Sufficient Conditions

Having established definitions for rules, inference, and parallel inference, in this

section, I look at sufficient conditions on distribution schemes in relation to rulesets

under a certain class of CRSs and halting conditions such that, when the conditions

are met, parallel inference is correct. To support these theorems, a number of

additional definitions are introduced as well.

First in section 3.3.1, sufficient conditions are determined for ground rules

only. Then, in section 3.3.2, the conditions from section 3.3.1 are generalized to

rules (ground or otherwise). Generalizing the conditions to (general) rules is impor-

tant because it allows for the conditions to be checked by direct inspection of the

rules rather than considering every possible rule instance (of which there could be

infinitely many).

3.3.1 Conditions on Rule Instances

First consider what it would take for a ground rule ρ that matches a factset F

to match some local factset F(k) where F is aD-distribution of F andD = 〈N , φ, θ〉.
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Clearly, some processor must have all the facts in the (non-negated) portion of the

condition of ρ, that is, the facts in C+(ρ). There are two ways this can happen. φ

can guarantee that every f ∈ C+(ρ) is assigned to some common processor, or it can

guarantee that for all but at most one f ∈ C+(ρ), f is replicated to all processors.

In the latter case, the placement of the one fact g ∈ C+(ρ) that is not replicated

does not matter because whichever processor has it (and some processor will have it

since F =
⋃
p∈N F(p)), that processor will also have all C+(ρ) \ {g}. This intuition

leads to the definition of a ground rule ρ being D-matchable.

Definition 45. Let ρ be a ground rule, and let D = 〈N , φ, θ〉 be a distribution

scheme. ρ is said to be D-matchable iff one of the following holds:

•
⋂
f∈C+(ρ) φ(f) 6= ∅;

•
∨
g∈C+(ρ)

∧
f∈C+(ρ)\{g}[φ(f) = N ].

However, it is not enough to say that if ρ matches F that it also matches

some processor’s local factset. It must also hold that if ρ does not match F , then

ρ also does not match any processor’s local factset. By proposition 1, there are

two ways that a ground rule does not match a factset F . Either C+(ρ) * F or

C¬(ρ) ∩ F 6= ∅. In the former case, C+(ρ) * F implies C+(ρ) * F(p) for all p ∈ N
because F =

⋃
p∈N F(p), or put another way, for all p ∈ N , F(p) ⊆ F . Considering

the latter case, that C¬(ρ) ∩ F 6= ∅, it must be ensured that for any p ∈ N , if

C+(ρ) ⊆ F(p), then C¬(ρ)∩F(p) 6= ∅. That is, if a processor has the facts matched

by the non-negated portion of the condition of ρ, then it should also have the facts

matched by the negated subformulas of ρ. Otherwise, a processor may fire ρ even

though it was “blocked” from firing in sequential inference. This intuition leads to

the definition of a ground rule ρ being D-blockable.

Definition 46. Let ρ be a ground rule, and let D = 〈N , φ, θ〉 be a distribution

scheme. ρ is said to be D-blockable iff one of the following holds:

• C¬(ρ) = ∅;

•
⋂
f∈C+(ρ) θ(f) ⊆

⋂
f∈C¬(ρ) φ(f).
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Put casually, the second condition of definition 46 says that where ever the

facts in the non-negated portion of the condition of ρ could be placed (together),

the facts in the negated portion of the condition of ρ must also be placed there.

With definitions 45 and 46, the following two lemmas can now be formed.

Lemma 4. Let R be a ruleset, and let D = 〈N , φ, θ〉 be a distribution scheme. If

every rule instance of a rule in R is D-matchable and D-blockable, then for any

D-distribution F of a factset F , if ρ ∈ conf(R,F ) and k ∈
⋂
f∈C+(ρ) φ(f), then

ρ ∈ conf(R,F(k)).

Proof. If ρ ∈ conf(R,F ), then by proposition 2, C+(ρ) ⊆ F and C¬(ρ) ∩ F = ∅. If

k ∈
⋂
f∈C+(ρ) φ(f), then by definition 38, C+(ρ) ⊆ F(k). Also, if C¬(ρ) ∩ F = ∅, by

definition 38, C¬(ρ)∩F(k) = ∅. Therefore, by proposition 2, ρ ∈ conf(R,F(k)).

Lemma 5. Let R be a ruleset, and let D = 〈N , φ, θ〉 be a distribution scheme. If

every rule instance of a rule in R is D-matchable and D-blockable, then for any

D-distribution F of a factset F , conf(R,F ) =
⋃
p∈N conf(R,F(p)).

Proof. First proving that if every rule instance ρ of a rule in R is D-matchable

and D-blockable, then conf(R,F ) ⊆
⋃
p∈N conf(R,F(p)). By proposition 2, ρ ∈

conf(R,F ) iff C+(ρ) ⊆ F and C¬(ρ) ∩ F = ∅. Since ρ is D-matchable, then either

(a)
⋂
f∈C+(ρ) φ(f) 6= ∅, or

(b)
∨
g∈C+(ρ)

∧
f∈C+(ρ)\{g}[φ(f) = N ].

By definition 38, case (a) means there exists some k ∈
⋂
f∈C+(ρ) φ(f), which by

definition 38 means that C+(ρ) ⊆ F(k). Case (b) means that for all p ∈ N ,

C+(ρ) \ {g} ⊆ F(p), and by definition 38, there is some k ∈ N such that g ∈ F(k).

Therefore, whether case (a) or (b), there is some k ∈ N such that C+(ρ) ⊆ F(k).

Additionally, by definition 38, since C¬(ρ)∩F = ∅, then C¬(ρ)∩F(k) = ∅. By propo-

sition 2, this means that ρ ∈ conf(R,F(k)), which means ρ ∈
⋃
p∈N conf(R,F(p)).

Therefore, conf(R,F ) ⊆
⋃
p∈N conf(R,F(p)).

Now proving that if every rule instance ρ of a rule in R is D-matchable and

D-blockable, then conf(R,F ) ⊇
⋃
p∈N conf(R,F(p)). ρ ∈

⋃
p∈N conf(R,F(p))
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iff there exists k ∈ N such that ρ ∈ conf(R,F(k)). By proposition 2, ρ ∈
conf(R,F(k)) iff C+(ρ) ⊆ F(k) and C¬(ρ) ∩ F(k) = ∅. From definition 38, since

F(k) ⊆ F , then C+(ρ) ⊆ F .

For a moment, assume the possibility that C¬(ρ) ∩ F 6= ∅, in which case

ρ /∈ conf(R,F ), defeating the (real) goal of the proof. By definition 38, k ∈⋂
f∈C+(ρ) θ(f), which by definition 46 implies k ∈

⋂
f∈C¬(ρ) φ(f). By definition 38,

this means that C¬(ρ) ∩ F ⊆ F(k), which means C¬(ρ) ∩ F(k) 6= ∅. However, this

contradicts what has already been established, that C¬(ρ) ∩ F(k) = ∅. So it is not

possible that C¬(ρ) ∩ F 6= ∅.
Therefore, since C+(ρ) ⊆ F and C¬(ρ) ∩ F = ∅, then by proposition 2, ρ ∈

conf(R,F ), and conf(R,F ) ⊇
⋃
p∈N conf(R,F(p)).

Finally, since conf(R,F ) ⊆
⋃
p∈N conf(R,F(p)) and

conf(R,F ) ⊇
⋃
p∈N conf(R,F(p)), then conf(R,F ) =

⋃
p∈N conf(R,F(p)).

Lemma 5 provides sufficient conditions for correctly matching rules (i.e., deter-

mining the conflict set) in parallel, but this is far from sufficient for correct parallel

inference (of any form previously defined). The CRS of a program determines which

rule instances in the conflict set are to be fired and in what order. To simplify mat-

ters, I start by considering a class of CRSs that I call AOCs, and then an even more

restricted class I call RAOCs.

Definition 47. An All-and-Ordered CRS (AOC) is a CRS S such that S selects

all the rule instances in the conflict set and orders them according to some total

ordering of rule instances. An AOC effectively ignores any additional information.

Definition 48. A Retractions-first AOC (RAOC) is an AOC S such that for any

ruleset R and factset F , for 1 ≤ i ≤ |S(∗, R, F )|, if the ith rule instance ρi in

S(∗, R, F ) is such that A¬(ρi) = ∅, then for i ≤ j ≤ |S(∗, R, F )|, the jth rule

instance ρj in S(∗, R, F ) is such that A¬(ρj) = ∅.

An AOC may seem like an arbitrary choice in CRSs. Recall, though, that

the purpose of a CRS is to provide developers with an understanding of how infer-

ence progresses [14]. Traditionally, parallel CRSs have either been non-deterministic

(thus defeating the purpose of a CRS) or controlled by advanced mechanisms like
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metarules [14]. Although I have specifically chosen RAOCs because they are amenable

to parallelization (to be shown), AOCs in general have other good qualities that

make them a sensible choice. Firstly, they are deterministic due to the total or-

dering on rule instances, so one can know for certain how inference will progress.

Secondly, AOCs do not require any additional, complex mechanisms. Perhaps the

greatest drawback, though, is that because AOCs fire the entire conflict set, the

results can be non-intuitive (although not from the perspective of the operational

semantics). For RAOCs, this is similar to using inflationary semantics in Datalog¬

inference [6], so such effects are not entirely unfamiliar.

Since an AOC effectively ignores additional information, to simplify the follow-

ing, I will use a ∗ in place of additional information to indicate that any additional

information can be used in that place.

In addition to restricting the class of CRSs under consideration, I also restrict

the class of rules under consideration, as given in the following definitions.

Definition 49. A polarized ground rule is a ground rule ρ such that eitherA+(ρ) = ∅
or A¬(ρ) = ∅.

Definition 50. A polarized rule is a rule such that every instance of the rule is

polarized.

Definition 51. A polarized ruleset is a ruleset containing only polarized rules.

Restricting consideration to RAOCs and polarized rulesets has the advantage

that in an inference cycle, all retractions will take place before any assertions, thus

trivializing the issue of ordering rule instances within a single cycle. Within a single

cycle, no assertion can be “undone” by a retraction, although a retraction can be

“undone” by an assertion. However, any such “undoing” is part of the semantics of

a RAOC, and therefore, the compatibility problem [9] is trivially resolved. Lemma

6 formally captures this characteristic and draws useful conclusions from it.

Lemma 6. Let S be a RAOC, let R be a polarized ruleset, and let F be a factset.

f ∈ cycle(∗, S, R, F ) iff one of the following holds:

• f ∈ F and for all ρ ∈ conf(R,F ), f /∈ A¬(ρ);
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• there exists ρ ∈ conf(R,F ) such that f ∈ A+(ρ).

Proof. First proving that if f ∈ F and for all ρ ∈ conf(R,F ), f /∈ A¬(ρ); then

f ∈ cycle(∗, S, R, F ). Straightforwardly, if f ∈ F and there is no rule instance

ρ ∈ conf(R,F ) that retracts f , then f will not be retracted from F when performing

an inference cycle and f ∈ cycle(∗, S, R, F ).

Now proving that if there exists ρ ∈ conf(R,F ) such that f ∈ A+(ρ), then

f ∈ cycle(∗, S, R, F ). By definition 48, ρ will be fired, and since R is a polarized

ruleset, A¬(ρ) = ∅, which by definition 48 means that no rule instance will be fired

after ρ that retracts facts. Therefore, once f is asserted by ρ, it will remain in the

factset until the end of the cycle, and so f ∈ cycle(∗, S, R, F ).

Finally proving that if f ∈ cycle(∗, S, R, F ), then: f ∈ F and for all ρ ∈
conf(R,F ), f /∈ A¬(ρ); or there exists ρ ∈ conf(R,F ) such that f ∈ A+(ρ).

Proof by contradiction. Assume f ∈ cycle(∗, S, R, F ); f /∈ F or there exists ρ ∈
conf(R,F ) such that f ∈ A¬(ρ); and for all ρ ∈ conf(R,F ), f /∈ A+(ρ). Let F ′ be

the factset in algorithm 1 after all the retraction actions have been fired (which exists

by definition 48 given that R is a polarized ruleset). Then since either f /∈ F or there

exists ρ ∈ conf(R,F ) such that f ∈ A¬(ρ), then f /∈ F ′. By definition 48, only

assertion actions remain to be fired, but since for all ρ ∈ conf(R,F ), f /∈ A+(ρ),

then f will not be asserted, and f /∈ cycle(∗, S, R, F ). This is a contradiction.

Corollary 7. Let S be a RAOC, let R be a polarized ruleset, and let F be a factset.

f /∈ cycle(∗, S, R, F ) iff the following hold:

• for all ρ ∈ conf(R,F ), f /∈ A+(ρ);

• if f ∈ F , then there exists ρ ∈ conf(R,F ) such that f ∈ A¬(ρ).

Proof. Follows directly from lemma 6.

In the context of RAOCs, consider parallelization of rule firing (having already

addressed rule matching). Intuitively, if a fact f is retracted by a rule instance ρ,

then ρ must be fired on every processor on which f might exist. This intuition leads

to the following definition.
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Definition 52. Let ρ be a ground rule, and let D = 〈N , φ, θ〉 be a distribution

scheme. ρ is said to be D-retractable iff
⋃
f∈A¬(ρ) θ(f) ⊆

⋂
f∈C+(ρ) φ(f).

Although I refer to such rules as “D-retractable”, it is a bit of a misnomer.

Whether the retraction of a fact actually succeeds depends in part on the CRS

independent of D, and so even if a ground rule ρ is D-retractable, it is not guaranteed

that the facts retracted by ρ will indeed be retracted. Regardless, the term D-

retractable is convenient for its brevity, and it should be understood (as explicitly

given in the theorems) that RAOCs are the CRSs under consideration (unless stated

otherwise).

Lemma 8 says that when every possible instance of a rule in R is D-matchable,

D-blockable, and D-retractable, then a single inference cycle will produce the same

result in parallel as in sequential, when the facts are D-distributed.

Lemma 8. Let R be a polarized ruleset, let S be a RAOC, and let D = 〈φ, θ,N〉 be

a distribution scheme. If every instance of a rule in R is D-matchable, D-blockable,

and D-retractable; then for any D-distribution F of a factset F , cycle(∗, S, R, F ) =⋃
p∈N cycle(∗, S, R,F(p)).

Proof. First proving that cycle(∗, S, R, F ) ⊇
⋃
p∈N cycle(∗, S, R,F(p)). By corollary

7, f /∈ cycle(∗, S, R, F ) implies that for all ρ ∈ conf(R,F ), f /∈ A+(ρ). By lemma

5, this also means that for all p ∈ N , for all ρ ∈ conf(R,F(p)), f /∈ A+(ρ).

Again, by corollary 7, f /∈ cycle(∗, S, R, F ) implies that if f ∈ F , then there

exists ρ ∈ conf(R,F ) such that f ∈ A¬(ρ). Fix ρ accordingly. By definition

38, f ∈ F implies that there exists k ∈ N such that f ∈ F(k). Fix k accord-

ingly. By definition 37, this also means that k ∈ θ(f). Then by definition 52,

k ∈
⋂
g∈C+(ρ) φ(f), and by lemma 4, ρ ∈ conf(R,F(k)). k is fixed such that it is any

k ∈ N such that f ∈ F(k). Therefore, it holds that for any p ∈ N , if f ∈ F(p), then

ρ ∈ conf(R,F(p)). Additionally, at the beginning of the proof, it was established

that for all ρ′ ∈ conf(R,F(k)), f /∈ A+(ρ′). By lemma 6, this means that for all

p ∈ N , f /∈ cycle(∗, S, R,F(p)).

Therefore cycle(∗, S, R, F ) ⊇
⋃
p∈N cycle(∗, S, R,F(p)).

Now to prove that cycle(∗, S, R, F ) ⊆
⋃
p∈N cycle(∗, S, R,F(p)). If

f /∈
⋃
p∈N cycle(∗, S, R,F(p)), then for all p ∈ N , f /∈ cycle(∗, S, R,F(p)). By
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corollary 7, this means that for all p ∈ N , for all ρ ∈ conf(R,F(p)), f /∈ A+(ρ),

or put another way, for all ρ ∈
⋃
p∈N conf(R,F(p)), f /∈ A+(ρ). By lemma 5, this

means that for all ρ ∈ conf(R,F ), f /∈ A+(ρ).

Suppose that for some k ∈ N , f ∈ F(k). Fix k accordingly. By definition 38,

f ∈ F iff such k exists. By corollary 7, there exists some ρ ∈ conf(R,F(k)) such

that f ∈ A¬(ρ). Fix ρ accordingly. By lemma 5, since ρ ∈ conf(R,F(k)), then

ρ ∈ conf(R,F ). Therefore, when f ∈ F , there exists ρ ∈ conf(R,F ) such that

f ∈ A¬(ρ).

So having established that for all ρ′ ∈ conf(R,F ), f /∈ A+(ρ′), and if f ∈ F ,

then there exists ρ ∈ conf(R,F ) such that f ∈ A¬(ρ), then by corollary 7, f /∈
cycle(∗, S, R, F ).

Therefore cycle(∗, S, R, F ) ⊆
⋃
p∈N cycle(∗, S, R,F(p)).

Having shown cycle(∗, S, R, F ) ⊆
⋃
p∈N cycle(∗, S, R,F(p)) and

cycle(∗, S, R, F ) ⊇
⋃
p∈N cycle(∗, S, R,F(p)), it holds that cycle(∗, S, R, F ) =⋃

p∈N cycle(∗, S, R,F(p)).

Now it has been shown that a single inference cycle is correct in parallel for

the conditions of lemma 8. However, this is still insufficient for the entire inference

process. It needs to be shown that every cycle is correct, not just a single cycle

under certain conditions.

Consider, though, if it could be shown that after each parallel cycle, the facts

are still D-distributed. Then lemma 8 would mean that the next cycle is also

correct, and the cycle after that, and so on. Enforcing θ is easy because it is built

in to the parallel inference algorithm at line 9 of algorithm 3. However, it is not

as straightforward to enforce φ. Suppose, though, that whichever processors must

have an inferred fact are also some of the processors that infer that fact. Then D-

distribution would be preserved between cycles. This leads to the following definition

and lemma.

Definition 53. Let ρ be a ground rule, and let D = 〈N , φ, θ〉 be a distribution

scheme. ρ is said to be D-preserving iff
⋃
f∈A+(ρ) φ(f) ⊆

⋂
f∈C+(ρ) φ(f).
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Lemma 9. Let R be a polarized ruleset, let S be a RAOC, and let D = 〈N , φ, θ〉 be

a distribution scheme. If every instance of a rule in R is D-matchable, D-blockable,

D-retractable, and D-preserving; then for any D-distribution F of a factset F , F ′ =
{〈p, F ′p〉 | F ′p = {f | f ∈ cycle(∗, S, R,F(p)) ∧ p ∈ θ(f)}}p∈N is a D-distribution of

cycle(∗, S, R, F ).

Proof. By definition 38, it must be shown that:

(a) if f ∈ cycle(∗, S, R, F ) and k ∈ φ(f), then f ∈ F ′(k);

(b) if f ∈ cycle(∗, S, R, F ) and k /∈ θ(f), then f /∈ F ′(k);

(c) cycle(∗, S, R, F ) =
⋃
p∈N F ′(p).

Starting with condition (a). By lemma 6, f ∈ cycle(∗, S, R, F ) iff one of the

following holds:

(d) f ∈ F and for all ρ ∈ conf(R,F ), f /∈ A¬(ρ);

(e) there exists ρ ∈ conf(R,F ) such that f ∈ A+(ρ).

Starting with case (d), since f ∈ F and k ∈ φ(f), then by definition 38,

f ∈ F(k). Since for all ρ ∈ conf(R,F ), f /∈ A¬(ρ), by lemma 5, for all ρ ∈
conf(R,F(k)), f /∈ A¬(ρ). Then by lemma 6, f ∈ cycle(∗, S, R,F(k)). By defini-

tion 37, since k ∈ φ(f), then k ∈ θ(f). Therefore, f ∈ F ′(k).

Now turning to case (e), since there exists ρ ∈ conf(R,F ) such that f ∈ A+(ρ)

and k ∈ φ(f), then by definition 53, k ∈
⋂
g∈C+(ρ) φ(g). By lemma 4, this means that

ρ ∈ conf(R,F(k)). Then by lemma 6, f ∈ cycle(∗, S, R,F(k)). Since k ∈ φ(f),

then by definition 37, k ∈ θ(f), and so f ∈ F ′(k).

Condition (a) holds.

Condition (b) is trivially true. Regardless of whether f ∈ cycle(∗, S, R, F ), by

definition of F ′, if k /∈ θ(f), then f /∈ F ′(k).

As for condition (c), lemma 8 already shows that cycle(∗, S, R, F ) =⋃
p∈N cycle(∗, S, R,F(p)), and by definition of F ′, for all p ∈ N , F ′(p) ⊆

cycle(∗, S, R,F(p)). Therefore, it holds that
⋃
p∈N F ′(p) ⊆ cycle(∗, S, R, F ), and
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it remains to be shown that
⋃
p∈N F ′(p) ⊇ cycle(∗, S, R, F ). By lemma 6, f ∈

cycle(∗, S, R, F ) iff one of case (d) or case (e) holds.

Starting with case (d), since f ∈ F , then by definition 38, there exists k ∈ N
such that f ∈ F(k) and k ∈ θ(f). By case (d), for all ρ ∈ conf(R,F ), f /∈ A¬(ρ),

which by lemma 5 means that for all ρ ∈ conf(R,F(k)), f /∈ A¬(ρ). Therefore, by

lemma 6, f ∈ cycle(∗, S, R,F(k)). Having already established that k ∈ θ(f), then

f ∈ F ′(k) ⊆
⋃
p∈N F ′(p).

Turning to case (e), since there exists ρ ∈ conf(R,F ) such that f ∈ A+(ρ),

then by lemma 5 there exists k ∈ N such that ρ ∈ conf(R,F(k)), which by lemma

6 means that f ∈ cycle(∗, S, R,F(k)). Now if φ(f) = ∅, then by definition 37,

θ(f) = N and therefore f ∈ F ′(k). If φ(f) 6= ∅, then there exists l ∈ φ(f),

which by definition 53 means that l ∈
⋂
g∈C+(ρ) φ(g), which by lemma 4 means that

ρ ∈ conf(R,F(l)), which by lemma 6 means that f ∈ cycle(∗, S, R,F(l)). Since

it has already been established that l ∈ φ(f), then by definition 37, l ∈ θ(f), and

therefore f ∈ F ′(l). Either way, f ∈
⋃
p∈N F(p).

Therefore,
⋃
p∈N F ′(p) = cycle(∗, S, R, F ), and condition (c) holds.

Since (a), (b), and (c) hold, then F ′ is a D-distribution of cycle(∗, S, R, F ).

Now with the support of the recently stated lemmas, the first main theorem

can be concluded and proven inductively as discussed, but first, I assume a particular

(kind of) halting condition.

Definition 54. A fixpoint halting condition, denoted Hfix, is (logically) defined as

Hfix(I, S,R, F ) ≡ [F = cycle(I, S,R, F )].

Theorem 10. Let R be a polarized ruleset, let S be a RAOC, let I be any infor-

mation keeper, and let D = 〈N , φ, θ〉 be a distribution scheme. If every instance

of a rule in R is D-matchable, D-blockable, D-retractable, and D-preserving; then

program Π = 〈I,Hfix, S, R〉 is cyclically D-parallel.

Proof. It must be shown that for any instance π of Π wrt F , for any non-negative

integer i, letting Fi be the ith factset when calling infer(π) and letting Fp,i be the

ith factset for processor p when calling parinfer(π), Fi =
⋃
p∈N Fp,i. Proof is by

induction.
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Let i = 1 be the base case. Since F is a D-distribution of F , then by lemma

9, {〈p, Fp,1〉}p∈N is a D-distribution of F1.

Now as the inductive step, assume that for any i, {〈p, Fp,i〉}p∈N is a D-

distribution of Fi. Then by lemma 9, {〈p, Fp,i+1〉}p∈N is a D-distribution of Fi+1.

So for all i ≥ 1, {〈p, Fp,i〉}p∈N is a D-distribution of Fi, which by definition 38

implies that for i ≥ 1, Fi =
⋃
p∈N Fp,i.

Corollary 11. In addition to the conditions of theorem 10, if Π terminates, then

Π is weakly D-parallel.

Proof. Follows directly from theorem 10 and proposition 3.

Turning to the possibility of inference being strongly D-parallel, the following

conjectures are given. These are presented as conjectures rather than complete

theorems because their proofs are sketches. Providing complete proofs remains as

future work.

Conjecture 12. Let R be a ruleset, let S be a AOC, and let D = 〈N , φ, θ〉 be

a distribution scheme. If every rule instance of a rule in R is D-matchable and

D-blockable, then for any D-distribution F of a factset F , {S(∗, R,F(p))}p∈N in-

terleaves to S(∗, R, F ).

Proof. (sketch) By lemma 5, conf(R,F ) =
⋃
p∈N conf(R,F(p)). Then, by defini-

tion 47, since S selects all the rule instances in the conflict set and orders them

according to a total ordering of rule instances, then {S(∗, R,F(p))}p∈N interleaves

to S(∗, R, F ).

Conjecture 13. Let R be a polarized ruleset, let S be a RAOC, let I be any in-

formation keeper, and let D = 〈N , φ, θ〉 be a distribution scheme. If every instance

of a rule in R is D-matchable, D-blockable, D-retractable, and D-preserving; then

program Π = 〈I,Hfix, S, R〉 is strongly D-parallel.

Proof. (sketch) By theorem 10, Π is cyclically parallel. Recall from the proof of

theorem 10 (and using the same notation), for any i ≥ 1, {〈p, Fp,i〉}p∈N is a D-

distribution of Fi. Then by conjecture 12, in every individual cycle, the sequences
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of rule instances fired in parallel interleave to the sequence of rule instances fired in

sequential. Therefore, chaining the parallel sequences together over the cycles and

chaining the sequential sequences together over the cycles, the parallel sequences

interleave to the sequential sequence.

3.3.2 Conditions on Rules

The theorems of the previous section are only the starting points. In and

of themselves, they are not very useful because the conditions are placed ground

rules rather than (general) rules. Given a large enough domain and number of rules

(which would not seem to require many), checking each individual rule instance

becomes utterly impractical. Therefore in this section, I generalize the theorems of

the previous section to rules. First, though, a notion of “pattern” is needed.

Definition 55. A restriction is a negated equality formula Not(v = t) where v is

a non-ground term (a variable or a function term containing variables) and t is a

ground term. A restriction x = Not(v = t) is said to restrict a formula f iff v

occurs in f .

Definition 56. A pattern is a conjunction formula And(f x1 . . . xn) where f is

an atomic formula, n ≥ 0, and each xi for 1 ≤ i ≤ n is a restriction that restricts f .

The notion of a restriction is rather simple. It merely states that a variable

cannot be bound to some specific value. A pattern is then just an atomic formula

with an associated set of restrictions. This particular idea of “pattern” is important

because it will facilitate the ability to restrict rules to improve parallelism, discussed

in chapter 4.

Notation. For any pattern P , let Γ(P ) = {f | P matches FI ∪ {f}} where FI is

the set of all independent facts subsumed by every factset. A fact f is said to be

matched by a pattern P iff f ∈ Γ(P ).

Although briefly introduced, this particular notation is of great importance,

and its full meaning should be well understood. For a pattern P , Γ(P ) repre-

sents the set of all facts that are instances of the atomic formula in P satisfy-
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ing the associated restrictions of P . Note that although according to the op-

erational semantics, a pattern P = And( a[ b->?x] Not(?x= c)) can match a

factset { a[ b-> d] , e= f} ∪ FI , only a[ b-> d] ∈ Γ(P ) because P can match

{ a[ b-> d]} ∪ FI but not { e= f} ∪ FI .
More notation is defined in the following, but essentially X (f) is the set of

restrictions occurring in a formula f , and P+
C (r), P¬C(r), P+

A (r), and P¬A(r) are the

sets of patterns derived from C+(r), C¬(r), A+(r), and A¬(r), respectively, for any

rule r.

Notation. For a condition formula f , let X (f) denote the set of restrictions defined

as follows:

• if f is an atomic formula, X (f) = ∅;

• if f is a negated formula that is not a restriction, X (f) = ∅;

• if f is a restriction, X (f) = {f};

• if f is a conjunction And(f1 . . . fn), then X (f) =
⋃n
i=1X (fi).

Notation. For a condition formula f ,

• P ∈ P+
C (f) iff P = And(f ′ x1 . . . xn) for some f ′ ∈ C+(f) where {xi}ni=1 is

the maximum subset of X (f) such that each xi restricts f ′;

• P ∈ P¬C(f) iff P = And(f ′ x1 . . . xn) for some f ′ ∈ C¬(f) where {xi}ni=1 is

the maximum subset of X (f) such that each xi restricts f ′.

Notation. For a rule r = If f Then a:

• P+
C (r) = P+

C (f);

• P¬C(r) = P¬C(f);

• P ∈ P+
A (r) iff P = And(g x1 . . . xm) for some g ∈ A+(r) and {xj}mj=1 is the

maximum subset of X (f) such that each xj restricts g;

• P ∈ P¬A(r) iff P = And(g x1 . . . xm) for some g ∈ A¬(r) and {xj}mj=1 is the

maximum subset of X (f) such that each xj restricts g.
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Notation. For a rule r, let Λ(r) denote the set of all matchable rule instances of r.

The following lemma proves what is rather intuitive, that the facts in a rule

instance match patterns in the rule from which the rule instance is derived. However,

to be thorough and to ensure consistency in the notation, proving the lemma is a

necessary step.

Lemma 14. For any rule r, the following hold:

•
⋃
ρ∈Λ(r) C+(ρ) ⊆

⋃
P∈P+

C (r) Γ(P );

•
⋃
ρ∈Λ(r) C¬(ρ) ⊆

⋃
P∈P¬C(r) Γ(P );

•
⋃
ρ∈Λ(r)A+(ρ) ⊆

⋃
P∈P+

A (r) Γ(P );

•
⋃
ρ∈Λ(r)A¬(ρ) ⊆

⋃
P∈P¬A(r) Γ(P ).

Proof. If f ∈
⋃
ρ∈Λ(r) C+(ρ), then there exists ρ ∈ Λ(r) such that f ∈ C+(ρ). By

definition 22, this means that there exists f ′ ∈ C+(r) and ground substitution σ

such that f = σ(f ′). Since f ′ ∈ C+(r), this means that there exists a pattern P =

And(f ′ . . .) ∈ P+
C (r). Now if P contains any restrictions on f ′, then by definition

of P+
C (r), such restrictions must also be in C¬(r). Since ρ is matchable, then σ is

such that all of the restrictions x on f ′ are such that σ(x) = Not(t1 = t2) where

t1 and t2 are different ground terms. Therefore, the ground formula σ(P ) matches

{σ(f ′)} ∪ FI = {f} ∪ FI (where FI is the set of independent facts subsumed by

every factset), which means that since such a σ exists, P matches {f} ∪ FI , and so

f ∈ Γ(P ). Similar arguments for C¬(ρ), A+(ρ), and A¬(ρ) with P¬C(r), P+
A (r), and

P¬A(r), respectively.

At this point, definitions are introduced that will help to generalize away from

distribution schemes that assign facts to processors, to pattern assignments that

assign facts to processors based on which patterns match them. In other words,

data distribution is no longer performed on a fact-by-fact basis but a pattern-by-

pattern basis. This is significantly more practical because no person will likely ever

decide for each individual, possible fact, to which processors the fact should be

assigned and allowed. However, moving away from facts toward patterns entails

additional complexity, as will be discussed as definitions are given.
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Definition 57. A pattern mapper ΦN is a total function from patterns to subsets

of N = {i}n−1
i=0 where n is some non-negative integer.

A pattern mapper is somewhat analogous to the φ in a distribution scheme,

thus the similarity in notation. However, it maps patterns to processors instead of

facts to processors.

Definition 58. A pattern assignment is a triple of pattern mappers 〈ΦN ,ΩN ,ΘN 〉
such that the following hold for any pattern P :

• ΦN (P ) ⊆ ΩN (P ) ⊆ ΘN (P );

• for any pattern P ′ such that Γ(P ′) ⊆ Γ(P ),

– ΦN (P ) ⊆ ΦN (P ′),

– ΩN (P ′) ⊆ ΩN (P ),

– ΘN (P ′) ⊆ ΘN (P ).

A pattern assignment consists of three pattern mappers and forces coherent

relationships between them. ΘN (P ) is a set of processors that could be allowed to

have facts in Γ(P ). ΦN (P ) can be thought of as a set of processors where facts

in Γ(P ) can definitely be found (if they exist in the distributed factset), whereas

ΩN (P ) is the set of processors to which facts in Γ(P ) ought to be inferred. This

relationship between patterns and facts is made explicit in definition 59.

Definition 59. A distribution scheme D = 〈N , φ, θ〉 is said to conform to a pattern

assignment 〈ΦN ,ΩN ,ΘN 〉 iff for any pattern P , the following hold:

• ΦN (P ) ⊆
⋂
f∈Γ(P ) φ(f);

•
⋃
f∈Γ(P ) φ(f) ⊆ ΩN (P );

•
⋃
f∈Γ(P ) θ(f) ⊆ ΘN (P ).

When dealing with only ground rules, a distinction like that between ΦN and

ΩN is unnecessary because the level of granularity is finer. With patterns, though,

one can no longer say that one rule instance of r will match on processor i while
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another rule instance of r will match on a different processor j because we are no

longer working at that level of detail. Now it must be said that all the rule instances

of a rule r will match on some processor(s), and all the rule instances of a rule r

should infer to some processor(s). Thus, precision is being lost, and the conditions

are moving farther away from being necessary (although I have not proven any of

the conditions to be necessary but only sufficient). In other words, as will be shown,

when the conditions for rules (to be given) are met, the conditions for rule instances

are also met, but not vice versa.

As mentioned, the conditions of definition 58 enforce some basic coherence. For

example, processors that are guaranteed to have all facts in Γ(P ) are also processors

to which all facts in Γ(P ) must be inferred, and all processors to which all facts in

Γ(P ) must be inferred are also processors that are allowed to have facts in Γ(P ).

Additionally, the pattern mappers must be conscious of the relationship between

patterns. This is another difference in dealing with patterns instead of directly with

facts is that there are natural relationships between patterns (e.g., Γ(P1) ⊆ Γ(P2)).

The next three lemmas establish some important relationships between pattern

assignments and distribution schemes that will be useful in proving the sufficient

conditions for parallel inference with rules. In and of themselves, they are not

particularly interesting to the overall rhetoric.

Lemma 15. For any distribution scheme D = 〈N , φ, θ〉 that conforms to a pattern

assignment 〈ΦN ,ΩN ,ΘN 〉, for any rule r, for any ρ ∈ Λ(r):

•
⋂
P∈P+

C (r) ΦN (P ) ⊆
⋂
f∈C+(ρ) φ(f);

•
⋂
P∈P¬C(r) ΦN (P ) ⊆

⋂
f∈C¬(ρ) φ(f);

•
⋂
P∈P+

A (r) ΦN (P ) ⊆
⋂
f∈A+(ρ) φ(f);

•
⋂
P∈P¬A(r) ΦN (P ) ⊆

⋂
f∈A¬(ρ) φ(f).

Proof. k ∈
⋂
P∈P+

C (r) ΦN (P ) means that for any P ∈ P+
C (r), k ∈ ΦN (P ). Then by

definition 59, for any P ∈ P+
C (r), k ∈

⋂
f∈Γ(P ) φ(f). So k ∈

⋂
P∈P+

C (r)

⋂
f∈Γ(P ) φ(f).

Now consider the f over which intersection is occurring. It is for all

f ∈
⋃
P∈P+

C (r) Γ(P ). By lemma 14,
⋃
ρ∈Λ(r) C+(ρ) ⊆

⋃
P∈P+

C (r) Γ(P ). Therefore,
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intersecting over f ∈
⋃
ρ∈Λ(r) C+(ρ) will be no more restrictive and produce a super-

set. Hence,
⋂
P∈P+

C (r)

⋂
f∈Γ(P ) φ(f) ⊆

⋂
ρ∈Λ(r)

⋂
f∈C+(ρ) φ(f). Then for any ρ∗ ∈ Λ(r),

it trivially holds that
⋂
ρ∈Λ(r)

⋂
f∈C+(ρ) φ(f) ⊆

⋂
f∈C+(ρ∗) φ(f). By transitivity, for

any ρ∗ ∈ Λ(r),
⋂
P∈P+

C (r) ΦN (P ) ⊆
⋂
f∈C+(ρ∗) φ(f). Similar arguments for C¬(ρ),

A+(ρ), and A¬(ρ) with P¬C(r), P+
A (r), and P¬A(r), respectively.

Lemma 16. For any distribution scheme D = 〈N , φ, θ〉 that conforms to a pattern

assignment 〈ΦN ,ΩN ,ΘN 〉, for any rule r, for any ρ ∈ Λ(r):

•
⋃
f∈C+(ρ) φ(f) ⊆

⋃
P∈P+

C (r) ΩN (P );

•
⋃
f∈C¬(ρ) φ(f) ⊆

⋃
P∈P¬C(r) ΩN (P );

•
⋃
f∈A+(ρ) φ(f) ⊆

⋃
P∈P+

A (r) ΩN (P );

•
⋃
f∈A¬(ρ) φ(f) ⊆

⋃
P∈P¬A(r) ΩN (P ).

Proof. For any rule instance ρ∗ ∈ Λ(r), it holds that
⋃
f∈C+(ρ∗) φ(f) ⊆⋃

ρ∈Λ(r)

⋃
f∈C+(ρ) φ(f). Now consider the f over which union is occurring. It is

for all f ∈
⋃
ρ∈Λ(r) C+(ρ). By lemma 14,

⋃
ρ∈Λ(r) C+(ρ) ⊆

⋃
P∈P+

C (r) Γ(P ). There-

fore, union over f ∈
⋃
P∈P+

C (r) Γ(P ) will be no less inclusive and produce a su-

perset. Hence,
⋃
ρ∈Λ(r)

⋃
f∈C+(ρ) φ(f) ⊆

⋃
P∈P+

C (r)

⋃
f∈Γ(P ) φ(f), and by definition 59,⋃

P∈P+
C (r)

⋃
f∈Γ(P ) φ(f) ⊆

⋃
P∈P+

C (r) ΩN (P ). Similar arguments for C¬(ρ), A+(ρ), and

A¬(ρ) with P¬C(r), P+
A (r), and P¬A(r), respectively.

Lemma 17. For any distribution scheme D = 〈N , φ, θ〉 that conforms to a pattern

assignment 〈ΦN ,ΩN ,ΘN 〉, for any rule r, for any ρ ∈ Λ(r):

•
⋃
f∈C+(ρ) θ(f) ⊆

⋃
P∈P+

C (r) ΘN (P );

•
⋃
f∈C¬(ρ) θ(f) ⊆

⋃
P∈P¬C(r) ΘN (P );

•
⋃
f∈A+(ρ) θ(f) ⊆

⋃
P∈P+

A (r) ΘN (P );

•
⋃
f∈A¬(ρ) θ(f) ⊆

⋃
P∈P¬A(r) ΘN (P ).

Proof. Similar arguments as for lemma 16.
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The following four lemmas give the sufficient conditions for correct parallel

inference with rules. The goal here is to determine conditions on the rules such that

something can be said about all the rule instances of those rules and then tie the

conclusions into previously stated theorems about rule instances. The first lemma

proves conditions on a rule that are sufficient for showing that all the rule instances

of that rule are D-matchable. The second, third, and fourth lemmas show the same

for D-blockable, D-retractable, and D-preserving, respectively.

Lemma 18. Let r be a rule, and let D = 〈N , φ, θ〉 be a distribution scheme that

conforms to pattern assignment 〈ΦN ,ΩN ,ΘN 〉. If one of the following holds:

•
⋂
P∈P+

C (r) ΦN (P ) 6= ∅, or

•
∨
Q∈P+

C (r)

∧
P∈P+

C (r)\{Q}[ΦN (P ) = N ];

then every ρ ∈ Λ(r) is D-matchable.

Proof. If
⋂
P∈P+

C (r) ΦN (P ) 6= ∅, then by lemma 15, for any ρ ∈ Λ(r), since ∅ ⊂⋂
P∈P+

C (r) ΦN (P ) ⊆
⋂
f∈C+(ρ) φ(f), then

⋂
f∈C+(ρ) φ(f) 6= ∅.

If
∨
Q∈P+

C (r)

∧
P∈P+

C (r)\{Q}ΦN (P ) = N , then for some Q ∈ P+
C (r),⋂

P∈P+
C (r)\{Q}ΦN (P ) = N . By definition of P+

C (r), this means that for any ρ ∈
Λ(r), there exists at most one g ∈ C+(ρ) such that φ(g) 6= N , which means∧
f∈C+(ρ)\{g}[φ(f) = N ]. Therefore, for any ρ ∈ Λ(r), the conditions of definition 45

hold true, and ρ is D-matchable.

Lemma 19. Let r be a rule, and let D = 〈N , φ, θ〉 be a distribution scheme that

conforms to pattern assignment 〈ΦN ,ΩN ,ΘN 〉. If one of the following holds:

• P¬C(r) = ∅, or

•
⋃
P∈P+

C (r) ΘN (P ) ⊆
⋂
P∈P¬C(r) ΦN (P );

then every ρ ∈ Λ(r) is D-blockable.

Proof. If P¬C(r) = ∅, then for any ρ ∈ Λ(r), C¬(ρ) = ∅.
If
⋃
P∈P+

C (r) ΘN (P ) ⊆
⋂
P∈P¬C(r) ΦN (P ), then for any ρ ∈ Λ(r), lemma 17 im-

plies that
⋃
f∈C+(ρ) θ(f) ⊆

⋃
P∈P+

C (r) ΘN (P ), and lemma 15 implies that
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⋂
P∈P¬C(r) ΦN (P ) ⊆

⋂
f∈C¬(ρ) φ(f). By transitivity,

⋃
f∈C+(ρ) θ(f) ⊆

⋂
f∈C¬(ρ) φ(f).

Note that
⋂
f∈C+(ρ) θ(f) ⊆

⋃
f∈C+(ρ) θ(f), so it further holds that

⋂
f∈C+(ρ) θ(f) ⊆⋂

f∈C¬(ρ) φ(f) for any ρ ∈ Λ(r) Therefore, for any ρ ∈ Λ(r), the conditions of defini-

tion 46 hold true, and ρ is D-blockable.

Lemma 20. Let r be a rule, and let D = 〈N , φ, θ〉 be a distribution scheme that

conforms to pattern assignment 〈ΦN ,ΩN ,ΘN 〉 which cover the condition formula of

r. If
⋃
P∈P¬A(r) ΘN (P ) ⊆

⋂
P∈P+

C (r) ΦN (P ), then every ρ ∈ Λ(r) is D-retractable.

Proof. If
⋃
P∈P¬A(r) ΘN (P ) ⊆

⋂
P∈P+

C (r) ΦN (P ), then by lemma 17,
⋃
f∈A¬(ρ) θ(f) ⊆⋃

P∈P¬A(r) ΘN (P ), and by lemma 15,
⋂
P∈P+

C (r) ΦN (P ) ⊆
⋂
f∈C+(ρ) φ(f). By transitiv-

ity, for any ρ ∈ Λ(r),
⋃
f∈A¬(ρ) θ(f) ⊆

⋂
f∈C+(ρ) φ(f). Therefore, for any ρ ∈ Λ(r),

the condition of definition 52 holds true, and ρ is D-retractable.

Lemma 21. Let r be a rule, and let D = 〈N , φ, θ〉 be a distribution scheme that con-

forms to pattern assignments 〈ΦN ,ΩN ,ΘN 〉. If
⋃
P∈P+

A (r) ΩN (P ) ⊆
⋂
P∈P+

C (r) ΦN (P ),

then every ρ ∈ Λ(r) is D-preserving.

Proof. If
⋃
P∈P+

A (r) ΩN (P ) ⊆
⋂
P∈P+

C (r) ΦN (P ), then by lemma 16,
⋃
f∈A+(ρ) φ(f) ⊆⋃

P∈P+
A (r) ΩN (P ), and by lemma 15,

⋂
P∈P+

C (r) ΦN (P ) ⊆
⋂
f∈C+(ρ) φ(f). By transitiv-

ity, for any ρ ∈ Λ(r),
⋃
f∈A+(ρ) φ(f) ⊆

⋂
f∈C+(ρ) φ(f). Therefore, for any ρ ∈ Λ(r),

the condition of definition 53 holds true, and ρ is D-preserving.

Finally, it can be said that sufficient conditions on rules have been proven for

correct parallel inference, and this section ends with that very corollary.

Corollary 22. Let R be a polarized ruleset, let S be a RAOC, let I be any in-

formation keeper, and let 〈ΦN ,ΩN ,ΘN 〉 be a pattern assignment. If the condi-

tions of lemmas 18, 19, 20, and 21 are met for every rule r ∈ R, then program

Π = 〈I,Hfix, S, R〉 is cyclically D-parallel where D is any distribution scheme that

conforms to 〈ΦN ,ΩN ,ΘN 〉.

Proof. Follows immediately from lemmas 18, 19, 20, and 21; and theorem 10.
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3.4 Summary

This chapter defined the syntax and mathematical notation for rules in section

3.1.1 and defined an operational semantics in section 3.1.2. In section 3.2, defini-

tions and operational semantics were given for parallel inference, and section 3.2.1

provided definitions for what is means for parallel inference to be correct. Definition

42 is the definition for correctness relied upon for the remainder of this thesis.

Section 3.3 contained the significantly novel contribution of this chapter. In

section 3.3.1, sufficient conditions are determined for ground rules such that, when

the conditions are met for every possible ground rule in inference, parallel inference

is guaranteed to be correct relative to a distribution scheme. To be more useful,

though, the conditions are generalized to rules (ground or otherwise) in section 3.3.2.

These conditions provide the foundation for the findings of the following chapter.



CHAPTER 4

PRACTICAL APPLICATION OF CONDITIONS FOR

PARALLEL INFERENCE

In this chapter, the sufficient conditions determined in the previous chapter are used

to derive a method to restrict (polarized) rulesets such that parallel inference with

the restricted version of the ruleset (with a RAOC) is correct. In section 4.1, a

special class of distribution schemes – called replication schemes – is considered,

and new, simpler notation is defined. The sufficient conditions from the previous

chapter are then recast into the simpler notation, which reveals a possible reduc-

tion to satisfiability. This possibility is further explored and confirmed in section

4.2. Specifically, testing sufficient conditions for correct parallel inference with a

replication scheme is reducible to 2SAT. Then, the 2SAT reduction is augmented

to a 3SAT reduction that allows for the option to sacrifice rules in order to improve

parallel inference. The problem arises, then, that the search space for solutions to

the 3SAT formula becomes quite large for even moderately sized rulesets. Therefore,

a methodology is proposed for reducing the search space in section 4.2.3, and it is

applied to restrict the RDFS and OWL2RL rulesets in section 4.3.

4.1 Replication Schemes

In this section, a specific class of distribution schemes is introduced called

replication schemes. General distribution schemes are difficult to manage because

they require that, for every processor, it must be decided whether it is allowed to

have a given fact, and if so, whether it must have that fact. Although pattern

assignments allow assignment of facts by looking at a finite set of patterns, this

actually complicates the process, even though it makes it more tractable. That is,

not every possible fact needs to be considered (of which there could be infinitely

many), but for each processor, it must be decided whether the processor is allowed

to have facts matched by the pattern; and if so, whether inferences matched by the

pattern must go to that processor; and if so, whether it should be guaranteed that

50
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the processor has such facts. Additionally, the pattern assignment must be checked

for validity as given by the conditions in definition 58.

A simpler form of distribution scheme which has previously been useful in

[20, 21] is to restrict fact assignment to two possibilities: for any fact, either replicate

it to all processors, or place it arbitrarily to some processor(s). Definition 60 captures

this notion. Note that even though it is possible that for a fact f , φ(f) = ∅, it

must still hold that f is placed at some processor when distributed because the

union across the processors’ factsets must equal the factset prior to distribution (by

definition 38).

Definition 60. A replication scheme is a distribution scheme R = 〈N , φ, θ〉 such

that for any fact f :

• φ(f) = ∅ or φ(f) = N ;

• θ(f) = N .

Definition 61. A pattern replicator is a pattern assignment 〈ΦN ,ΩN ,ΘN 〉 such

that for any pattern P :

• ΦN (P ) = ∅ or ΦN (P ) = N ;

• ΩN (P ) = ∅ or ΩN (P ) = N ;

• ΘN (P ) = N .

At this point, it is useful to recast previous theorems and definitions in terms of

replication schemes, and these new theorems and definitions will provide the basis

for the main findings with regard to replication schemes and pattern replicators.

Lemma 23 builds on definition 59 to prove what it means for a replication scheme

to conform to a pattern replicator.

The gist of lemma 23 is as follows. If some processor must guarantee that it

has facts matched by a pattern, then that guarantee is made for all processors. If

inferences matched by a pattern need not be inferred to any particular processor,

then no guarantee is made about the particular placement of such facts. Also, facts

matched by any pattern are allowed to be placed at any processor. These are proven

to hold true for any replication scheme conforming to a pattern replicator.



52

Lemma 23. A replication scheme R = 〈N , φ, θ〉 conforms to a pattern replicator

〈ΦN ,ΩN ,ΘN 〉 iff the following hold for any pattern P :

• if ΦN (P ) = N , then for all f ∈ Γ(P ), φ(f) = N ;

• if ΩN (P ) = ∅, then for all f ∈ Γ(P ), φ(f) = ∅;

• ΘN (P ) = N .

Proof. (→) Assume that R conforms to 〈ΦN ,ΩN ,ΘN 〉.
By definition 59, it must hold for any pattern P that ΦN (P ) ⊆

⋂
f∈Γ(P ) φ(f). If

ΦN (P ) = N , then
⋂
f∈Γ(P ) φ(f) = N , which means that for all f ∈ Γ(P ), φ(f) = N .

By definition 59, it must hold for any pattern P that
⋃
f∈Γ(P ) φ(f) ⊆ ΩN (P ).

For any pattern P , if ΩN (P ) = ∅, then
⋃
f∈Γ(P ) φ(f) = ∅, which means that for all

f ∈ Γ(P ), φ(f) = ∅.
By definition 59, it must hold for any pattern P that

⋃
f∈Γ(P ) θ(f) ⊆ ΘN (P ).

By definition 60, for any fact f , θ(f) = N . This means that N =
⋃
f∈Γ(P ) θ(f) ⊆

ΘN (P ).

(←) Proof by contradiction. Assume that the three bulleted conditions hold

true but R does not conform to pattern replicator 〈ΦN ,ΩN ,ΘN 〉.
If ΦN (P ) = ∅, then it is trivially true that ΦN (P ) ⊆

⋂
f∈Γ(P ) φ(f). If

ΦN (P ) = N , then
⋂
f∈Γ(P ) φ(f) = N , and so it is again trivially true that ΦN (P ) ⊆⋂

f∈Γ(P ) φ(f). Therefore, if R does not conform to 〈ΦN ,ΩN ,ΘN 〉, it is not because

ΦN (P ) *
⋂
f∈Γ(P ) φ(f).

If ΩN (P ) = N , this it is trivially true that
⋃
f∈Γ(P ) φ(f) ⊆ ΩN (P ). If ΩN (P ) =

∅, then
⋃
f∈Γ(P ) φ(f) = ∅, and again, it is trivially true that

⋃
f∈Γ(P ) φ(f) ⊆ ΩN (P ).

Therefore, if R does not conform to 〈ΦN ,ΩN ,ΘN 〉, it is not because
⋃
f∈Γ(P ) φ(f) *

ΩN (P ).

Since ΘN (P ) = N , it is trivially true that
⋃
f∈Γ(P ) θ(f) ⊆ ΘN (P ). Therefore,

if R does not conform to 〈ΦN ,ΩN ,ΘN 〉, it is not because
⋃
f∈Γ(P ) θ(f) * ΘN (P ).

Therefore, it cannot be that R does not conform to 〈ΦN ,ΩN ,ΘN 〉, which is a

contradiction.

Notation. Now that the choices are either between ∅ and N , there is no longer a
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need for the complexity in notation brought by working with subsets of N . For a

replication scheme R = 〈N , φ, θ〉, let R(f) ≡ [φ(f) = N ] and ¬R(f) ≡ [φ(f) = ∅].
Let a pattern replicator be denoted as a pair 〈ε, α〉 where ε(P ) ≡ [ΩN (P ) = ∅],

¬ε(P ) ≡ [ΩN (P ) = N ], α(P ) ≡ [ΦN (P ) = N ], and ¬α(P ) ≡ [ΦN (P ) = ∅].

Corollary 24 is a direct recasting of lemma 23, illustrating the neatness of the

new notation and justifying the intuition of the notation. The formulas in corollary

24 seem self-justifying. That is, α(P ) implies that all the facts in Γ(P ) are replicated

to all processors, and ε(P ) implies that all the facts in Γ(P ) are placed arbitrarily.

Note, though, that it is possible that for a pattern P , ¬α(P ) ∧ ¬ε(P ). That is,

patterns do not have to fall into one of these two categories, although intuitively, a

pattern cannot be in both categories.

Corollary 24. A replication scheme R conforms to pattern replicator 〈ε, α〉 iff the

following hold for any pattern P :

• α(P )→
∧
f∈Γ(P )R(f);

• ε(P )→
∧
f∈Γ(P ) ¬R(f).

Proof. Straightforward rewriting of lemma 23 using the new notation.

Finally, the previous lemma and corollary can be used to prove sufficient con-

ditions for parallel inference with replication schemes (with polarized rulesets and

RAOCs) following quickly from lemmas 18, 19, 20, and 21. To briefly summarize

the corollaries, let R be a replication scheme that conforms to pattern assignment

〈ε, α〉. Corollary 25 says that if all but at most one pattern in a rule condition have

their facts replicated, then all the instances of the rule are R-matchable. Corollary

26 states that if all facts matched by patterns corresponding to negated formulas in

a rule have their facts replicated, then every instance of that rule is R-blockable.

Corollary 27 says that if a rule with retract actions has all the facts matching pat-

terns in its condition replicated, then every instance of the rule is R-retractable. (A

rule without retract actions is inherently R-retractable.) Corollary 28 says that if

a rule is such that either all the facts it can infer can be placed arbitrarily or all

the facts matched by its condition are replicated, then every instance of the rule is

R-preserving.



54

Corollary 25. Let r be a rule, and let R be a replication scheme that conforms

to pattern replicator 〈ε, α〉. If
∨
Q∈P+

C (r)

∧
P∈P+

C (r)\{Q} α(P ), then every ρ ∈ Λ(r) is

R-matchable.

Proof. Let 〈ε, α〉 correspond to 〈ΦN ,ΩN ,ΘN 〉 as described in the notation. If∨
Q∈P+

C (r)

∧
P∈P+

C (r)\{Q} α(P ), then
∨
Q∈P+

C (r)

∧
P∈P+

C (r)\{Q}ΦN (P ) = N , which by

lemma 18 means that every ρ ∈ Λ(r) is R-matchable.

Corollary 26. Let r be a rule, and let R be a replication scheme that conforms to

pattern replicator 〈ε, α〉. If
∧
P∈P¬C(r) α(P ), then every ρ ∈ Λ(r) is R-blockable.

Proof. Let 〈ε, α〉 correspond to 〈ΦN ,ΩN ,ΘN 〉 as described in the notation. If∧
P∈P¬C(r) α(P ), then

∧
P∈P¬C(r) ΦN (P ) = N . Recall from lemma 23 that for any

pattern P , ΘN (P ) = N . This means that
⋃
P∈P+

C (r) ΘN (P ) ⊆
⋂
P∈P¬C(r) ΦN (P ),

which by lemma 19 means that every ρ ∈ Λ(r) is R-blockable.

Corollary 27. Let r be a rule, and let R be a replication scheme that conforms to

pattern replicator 〈ε, α〉. If P¬A(r) = ∅ or
∧
P∈P+

C (r) α(P ), then every ρ ∈ Λ(r) is

R-retractable.

Proof. Let 〈ε, α〉 correspond to 〈ΦN ,ΩN ,ΘN 〉 as described in the notation. If

P¬A(r) = ∅, then it is trivially true that
⋃
P∈P¬A(r) ΘN (P ) ⊆

⋂
P∈P+

C (r) ΦN (P ) since⋃
P∈∅ΘN (P ) = ∅. If

∧
P∈P+

C (r) α(P ), then
∧
P∈P+

C (r) ΦN (P ) = N . Recall from lemma

23 that for any pattern P , ΘN (P ) = N . This means that
⋃
P∈P¬A(r) ΘN (P ) ⊆⋂

P∈P+
C (r) ΦN (P ), which by lemma 20 means that every ρ ∈ Λ(r) is R-retractable.

Corollary 28. Let r be a rule, and let R be a replication scheme that conforms

to pattern replicator 〈ε, α〉. If [
∨
P∈P+

A (r) ¬ε(P )] → [
∧
P∈P+

C (r) α(P )], then every ρ ∈
Λ(r) is R-preserving.

Proof. Let 〈ε, α〉 correspond to 〈ΦN ,ΩN ,ΘN 〉 as described in the notation. If

[
∨
P∈P+

A (r) ¬ε(P )] → [
∧
P∈P+

C (r) α(P )], then [
∨
P∈P+

A (r) ΩN (P ) = N ] →
[
∧
P∈P+

C (r) ΦN (P ) = N ], which is equivalently stated that [
⋃
P∈P+

A (r) ΩN (P ) = N ]→
[
⋂
P∈P+

C (r) ΦN (P ) = N ], which also means (taking into consideration definition 61)
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⋃
P∈P+

A (r) ΩN (P ) ⊆
⋂
P∈P+

C (r) ΦN (P ). Then by lemma 21, every ρ ∈ Λ(r) is R-

preserving.

These conditions, particularly those placed on negation and retraction, are

quite restrictive. Starting with sufficient conditions on rule instances, then sufficient

conditions on rules, and now sufficient conditions on rules for replication schemes,

the conditions are becoming increasingly restrictive and unnecessary (unnecessary

in the sense of “necessary and sufficient conditions”). However, as imprecision of

the conditions increases, it appears that their simplicity and utility also increases,

as is demonstrated in the following section.

4.2 Reductions to Satisfiability

By inspection, the conditions of the previous four corollaries are clearly satisfi-

ability formulas, which implies that checking the conditions can be done by reduction

to satisfiability. Specifically, as shown in section 4.2.1, they can be checked by reduc-

tion to 2SAT. 2SAT is a particularly desirable version of the SAT problem because

it can be solved (efficiently) in polynomial time.

While merely checking the conditions for parallel inference is useful, many non-

trivial rulesets will likely require all data to be replicated. Thus, it would be useful to

determine which rules (or restricted versions thereof) can be eliminated to increase

parallelism. In section 4.2.2, it is shown that augmenting the 2SAT reduction to

a 3SAT reduction allows for the possibility to consider elimination of rules. As a

result, though, the search space for 3SAT solutions can become insurmountable, and

so in section 4.2.3, a methodology is proposed for reducing the search space so that

a restricted version of a ruleset for parallel inference can quickly be converged upon.

This methodology is then used in section 4.3 to restrict the RDFS and OWL2RL

rulesets into rulesets that are amenable to parallel inference.

4.2.1 Checking Conditions by Reduction to 2SAT

In this section, it is shown how checking the sufficient conditions for replication

schemes can be reduced to 2SAT. First, the problem must be clearly defined in terms

of input and output.
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Problem 1 (RConds). Given a ruleset R and a pattern replicator 〈ε, α〉, determine

whether the conditions of corollaries 25, 26, 27, and 28 are satisfied.

Lemma 29 states that not only are the conditions of the previous four corol-

laries SAT formulas, but they can also be equivalently written as 2SAT formulas.

Lemma 29. RConds is reducible to 2SAT.

Proof. Consider the condition of corollary 25, that
∨
Q∈P+

C (r)

∧
P∈P+

C (r)\{Q} α(P ).

Suppose that for some Q ∈ P+
C (r), ¬α(Q). Then the previous formula is true

iff
∧
P∈P+

C (r)\{Q} α(P ). In other words, the formula can be equivalently formu-

lated as
∧
Q∈P+

C (r)[¬α(Q) →
∧
P∈P+

C (r)\{Q} α(P )], which can be further reformu-

lated as
∧
Q∈P+

C (r)[α(Q) ∨
∧
P∈P+

C (r)\{Q} α(P )], and then performing distribution,∧
Q∈P+

C (r)

∧
P∈P+

C (r)\{Q}[α(Q) ∨ α(P )]. This is a 2SAT formula.

Consider the condition of corollary 26.
∧
P∈P¬C(r) α(P ) can be equivalently

reformulated
∧
P∈P¬C(r) α(P ) ∨ α(P ) which is a 2SAT formula.

Consider the condition of corollary 27.
∧
P∈P+

C (r) α(P ) can be equivalently

reformulated
∧
P∈P+

C (r) α(P ) ∨ α(P ) which is a 2SAT formula.

Consider the condition of corollary 28. [
∨
Q∈P+

A (r) ¬ε(Q)] → [
∧
P∈P+

C (r) α(P )]

can be equivalently reformulated as [
∧
Q∈P+

A (r) ε(Q)] ∨ [
∧
P∈P+

C (r) α(P )], which is

equivalent to
∧
Q∈P+

A (r)

∧
P∈P+

C (r) ε(Q) ∨ α(P ), which is a 2SAT formula.

Taking the conjunction of all these 2SAT formulas forms a larger 2SAT formula

such that the formula is satisfiable iff the conditions of corollaries 25, 26, 27, and 28

are met.

RConds can be solved by reduction to 2SAT, but consider the inputs of

RConds. One of them is a pattern replicator 〈ε, α〉 which means that for any pattern

P , it must be determined if ε(P ) and/or α(P ). This is hardly practical. Consider,

though, the possibility of specifying a finite set of patterns P for which ε(P ) and

α(P ) is defined for any P ∈ P. Clearly, P should include all the patterns occurring

in the ruleset under consideration, that is, P ⊇
⋃
r∈R P(r).

Suppose there exists P1, P2 ∈ P such that Γ(P1)∩Γ(P2) 6= ∅. Then by definition

37, P1 and P2 are related by any P3 such that Γ(P3) = Γ(P1) ∩ Γ(P2) because
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Γ(P3) ⊆ Γ(P1) and Γ(P3) ⊆ Γ(P2). Therefore, P3 should be included in P and ε(P3)

and α(P3) should be defined.

This leaves open a number of questions, though. Even though it is clear what

P should be, how is it actually derived (can it even be derived)? and how is it

accounted for in the 2SAT reduction?

Starting with the problem of deriving P, it must be defined how to test whether

Γ(P1) ∩ Γ(P2) 6= ∅, and if so, how to derive P3 such that Γ(P3) = Γ(P1) ∩ Γ(P2). It

is possible that there could already be a P4 ∈ P such that Γ(P4) = Γ(P3), and so we

need a way to check whether Γ(P4) = Γ(P3).

These problems are solved in the following lemma and proposition. Lemma

30 shows how to test whether Γ(P1) ∩ Γ(P2) 6= ∅, and if it holds, how to determine

P3 such that Γ(P3) = Γ(P1) ∩ Γ(P2). Proposition 31 shows how to test whether

Γ(P4) = Γ(P3). Using these approaches, P can be derived as follows. Initialize

P =
⋃
r∈R P(r). Then for every P1, P2 ∈ P such that Γ(P1)∩Γ(P2) 6= ∅, determine a

pattern P3 such that Γ(P3) = Γ(P1)∩Γ(P2). Check all the P4 ∈ P to make sure that

Γ(P3) 6= Γ(P4), and if so, add P3 to P. Do this iteratively until no more changes

can be made to P. Then P is the set of patterns such that, for all P ∈ P, ε(P ) and

α(P ) need to be defined.

Lemma 30. Let P1 = And(f1 x1 . . . xn) and P2 = And(f2 y1 . . . ym) be patterns.

If no most general unifier11 σ exists for f1 and f2, then Γ(P1)∩Γ(P2) = ∅. If no most

general unifier σ exists for f1 and f2 such that for 1 ≤ i ≤ n, σ(xi) is matchable,

and for 1 ≤ i ≤ m, σ(yi) is matchable, then Γ(P1)∩Γ(P2) = ∅. Otherwise, let P3 =

And(σ(f1) z1 . . . zk) where {zi}ki=1 is the maximum subset of {σ(xi)}ni=1∪{σ(yi)}mi=1

such that every zi is a restriction. Then Γ(P1) ∩ Γ(P2) = Γ(P3).

Proof. This proof assumes familiarity with unification and unifiers. For an overview,

refer to [57].

First proving that Γ(P1) ∩ Γ(P2) ⊆ Γ(P3). f ∈ Γ(P1) ∩ Γ(P2) iff f ∈ Γ(P1)

and f ∈ Γ(P2), which is true iff there exists ground substitutions σ1 and σ2 such

that: σ1(f1) = f ; σ2(f2) = f ; for 1 ≤ i ≤ n, σ1(xi) is matchable; and for 1 ≤ j ≤ m,

11Note that determining a most general unifier is a well-studied and efficiently-solvable problem
in computer science. [57]
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σ2(yj) is matchable. Then σ1 ∪ σ2 is a unifier of f1 and f2 since [σ1 ∪ σ2](f1) = f =

[σ1∪σ2](f2).12 Since σ is a most general unifier of f1 and f2, then it holds that there

is a substitution σ′ such that σ′ ◦ σ = [σ1 ∪ σ2]. So then there exists a substitution

σ′ such that σ′(σ(f1)) = f . It also holds that σ′(zi) is matchable for 1 ≤ i ≤ k.

Therefore, f ∈ Γ(P3).

Now proving that Γ(P1)∩Γ(P2) ⊇ Γ(P3). f ∈ Γ(P3) means that there exists a

substitution σ′ such that σ′(σ(f1)) = f , which means that σ′◦σ is a substitution such

that σ′◦σ(f1) = f . The same can be said for f2 since σ is a unifier of f1 and f2 (that

is, because σ(f1) = σ(f2)). It also holds that σ′ ◦ σ(xi) is matchable for 1 ≤ i ≤ n

and that σ′ ◦ σ(yj) is matchable for 1 ≤ j ≤ m. Therefore, f ∈ Γ(P1) ∩ Γ(P2).

Proposition 31. Let P1 = And(f1 x1 . . . xn) and P2 = And(f2 y1 . . . ym) be

patterns. Remove any duplicate restrictions from P1; do the same for P2. Rename

the variables in P1 such that if the ith term (directly) in f1 is a variable, rename it

?xi.13 Do the same for P2. Then using some total ordering / on restrictions, order

the restrictions in P1 and P2 accordingly. Then, Γ(P1) = Γ(P2) iff P1 = P2.

Now to address the second question, which is, how does P translate into the

2SAT reduction? P is the set of patterns over which α and ε must be defined. α

and ε, supposing to make up a valid pattern replicator, must satisfy all the inherent

conditions of the definition of pattern replicator. Granted, the bulleted conditions

of definition 61 are tautological, stating that for any pattern P is must hold that

α(P ) ∨ ¬α(P ) and ε(P ) ∨ ¬ε(P ). Less trivial, though, is meeting the conditions of

being a pattern assignment. These are outlined in lemma 32.

Lemma 32. A pair of functions 〈ε, α〉 mapping patterns to boolean values constitutes

a valid pattern replicator if the following hold for any pattern P :

• α(P )→ ¬ε(P );

• for any pattern P ′ such that Γ(P ′) ⊆ Γ(P ),

12Here I have assumed that P1 and P2 have no variables with the same name. If that is not the
case, then it can be enforced by simply renaming variables in P1 and P2, which will not change
the values of Γ(P1) or Γ(P2).

13Do this simultaneously for each variable.
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– α(P )→ α(P ′);

– ε(P )→ ε(P ′).

Proof. Let 〈ε, α〉 correspond to 〈ΦN ,ΩN ,ΘN 〉 as defined by established notation.

Considering α(P ) → ¬ε(P ), there are three distinct cases. First, α(P ) ∧
¬ε(P ) ≡ [ΦN (P ) = N ] ∧ [ΩN (P ) = N ]. Second, ¬α(P ) ∧ ¬ε(P ) ≡ [ΦN (P ) =

∅]∧ [ΩN (P ) = N ]. Third, ¬α(P )∧ ε(P ) ≡ [ΦN (P ) = ∅]∧ [ΩN (P ) = ∅]. In all cases,

ΦN (P ) ⊆ ΩN (P ) ⊆ ΘN (P ) = N .

Considering α(P ) → α(P ′), there are three distinct cases. First, α(P ) ∧
α(P ′) ≡ [ΦN (P ) = N ] ∧ [ΦN (P ′) = N ]. Second, ¬α(P ) ∧ α(P ′) ≡ [ΦN (P ) =

∅] ∧ [ΦN (P ′) = N ]. Third, ¬α(P ) ∧ ¬α(P ′) ≡ [ΦN (P ) = ∅] ∧ [ΦN (P ′) = ∅]. In all

cases, ΦN (P ) ⊆ ΦN (P ′).

Considering ε(P )→ ε(P ′), there are three distinct cases. First, ε(P )∧ ε(P ′) ≡
[ΩN (P ) = ∅]∧ [ΩN (P ′) = ∅]. Second, ¬ε(P )∧ ε(P ′) ≡ [ΩN (P ) = N ]∧ [ΩN (P ′) = ∅].
Third, ¬ε(P ) ∧ ¬ε(P ′) ≡ [ΩN (P ) = N ] ∧ [ΩN (P ′) = N ]. In all cases, ΩN (P ′) ⊆
ΩN (P ).

Therefore, by definition 58, 〈ε, α〉 is a valid pattern assignment and a valid

pattern replicator.

Problem 2 (PConds). For a finite set of patterns P and functions ε and α mapping

patterns in P to boolean values, determine whether the conditions of lemma 32 are

met.

Proposition 33. PConds is reducible to 2SAT.

Proof. By inspection of the conditions of lemma 32.

Finally, the main theorem regarding reduction to 2SAT can be formulated.

It essentially states that since the sufficient conditions for rules with replication

schemes and for validity of replication schemes are all 2SAT formulas, then any

assignment of variables satisfying the 2SAT formulas correspond to a replication

scheme for which parallel inference (for a given polarized ruleset, using a RAOC) is

correct.

Theorem 34. Given
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• a polarized ruleset R;

• a finite set of patterns P such that P ⊇
⋃
r∈R P(r) and for any P1, P2 ∈ P such

that Γ(P1) ∩ Γ(P2) 6= ∅, there exists P3 ∈ P such that Γ(P3) = Γ(P1) ∩ Γ(P2);

letting

• ψ be the 2SAT formula derived from R as described in lemma 29;

• γ be the 2SAT formula derived from P as described in proposition 33;

then any assignment of variables in the 2SAT formula ψ∧ γ implies a pattern repli-

cator 〈ε, α〉 such that any program Π = 〈I,Hfix, S, R〉 is cyclically R-parallel where

• R is any replication scheme conforming to 〈ε, α〉;

• I is any information keeper;

• S is a RAOC.

Proof. By proposition 33, a solution to γ implies two functions ε′ and α′ mapping

patterns in P to boolean values such that the conditions of lemma 32 are met. Then

there exists a pattern replicator 〈ε, α〉 such that for all P ∈ P, ε′(P ) ≡ ε(P ) and

α′(P ) ≡ α(P ). Let R be any replication scheme that conforms to 〈ε, α〉. ψ is

satisfied, which by lemma 29 means that the conditions of corollaries 25, 26, 27, and

28 for R are satisfied. Then by corollary 22, Π is cyclically R-parallel.

Corollary 35. In addition to the conditions of theorem 34, if Π terminates, then

Π is weakly R-parallel.

Proof. Follows quickly from theorem 34 and corollary 11.

Having not only determined conditions under which parallel inference is correct

(for a polarized ruleset with a RAOC), but having also devised a way to test those

conditions, it would be instructive to test a common ruleset used to perform inference

over RDF data crawled from the Semantic Web.

Table 4.1 contains the CoreRDFS ruleset, the RDFS rules that are most widely

valued and supported. Reducing the ruleset to a 2SAT formula as described and then
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using a SAT solver14 to enumerate the solutions, I found there is only one solution,

which corresponds to replicating all facts. It is trivially true that replicating all

facts is a solution for correct parallel inference with any ruleset, but it defeats the

purpose of parallelization, which is to improve performance or achieve something

that is not feasible on a single machine.

Therefore, this solution is unwanted, and it can be avoided by adding another

clause to the 2SAT formula. Letting P = And(?s[?p->?o]) be the pattern rep-

resenting all frame facts (or triples, in the case of RDF), simply add the following

clause to the 2SAT formula: ¬α(P ) ∨ ¬α(P ). Adding this clause states that a

replication scheme is not allowed to replicate all the frame facts (or triples).

Adding that clause to the 2SAT formula derived from the CoreRDFS ruleset,

it is found that there is no solution. The question then is, if correct parallel infer-

ence cannot be achieved for the CoreRDFS ruleset, then for what portion of the

CoreRDFS ruleset (if any) can correct parallel inference be achieved? That is the

topic of the following section.

Before continuing on, though, the RDFS ruleset given in table B.1 was similarly

tested and no solutions were found. The same holds for the OWL2RL ruleset given

in table B.6. These results should not be surprising given recent literature. Hendler

and I [21] explicitly disallowed troublesome data that would cause parallel inference

to be incorrect. Recently, Patel-Schneider gave a more in-depth analysis as to why

(non-trivial, embarrassingly) parallel inference with the RDFS ruleset is incorrect

[45].

4.2.2 Eliminating Rules by Reduction to 3SAT

The reduction to 2SAT from the previous section is useful for verifying whether

a given polarized ruleset and replication scheme can result in correct parallel infer-

ence (when using a RAOC). However, in many cases, correct parallel inference is

not achievable, and it is not readily apparent how to change the rules to achieve

correct parallel inference.

Perhaps it can be determined which cases cause (non-trivial) parallel inference

14Specifically, I used relsat [58] version 2.2 [59].



62

Table 4.1: The CoreRDFS Ruleset

Rule ID If And(. . .) Then Do(Assert(. . .))

scm-spo ?p1[rdfs:subPropertyOf->?p2] ?p1[rdfs:subPropertyOf->?p3]

?p2[rdfs:subPropertyOf->?p3]

scm-sco ?c1[rdfs:subClassOf->?c2] ?c1[rdfs:subClassOf->?c3]

?c2[rdfs:subClassOf->?c3]

prp-spo1 ?p1[rdfs:subPropertyOf->?p2] ?x[?p2->?y]

?x[?p1->?y]

prp-dom ?p[rdfs:domain->?c] ?x[rdf:type->?c]

?x[?p->?y]

prp-rng ?p[rdfs:range->?c] ?y[rdf:type->?c]

?x[?p->?y]

cax-sco ?c1[rdfs:subClassOf->?c2] ?x[rdf:type->?c2]

?x[rdf:type->?c1]

to be incorrect and, if appropriate15, eliminate those cases. Finding cases that cause

parallel inference to be incorrect can be done by modifying the reduction to 2SAT

into a reduction to 3SAT.

The intuition behind the idea is rather straightforward. For every clause gen-

erated from a rule r in the reduction in the proof of lemma 29, simply add another

literal to each clause, denoted χ(r). If χ(r) is assigned a value of one in the solution,

then it means that rule r has been eliminated. An example will help illustrate this

idea.

Consider rule prp-spo1 from table 4.1. From the reduction in the proof of

lemma 29, the following formula would be generated, where P1 = And(?s[?p1->?o]),

P2 = And(s[?p2->?o]), and Psp = And(?p1[rdfs:subProperty->?p2]).

[α(Psp) ∨ α(P1)] ∧ [ε(P2) ∨ α(P1)] ∧ [ε(P2) ∨ α(Psp)]

This formula represents the part of the 2SAT formula derived from rule prp-spo1

such that, when satisfied with the rest of the formula, correct parallel inference can

be achieved with prp-spo1. Suppose, though, that the conditions cannot be met.

Then we will want to consider the possibility of eliminating prp-spo1. Letting r be

rule prp-spo1, we can change the formula to allow for that possibility.

χ(r) ∨
[
[α(Psp) ∨ α(P1)] ∧ [ε(P2) ∨ α(P1)] ∧ [ε(P2) ∨ α(Psp)]

]
15To some use case. No use case is assumed herein, but those who utilize this approach will

likely not be willing to give up all cases preventing correct parallel inference.
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Then by distribution, the following is equivalent.

[χ(r) ∨ α(Psp) ∨ α(P1)] ∧ [χ(r) ∨ ε(P2) ∨ α(P1)] ∧ [χ(r) ∨ ε(P2) ∨ α(Psp)]

Clearly, this is a 3SAT formula.

Using this reduction to 3SAT instead of the reduction to 2SAT from lemma

29, the overall reduction to 2SAT in theorem 34 becomes a reduction to 3SAT. Now

a solution to such a 3SAT formula corresponds to a replication scheme and a set of

rules to be eliminated, such that parallel inference will be correct (with a RAOC).

While this seems like a good idea in theory, in practice, the 3SAT formula will

often have a large number of solutions. Enumerating all the solutions, or choosing

an optimal solution, becomes practically intractable for non-trivial rulesets. This

issue is addressed in the following section.

4.2.3 Methodology for Reducing the Search Space

In this section, a methodology is presented for reducing the search space for

satisfactions of 3SAT formulas derived by rulesets and pattern replicators as demon-

strated in the previous two sections. This methodology is imprecise by nature,

making use of intuition and heuristics. Therefore, there is no guarantee that the

methodology will provide some sort of optimal solution. Regardless, its practical

value will be demonstrated by using it to restrict common rulesets for correct, par-

allel inference.

First, a notion of expected factset is needed. In the following, let an expected

factset be a factset that is likely to require inference for some given scenario. At

this point, I do not assume any particular scenario, but this notion of expected

factset is helpful in capturing any intuition one might have about the factsets under

consideration.

Definition 62. A pattern P is said to have high selectivity iff for any expected

factset F , |Γ(P ) ∩ F |/|F | is a (subjectively) small fraction.

In other words, a pattern is said to be highly selective iff it is expected that

that pattern will match relatively few facts. In this way, a distinction can be made
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between patterns for which replication of matched facts comes with small cost, and

other patterns. Defining a few more characteristics of patterns will further help in

describing the methodology steps.

Definition 63. A pattern P is said to be computable iff Γ(P ) contains only inde-

pendent facts.

The notion of a computable pattern is that all the facts matched by the pattern

can be determined dynamically without the need for explicit storage of facts. Thus,

replication of facts matched by such patterns does not exactly result in any physical

replication of facts.

Definition 64. A pattern P1 is said to be related to a pattern P2 iff Γ(P1)∩Γ(P2) 6=
∅.

Definition 65. A pattern P1 is said to be a special case of a pattern P2 iff Γ(P1) ⊆
Γ(P2).

Patterns are related if they both match some same fact. This means that

making decisions about replication or arbitrary placement of facts matched by one

pattern can have an impact on how the other pattern is classified. Special cases

result in even stronger implications between patterns. These specific implications

between patterns have already been proven in section 4.1. This terminology is just

introduced here to simplify the description of the methodology steps.

Assume some (polarized) ruleset R under consideration. Step 1 is to assume

that facts matched by selective patterns will be replicated. The idea is that, by

definition, this will be a small fraction of the data, so go ahead and be liberal with

replication of these facts.

Step 1. For every highly selective or computable pattern P occurring in some rule

r ∈ R, replicate the facts in Γ(P ) by adding the clause α(P ) to the SAT formula.

Let R denote this set of patterns.

Step 2 is to restrict or “split” rules into an equivalent set of rules such that

each new rule falls into one of two categories: a rule that infers facts matched by a
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pattern in R, or a rule that infers facts not matched by a pattern in R. In essence,

we are dividing rules into disjoint cases. The idea of “splitting” here is vague, but

it will be illustrated in an example later in this section.

Step 2. For each rule r ∈ R, “split” r into multiple rules such that for each new rule

r′, all the patterns in PA(r′) are either special cases of patterns in R or unrelated

to patterns in R. Denote the new ruleset R′.

Step 3 is perhaps the most arbitrary step, although it can be quite useful for

reducing the search space. It simply says to use intuition to try and determine some

patterns for which matched facts should be placed arbitrarily among processors.

This step can be skipped if desired, but at the risk that the search space will be less

constrained (good for finding a more optimal solution, bad for tractability).

Step 3. Applying intuition, choose some patterns P that are not highly selective

and allow the facts in Γ(P ) to be placed arbitrarily by adding the clause ε(P ) to

the SAT formula. Let A denote this set of patterns.

Step 4 simply inspects the rules to check which ones have condition formulas

that can only match facts that are matched by facts in R. In other words, these are

rules for which instances will be fired by all processors. Clearly, such rules are safe

for parallel inference, and so it is enforced that they not be eliminated.

Step 4. For each rule r ∈ R′, if every pattern in PC(r) is a special case of a pattern

in R, then add ¬χ(r) to the SAT formula.

Step 5 is a complicated step, although more intuitive than it may appear.

Simply, if a rule has no negation or retraction, and at most one of its condition

patterns has not been selected for replication of facts, and every assertion is allowed

to be arbitrarily placed, then do not eliminate the rule. This follows directly from

corollaries 25, 26, 27, and 28.

Step 5. For each rule r ∈ R′: if P¬A(r) = ∅ and P¬C(r) = ∅; and if at most one

pattern in P+
C (r) is not a special case of a pattern in R; and if all the patterns in

P+
A (r) are special cases of patterns in A; then add ¬χ(r) to the SAT formula.
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Steps 6 and 7 simply perform the reduction to 3SAT described in section

4.2.2. More interestingly, though, step 8 turns the 3SAT reduction into a heuristic

Min-Cost 3SAT reduction. In the Min-Cost variations of SAT problems, variables

in the SAT formulas are associated with weights (usually non-negative integers),

and the goal is to find an assignment of the variables such that the formula is

satisfied and the sum of the weights of the variables assigned a value of one, is

minimized. More formally, letting w(v) be the weight of a variable and a(v) be the

value assigned to v by assignment a, the goal is to determine an a such that the

formula is satisfied and there is no other assignment a′ such that the formula is

satisfied and
∑

v a
′(v) · w(v) <

∑
v a(v) · w(v).

This “reduction” to Min-Cost 3SAT is not a true reduction because an op-

timal solution to the weighted 3SAT formula does not correspond to an optimal

replication scheme and set of eliminated rules. This is because the variable weights

are determined by some imprecise heuristics. Such heuristics are proposed later in

this section.

Step 6. Initializing P to R∪A∪
⋃
r∈R′ P(r), iteratively add to P any pattern P3 such

that there exists P1, P2 ∈ P and Γ(P3) = Γ(P1) ∩ Γ(P2) where no such P3 already

exists in P. Do so iteratively until no changes can be made to P.

Step 7. Generate 3SAT clauses using the modified reduction of theorem 34 as

described in section 4.2.2, with R′ as the ruleset and P as the set of patterns repre-

senting the (partial) domain for pattern replicators.

Step 8. Heuristically assign weights to the variables in the 3SAT formula, and then

use the pattern replicator corresponding to an optimal solution of the 3SAT formula.

An example of the application of this methodology would be instructive. Con-

sider the CoreRDFS ruleset from table 4.1. Let an expected factset be any factset

consisting only of frames (corresponding to RDF triples) and the usual indepen-

dent facts, and make the assumption that the portion of the factset constituting

terminological data (or TBox in description logic vernacular) is small enough to be

considered highly selective. This latter assumption is very common in the literature

and has proven helpful in scaling inference to large datasets [19, 20, 21, 30, 46, 48, 51].
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rdf:type triples are not included because they are generally not considered termi-

nological and almost certainly constitute a relatively large portion of an expected

factset.

Keep in mind, none of these steps are necessary for the reduction to correctly

test the sufficient conditions for correct parallel inference. These steps are just to

help reduce the search space. Prior to taking any steps, if the reduction to 3SAT

is performed immediately without forcing any variable assignments, there are 809

possible solutions. Admittedly, the search space for the 3SAT formula derived from

the CoreRDFS ruleset is not insurmountably large, but this is just an example to

illustrate the methodology.

For step 1, select all the patterns in the CoreRDFS ruleset that are highly

selective. Since it has been assumed that any pattern selecting only terminological

data is highly selective, the choice is clear. R will consist of the following patterns.

And(?x1[rdfs:subPropertyOf->?x3])

And(?x1[rdfs:subClassOf->?x3])

And(?x1[rdfs:domain->?x3])

And(?x1[rdfs:range->?x3])

After step 1, there are 108 solutions.

For step 2, notice that for r being scm-spo or scm-sco, it naturally holds that

the patterns in PA(r) are special cases of the patterns in R. For r being prp-dom,

prp-rng, or cax-sco, it naturally holds that that the patterns in PA(r) are unrelated

to the patterns in R. Therefore, these five rules need not be split (or rather, they

are split into themselves). The only rule in need of modification is prp-spo1. It is

split by restricting the variables in the action block so that each rule either produces

facts that must be replicated or facts that need not necessarily be replicated. In the

former case, there are four such rules.

If And( ?p1[rdfs:subProperty->rdfs:subPropertyOf]

?x[?p1->?y] )

Then Do(Assert( ?x[rdfs:subPropertyOf->?y] ))
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If And( ?p1[rdfs:subProperty->rdfs:subClassOf]

?x[?p1->?y] )

Then Do(Assert( ?x[rdfs:subClassOf->?y] ))

If And( ?p1[rdfs:subProperty->rdfs:domain]

?x[?p1->?y] )

Then Do(Assert( ?x[rdfs:domain->?y] ))

If And( ?p1[rdfs:subProperty->rdfs:range]

?x[?p1->?y] )

Then Do(Assert( ?x[rdfs:range->?y] ))

For the sake of brevity, in the remainder of the paper, I will group together such

rules using a newly introduced IN keyword (it could be considered a special builtin

predicate for this very purpose, like pred:list-contains).

If And( ?p1[rdfs:subProperty->?p2]

?x[?p1->?y]

?p2 IN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range) )

Then Do(Assert( ?x[?p2->?y] ))

In the latter case, there is one such rule.

If And( ?p1[rdfs:subProperty->?p2]

?x[?p1->?y]

Not(?p2 = rdfs:subPropertyOf)

Not(?p2 = rdfs:subClassOf)

Not(?p2 = rdfs:domain)

Not(?p2 = rdfs:range) )

Then Do(Assert( ?x[?p2->?y] ))
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For brevity, in the remainder of the paper, I will compress the restrictions in the

condition using a newly introduced NOTIN keyword (this could also be considered a

special builtin predicate for this very purpose).

If And( ?p1[rdfs:subProperty->?p2]

?x[?p1->?y]

?p2 NOTIN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range)

Then Do(Assert( ?x[?p2->?y] ))

After step 2, using the new ruleset R′, there are 360 solutions. Note that this step

actually increased the search space. This is caused by splitting the rules, which

increases the number of rules and patterns, which increases the number of clauses

and variables in the SAT formula, which can increase the number of solutions. Step

2 is really meant to try and preserve some of the semantics of the original ruleset

by splitting the rules into cases based on whether or not they can infer (necessarily)

replicated facts. Those that do must meet more conditions.

For step 3, it seems like a good idea that triples matching the following pattern

should be placed arbitrarily.

And(?x1[?x2->?x3]

?x2 NOTIN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range) )

The intuition applied here (be it helpful or not) is that anything that is not consid-

ered terminological data should be placed arbitrarily. After this step, there are 128

solutions.

For step 4, rules scm-spo and scm-sco are kept from being eliminated because

the patterns in their conditions are all special cases of replication patterns. For step

5, rules prp-dom, prp-rng, cax-sco, and the restricted version of prp-spo in which
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inferred facts are not necessarily replicated, are all kept from elimination. Then,

only one rule is at risk for elimination, and that is the following.

And(?x1[?x2->?x3]

?x2 IN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range) )

After steps 4 and 5, there are only two possible solutions.

Steps 6 and 7 I have done programmatically, and in this way have been able to

report the number of solutions as I progress through the steps. For the CoreRDFS

ruleset, P contains the following patterns.

And(?x1[rdfs:subPropertyOf->?x3])

And(?x1[rdfs:subClassOf->?x3])

And(?x1[rdfs:domain->?x3])

And(?x1[rdfs:range->?x3])

And(?x1[rdf:type->?x3])

And(?x1[?x2->?x3]

?x2 NOTIN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range) )

And(?x1[?x2->?x3])

Even though the number of patterns is small, the SAT formula produced by step 7

has 90 clauses and is too large to display here with any clarity.

As already mentioned, there are only two solutions at this point. Since there

are so few solutions, step 8 could be skipped as the two solutions can just be in-

spected and the preferred one chosen. However, for the purpose of example, consider

the following possible heuristics.

Heuristic 1. For all P ∈ P, let weight(ε(P )) = 0.
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This heuristic says that arbitrarily assigning facts to processors comes for free.

It is a good thing (for parallelization) that data be kept from being replicated (if

possible), so no cost should be associated with it.

Heuristic 2. For all P ∈ P: if P is computable, let weight(α(P )) = 0; otherwise,

let weight(α(P )) = 1.

Computable patterns match only facts that are not physically manifest but

rather computationally determined on demand. Thus, “replication” of those facts

comes for free. For other patterns, though, an arbitrary cost is associated with repli-

cation of its matched facts. This simple heuristic is not very precise. Some patterns

represent a much larger number of facts than others, yet the cost for replication of

facts for any non-computable pattern is the same. The heuristic is naive, but in

practice, it has seemed more effective than initially expected. The reason appears

to be that these patterns are often related through common subsets as a result of

step 6.

Heuristic 3. For any r ∈ R′, let weight(χ(r)) =
∑

P∈Pweight(α(P )).

This heuristic says that it is always preferable to replicate data rather than

eliminate rules, except when all data must be replicated. The assumption is that we

want to preserve the originally intended semantics of the rules as much as possible.

Finally, after step 8, the selected, heuristically optimal solution corresponds

to a pattern assignment and a set of rules to eliminate. Only one rule (or rather

four rules shown here syntactically as one rule) is eliminated.

If And( ?p1[rdfs:subProperty->?p2]

?x[?p1->?y]

?p2 IN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range) )

Then Do(Assert( ?x[?p2->?y] ))

Furthermore, facts matching the following patterns should be replicated.
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Table 4.2: The Par-CoreRDFS Ruleset

Rule ID If And(. . .) Then Do(Assert(. . .))

scm-spo ?p1[rdfs:subPropertyOf->?p2] ?p1[rdfs:subPropertyOf->?p3]

?p2[rdfs:subPropertyOf->?p3]

scm-sco ?c1[rdfs:subClassOf->?c2] ?c1[rdfs:subClassOf->?c3]

?c2[rdfs:subClassOf->?c3]

prp-spo1∗ ?p1[rdfs:subPropertyOf->?p2] ?x[?p2->?y]

?x[?p1->?y]

?p2 NOTIN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range)

prp-dom ?p[rdfs:domain->?c] ?x[rdf:type->?c]

?x[?p->?y]

prp-rng ?p[rdfs:range->?c] ?y[rdf:type->?c]

?x[?p->?y]

cax-sco ?c1[rdfs:subClassOf->?c2] ?x[rdf:type->?c2]

?x[rdf:type->?c1]

And(?x1[rdfs:subPropertyOf->?x3])

And(?x1[rdfs:subClassOf->?x3])

And(?x1[rdfs:domain->?x3])

And(?x1[rdfs:range->?x3])

In this case, they are the exact patterns that were selected for replication in step 1.

Then, parallel inference with the rules in table 4.2 is correct when data is distributed

(or replicated) as just stated.

At this point, it is important to draw a distinction between this work and

related/previous work. In related/previous work, restrictions have been placed on

the data (factsets) and the conclusion has been, if one does not have such data in

his/her dataset (or such facts in his/her factset), then parallel inference is correct

(sound and complete) [19, 21]. More concisely, correctness of inference was condi-

tioned on characteristics of the data. The conditions or restrictions have been either

characterized as broad propositions [21] or mired in mathematical formulas [19].

In this work, I have taken a different perspective. Instead of saying inference is

correct for a ruleset R when a factset F meets certain conditions, I am determining

that parallel inference is correct for a specific approximation of the ruleset R (which

sometimes is even a very poor approximation, although not in the case of CoreRDFS

and Par-CoreRDFS) regardless of features of the factset. More concisely, correctness

of inference is conditioned on characteristics of the rules, and the conditions are

explicitly given by determining which rules should be eliminated.
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In some way, this is similar to the perspective proposed by Hitzler and van

Harmelen [60], that sound and complete reasoning should be considered a gold

standard, and what is really needed is a determination of how close to the standard

one can come while preserving some degree of scalability. The work of this chapter

represents a step in that direction by proving that under specific, explicit conditions,

scalability in the form of embarrassingly parallel inference is achievable. The only

question that remains is, how close is this inference to the gold standard? This

remains to be determined in future work.

4.3 Deriving Rulesets Amenable to Parallel Inference

In this section, the methodology of the previous section is used to restrict

the RDFS and OWL2RL rulesets into versions for which parallel inference will be

correct for some non-trivial replication schemes.

4.3.1 Restricting RDFS

The RDFS ruleset is given in table B.1 in appendix B.16 Note that this is not

the complete RDFS ruleset as the infinite number of axiomatic triples related to

container membership properties have been excluded in order to provide decidable

inference.17 Prior to taking any of the steps in the proposed methodology, the 3SAT

formula has 1,030,268,192 solutions.

For step 1, I chose the following “terminological patterns” and computable

patterns for replication.

And(?x1[rdfs:domain->?x3])

And(?x1[rdfs:range->?x3])

And(?x1[rdfs:subClassOf->?x3])

And(?x1[rdfs:subPropertyOf->x3])

And(?x1[rdf:type->rdfs:Class])

And(?x1[rdf:type->rdfs:Datatype])

And(?x1[rdf:type->rdfs:ContainerMembershipProperty])

16All tables prefixed with B appear in appendix B due to length of the tables.
17See [53] for a more thorough discussion.



74

And(External(pred:is-literal-XMLLiteral(?x1)))

And(External(pred:is-literal-PlainLiteral(?x1)))

Note that I have excluded the pattern And(?x1[rdf:type->rdf:Property]) even

though it could be considered terminological. This reflects some intuition on the

matter. Were facts matched by And(?x1[rdf:type->rdf:Property]) to be re-

quired to replicate, then by corollary 28, all triples would have to replicated given

rule rdf1, or the rule rdf1 would have to be eliminated. Additionally, even though

the individual axiomatic triples are very selective, I have not forced their replication

here because they will be replicated regardless by virtue of the fact that every proces-

sor has all the rules. These finer insights reflect the imprecision of the methodology

and the value of an understanding of the 3SAT reduction.

After step 1, there are 40,450,304 possible solutions, far fewer than the ini-

tial 1,030,268,192, but still a large number. Remember, though, that there is no

assurance that I have not precluded an optimal solution by taking these steps, but

the methodology has the benefit of making checking the sufficient conditions (via

reduction to 3SAT) more tractable and efficient.

Following step 2, there are too many examples to be listed here, but for clarity,

rule rdfs7 (same as prp-spo1) is a good single example of how the rules are split

(again, using IN and NOTIN to syntactically compress multiple rules into fewer rules).

If And( ?p1[rdfs:subPropertyOf->?p2]

?x[?p1->?y]

?p2 NOTIN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range

rdf:type) )

Then Do(Assert( ?x[?p2->?y] ))

If And( ?p1[rdfs:subPropertyOf->?p2]

?x[?p1->?y]

?p2 IN List(rdfs:subPropertyOf
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rdfs:subClassOf

rdfs:domain

rdfs:range) )

Then Do(Assert( ?x[?p2->?y] ))

If And( ?p1[rdfs:subPropertyOf->rdf:type]

?x[?p1->?y]

?y NOTIN List(rdfs:Class

rdfs:Datatype

rdfs:ContainerMembershipProperty) )

Then Do(Assert( ?x[rdf:type->?y] ))

If And( ?p1[rdfs:subPropertyOf->rdf:type]

?x[?p1->?y]

?y IN List(rdfs:Class

rdfs:Datatype

rdfs:ContainerMembershipProperty) )

Then Do(Assert( ?x[rdf:type->?y] ))

After step 2, there are 1,529,405,440 possible solutions, even more than at the be-

ginning. Again, the number of solutions has grown due to the increased number of

patterns and rules. Although it is not unusual for this step to increase the number

of solutions, it is an important step to take so that whole rules are not eliminated

simply because of some special case. In other words, more than reducing the search

space, this step improves preservation of the semantics of the original rules.

For step 3, I chose to require arbitrary placement of the facts matching the

following patterns.

And(?x1[?x2->?x3]

?x2 NOTIN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range
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rdf:type) )

And(?x1[rdf:type->?x3]

?x3 NOTIN List(rdfs:Class

rdfs:Dataype

rdfs:ContainerMembershipProperty) )

After this step, there are 655,360 solutions.

Performing steps 4 and 5 programatically, there remain only 10 possible solu-

tions. From step 6, P contains 87 patterns. Using the aforementioned heuristics for

step 8, the final solution is as follows. Facts matched by the patterns chosen in step

1 should be replicated, and others can be placed arbitrarily. However, the following

rules must be eliminated.

If And( ?u[rdf:type->rdf:Property] )

Then Do(Assert( ?u[rdfs:subPropertyOf->?u] ))

If And( ?x[?p->?y]

?p[rdfs:range->?c]

?c IN List(rdfs:Class

rdfs:Datatype

rdfs:ContainerMembershipProperty) )

Then Do(Assert( ?y[rdf:type->?c] ))

If And( ?x[?p->?y]

?p[rdfs:domain->?c]

?c IN List(rdfs:Class

rdfs:Datatype

rdfs:ContainerMembershipProperty) )

Then Do(Assert( ?x[rdf:type->?c] ))

If And( ?x[?p1->?y]

?p1[rdfs:subPropertyOf->?p2]



77

?p2 IN List(rdfs:subPropertyOf

rdfs:subClassOf

rdfs:domain

rdfs:range) )

Then Do(Assert( ?x[?p2->?y] ))

If And( ?x[?p1->?y]

?p1[rdfs:subPropertyOf->rdf:type]

?y IN List(rdfs:Class

rdfs:Datatype

rdfs:ContainerMembershipProperty) )

Then Do(Assert( ?x[rdf:type->?y] ))

If And( ?x[rdf:type->?c1]

?c1[rdfs:subClassOf->?c2]

?c2 IN List(rdfs:Class

rdfs:Datatype

rdfs:ContainerMembershipProperty) )

Then Do(Assert( ?x[rdf:type->?c2] ))

Then parallel inference is correct for the Par-RDFS ruleset given in table B.5. Note

that rule rdfs6 was eliminated entirely. In [21], Hendler and I reasoned that rule

rdfs6 was suitable for parallel inference because the kinds of triples it infers do not –

in the context of the finite RDFS closure and with certain axiomatic assumptions on

the data – lead to further novel inferences that would need to be replicated. Those

same axiomatic assumptions have not been assumed on the data in this work, and

so that argument does not necessarily (and almost certainly does not) hold here.

4.3.2 Restricting OWL2RL

Following the methodology for the OWL2RL ruleset given in table B.6 is much

more complicated given the large number of rules and patterns involved, and so in

this section, just the highlights are reviewed. Note that the OWL2RL rules presented
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herein are different than those from [3]. They are a RIF variation of the OWL2RL

rules from [61], deviating to make the rules amenable to forward-chaining, following

advice from [61] as well.

First notice that in the OWL2RL ruleset, many of the rules will get eliminated

due to corollary 25. One such example is rule prp-fp.

If And( ?p[rdf:type->owl:FunctionalProperty]

?x[?p->?y1]

?x[?p->?y2] )

Then Do(Assert( ?y1[owl:sameAs->?y2] ))

The reason for direct elimination of this rule is that it contains two patterns which

match all triples (frames). By corollary 25, the triples (facts) matching one of these

patterns must be replicated, which means that all triples (frame facts) must be

replicated. This defeats the purpose of parallelization, and so no choice remains

except to eliminate rule prp-fp.

Before any steps are taken, relsat (the SAT solver that I used [59]) reports

that there are 381,157,376 possible solutions, which seems too few. This report is

accompanied by a warning: “WARNING: Not using a bignum package. Solution

counts may overflow.” Upon proceeding with step 1, forcing replication of the facts

matched by the patterns in table B.8, relsat reports that there are zero possible

solutions, although it enumerates many solutions. This seems to suggest that the

number of solutions is so large that whatever integer datatype is being used, it is

not large enough to represent the value. After step 2, relsat again reports zero pos-

sible solutions, although it provides an example solution. After forcing arbitrary

placement of facts matched by patterns in table B.8, relsat again reports zero pos-

sible solutions, although it provides an example solution. After steps 4 and 5, relsat

reports 180 possible solutions. From step 6, P contains 534 patterns.

The remaining steps pick a single solution. In short, using the rules in table

B.10, replicating facts matching patterns in B.9, parallel inference is correct (when

using a RAOC). Unlike with restricting the CoreRDFS and RDFS rulesets, a signif-

icant degree of the semantics represented by the original rules has been sacrificed,
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which can be observed by comparing the rules in table B.6 with the rules in table

B.10.

4.4 Summary

In summary, this chapter adapted the general, sufficient conditions derived in

chapter 3 to apply specifically to a special case of distribution schemes called repli-

cation schemes. Determining whether these sufficient conditions are met was shown

to be reducible to 2SAT. The reduction to 2SAT was then augmented to allow for

the possibility to eliminate rules from the ruleset in order to improve parallelization,

and the new reduction is to 3SAT. The 3SAT reduction, though, can easily result in

3SAT formulas for which there are many possible solutions, and thus, can quickly

become intractable. A methodology was then proposed for how to reduce the search

space for 3SAT assignments. Although the methodology does not necessarily lead

to an optimal solution, it is nonetheless effective in restricting rulesets for correct

parallel inference, as was illustrated by restriction of the CoreRDFS ruleset, the

RDFS ruleset, and the OWL2RL ruleset.



CHAPTER 5

EVALUATION OF PARALLEL INFERENCE ON

SUPERCOMPUTERS

To empirically test the theoretical findings of chapters 3 and 4, an evaluation is per-

formed for parallel inference with rulesets that have been restricted to be amenable

to parallel inference, in combination with large, established, RDF datasets.

Section 5.1 details the parameters of the evaluation, including the rulesets,

datasets, metrics, and supercomputers used, as well as a discussion of the details

of the (sequential) inference engine used by each processor. The bulk of the actual

evaluation is reported in section 5.2.

5.1 Parameters of Evaluation

A thorough description of the parameters of the evaluation is necessary to

interpret the results reported in section 5.2. This section provides such details.

All code was written in C++ (except for source code from the LZO library, which

is written in C) using the Message Passing Interface [62] (MPI) for interprocess

communication.

5.1.1 Software Implementation of Inference Engine

In the past [21], I had used librdf [63] (aka Redland) to implement inference on

an x86-based cluster, using iterative SPARQL CONSTRUCT queries as rules [64].

However, after many attempts, it did not seem feasible to install and use librdf on

a Blue Gene18 due to dependencies on other libraries. This is a common problem in

using specialized supercomputers, that it is difficult to install and use such libraries

on atypical architectures. For this reason, and desiring to demonstrate scaling up

to large numbers of processors (like the thousands provided by a Blue Gene), I

was compelled to implement an inference engine on my own. However, since a

18Specifically, I had tried this on a Blue Gene/L in 2009 to no avail. I am uncertain as to whether
success could be had on later, more POSIX standard versions of the Blue Gene. By the time a
Blue Gene/Q was made available to me, I had already written the code used in this evaluation.

80
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sequential inference engine is not the main purpose of the work presented herein, the

implementation is naive. This should be kept in mind when interpreting the relative

speedup results in section 5.2 since it is well-known that relative speedup (or relative

performance metrics in general) favors less efficient algorithms [65]. However, the

execution times are reported as well in order to qualify any bias that may be present

in the speedup results.

The inference engine uses a forward-chaining, materialization strategy. That

is, starting with the data (or facts), apply the rules, and add/remove data (or infer-

ences in the case of adding data) into the body of facts as inference progresses. The

choice to perform forward-chaining here is based primarily on simplicity. Forward-

chaining inference engines are easier to implement than, say, backward-chaining

reasoners. The main performance drawback, though, is that forward-chaining ma-

terialization is space-intensive. Because all inferences must be stored explicitly, it

is quite possible to exhaust memory, and in fact, I have easily done so with some

rulesets and datasets. Regardless, the evaluation herein focuses primarily on paral-

lel scalability, i.e., how some performance characteristic changes while varying the

number of processors. Thus, efficiency of the sequential inference algorithm is sec-

ondary, and important only inasmuch as each processor must be able to perform

inference. However, this decision does imply some restrictions on this evaluation,

which are discussed further in this section and in section 5.1.4.

The inference engine simply iterates over the rules in the order that they are

given (see section B.3), terminating when no more changes are made to the dataset

(fixpoint semantics). The conflict set is never explicitly formed, and doing so is

unnecessary under the semantics of a AOC because all rule instances will be fired

anyway. Therefore, the rules are fired in a Datalog-like fashion, translating the rule

conditions into relational queries and then using the results to fire actions. None of

the rulesets under consideration (to be discussed in section 5.1.4) in this evaluation

contain negation (except of safely-used equality formulas) or retraction, so order of

rule firing is inconsequential, and a finite closure can always be produced.19 The

19Note also that the rulesets, discussed a bit later, contain neither functions nor built-ins, and
equality is used “safely.” See [54, 66] for more details on the safeness of rules, which guarantees a
finite closure for rulesets without negation or retraction.
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queries of the condition formulas are executed from left to right in the order shown

in the rule condition (i.e., a left-deep query execution plan). If at any point a join

or selection results in zero results, the query returns immediately with no results.

Care must be taken to make sure that equality and built-ins come after other atomic

formulas that bind their variables.

Each atomic formula transforms into a select-project-rename operation, the

exception being equality formulas. Equality formulas containing ground terms (this

includes all restrictions as defined in definition 55) are grouped together by shared

variables and executed as a single selection operation. The persistent and growing

dataset (set of triples, factset) is implemented as a std::set with predicate-object-

subject (POS) ordering. Should a triple pattern (frame formula) arise for which

a POS index is unsuitable, a scan is performed on the std::set. Atoms are also

stored in std::sets, each predicate having its own std::set, ordered lexicograph-

ically on the arguments of the atoms. As with the set of triples, when the ordering

is not suited to the atom, a scan is performed. Intermediate relations are imple-

mented as std::deques, the choice of which was determined based on experience

and comparison to performance using std::vectors and std::lists. Triples are

implemented as fixed arrays of three terms, and tuples in intermediate results and of

atoms are implemented as fixed arrays of some maximum length determined based

on the specific ruleset under consideration. (The length is the maximum number of

variables used in a rule, or the largest predicate arity, whichever is larger.) The data

is initially dictionary-encoded (discussed in detail in appendix A), so each term is

represented as a uniquely-assigned 64-bit integer.

Joins are performed using a one-sided index join. That is, of the two relations

to be joined, the smaller one is indexed on the values of the join variables, and

iterating over the larger relation, the index is probed for compatible tuples. The

index was implemented using std::map, and so letting R and S be the larger and

smaller relations (respectively) to be joined, building the index takes O(|S| · lg |S|)
time and probing it takes O(|R| · lg |S|) time.

It is important to understand that although the operational semantics are pre-

scribed in the form of forward-chained inference, that does not mean that forward-
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chaining is the necessary mechanism by which inference must be performed. The

findings of the previous chapters apply just as well to other mechanisms of in-

ference inasmuch as those mechanisms effectively produce the same outcome as

forward-chaining20. An example of this would be Datalog inference. Since Data-

log programs are known to have a finite closure, then both forward-chaining and

backward-chaining are capable of effectively providing the same results. From the

perspective of the operational semantics in section 3.1.2, whichever mechanism is

used is irrelevant, as long as from the perspective of the user, the answers come

out the same as though forward-chaining was performed exactly as described in the

operational semantics.21

5.1.2 Supercomputers and their Configurations

Two supercomputers are used in this evaluation. The first is a SMP system

called Mastiff with four 16-core Opteron 6272 processors22, 512 GB of RAM, and 2

TB of high-speed RAIDed disk. MPICH2 version 1.4.1 is the MPI version used for

evaluation on Mastiff. The operating system on Mastiff was Ubuntu 12.10. The code

was compiled with the -O3 optimization flag. Additionally, when running on Mastiff,

CPU affinity was set so that each processor was allowed to run on a dedicated CPU

to prevent overhead of context switching and cache misses that can arise when

the operating system reassigns processes to different CPUs. For example, for two

processors, processor zero is assigned to CPU zero, and processor one is assigned to

CPU 32. As larger numbers of processors are used, caches are increasingly shared.

Cache sharing begins after four processors.

The other system is a newly installed Blue Gene/Q [22] at the CCNI. Each

node of the Blue Gene/Q has 16 compute cores at 1.6 GHz each and 16 GB of

RAM. Each node can be overcommitted beyond 16 tasks up to 64 tasks, although

due to memory constraints, I have not taken advantage of overcommitting. The

20Also, if the distribution scheme is not a replication scheme, then each processor must be sure to
“filter out” inferences according to θ in the distribution scheme as previously discussed in regards
to line 9 of algorithm 3. Such does not apply to this evaluation since replication schemes are used.

21Of course, the user may perceive differences in performance, but again, not differences in
outcome.

22Used here in the hardware sense.
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nodes are interconnected by a 5D torus network. IBM’s MPI compiler is used

for compilation with the -O3 -qstrict optimization flags. When running jobs

with srun, --runjob-opts=’--envs MALLOC MMAP MAX =0 BG MAPCOMMONHEAP=1’

was used. MALLOC MMAP MAX =0 ensures that memory does not need to be “zeroed

out” when deallocated; BG MAPCOMMONHEAP=1 ensures that heap allocation is uniform

across processors.

For both supercomputers, posix memalign is used for memory allocation in

place of malloc or similar calls (although no special allocator was written for use

with STL containers).

5.1.3 Metrics

This evaluation focuses on scalability of two forms. The first is strong scaling,

that is, the ability to reduce the execution time for a fixed workload by adding

more processors. This is the traditional perspective of scalability from the parallel

computing community, and its primary metric is speedup S(p) = T1
Tp

where T1 is the

execution time for a single processor and Tp is the execution time for p processors.

In the ideal case, S(p) = p, although in practice it is sometimes possible to achieve

superlinear speedup when a large enough number of processors is used such that

each processor’s local data fits into a lower-level cache than with a smaller number of

processors. There are various definitions of speedup depending on the interpretation

of T1. In absolute speedup, T1 is the execution time for a single processor using

the best sequential algorithm. However, in practice, relative speedup is often used

instead, where T1 is determined using the parallel algorithm on a single processor.

Relative speedup is the strong scaling metric reported herein, although there are

known issues with relative speedup favoring slower algorithms. To remedy this,

execution times are reported as well. Efficiency for any form of speedup is defined

as E(p) = S(p)
p

, normalizing the achieved speedup to a value between zero and one23.

An often overlooked metric that will be used in this evaluation is the Karp-

Flatt metric [25]. The Karp-Flatt metric is the empirically determined serial fraction

of computation. The Karp-Flatt metric provides a good indication of how parallel a

23Again, with exception for superlinear speedup, in which case efficiency can be greater than
one.
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program is, which is not always directly apparent from speedup or efficiency. This

handy metric will prove quite useful in interpreting the evaluation results.

The second form of scaling is data scaling, a perspective I have proposed in

[7]. Data scaling is a form of weak scaling. In weak scaling, the workload is not

fixed like it is in strong scaling. Rather, it varies in some way as a function of the

number of processors. Gustafson scaling [67] – also known as fixed-time scaling –

scales sequential workload with processor size. In this case, execution time T1 is

fixed, the amount of work that p processors can do in T1 time is determined, and

then Tp is the time it takes a single processor to do the same amount of work that

p processors did in T1 time. So-called scaled speedup is then defined as S(p) = Tp
T1

,

and ideally S(p) = p. Another form of weak scaling is memory-bounded scaling [68]

in which the workload grows to consume the full memory capacity of the available

processors. This is very close to the idea of data scaling, but it differs in that it

focuses on memory capacity instead of data quantity, the two of which do not always

coincide, particularly in the case of inference when one does not know a priori how

large the closure will be.

In contrast, data scaling is concerned with the ability to handle larger quan-

tities of data by adding more processors. In the case of inference over RDF data,

the unit of data would be the RDF triple. Fixing the ratio of data quantity per

processor in some sensible way to C referred to as the processor capacity, Tp is then

defined as the time it takes for p processors to execute with input of size C · p. The

metric for data scaling is referred to as growth efficiency G(p) = T1
Tp

, and ideally,

G(p) = 1, and in the worst case, G(p) is near zero. This metric is referred to as a

form of efficiency rather than speedup because its values range between zero and

one instead of zero and p, making it more similar to efficiency than speedup.

In short, the metrics for this evaluation are execution time, relative speedup,

efficiency, the Karp-Flatt metric, and growth efficiency.

5.1.4 Rulesets

Although the rulesets in tables B.5 and B.10 are restricted versions of the

RDFS and OWL2RL rulesets (respectively) for which parallel inference is correct,
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they include some inference rules which, in practice, are troublesome and, in some

cases, uninteresting. Such rules have been excluded from this evaluation. The

general reason is memory constraint. Some rules lead to a drastic increase in the

number of inferences, but many of these inferences appear to add only nominal value

and are likely more efficiently (space-wise) inferred in a backward-chained fashion.

(This has also been noted by Urbani et al. [20].)

For the restricted version of RDFS inference, the Par-CoreRDFS ruleset is

used as shown in table 4.2. At first, exclusion of rules rdf1, rdfs4a, and rdfs4b

was necessary (particularly the latter two) because they resulted in a large number

of ?x1[rdf:type->rdfs:Resource] and ?x1[rdf:type->rdf:Property] triples,

sometimes resulting in exhaustion of memory. Rules rdf2 and rdfs1 were also ex-

cluded due to lack of support of the pred:is-literal-XMLLiteral and

pred:is-literal-PlainLiteral built-ins (defined in [69]). After eliminating those

rules, keeping rules rdfs8, rdfs10, rdfs12, rdfs13, and the axiomatic triples seemed

like an arbitrary compromise between the RDFS and CoreRDFS rulesets, although

it would be more complete wrt the RDFS semantics [17]. Regardless, it seems more

useful to consider the slightly restricted version of the CoreRDFS ruleset rather

than the seemingly arbitrarily restricted version of the RDFS ruleset because the

CoreRDFS ruleset represents the minimum RDFS inference support of most (if not

all) RDFS inference engines.

Turning to OWL2RL, the Par-OWL2 ruleset in table B.10 represents a re-

stricted version of the OWL2RL ruleset that is amenable to parallel inference. When

initially attempting inference with the Par-OWL2 ruleset on the 2012 Billion Triples

Challenge (BTC2012) dataset, it was quite easy to exhaust memory. The primary

cause was rules eq-ref, eq-ref1, and eq-ref2, which essentially require the explicit

statement that everything is the same as itself. For the evaluation, these rules have

been excluded. For similar reason, rules scm-cls2 and scm-cls3 have been excluded.

The following rules were excluded, being deemed as “uninteresting,” in order to fur-

ther reduce memory consumption (although the savings in some cases are admittedly

quite small): scm-cls, scm-cls1, scm-op, scm-op1, scm-dp, scm-dp1, prp-ap-l, prp-

ap-c, prp-ap-sa, prp-ap-idb, prp-ap-d, prp-ap-pv, prp-ap-bcw, prp-ap-iw, cls-thing,
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and cls-nothing1.

The semantic purist may consider these exclusions as an arbitrary disregard

for completeness, but it is not so arbitrary. This is simply an example of the deli-

cate balance between theory and practice, and in this case, the particular difficulty

in meeting the memory requirements for inference on large datasets. It is not so

unusual for there to be a discrepancy between theory and practice. For example,

from the point of view of theoretical computational complexity, it is often consid-

ered that a polynomial time algorithm is efficient, but in practice, if the highest

power of the polynomial is sufficiently large, or if the size of the input is sufficiently

large, the algorithm becomes impractical. Another example is Nick’s Class (NC) for

parallel complexity, which says that if a problem can be solved in polylogarithmic

time with a polynomial number of processors, then it is considered to be “fast”

in parallel [70]. In practice, though, developers tend not to be able to scale the

number of processors polynomially. Thus, it should come as no surprise that in this

case, there are practical considerations (memory) which inhibit demonstration of all

theoretical findings, considering the realistic resources at one’s disposal. Therefore,

the discrepancy between the rulesets derived in chapter 4 and the ones used in this

evaluation does not necessitate a flaw or lack of value in the findings of the previous

chapters, but it does mean that the value of the rulesets derived in chapter 4 for

parallel inference is not demonstrated by this evaluation. Overcoming the memory

constraints to empirically demonstrate the value for the rulesets derived in chapter 4

remains as future work, and this evaluation instead focuses on even more restricted

versions of the rulesets.

The Par-OWL2 rules excluded from the evaluation are marked with a † in

table B.10. Note that the same replication scheme used for the Par-OWL2 ruleset

is valid for the further restricted version since the same 3SAT reduction can be used

as for deriving the Par-OWL2 ruleset, but this time, choosing the same assignment

of variables with the exception that, e.g., χ(eq-ref) is set to one to indicate the

elimination of rule eq-ref. Doing so still results in an assignment of variables that

satisfies the 3SAT formula, which is clear by inspection of the example in section

4.2.2.
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To summarize, there are two rulesets used in this evaluation: (1) the Par-

CoreRDFS rules in table 4.2, and (2) the rules not marked with † in table B.10.

The latter will be referred to as the Par-MemOWL2 ruleset.

5.1.5 Datasets

This evaluation uses two datasets that represent different ends of the spectrum

in terms of difficulty. The first dataset, referred to herein as LUBM10K, is the

dataset generated using the Lehigh University Benchmark (LUBM) [23] dataset

generator to generate synthetic data for 10,000 universities. When generating the

dataset, a random seed of zero was used (which is the common practice).

LUBM is one of the earliest, synthetic, RDF dataset generators used for perfor-

mance evaluation of OWL reasoning systems. For this reason, it useful for comparing

with previous systems. However, LUBM data is unrealistic. Relative to real-world

datasets, there is very little data skew, and the data is quite “clean” (e.g., no chance

of “ontology hijacking” [71]). For the purposes of this evaluation, though, it repre-

sents a necessary test for scalability. That is, if inference is not scalable on LUBM

data, then it will very likely not be scalable for real-world datasets.

The other dataset used in this evaluation is the 2012 Billion Triples Challenge

(BTC2012) dataset. The BTC2012 dataset is a set of RDF quads crawled from the

Web for the purposes of a challenge in which submissions compete for the designation

of champion as determined by a committee who decides, more or less (in my own

determination), which submission is the most interesting considering the complexity

of the dataset. The important distinction of the Billion Triples Challenge as opposed

to the Open Track Challenge is that the crawled dataset must be used, and that is

indeed the true challenge. The BTC datasets are well-known for having data that

are troublesome (in terms of semantics [48] and performance [44]) for inference, have

high data skew [44, 47, 72] and even syntactic problems [73]. For the purposes of this

evaluation, BTC2012 represents a sufficient test for scalability. That is, if inference

is scalable on BTC2012, then it will very likely be scalable for other real-world

datasets.

These datasets have been preprocessed prior to inference, which is common in
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evaluations like this (e.g., see [51]). There are three preprocessing steps for strong

scaling, and there is an additional preprocessing step for data scaling. The first is

normalization, applied only to BTC2012. The second is LZO compression, applied

to both datasets. The third is dictionary encoding, applied to both datasets. The

fourth is replication of triples as required for correct parallel inference. In the strong

scaling evaluations, this step is part of the overall inference process and this is not

considered preprocessing. However, in order to facilitate data scaling (the input

size increases linearly with the number of processors), replication of these triples is

performed prior to inference as a preprocessing step.

All steps can, in theory, be performed in parallel, and the code has been written

to support it. However, given limited availability of supercomputers, normalization

and LZO compression were performed on a single machine, specifically a Mac mini

server with 10 GB of RAM and 768 GB of disk, 256 GB of which was a solid

state drive. With such limited resources and such large datasets, normalization and

LZO compression took several days for a single dataset. Dictionary encoding and

replication, on the other hand, were performed on supercomputers. The rest of this

section is dedicated to describing preprocessing.

In the case of BTC2012, the quad position was first stripped out to render

RDF triples, and then the dataset was “normalized”24 as in [73]25. Normalization

includes the following:

• removing lines (which should correspond to RDF triples) that are clearly in-

valid in N-Triples [75], which includes26:

– multiple triples on one line,

– lines with incorrectly delimited RDF terms (e.g., an IRI starting with <

but not ending with >);

24In previous work [21, 74], I had often used a naive and simplistic N-triples parser which
worked well under the assumption that the data was correctly formatted as N-triples. However,
this became less useful in later BTC datasets.

25Note that although there were initially some bugs as reported in [73], they have been worked
out prior to this evaluation.

26Note that non-alphanumeric blank node labels were tolerated.
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• removal of lines containing invalid UTF-8 sequences27;

• removal of lines with invalid Unicode codepoints according to UCS 6.2.0 [77];

• removal of lines with syntactically invalid IRIs according to RFC 3987 [55];

• removal of lines with invalid language tags according to RFC 5646 [78];

• normalization of IRIs according to RFC 3987 [55], which includes:

– percent-unencoding any unnecessarily percent-encoded characters,

– NFC normalization [79],

– path resolution (e.g., /a/../b becomes /b),

– lower-casing the scheme and host;

• NFC normalization of the lexical representations of RDF literals;

• normalization of language tags according to RFC 5646 [78].

The BTC2012 dataset was then deduplicated (that is, duplicate triples were re-

moved). No such normalization was performed on LUBM10K.

It is important to note the distribution of the data in the N-Triples files at

this point. The LUBM10K dataset is ordered as generated (triples are naturally

grouped by subject) and actually contains a very small fraction of duplicates. The

LUBM ontology is at the beginning of the file. The BTC2012 dataset is sorted as a

result of the sequential deduplication process. These details will be important for a

discussion of load-balancing in section 5.2.1.1.

After normalization, all datasets were LZO-compressed so that the data could

fit within the newly instituted disk quotas at the Computational Center for Nan-

otechnology Innovations (CCNI) [80]. LZO compression is a block compression

algorithm, and the source code from the LZO 2.06 library [81] was used. The LZO-

compression approach from [72] was used to directly compress the N-triples data

(i.e., there was no syntactic compression in the form of Sterno). A four MB block

27Although the BTC2012 dataset is provided as (compressed) N-Quads [76] files, which requires
US-ASCII encoding, UTF-8 sequences still occur in the form of escaped sequences.
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Table 5.1: Dataset Sizes

Dataset #Triples
#Bytes

NT
LZO Encoded

Data Index Data Dict.

LUBM10K 1,334,681,485 224 GB 15.1 GB 448 KB 29.8 GB 23.0 GB
BTC2012 1,056,171,751 172 GB 17.8 GB 344 KB 23.6 GB 33.4 GB

Table 5.2: Closure Sizes in Number of (Unique) Triples

Dataset Par-CoreRDFS Par-MemOWL2

LUBM10K 1,667,939,414 1,950,780,866
BTC2012 2,429,721,741 (insufficient memory)

size was used with the LZO1X algorithm, and blocks were composed such that each

block contained complete lines/triples. That is, no triples were split across blocks.

During compression, a list of offsets into the compressed file is kept, where each

offset determines the beginning of a compressed block. This allows for parallel de-

compression. Again, as with the normalization process, compression could in theory

have been done in parallel, as demonstrated in [72], but at the time, it was more

convenient to do it on a single machine, the same Mac mini server used for nor-

malization. The LZO-compressed datasets are the versions that are deployed to the

supercomputers. There, they are dictionary encoded in parallel, which is described

in detail in appendix A.

Table 5.1 shows the sizes of the datasets in number of unique triples, bytes in

the N-Triples file, sizes in LZO-compressed form, and sizes in dictionary compressed

form. It should be noted that the LZO-compressed sizes for LUBM10K are for the

LUBM10K dataset as generated (i.e., including duplicate triples, which are relatively

few). The closure sizes are given in table 5.2.

Table 5.3 gives the times to dictionary encode the datasets, and table 5.4

gives the times to replicate the appropriate triples prior to data scaling. Times are

reported in the format minutes:seconds. For the Blue Gene/Q, the same number

of nodes was used regardless of dataset, specifically 2,048 nodes. However, for

LUBM10K, 16 processors (or tasks) were assigned per node, and for BTC2012, one

processor (or task) was assigned per node. The times reported are overall times,

including disk I/O, with the exception of the “Repl” column in table 5.4 which
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Table 5.3: Dictionary Encoding Times

System Dataset Ruleset P Min Avg Max Dev

Mastiff
LUBM10K

Par-CoreRDFS 64 27:11 28:03 28:33 0:18
Par-MemOWL2 64 28:57 29:58 30:27 0:15

BTC2012 Par-CoreRDFS 64 38:32 43:42 46:45 1:53

Blue Gene/Q
LUBM10K

Par-CoreRDFS 32,768 0:52 1:03 1:14 0:02
Par-MemOWL2 32,768 0:50 1:00 1:10 0:02

BTC2012 Par-CoreRDFS 2,048 9:32 9:37 9:56 0:02

Table 5.4: Replication Preprocessing Times Prior to Data Scaling

System Dataset Ruleset P Min Avg Max Dev Repl

Mastiff
LUBM10K

Par-CoreRDFS 64 1:20 1:33 1:40 0:06 0:14
Par-MemOWL2 64 1:55 2:05 2:11 0:06 0:50

BTC2012 Par-CoreRDFS 64 1:15 1:24 1:29 0:03 0:38

Blue Gene/Q
LUBM10K

Par-CoreRDFS 32,768 0:11 0:20 0:24 0:02 0:07
Par-MemOWL2 32,768 0:11 0:20 0:26 0:02 0:07

BTC2012 Par-CoreRDFS 2,048 0:06 0:07 0:08 0:00 0:05

reports the actual time spent in performing replication (which includes querying

out the triples to be replicated and the subsequent MPI calls).

Concerning dictionary encoding, it is important to note that caching of remote

lookups (described in appendix A) is turned on for the Blue Gene/Q and turned off

for Mastiff.

Note that no metrics are reported for Par-MemOWL2 inference on BTC2012.

The reason is that preliminary evaluation using the Par-MemOWL2 ruleset with

the BTC2012 dataset caused memory to become exhausted, even with 64 GB per

processor (eight processors on Mastiff). Therefore, it appeared infeasible to perform

such an evaluation. This is further discussed in section 5.2.

5.2 Scalability of Parallel Inference

Parallel inference consists of six phases.

1. The processors collectively read the ruleset (which has already been encoded

beforehand). This step usually takes subsecond time and so is not explicitly

included in the reported metrics.

2. Load. The processors each read the dictionary-encoded triples from their

separate files and load the encoded triples into a std::set.
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3. Repl. The processors replicate the data according to the predetermined pat-

tern assignment. This is done by first collectively reading the encoded patterns

from a file. Then, the triples matching the patterns are queried out of the lo-

cal dataset and written into a buffer. The processors broadcast the triples to

each other using MPI::Intracomm::Allgatherv and then load the replicated

triples into their std::sets. This step does nothing except perform a barrier

in the data scaling evaluations because in that case, replication is performed

as a preprocessing step.

4. Infer. The processors perform inference independently of each other.

5. Uniq. The processors deduplicate the data by hash-distributing the triples.

6. Write. The processors write their local triples out to individual files.

Metrics are reported for each of the phases as appropriate (except for reading the

rules, as mentioned) and for the overall execution. The replication phase and the

deduplication phase act (in part) as barriers. This adds some complexity to measur-

ing execution time. For example, the time for the replication phase of a processor

begins directly after the load phase finishes. Therefore, if the load phase is un-

balanced, one processor could report a longer time in the replication phase simply

because it is waiting on other processors and not because any actual work is nec-

essary. Therefore, the processor reporting the most time spent in the replication

phase is often (if not always) the processor reporting the least time spent in the

load phase. For this reason, the sum of the maximum times for each phase is likely

greater than the overall maximum time.

Therefore, when computing metrics for each phase, for communication phases

(repl, uniq), the minimum time is used, and for other phases (load, infer, write),

the maximum time is used. For the overall time, the maximum time is used since

it reflects the perceived time of the user. The same holds for charts of execution

times.
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5.2.1 Strong Scaling

This section is the strong scaling portion of the evaluation. Recall that strong

scaling is concerned with reducing the execution time for a fixed workload by adding

more processors. First, the results for Mastiff are considered, and then the Blue

Gene/Q is considered. Focus should be given to the inference phase because paral-

lelization of inference has been the focus of this thesis. Metrics for other phases are

included (particularly for the overall process) in order to provide indication of other

barriers to scalability that are encountered in practice.

5.2.1.1 Mastiff

Table 5.5 gives the metrics for Par-CoreRDFS inference on LUBM10K using

Mastiff. The number of processors is scaled by powers of two from one to 64. While

the table provides specific details, trends are more readily observed in figure 5.1.

Figure 5.1a shows the execution times. Note that the time for the repl phase is

not shown because it is lower than the minimum y-axis value. It is excluded to give

more clarity to the phases that dominate the overall process. All phases decrease in

time with number of processors. The total time does not change significantly from

one to two processors because adding multiple processors introduces overhead that

is non-existent for a single processor. In this case, the uniq (deduplication) phase

is the specific reason for this initial lack of scalability. Also note that starting at 16

processors, disk contention when writing the output increases.

Figures 5.1b and 5.1c show the relative speedup and efficiency curves (respec-

tively). Initially, speedup for the infer phase is superlinear up to eight processors.

This is likely due to the way in which CPU affinity is set as described in section

5.1.2, reducing cache contention among processors. Thus, adding more processors

with a fixed workload causes there to be less data per processor, and each processor

can better utilize its cache. This is most effective at four processors when an aston-

ishing efficiency of 1.220 is achieved for the infer phase. At eight processors, cache

sharing begins, and so efficiency begins to drop.

However, after 16 processors, efficiency begins to plummet, reaching a low

of 0.548 at 64 processors. The question remains as to whether this efficiency is
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Table 5.5: Strong Scaling, Mastiff, Par-CoreRDFS, LUBM10K

P Task Min Avg Max Dev Sdup Eff KF

1

Load 44:08 44:08 44:08 0:00 1.000 1.000 -
Repl 0:00 0:00 0:00 0:00 - - -
Infer 2:45:22 2:45:22 2:45:22 0:00 1.000 1.000 -
Uniq 0:00 0:00 0:00 0:00 - - -
Write 9:48 9:48 9:48 0:00 1.000 1.000 -
Total 3:39:18 3:39:18 3:39:18 0:00 1.000 1.000 -

2

Load 20:09 20:19 20:30 0:10 2.153 1.076 -0.071
Repl 0:00 0:10 0:21 0:10 - - -
Infer 1:16:36 1:16:36 1:16:36 0:00 2.159 1.079 -0.074
Uniq 1:09:05 1:28:25 1:47:45 19:20 - - -
Write 6:02 6:05 6:09 0:03 1.593 0.797 0.255
Total 2:52:20 3:11:36 3:30:53 19:16 1.040 0.520 0.923

4

Load 9:27 9:31 9:39 0:05 4.573 1.143 -0.042
Repl 0:00 0:08 0:12 0:05 - - -
Infer 32:53 33:27 33:54 0:27 4.878 1.220 -0.060
Uniq 34:37 35:04 35:40 0:28 - - -
Write 3:03 3:07 3:13 0:04 3.047 0.762 0.104
Total 1:21:12 1:21:18 1:21:23 0:04 2.695 0.674 0.161

8

Load 4:23 4:41 5:20 0:22 8.275 1.034 -0.005
Repl 0:00 0:39 0:57 0:22 - - -
Infer 16:28 18:15 20:00 1:39 8.268 1.034 -0.005
Uniq 19:46 21:34 23:17 1:35 - - -
Write 1:27 1:37 2:00 0:13 4.900 0.613 0.090
Total 46:32 46:46 47:21 0:20 4.631 0.579 0.104

16

Load 2:13 2:19 2:51 0:12 15.485 0.968 0.002
Repl 0:00 0:32 0:38 0:12 - - -
Infer 7:34 8:26 10:16 0:58 16.107 1.007 0.000
Uniq 10:36 12:27 13:18 0:56 - - -
Write 0:48 0:55 1:12 0:07 8.167 0.510 0.064
Total 24:31 24:39 25:05 0:10 8.743 0.546 0.055

32

Load 1:19 1:25 1:50 0:09 24.073 0.752 0.011
Repl 0:00 0:25 0:31 0:09 - - -
Infer 4:06 4:35 6:04 0:39 27.258 0.852 0.006
Uniq 6:42 8:12 8:40 0:36 - - -
Write 0:29 0:50 1:07 0:15 8.776 0.274 0.085
Total 15:05 15:27 15:43 0:15 13.953 0.436 0.042

64

Load 0:52 0:56 1:20 0:09 33.100 0.517 0.015
Repl 0:00 0:24 0:28 0:09 - - -
Infer 2:20 2:48 4:43 0:47 35.060 0.548 0.013
Uniq 4:27 6:23 6:50 0:43 - - -
Write 0:24 0:41 0:51 0:07 11.529 0.180 0.072
Total 10:54 11:13 11:32 0:09 19.014 0.297 0.038
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Figure 5.1: Strong Scaling, Mastiff, Par-CoreRDFS, LUBM10K

considered good for the problem at hand. The Karp-Flatt metric can be used to

answer this question.

Figure 5.1d shows the Karp-Flatt metric for Par-CoreRDFS inference on

LUBM10K using Mastiff. Recall that the Karp-Flatt metric is the experimentally

determined serial fraction of computation. Thus, zero is completely parallel, and

one is completely serial. At two processors, the Karp-Flatt metric for the infer phase

is initially negative due to superlinear speedup. The decrease in parallelization due

to cache contention is apparent by the sudden jump in the metric between four and

eight processors. The Karp-Flatt metric then steadily increases at a very slow rate

to a value of 0.013 at 64 processors. From this, it can be concluded that although

efficiency is only 0.548, it cannot be made much better than that, and the decrease

in efficiency is largely inherent to the problem (that is, to Par-CoreRDFS inference

on LUBM10K).
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The really interesting question, though, is what makes up the 1.3% of the com-

putation that is effectively serial? It cannot be communication because inference

is embarrassingly parallel. There are three apparent (and non-mutually-exclusive)

explanations. One explanation is contention for shared resources, like cache con-

tention. Another explanation is redundant work, of which there is certainly some

small amount due to rules scm-sco and scm-spo, but these rules represent a fixed

amount of redundant work and cannot account for the increase in the metric. The

more obvious explanation is load-balancing problems which can be easily observed

from the standard deviation in the processor times reported in table 5.5. At 64

processors, the fastest processor takes 2:20 and the slowest processor takes 4:43 to

perform inference, with a standard deviation of 0:47. Certainly, load-balancing is

an issue.

A common and simple approach to load-balancing is static random allocation.

In static random allocation, each unit of data (in this case, each triple that can be

placed arbitrarily) is randomly assigned to a single processor. Preliminary exper-

iments with static random allocation revealed some unexpected and non-intuitive

findings. The goal of load-balancing is to decrease the maximum execution time

by decreasing the standard deviation (i.e., spreading out work more evenly across

processors). However, my preliminary experiments showed that static random allo-

cation indeed decreased standard deviation, but also increased the maximum execu-

tion time on larger numbers of processors. Thus, the effect is the opposite of what

one would expect. Additionally, memory consumption was much higher, so much

so that 64 processors caused all 512 GB of Mastiff to be exhausted.

After some investigation, there is a logical explanation. Recall from section

5.1.5 that triples in the LUBM10K dataset are naturally grouped by subject. Con-

sider the following example with subject grouping, based on characteristics of real

LUBM data (using the Turtle syntax instead of RIF frames).

ub:teacherOf rdfs:domain ub:Faculty .

ub:Faculty rdfs:subClassOf ub:Employee .

_:prof0 ub:teacherOf _:course0 .

_:prof1 ub:teacherOf _:course1 .
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_:prof1 ub:teacherOf _:course2 .

With the data in this order, two processors would be assigned data as follows.

# Processor 0

ub:teacherOf rdfs:domain ub:Faculty .

ub:Faculty rdfs:subClassOf ub:Employee .

_:prof0 ub:teacherOf _:course0 .

# Processor 1

ub:teacherOf rdfs:domain ub:Faculty .

ub:Faculty rdfs:subClassOf ub:Employee .

_:prof1 ub:teacherOf _:course1 .

_:prof1 ub:teacherOf _:course2 .

Then processors will draw the following inferences.

# Processor 0

_:prof0 rdf:type ub:Faculty .

_:prof0 rdf:type ub:Employee .

# Processor 1

_:prof1 rdf:type ub:Faculty .

_:prof1 rdf:type ub:Employee .

Now consider static random allocation. It is then possible that processors can

be assigned data as follows.

# Processor 0

ub:teacherOf rdfs:domain ub:Faculty .

ub:Faculty rdfs:subClassOf ub:Employee .

_:prof1 ub:teacherOf _:course1 .

# Processor 1

ub:teacherOf rdfs:domain ub:Faculty .

ub:Faculty rdfs:subClassOf ub:Employee .

_:prof0 ub:teacherOf _:course0 .

_:prof1 ub:teacherOf _:course2 .
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Then processors will draw the following inferences.

# Processor 0

_:prof1 rdf:type ub:Faculty .

_:prof1 rdf:type ub:Employee .

# Processor 1

_:prof0 rdf:type ub:Faculty .

_:prof0 rdf:type ub:Employee .

_:prof1 rdf:type ub:Faculty .

_:prof1 rdf:type ub:Employee .

There are two important differences to note. Firstly, even though the exact

same triples are inferred, there are more replicated inferences under static ran-

dom allocation than under subject grouping. This explains the increased memory

consumption. Secondly, there is more redundant work. Both processors had to

infer by rule scm-sco that since :prof1 rdf:type ub:Faculty and ub:Faculty

rdfs:subClassOf ub:Employee, then :prof1 rdf:type ub:Employee. This ex-

plains the increased execution time. This shows that due to rules prp-dom and

scm-sco, scattering triples with the same subject across processors actually results

in more work. Presumably, it seems that the same could be said for prp-rng and

scm-sco when triples with the same object are scattered across processors.

In short, while one would typically expect static random allocation to decrease

maximum execution time by more evenly distributing data among processors, this

assumption does not hold for general inference. In the case of Par-CoreRDFS in-

ference on LUBM10K, static random allocation actually created more redundant

work. It is for this reason that I have left the files in their natural ordering without

any initial redistribution (except the natural side effect of the preprocessing or data

generation). This suggests that load-balancing of parallel inference is non-trivial.

Determining good load-balancing methods for parallel inference is left as future

work. The reader should keep this caveat in mind when interpreting all results in

this chapter and remember that this is the reason that explicit load-balancing has

been avoided.

Urbani has previously observed this effect in his MapReduce-based inference
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engine as noted in section 2.2.4 of [51]. He found that this effect made Map-side

joins a less practical solution than using the Map phase for distribution and then

performing joins in the Reduce phase, specifically in the context of RDFS-based

inference. As a solution, Urbani distributes non-ontology triples based on terms in

the triples that will be used to bind variables in rule actions. In this way, the Reduce

phase will implicitly perform some (but not necessarily all) deduplication of infer-

ences. Regardless, part of his evaluation suggests some load-balancing issues remain

for real-world datasets, which is to be expected due to skew in the distribution of

terms in real-world RDF data.

Returning to the discussion of the Karp-Flatt metric for Par-CoreRDFS in-

ference on LUBM10K using Mastiff, as shown in figure 5.1d, regardless of the poor

load-balancing, the infer phase is almost completely parallel. The steady (but slow)

increase in the metric from eight to 64 processors can be attributed to increased

contention for shared resources, poor load-balancing, and redundant work.

Now consider Par-MemOWL2 inference on LUBM10K using Mastiff. The

specific metrics are given in table 5.6, but trends can be better observed in figure

5.2. The execution times are given in figure 5.2a. Note that unlike in Par-CoreRDFS

inference, the repl phase takes a significant amount of time that decreases with

the number of processors. This is due to an inefficiency in the way in which the

data to be replicated is queried out prior to actual replication (i.e., the time is

not a reflection of the cost of communication). In Par-CoreRDFS, the triples to be

replicated were looked up directly via an index, but here, they are scanned out. This

is an unintended side effect caused by a combination of the naive inference engine

and the way in which replication patterns were specified (in rule files; see section

B.3) for Par-MemOWL2. Regardless, the repl phase still takes the least amount of

time, and so this inefficiency should not heavily impact the overall trend.

The speedup and efficiency curves in figures 5.2b and 5.2c, respectively, show a

similar trend as with Par-CoreRDFS inference on LUBM10K. Superlinear speedup

(for the infer phase) is achieved on lower numbers of processors due to little or no

cache contention, and then for 32 and 64 processors, efficiency decreases significantly.

At 64 processors, efficiency for the infer phase is 0.676. This brings up an inter-
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Table 5.6: Strong Scaling, Mastiff, Par-MemOWL2, LUBM10K

P Task Min Avg Max Dev Sdup Eff KF

1

Load 43:30 43:30 43:30 0:00 1.000 1.000 -
Repl 0:00 0:00 0:00 0:00 - - -
Infer 10:58:30 10:58:30 10:58:30 0:00 1.000 1.000 -
Uniq 0:00 0:00 0:00 0:00 - - -
Write 10:31 10:31 10:31 0:00 1.000 1.000 -
Total 11:52:31 11:52:31 11:52:31 0:00 1.000 1.000 -

2

Load 20:13 20:15 20:18 0:02 2.143 1.071 -0.067
Repl 4:16 4:18 4:21 0:02 - - -
Infer 4:54:01 4:54:01 4:54:01 0:00 2.240 1.120 -0.107
Uniq 1:07:08 1:07:18 1:07:28 0:10 - - -
Write 6:19 6:20 6:21 0:01 1.656 0.828 0.208
Total 6:32:04 6:32:13 6:32:22 0:09 1.816 0.908 0.101

4

Load 9:26 9:33 9:38 0:05 4.516 1.129 -0.038
Repl 2:05 2:10 2:17 0:05 - - -
Infer 2:16:42 2:16:54 2:16:58 0:07 4.808 1.202 -0.056
Uniq 40:36 43:03 49:51 3:56 - - -
Write 3:24 4:18 6:35 1:19 1.597 0.399 0.501
Total 3:12:52 3:15:58 3:21:56 3:42 3.528 0.882 0.045

8

Load 4:26 4:35 5:20 0:17 8.156 1.020 -0.003
Repl 1:25 2:10 2:19 0:17 - - -
Infer 1:03:24 1:15:06 1:23:16 7:04 7.908 0.989 0.002
Uniq 23:09 31:22 43:01 7:02 - - -
Write 1:47 1:56 2:20 0:11 4.507 0.563 0.111
Total 1:54:57 1:55:09 1:55:47 0:16 6.154 0.769 0.043

16

Load 2:14 2:16 2:19 0:01 18.777 1.174 -0.010
Repl 0:37 0:40 0:42 0:01 - - -
Infer 31:10 33:55 37:37 2:38 17.506 1.094 -0.006
Uniq 12:32 16:15 18:59 2:37 - - -
Write 0:58 1:01 1:04 0:02 9.859 0.616 0.042
Total 54:03 54:07 54:13 0:03 13.142 0.821 0.014

32

Load 1:19 1:20 1:24 0:01 31.071 0.971 0.001
Repl 0:20 0:24 0:25 0:01 - - -
Infer 17:21 18:23 21:29 1:25 30.652 0.958 0.001
Uniq 7:51 10:57 11:59 1:25 - - -
Write 0:36 0:58 1:18 0:18 8.090 0.253 0.095
Total 31:40 32:02 32:22 0:18 22.014 0.688 0.015

64

Load 0:51 0:52 1:00 0:01 43.500 0.680 0.007
Repl 0:15 0:23 0:24 0:01 - - -
Infer 10:02 11:13 15:13 1:44 43.275 0.676 0.008
Uniq 5:10 9:10 10:21 1:44 - - -
Write 0:32 0:47 0:54 0:05 11.685 0.183 0.071
Total 22:11 22:25 22:32 0:05 31.621 0.494 0.016



102

esting question in comparison to the efficiency achieved with the Par-CoreRDFS

ruleset, which was 0.548 at 64 processors. How is it that inference with a more

complex ruleset like Par-MemOWL2 can be more efficient than with a simpler rule-

set like Par-CoreRDFS? The apparent explanation is that there is proportionally

more parallel work with Par-MemOWL2 inference. In other words, even though

there is an increase in the sequential work due to an (effectively) larger ontology

(i.e, more replicated TBox inference), there is a proportionally larger increase in the

parallel work (i.e., even more distributed ABox inference). This is confirmed by the

Karp-Flatt metric, which at 64 processors is 0.008 for Par-MemOWL2 and 0.013 for

Par-CoreRDFS. This means that, non-intuitively, parallel Par-MemOWL2 inference

is more scalable (in the strong scaling sense) than parallel Par-CoreRDFS inference,

at least for LUBM data.

Again, the Karp-Flatt metric in figure 5.2d reveals that Par-MemOWL2 in-

ference on LUBM10K is almost completely parallel, even for the total process. The

increase in the metric for the inference phase from two to eight processors can be

explained by poorer load-balancing. After eight processors, the inference phase

appears to remain nearly completely parallel.

LUBM data is unrealistic and “easy” for inference relative to real-world

datasets. Thus, the results that have been shown thus far give an indication of

the scale that is achievable with the restricted rulesets (Par-CoreRDFS and Par-

MemOWL2) in an ideal scenario. At this point, I turn to the real-world, BTC2012

dataset, which represents a worst-case scenario. Recall from section 5.1.5 that Par-

MemOWL2 inference is not performed on BTC2012 due to memory exhaustion,

although in light of the recent discussion of load-balancing, it may not be entirely

impossible on Mastiff or the Blue Gene/Q if load-balancing can be improved. An-

other possible cause is an excessively large ontology, which cannot be remedied given

the embarrassingly parallel paradigm held fixed in this evaluation. As mentioned,

though, load-balancing techniques are left as future work.

The metrics for Par-CoreRDFS inference on BTC2012 (using Mastiff) are given

in table 5.7. In figure 5.3a, the change in execution times are visualized. Note that

the repl phase does not appear because the time is so low. A noticeable differ-
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Figure 5.2: Strong Scaling, Mastiff, Par-MemOWL2, LUBM10K

ence between Par-CoreRDFS inference on LUBM10K and the same on BTC2012

is that, with BTC2012, the infer phase dominates the total execution time. With

LUBM10K, the infer phase and the uniq phase took about the same amount of time.

This is because far more inferences are drawn from BTC2012 than from LUBM10K.

Speedup and efficiency, shown in figures 5.3b and 5.3c (respectively) suggest

significantly poorer scalability (in the strong scaling sense) for the infer phase than

with LUBM10K. Superlinear speedup is achieved at two and four processors, but

that ends sharply at eight processors. Efficiency drastically decreases thereafter,

ending at a low 0.245 at 64 processors. The question remains, though, whether this

is good for the problem at hand.

The Karp-Flatt metric visualized in figure 5.3d indicates that, indeed, the

efficiency of 0.245 is actually good at 64 processors because the infer phase is roughly

95% parallel (i.e. roughly 5% serial). As previously mentioned, the serial portion
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Table 5.7: Strong Scaling, Mastiff, Par-CoreRDFS, BTC2012

P Task Min Avg Max Dev Sdup Eff KF

1

Load 33:13 33:13 33:13 0:00 1.000 1.000 -
Repl 0:00 0:00 0:00 0:00 - - -
Infer 10:03:05 10:03:05 10:03:05 0:00 1.000 1.000 -
Uniq 0:00 0:00 0:00 0:00 - - -
Write 11:38 11:38 11:38 0:00 1.000 1.000 -
Total 10:47:56 10:47:56 10:47:56 0:00 1.000 1.000 -

2

Load 14:09 15:06 16:04 0:57 2.067 1.034 -0.033
Repl 0:00 0:57 1:55 0:57 - - -
Infer 4:36:03 4:36:03 4:36:03 0:00 2.185 1.092 -0.085
Uniq 1:25:27 1:25:27 1:25:28 0:00 - - -
Write 7:12 7:23 7:35 0:11 1.534 0.767 0.304
Total 6:24:47 6:24:59 6:25:11 0:12 1.682 0.841 0.189

4

Load 6:16 7:19 9:18 1:11 3.572 0.893 0.040
Repl 0:01 1:59 3:03 1:11 - - -
Infer 1:44:28 2:11:49 2:20:56 15:47 4.279 1.070 -0.022
Uniq 53:34 1:02:41 1:30:00 15:46 - - -
Write 4:15 4:36 5:32 0:33 2.102 0.526 0.301
Total 3:28:05 3:28:27 3:29:27 0:35 3.093 0.773 0.098

8

Load 2:35 3:32 4:39 0:49 7.143 0.893 0.017
Repl 0:00 1:07 2:04 0:48 - - -
Infer 48:48 1:08:22 1:33:52 16:17 6.425 0.803 0.035
Uniq 34:03 1:04:45 1:29:47 18:51 - - -
Write 1:53 2:19 3:29 0:29 3.340 0.417 0.199
Total 2:14:10 2:20:08 2:34:23 6:43 4.197 0.525 0.129

16

Load 1:08 1:44 2:39 0:27 12.535 0.783 0.018
Repl 0:00 0:55 1:31 0:27 - - -
Infer 8:40 36:11 51:19 11:35 11.752 0.735 0.024
Uniq 21:17 39:09 1:03:43 12:55 - - -
Write 1:02 1:12 1:26 0:07 8.116 0.507 0.065
Total 1:16:04 1:19:11 1:25:48 3:52 7.552 0.472 0.075

32

Load 0:40 0:59 1:35 0:15 20.979 0.656 0.017
Repl 0:00 0:36 0:55 0:15 - - -
Infer 6:06 23:25 50:08 10:28 12.030 0.376 0.054
Uniq 18:57 46:43 1:02:43 10:42 - - -
Write 0:37 1:08 1:48 0:28 6.463 0.202 0.127
Total 1:11:14 1:12:51 1:18:33 2:15 8.249 0.258 0.093

64

Load 0:26 0:39 1:02 0:09 32.145 0.502 0.016
Repl 0:00 0:23 0:36 0:09 - - -
Infer 4:48 15:05 38:28 7:40 15.678 0.245 0.049
Uniq 15:31 38:53 49:07 7:38 - - -
Write 0:29 0:52 1:09 0:13 10.116 0.158 0.085
Total 55:28 55:53 56:08 0:14 11.543 0.180 0.072
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Figure 5.3: Strong Scaling, Mastiff, Par-CoreRDFS, BTC2012

of computation can be attributed to poor load-balancing (which is evident from the

standard deviations in table 5.7), contention for shared resources, and redundant

work.

5.2.1.2 Blue Gene/Q

The Blue Gene/Q is a very different architecture from Mastiff, as described in

section 5.1.2. Most notably, it is a distributed memory architecture in which each

node has 16 cores and 16 GB of memory. Strong scaling is performed for 512, 1,024,

and 2,048 nodes. For inference on LUBM10K, 16 processors are assigned to a node,

and so 8,192 is the base number of processors used for computing metrics. Due to

the need for a large amount of memory per processor for inference on BTC2012, only

one processor is assigned per node. It should be noted that, in the case of BTC2012,

the computational power of the Blue Gene/Q is severely underutilized. Future work
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includes adding Pthreads to the inference engine to better take advantage of the

computational resources of each individual node.

For inference on LUBM10K, times are reported down to hundredths of a second

so as not too lose precision in trends due to very low times. Due to a minor bug in

the timing code, however, standard deviations are reported in seconds.

The metrics for strong scaling Par-CoreRDFS inference on LUBM10K using

the Blue Gene/Q are given in table 5.8. Note that the time for 8,192 processors is

used as the base for computing metrics. The execution times in figure 5.4a indicate

that the majority of the total process is dominated by disk I/O and the uniq phase.

The infer phase itself takes 4.18, 2.04, and 0.99 seconds on 8,192, 16,384, and 32,768

processors, respectively.

Figure 5.4b shows that, while relative speedup for the total process is terrible,

the infer phase achieves superlinear speedup. This is also reflected in efficiency shown

in figure 5.4c. Additionally, the Karp-Flatt metric in figure 5.4d indicates that the

infer phase is completely parallel. In other words, it appears that Par-CoreRDFS

inference on LUBM data is completely scalable (in the strong scaling sense) on the

Blue Gene/Q. On the downside, the total process is not actually getting any faster.

Par-MemOWL2 inference on LUBM10K shows the same trends. The metrics

are given in table 5.9. The execution times in figure 5.5a show that at 8,192 pro-

cessors, the infer and uniq phases dominate the total process, but that changes as

the number of processors increases, causing disk I/O to dominate the total process.

In fact, time to write to disk increases. Superlinear speedup is still achieved for

the infer phase as shown by relative speedup in figure 5.5b and efficiency in figure

5.5c. The Karp-Flatt metric in figure 5.5d shows that the infer phase is completely

parallel.

While these results on LUBM10K are exciting and quite impressive, it must be

remembered that LUBM data is unrealistic and that the data is naturally organized

when generated. The same cannot be said for BTC2012. The metrics for Par-

CoreRDFS inference on BTC2012 are given in table 5.10. It must be noted that

the maximum infer time far exceeds the average for any number of processors listed.

This indicates that in the BTC2012 dataset (thinking of it as a sorted N-triples
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Table 5.8: Strong Scaling, Blue Gene/Q, Par-CoreRDFS, LUBM10K

P Task Min Avg Max Dev Sdup8192 Eff8192 KF8192

8192

Load 0:00.95 0:05.40 0:10.11 0:01 1.000 1.000 -
Repl 0:00.27 0:04.47 0:08.47 0:01 - - -
Infer 0:03.42 0:03.51 0:04.18 0:00 1.000 1.000 -
Uniq 0:10.76 0:11.40 0:11.48 0:00 - - -
Write 0:01.31 0:03.82 0:07.78 0:02 1.000 1.000 -
Total 0:26.92 0:29.43 0:33.39 0:02 1.000 1.000 -

16384

Load 0:00.52 0:06.85 0:09.62 0:01 1.050 0.525 0.905
Repl 0:00.45 0:02.15 0:06.43 0:01 - - -
Infer 0:01.39 0:01.71 0:02.04 0:00 2.041 1.020 -0.020
Uniq 0:06.17 0:06.50 0:06.80 0:00 - - -
Write 0:01.47 0:04.80 0:05.49 0:01 1.416 0.708 0.412
Total 0:20.24 0:23.56 0:24.25 0:01 1.377 0.688 0.453

32768

Load 0:00.26 0:05.91 0:07.49 0:01 1.350 0.337 0.655
Repl 0:00.79 0:01.76 0:06.95 0:01 - - -
Infer 0:00.43 0:00.83 0:00.99 0:00 4.207 1.052 -0.016
Uniq 0:03.97 0:04.12 0:04.50 0:00 - - -
Write 0:03.47 0:11.54 0:13.81 0:02 0.564 0.141 2.032
Total 0:17.41 0:25.48 0:27.76 0:02 1.203 0.301 0.775
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Figure 5.4: Strong Scaling, Blue Gene/Q, Par-CoreRDFS, LUBM10K
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Table 5.9: Strong Scaling, Blue Gene/Q, Par-MemOWL2, LUBM10K

P Task Min Avg Max Dev Sdup8192 Eff8192 KF8192

8192

Load 0:00.83 0:04.52 0:08.03 0:06 1.000 1.000 -
Repl 0:00.58 0:03.77 0:07.02 0:06 - - -
Infer 0:12.44 0:12.70 0:14.99 0:00 1.000 1.000 -
Uniq 0:12.25 0:14.50 0:14.76 0:00 - - -
Write 0:01.04 0:03.37 0:06.88 0:02 1.000 1.000 -
Total 0:37.44 0:39.77 0:43.28 0:02 1.000 1.000 -

16384

Load 0:00.28 0:06.87 0:09.98 0:01 0.805 0.402 1.485
Repl 0:00.60 0:02.51 0:07.60 0:00 - - -
Infer 0:05.09 0:06.19 0:07.35 0:01 2.039 1.020 -0.019
Uniq 0:07.03 0:08.17 0:09.25 0:01 - - -
Write 0:01.78 0:04.85 0:11.60 0:01 0.593 0.296 2.374
Total 0:27.63 0:30.72 0:37.46 0:01 1.155 0.578 0.731

32768

Load 0:00.16 0:05.46 0:07.41 0:01 1.084 0.271 0.897
Repl 0:00.91 0:01.88 0:07.60 0:01 - - -
Infer 0:01.55 0:02.99 0:03.57 0:01 4.189 1.047 -0.015
Uniq 0:04.70 0:05.28 0:06.70 0:01 - - -
Write 0:02.65 0:10.71 0:15.52 0:02 0.443 0.111 2.675
Total 0:20.49 0:28.54 0:33.33 0:02 1.298 0.325 0.694
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file), some regions result in far more inferences than others. This is not surprising

since my colleagues and I had already witnessed such an effect in performing partial

RDFS inference on the 2009 Billion Triples Challenge dataset (BTC2009) [44].

Of greatest interest, though, is that Par-CoreRDFS inference on BTC2012

with 512/1,024 processors is slower (considering the maximum processor time) than

it is on Mastiff with 64 processors. On 2,048 processors, the maximum time is

about the same. Note also that the average processor time continues to decrease.

The most likely explanation is that some processor is assigned a very concentrated,

“inference-rich” region of the BTC2012 dataset, and that processor is pushing its

memory limits. On Mastiff, this was not an issue because processors requiring

less memory allowed other processors to have more memory, and so the skew in

memory requirement is tolerable due to the large shared memory. Such is not

the case on the Blue Gene/Q. Better load-balancing is much needed to improve

scalability on distributed memory architectures. An obvious possible solution is to

allow communication between processors, taking advantage of the Blue Gene/Q’s

high-performance network. This is outside the scope of the study of this thesis, and

so it remains as future work.

Regardless, figure 5.6 indicates poor scaling from 512 to 1,024 processors, but

good scaling from 1,024 to 2,048 processors. Using 512 processors as the base for

computing metrics, the infer phase is roughly 40% serial at 2,048 processors. Again,

this is largely due to load-balancing issues which are not easily or intuitively solved

as discussed in section 5.2.1.1. That is, the sorted order of the BTC2012 dataset has

hurt here, but static random allocation would likely exacerbate the memory issues.

More investigation is needed, but I conjecture that using static random allocation

would give the impression of better scalability (since relative speedup is being used)

but not necessarily faster execution time. Urbani’s [51] method of data distribution

may help, although it is not completely clear since load-balancing was still an issue

for him on real-world datasets.
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Table 5.10: Strong Scaling, Blue Gene/Q, Par-CoreRDFS, BTC2012

P Task Min Avg Max Dev Sdup512 Eff512 KF512

512

Load 0:05 0:10 0:17 0:01 1.000 1.000 -
Repl 0:02 0:09 0:14 0:01 - - -
Infer 8:28 15:04 1:04:10 6:35 1.000 1.000 -
Uniq 20:00 1:09:09 1:15:43 6:33 - - -
Write 0:03 0:06 0:08 0:01 1.000 1.000 -
Total 1:24:33 1:24:38 1:25:13 0:03 1.000 1.000 -

1024

Load 0:02 0:05 0:09 0:01 1.889 0.944 0.059
Repl 0:01 0:05 0:08 0:01 - - -
Infer 8:11 12:22 1:00:28 4:27 1.061 0.531 0.885
Uniq 17:44 1:05:51 1:10:01 4:26 - - -
Write 0:02 0:04 0:08 0:01 1.000 0.500 1.000
Total 1:18:23 1:18:26 1:18:59 0:02 1.079 0.539 0.854

2048

Load 0:00 0:03 0:04 0:01 4.250 1.062 -0.020
Repl 0:01 0:03 0:06 0:01 - - -
Infer 8:02 10:53 35:02 1:44 1.832 0.458 0.395
Uniq 10:25 34:35 37:25 1:44 - - -
Write 0:01 0:01 0:03 0:00 2.667 0.667 0.167
Total 45:34 45:35 45:54 0:01 1.857 0.464 0.385
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5.2.2 Data Scaling

Now I turn to a different kind of scalability called data scaling which has

already been introduced in section 5.1.3. In short, though, data scaling is concerned

with how well execution time can be held constant (or rather, kept from increasing)

as processors are added, holding the ratio of input size to number of processors fixed.

This perspective is data-centric in that it is concerned with handling more data, not

executing faster. Thus, it is a form of weak scaling.

The metric for data scaling is called growth efficiency [7]. A value of one

indicates that scaling number of processors linearly with input size holds execution

time constant. A value less than one indicates that adding more processors cannot

handle (linearly) larger input without increasing the execution time.

The data scaling evaluation is performed by first having the maximum number

of processors for the given scenario perform inference on the entire dataset. Then

half of the processors perform inference on the first half of the dataset. Then a

quarter of the processors perform inference on the first quarter of the dataset, and

so on. Thus, data scaling is very susceptible to distribution skew in the dataset files,

and this should be kept in mind when interpreting all results in this section.

Recall from section 5.1.5 that the replication phase is performed as a prepro-

cessing step for data scaling. Thus, the times for repl reported in the tables and

figures simply indicate how long processors waited at a barrier.

5.2.2.1 Mastiff

Data scaling on Mastiff is not entirely sensible. As an SMP machine, scaling

up processors within a single machine does not provide additional (space-related)

resources for handling more data. Regardless, a data scaling evaluation can reveal

characteristics about the data and the machine that can provide more insights into

the ruleset and dataset under consideration.

The metrics for Par-CoreRDFS inference on LUBM10K are given in table 5.11.

Note that even though the task is effectively the same for 64 processors as it was in

strong scaling, the times are generally faster in the data scaling results. The greatest

contributing factor to this difference appears to be that loading the data was faster.
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Table 5.11: Data Scaling, Mastiff, Par-CoreRDFS, LUBM10K

P Task Min Avg Max Dev GEff

1

Load 0:21 0:21 0:21 0:00 1.000
Repl 0:00 0:00 0:00 0:00 -
Infer 1:21 1:21 1:21 0:00 1.000
Uniq 0:00 0:00 0:00 0:00 -
Write 0:05 0:05 0:05 0:00 1.000
Total 1:47 1:47 1:47 0:00 1.000

2

Load 0:22 0:22 0:23 0:00 0.913
Repl 0:00 0:00 0:01 0:00 -
Infer 1:21 1:21 1:21 0:00 1.000
Uniq 1:37 1:37 1:37 0:00 -
Write 0:05 0:05 0:05 0:00 1.000
Total 3:26 3:26 3:26 0:00 0.519

4

Load 0:22 0:23 0:23 0:00 0.913
Repl 0:00 0:00 0:01 0:00 -
Infer 1:22 1:23 1:24 0:01 0.964
Uniq 1:56 1:57 1:58 0:01 -
Write 0:06 0:06 0:06 0:00 0.833
Total 3:49 3:49 3:49 0:00 0.467

8

Load 0:21 0:23 0:23 0:01 0.913
Repl 0:00 0:00 0:02 0:01 -
Infer 1:22 1:23 1:24 0:01 0.964
Uniq 2:16 2:17 2:18 0:01 -
Write 0:06 0:07 0:07 0:00 0.714
Total 4:09 4:10 4:10 0:00 0.428

16

Load 0:23 0:24 0:25 0:01 0.840
Repl 0:00 0:01 0:02 0:01 -
Infer 1:25 1:27 1:28 0:01 0.920
Uniq 2:29 2:30 2:32 0:01 -
Write 0:07 0:21 0:22 0:04 0.227
Total 4:29 4:43 4:44 0:04 0.377

32

Load 0:26 0:46 1:07 0:19 0.313
Repl 0:00 0:21 0:41 0:19 -
Infer 1:38 1:42 1:44 0:02 0.779
Uniq 3:09 3:11 3:15 0:02 -
Write 0:09 0:25 0:28 0:03 0.179
Total 6:11 6:27 6:30 0:03 0.274

64

Load 0:31 0:33 0:45 0:02 0.467
Repl 0:00 0:12 0:14 0:02 -
Infer 2:20 2:45 3:14 0:14 0.418
Uniq 4:19 4:49 5:13 0:13 -
Write 0:20 0:34 0:45 0:04 0.111
Total 8:42 8:54 9:06 0:04 0.196
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Table 5.12: Data Scaling, Mastiff, Par-MemOWL2, LUBM10K

P Task Min Avg Max Dev GEff

1

Load 0:22 0:22 0:22 0:00 1.000
Repl 0:00 0:00 0:00 0:00 -
Infer 5:05 5:05 5:05 0:00 1.000
Uniq 0:00 0:00 0:00 0:00 -
Write 0:05 0:05 0:05 0:00 1.000
Total 5:32 5:32 5:32 0:00 1.000

2

Load 0:21 0:21 0:22 0:00 1.000
Repl 0:00 0:00 0:01 0:00 -
Infer 5:06 5:07 5:08 0:01 0.990
Uniq 1:58 1:59 2:00 0:01 -
Write 0:06 0:06 0:06 0:00 0.833
Total 7:34 7:34 7:34 0:00 0.731

4

Load 0:22 0:22 0:23 0:00 0.957
Repl 0:00 0:01 0:01 0:00 -
Infer 5:07 5:07 5:08 0:00 0.990
Uniq 2:21 2:21 2:22 0:00 -
Write 0:07 0:07 0:07 0:00 0.714
Total 7:59 7:59 7:59 0:00 0.693

8

Load 0:21 0:23 0:24 0:01 0.917
Repl 0:00 0:01 0:03 0:01 -
Infer 5:04 5:35 6:20 0:35 0.803
Uniq 2:43 3:28 3:59 0:35 -
Write 0:08 0:08 0:11 0:01 0.455
Total 9:35 9:35 9:38 0:01 0.574

16

Load 0:22 0:23 0:26 0:01 0.846
Repl 0:00 0:03 0:04 0:01 -
Infer 5:21 5:55 7:13 0:46 0.704
Uniq 2:57 4:15 4:49 0:45 -
Write 0:09 0:12 0:14 0:02 0.357
Total 10:45 10:48 10:51 0:02 0.510

32

Load 0:27 0:27 0:29 0:01 0.759
Repl 0:00 0:01 0:02 0:01 -
Infer 6:16 7:13 10:00 1:20 0.508
Uniq 3:47 6:34 7:31 1:19 -
Write 0:12 0:24 0:34 0:09 0.147
Total 14:28 14:40 14:50 0:09 0.373

64

Load 0:31 0:32 0:39 0:02 0.564
Repl 0:00 0:07 0:08 0:02 -
Infer 7:49 11:02 14:55 2:43 0.341
Uniq 5:05 8:59 12:11 2:42 -
Write 0:21 0:39 0:47 0:08 0.106
Total 21:00 21:19 21:26 0:07 0.258
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Table 5.13: Data Scaling, Mastiff, Par-CoreRDFS, BTC2012

P Task Min Avg Max Dev GEff

1

Load 0:17 0:17 0:17 0:00 1.000
Repl 0:00 0:00 0:00 0:00 -
Infer 9:47 9:47 9:47 0:00 1.000
Uniq 0:00 0:00 0:00 0:00 -
Write 0:09 0:09 0:09 0:00 1.000
Total 10:13 10:13 10:13 0:00 1.000

2

Load 0:17 0:17 0:17 0:00 1.000
Repl 0:00 0:00 0:00 0:00 -
Infer 6:03 7:55 9:47 1:52 1.000
Uniq 2:51 4:42 6:33 1:51 -
Write 0:08 0:08 0:08 0:00 1.125
Total 13:01 13:02 13:03 0:01 0.783

4

Load 0:17 0:17 0:18 0:00 0.944
Repl 0:00 0:00 0:01 0:00 -
Infer 6:04 7:38 9:49 1:22 0.997
Uniq 3:29 5:39 7:13 1:21 -
Write 0:08 0:08 0:09 0:00 1.000
Total 13:43 13:43 13:45 0:01 0.743

8

Load 0:16 0:17 0:18 0:01 0.944
Repl 0:00 0:01 0:02 0:01 -
Infer 6:05 7:24 9:59 1:03 0.980
Uniq 3:58 6:32 7:51 1:02 -
Write 0:09 0:10 0:10 0:00 0.900
Total 14:23 14:24 14:25 0:00 0.709

16

Load 0:15 0:19 0:24 0:03 0.708
Repl 0:00 0:05 0:09 0:03 -
Infer 4:42 12:41 20:11 6:28 0.485
Uniq 7:14 14:46 22:43 6:27 -
Write 0:12 0:14 0:16 0:01 0.562
Total 28:02 28:05 28:08 0:02 0.363

32

Load 1:19 1:29 1:44 0:07 0.163
Repl 0:00 0:15 0:25 0:07 -
Infer 3:50 12:23 32:54 8:16 0.297
Uniq 11:18 31:48 40:19 8:14 -
Write 0:15 0:29 0:40 0:09 0.225
Total 46:13 46:23 46:36 0:09 0.219

64

Load 0:20 0:26 0:33 0:03 0.515
Repl 0:00 0:07 0:13 0:03 -
Infer 4:53 15:19 39:25 7:59 0.248
Uniq 15:29 39:33 49:56 7:57 -
Write 0:29 0:45 0:57 0:07 0.158
Total 55:55 56:10 56:20 0:07 0.181
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Figure 5.7: Data Scaling, Mastiff, Par-CoreRDFS, LUBM10K
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Figure 5.8: Data Scaling, Mastiff, Par-MemOWL2, LUBM10K
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Figure 5.9: Data Scaling, Mastiff, Par-CoreRDFS, BTC2012
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This could be explained by the fact that each processor’s local input dataset is sorted

as a result of having performed the replication phase as a preprocessing step, and

thus loading the triples into a std::set is faster. Of course, the repl phase, which

is really just a barrier, is also faster.

Trends can be observed in figure 5.7. Note that the infer phase appears to keep

its time fairly constant until 16-32 processors. At 64 processors, growth efficiency

for the infer phase is a mere 0.418. This is an expected result, and it confirms

two things. First, the LUBM10K dataset has a fairly even distribution to it wrt

Par-CoreRDFS inference. If it did not, then growth efficiency would change more

drastically (in either direction) on lower numbers of processors. Second, since the

LUBM10K dataset is fairly evenly distributed, the contention for resources is the

only explanation for the decrease in growth efficiency.

For Par-MemOWL2 inference on LUBM10K, the metrics are given in table

5.12 and visualized in figure 5.8. The infer phase takes nearly the same amount

of time up to four processors, and after that, the time begins to increase. This

makes sense because, at eight processors, sharing of L2 cache begins. However, the

significant increase in time was not observed for Par-CoreRDFS inference until after

16 processors. This suggests that with the smaller number of inferences for Par-

CoreRDFS inference, processors can take greater advantage of their (independent)

L1 caches and more efficiently share their L2 caches. With Par-MemOWL2, there

are more inferences, and so cache contention increases. This is clearly observed by

the steady decline of growth efficiency from four to 64 processors.

For Par-CoreRDFS inference on BTC2012, the metrics are given in table 5.13

and visualized in figure 5.9. The infer phase is nearly constant up to eight processors,

and then the time increases drastically after that. Although cache contention is a

factor, this behavior seems abnormal compared to inference on LUBM10K. Figure

5.9b shows that from eight to 16 processors, there is a steep drop in growth efficiency,

much steeper than was witnessed with LUBM10K. An explanation could be skew

in the data. Data scaling on the Blue Gene/Q will help to determine the root cause

since scaling number of nodes does not increase cache contention.
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5.2.2.2 Blue Gene/Q

Unlike with Mastiff, data scaling is more sensible on a distributed memory

architecture in which increasing the number of independent28 nodes can handle

larger datasets without concern for contention of shared resources.

Times for inference on LUBM10K are reported down to hundredths of a second

in order to preserve precision in the trends. Due to a bug in the timing code,

standard deviation of times is not reported for LUBM10K.

The metrics for data scaling Par-CoreRDFS inference on LUBM10K are given

in table 5.14. As is expected, figure 5.10 indicates nearly perfect data scaling for the

infer phase. For Par-MemOWL2 (metrics in table 5.15), figure 5.11 also indicates

good data scaling, but not close perfect. This is difficult to explain because data

scaling is perfect from 8,192 to 16,384 processors, so this would suggest that, given

the even distribution of LUBM data and the fact that inference is embarrassingly

parallel, it should also hold for higher numbers of processors. However, figure 5.11b

contradicts this intuition with a drop in growth efficiency from 16,384 to 32,768

processors. Further investigation is needed and is left as future work.

Turning to BTC2012, the metrics for data scaling Par-CoreRDFS inference

are given in table 5.16. Figure 5.12a shows that time for the infer phase remains

essentially constant from 512 to 1,024 processors and then suddenly increases from

1,024 to 2,048 processors. Growth efficiency for the infer phase in figure 5.12b is poor

for 2,048 processors at a mere 0.442. This is the result of skew in the distribution

of data in BTC2012. Specifically, it appears the the second half of the dataset

contains more work than the first half. Here the sorted order of the dataset has hurt

again. Recall, though, that were I to use static random allocation, memory would

be exhausted, and inference would be infeasible. Future work includes further study

on load-balancing including experiments using Urbani’s approach [51]. Considering

the high-performance network of the Blue Gene/Q, the speed-dating approach of

Kotoulas et al. is also a good candidate for consideration [47].

28Independent with respect to embarrassingly parallel computation.
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Table 5.14: Data Scaling, Blue Gene/Q, Par-CoreRDFS, LUBM10K

P Task Min Avg Max GEff8192

8192

Load 00:00.25 00:03.51 00:09.06 1.000
Repl 00:00.18 00:05.37 00:09.02 -
Infer 00:00.85 00:00.88 00:00.96 1.000
Uniq 00:03.23 00:03.28 00:03.35 -
Write 00:00.57 00:01.83 00:02.45 1.000
Total 00:14.36 00:15.62 00:16.24 1.000

16384

Load 00:00.24 00:03.58 00:05.94 1.523
Repl 00:00.15 00:02.02 00:05.80 -
Infer 00:00.85 00:00.89 00:00.98 0.980
Uniq 00:03.69 00:03.76 00:03.83 -
Write 00:01.52 00:04.94 00:05.99 0.409
Total 00:12.73 00:16.16 00:17.21 0.944

32768

Load 00:00.26 00:05.91 00:07.49 1.210
Repl 00:00.79 00:01.76 00:06.95 -
Infer 00:00.43 00:00.83 00:00.99 0.970
Uniq 00:03.97 00:04.12 00:04.50 -
Write 00:03.47 00:11.54 00:13.81 0.177
Total 00:17.41 00:25.48 00:27.76 0.585

Table 5.15: Data Scaling, Blue Gene/Q, Par-MemOWL2, LUBM10K

P Task Min Avg Max GEff8192

8192

Load 00:00.21 00:03.46 00:05.43 1.000
Repl 00:00.13 00:01.63 00:05.39 -
Infer 00:02.96 00:03.05 00:03.19 1.000
Uniq 00:03.80 00:03.92 00:04.03 -
Write 00:00.56 00:01.87 00:02.52 1.000
Total 00:13.67 00:14.98 00:15.63 1.000

16384

Load 00:00.25 00:03.86 00:09.48 0.573
Repl 00:00.17 00:04.92 00:09.28 -
Infer 00:02.96 00:03.05 00:03.18 1.005
Uniq 00:04.38 00:04.48 00:04.59 -
Write 00:01.54 00:04.93 00:05.52 0.458
Total 00:19.45 00:22.85 00:23.44 0.667

32768

Load 00:00.16 00:05.46 00:07.41 0.733
Repl 00:00.91 00:01.88 00:07.60 -
Infer 00:01.55 00:02.99 00:03.57 0.893
Uniq 00:04.70 00:05.28 00:06.70 -
Write 00:02.65 00:10.71 00:15.52 0.163
Total 00:20.49 00:28.54 00:33.33 0.469
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Figure 5.10: Data Scaling, Blue Gene/Q, Par-CoreRDFS, LUBM10K
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Figure 5.11: Data Scaling, Blue Gene/Q, Par-MemOWL2, LUBM10K

1 

10 

100 

1000 

10000 

512 1024 2048 

Load 

Repl 

Infer 

Uniq 

Write 

Total 

(a) Times (seconds)

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

512 1024 2048 

Infer 

Total 

(b) Growth Efficiency

Figure 5.12: Data Scaling, Blue Gene/Q, Par-CoreRDFS, BTC2012
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Table 5.16: Data Scaling, Blue Gene/Q, Par-CoreRDFS, BTC2012

P Task Min Avg Max Dev GEff512

512

Load 0:03 0:05 0:07 0:01 1.000
Repl 0:00 0:02 0:04 0:01 -
Infer 8:11 11:24 15:30 1:23 1.000
Uniq 4:10 8:17 11:29 1:22 -
Write 0:01 0:01 0:02 0:00 1.000
Total 19:47 19:48 19:51 0:01 1.000

1024

Load 0:03 0:05 0:07 0:01 1.000
Repl 0:00 0:03 0:05 0:01 -
Infer 8:09 11:05 15:30 1:15 1.000
Uniq 4:12 8:37 11:33 1:14 -
Write 0:00 0:01 0:04 0:00 0.500
Total 19:50 19:51 19:54 0:01 0.997

2048

Load 0:00 0:03 0:04 0:01 1.750
Repl 0:01 0:03 0:06 0:01 -
Infer 8:02 10:53 35:02 1:44 0.442
Uniq 10:25 34:35 37:25 1:44 -
Write 0:01 0:01 0:03 0:00 0.667
Total 45:34 45:35 45:54 0:01 0.432

5.3 Summary

This evaluation set out to test the scalability that can be achieved with re-

stricted rulesets such that correct (embarrassingly) parallel inference is possible.

Using LUBM10K, a very high degree of scalability was achieved for Par-CoreRDFS

and Par-MemOWL2 inference in both a strong scaling and data scaling scenario.

The Karp-Flatt metric revealed that inference on LUBM10K is almost completely

parallel in strong scaling, and growth efficiency revealed that good data scaling is

also achievable.

The importance of the results with LUBM10K is that they concretely demon-

strate that the theoretical results of highly parallel and scalable inference from pre-

vious chapters are achievable in practice and not merely some unachievable math-

ematical ideal. However, LUBM10K is ideal. It does not contain many of the

practical difficulties that are encountered in real-world datasets.

Therefore, parallel inference was also performed on the BTC2012 dataset. Par-

MemOWL2 inference on BTC2012 resulted in memory exhaustion, and so it appears

that in some cases, a huge amount of memory is necessary for parallel inference to

even be feasible. Par-CoreRDFS inference on BTC2012 was feasible and demon-
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streated excellent strong scaling up to 64 processors on Mastiff, a SMP system.

However, poor scalability was observed on the Blue Gene/Q. This is attributed to

skew in the dataset that causes some processors to need far more memory than

others. On Mastiff, this was not an issue because processors needing more memory

could use memory not used by processors needing less memory. In the distributed

environment of the Blue Gene/Q, such was not possible, and the processors needing

a large amount of memory were likely pushing their capacities and hurting perfor-

mance.

These problems could theoretically be solved by effective load-balancing. Us-

ing a simple solution like static random allocation, though, actually hurts overall

performance and increases memory consumption in contrast to the natural subject

grouping of the datasets as generated, as discussed in section 5.2.1.1. Load-balancing

is left as future work. Candidate approaches include those used by Urbani [51] and

Kotoulas et al. [47].

In short, parallel inference on Semantic Web data is memory-intensive and

relies heavily on load-balancing for scalability. If these issues are solvable, then it

appears from the evaluation on LUBM10K that a high degree of scalability can be

achieved.

Additionally, using a Blue Gene/Q, inference for interesting Semantic Web

rulesets has been demonstrated on 1.33 billion LUBM triples around 30 seconds and

on the BTC2012 dataset around 45 minutes. The fastest time for Par-CoreRDFS

inference on LUBM10K reported herein is 28 seconds, a few seconds faster than the

current record (to the best of my knowledge) of 31 seconds achieved on a Cray XMT

[82] by Goodman and Mizell [33]. To the best of my knowledge, this work is also

the first to have performed any kind of well-defined, complete closure29 on a BTC

dataset, although Williams et al. [44] performed a kind of partial RDFS closure on

the BTC2009 dataset.

29To be clear, this is the complete Par-CoreRDFS closure wrt the operational semantics from
chapter 3 and not the model-theoretic semantics of RDFS from [17]. The former is a specific subset
of the latter.
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CONCLUSION

Inference on the Semantic Web continues to be a problem due in part to the large

volume of data involved. This thesis has addressed the problem from a perspective

of data parallelism, attempting to scale production rule inference to larger datasets

by adding more processors. However, the achievable degree of parallelism is not

merely a function of clever implementation. The rules and data also directly impact

the degree of parallelism that can be achieved as demonstrated in chapter 5.

Previous work focused on determining restrictions on the data such that cor-

rectness of parallel inference could be ensured, but in reality, on the Web, no such

restrictions can be reasonably enforced. Thus, it makes more sense to consider con-

ditions and restrictions on the rules. Another way to look at this is that, instead of

maximizing expressivity and suffering whatever performance inhibitions come with

it, consider fixing the requisite performance characteristics and instead suffer a loss

of expressivity.

In chapter 3, the definitions and operational semantics for the production

rules under consideration were given, and definitions for parallel inference were in-

troduced. Following that, sufficient conditions were determined for ground rules

such that, when the conditions are met for every rule instance of a rule in a ruleset,

parallel inference is correct with respect to a distribution scheme. These findings

are restricted to a certain class of rulesets referred to as polarized rulesets in which

each rule has either only assert actions or only retract actions. They are also re-

stricted to a certain class of CRSs called RAOCs in which all rule instances are fired

in every cycle such that retractions precede assertions. These conditions were then

generalized to rules (not just ground rules) and patterns (instead of individual facts)

so that rules could be directly tested.

In chapter 4, a specific form of distribution schemes was considered called

replication schemes. Using replication schemes is significantly simpler and has nice

properties such as triviality of implementing parallel inference and ease of specifi-
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cation. The sufficient conditions for rules were then reformulated to be specific to

replication schemes, which led to the observation that testing these new conditions

is reducible to satisfiability, and not just SAT, but specifically 2SAT. The 2SAT

reduction is useful for testing conditions and for deriving replication schemes that

support correct parallel inference for a (polarized) ruleset (with a RAOC), but many

interesting rulesets will have only a single solution: to replicate all facts to all pro-

cessors. Therefore, the 2SAT reduction was augmented into a 3SAT reduction that

allows for the possibility to eliminate rules in order to improve parallelization. The

downside, though, is that even for moderately sized rulesets, the search space for

solutions to the 3SAT formulas can be quite large. Therefore, a methodology was

also given to aide in deriving restricted rulesets amenable to parallel inference. This

methodology was then used to derive restricted versions of the RDFS and OWL2RL

rulesets.

In chapter 5, an evaluation was performed to demonstrate the scalability that

is achievable using restricted versions of the RDFS and OWL2RL rulesets. Two

large datasets were used, referred to as LUBM10K and BTC2012. The LUBM10K

is an unrealistic, synthetic dataset of over 1.3 billion triples, and BTC2012 is a

real-world dataset crawled from the Web containing over one billion triples. The

evaluation demonstrated that, when there is sufficient memory and sufficient load-

balancing is achieved, a very high degree of parallelism can be achieved. This was

made obvious by use of the Karp-Flatt metric (the experimentally determined serial

fraction of computation) and an SMP machine. The real difficulty, though, arises

in a distributed memory environment, where load-balancing and large memory per

node becomes essential. Scalability of inference was demonstrated on LUBM10K

up to 32,768 processors on 2,048 nodes of a Blue Gene/Q, achieving inference times

(not including other phases) of no more than a few seconds.

To pithily (and roughly) summarize the overall contribution of this thesis, I

have provided proof and methodology for determining parts of production rule infer-

ence that are embarrassingly parallel, and I have demonstrated that when practical

issues of load-balancing and memory availability can be solved, a high degree of

availability can be achieved. Future work should focus on addressing the practical
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issues that prevent achieving a high degree of scalability, and addressing portions of

inference that are not embarrassingly parallel.

6.1 Future Work

Although this thesis constitutes a significant contribution toward webscale

inference, it is really only a first step in the right direction. Conditions have been

determined under which, as has been demonstrated, highly scalable inference is

feasible. However, these conditions are quite restrictive, e.g. disallowing functional

and inverse functional properties from OWL2RL. The reason is that throughout this

work, one characteristic has been held fixed: embarrassingly parallel computation.

That is, processors have not been allowed to communicate with each other during

inference.

The natural, next step is then to introduce communication in order to handle

rules that had to be eliminated in order to preserve correct, (embarrassingly) parallel

inference. In this case, the 3SAT reduction can simply be reinterpreted. Specifically,

instead of interpreting χ(r) to mean the elimination of rule r, let it instead mean

that (some of) the inferences of r must be (dynamically) replicated.

The evaluation in chapter 5, while sufficient for the purposes of this thesis, left

much to be desired. Consideration of a “middle ground” dataset would likely be

helpful to those who have real-world data that is not quite so difficult as BTC2012.

As mentioned several times, investigation into effective load-balancing is needed

for distributed memory architectures. Additionally, for inference over BTC2012,

the computational power of the Blue Gene/Q was severely underutilized. A more

parallel-aware inference engine utilizing Pthreads or OpenMP would resolve this

issue.

Some supercomputers are not amenable to embarrassing parallelism and are

optimized for cases that necessitate interaction of processors. For example, the Cray

XMT [82] has large shared memory without a typical cache hierarchy, and so dividing

up the problem to be local to individual processors does not result in significant

performance gains relative to more typical architectures. However, the Cray XMT

(hardware) processor is designed to avoid penalties from accessing memory, and so
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its strength relative to more typical architectures is in problems that are the opposite

of embarrassing parallelism. Thus, parallelizing inference for such architectures is a

very different problem and requires an entirely different perspective and approach

than presented in this thesis.

Finally, as mentioned, I was not able to perform Par-MemOWL2 inference

on the BTC2012 dataset due to an explosion of inferences that quickly exhausted

memory. Hogan et al. surmised that this can be due (at least in part) to abuse

of ontologies, termed “ontology hijacking” [19, 48]. They propose restrictions on

inference in order to avoid such abuses, thus reducing the number of inferences.

Such approaches are likely necessary, and more are needed. Therefore, it remains as

future work to determine root causes for the explosion of inferences, and to figure

out appropriate ways to cope with them.
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APPENDIX A

DICTIONARY ENCODING

As with all the code, the dictionary encoding code was written in C++, and MPI

was used for interprocess communication. All (non-collective) communication and

disk I/O was performed using asynchronous MPI calls. The dictionary encoding

process begins by every processor collectively opening the (single) index file for the

LZO-compressed data and using the offsets to divide the number of compressed

blocks fairly evenly among processors. After this, the processors collectively open

the (single) LZO-compressed N-triples file and begin reading from the beginning of

their segments. Using the large block partition of the GPFS [83] file system at the

CCNI, page sizes are 4 MB. All reads occur along page boundaries, reading one

page at a time (except possibly in the cases of the beginning of the file segment and

the end of the file segment, which may be partial pages). MPI::File::Iread at is

used for reading so that, which a processor was processing on page, the next page

is being read. As pages are read, blocks in those pages are LZO-decompressed, and

RDF triples are parsed. Each term in the RDF triple is independently dictionary

encoded.

Skipping for a moment the actual dictionary encoding process, when a triple

is finished being dictionary-encoded – that is, each term is replaced with a uniquely

identifying 8-byte integer – the encoded triple is written into a four MB buffer.

When the four MB buffer is full, it is written to an output file. Each proces-

sor opens its own output file in its own directory (to prevent contention over

directory metadata) in the MPI::COMM SELF communicator, and pages are writ-

ten using the split-collective MPI routines MPI::File::Write at all begin and

MPI::File::Write at all end. Using split-collective routines here is somewhat

of an odd choice because the communicator in which the calls are being made is

MPI::COMM SELF which contains only the calling processor. Thus, there is really no

need for a collective routine. These routines were used because they are part of a

generic object for writing files in MPI that could be used with multiple processors
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as well.

Regarding the dictionary encoding process, there are two distinct parts of the

computation: the actual dictionary encoding, and the interprocess communication.

The interprocess communication has three layers. From lowest level to highest level

they are the packet distributor, the string distributor, and the controller.

A distributor (packet or string) has four main methods: send, noMoreSends,

receive, and done. The send method takes a processor rank and a string of bytes

and returns true if the bytes are being sent (not already sent) to the processor

identified by the given rank. Otherwise, false is returned. Calling noMoreSends

tells the distributor that send and noMoreSends will not be called again, and doing

so would cause an exception to be thrown. Calling receive (no parameters) returns

a string of bytes or NULL. NULL indicates that nothing could be immediately received,

but not that there is nothing incoming. Finally, there is the done method which

takes no parameters and returns a boolean value. The done method is a bit tricky

because it is – by the interface definition of distributor – collective. That is, when

one processor calls done, it should be expected that the processor will wait for all

other processors to also call done before returning. Thus it is a potential source

of deadlock. A processor should periodically call done even if it knows it is not

done, just to ensure that other processors are not trapped in a call to done. If done

returns true, then all processors have finished distribution, and no more calls should

be made to distributor methods. done cannot return true until every processor has

called noMoreSends and all the outstanding messages have been received.

The packet distributor uses timewarp-like communication with parameters

similar to those in [84]. These parameters are referred to herein as the packet

size, the number of requests, and the coordination period. The packet size is the

fixed size of any given message to be sent. If send is called with a string of bytes

of a different length, then an exception is thrown. In previous work [74], I had

used variable-length messages, requiring a receiving process to first receive a mes-

sage containing the size of the subsequent message, allocate enough space for the

subsequent message, and then receive the subsequent message. This proved to sig-

nificantly inhibit parallelism when there is frequent interprocessor communication,
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and using fixed-size packets is intended to remedy that problem. The number of

requests is the maximum number of asynchronous send requests and the maximum

number of asynchronous receive requests that a processor can have. Let the number

of requests be N . Upon initialization, the packet distributor immediately makes N

asynchronous receive requests using MPI::Comm::Irecv. When receive is called,

MPI::Request::Testany is used to check for a completed receive request. If one is

found, the packet (as a string of bytes) is returned, and another MPI::Comm::Irecv

is started. If no receive request has completed, then NULL is returned. Similarly,

when send is called, MPI::Request::Testany is used to check for inactive or com-

pleted send requests. If one is found, then a new send request is started with

MPI::Comm::Isend, and true is returned. Otherwise, false is returned.

The tricky part to the packet distributor is the handling of the call to done,

and it is in this regard that the packet distributor is like distributed timewarp

computations. The packet distributor keeps two counts: the number of calls to

done, call it the “done count”; and the number of net messages, call it the “message

count.” The done count is initialized to zero, and the message count is initialized

to one. Every time a send request is started, the message count is incremented,

and every time a receive request is completed, the message count is decremented.

Every time done is called, the done count is incremented. If the done count is less

than the coordination period, then done immediately returns false. Otherwise, the

done count is reset to zero, and the processor calls MPI::Comm::Allreduce to sum

over the processors’ message count. If the sum of the message counts is non-zero,

false is returned. Otherwise, all receive requests are cancelled (there are always N

outstanding) and true is returned. The important thing to understand here is how

the sum of the processors’ message counts equaling zero is an indication of having

finished. When a processor calls noMoreSends, the message count is decremented

to effectively undo the initialization to one. Therefore, letting p be the number of

processors and s the sum of the message counts, upon initialization, s = p. Prior to

any processor calling noMoreSends, s = m + p where m is the number of messages

that have been sent but not received (from the perspective of the packet distributor).

Notice that even if all sent messages have been received m = 0, s > 0. This is
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appropriate because a processor might still have more packets to send but just has

yet to tell the packet distributor. However, when the processor calls noMoreSends,

this tells the packet distributor that send will not be called again. Letting q be

the number of processors that have called noMoreSends, then s = m + p − q. As

long as q < p, it is impossible for s = 0. Finally, when all processors have called

noMoreSends, p = q and s = m. When m = 0, then truly, there are no more

outstanding messages, and no processors will send any more messages. Therefore,

distribution is finished.

The parameters to the packet distributor have significant impact on perfor-

mance. From experience, for dictionary encoding, a packet size of 128 bytes seemed

to work well (this may make more sense after the discussion of the string distributor).

Consulting professor and distributed timewarp computation expert Chris Carothers

concerning his experience with similar parameters when using a Blue Gene, he stated

that the using eight and 4,096 for the timewarp parameters analogous to number

of requests and coordination period had worked well for him. Starting with these

values, neighboring values were also tested, none of which appeared to improve

performance (and in some cases, worsened performance). Therefore, when using

a packet distributor (which will be discussed again later), number of requests was

always set to eight, and the coordination period was always set to 4,096. Clearly,

these parameters are architecture dependent. One must be particularly careful with

number of requests, coordination period, and the manner in which the done method

is periodically called. Allowing too many send requests and a long coordination pe-

riod can result in underlying MPI message buffers to quickly eat up memory. Even

if the parameters are reasonably set, though, if the done method is not called with

regularity on all processors, one processor can fall behind on receives or race ahead

on sends, and the result will be the same.

The string distributor operates on top of a packet distributor and is responsi-

ble for relaying variable length messages. It breaks down messages into individual

packets. Letting the packet size be n, if send is called with a message of length

less than or equal to n − sizeof(size t), then the length of the message is writ-

ten into the first sizeof(size t) bytes of a packet, and the message is written in
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the remainder of the packet. The string distributor then calls send on the packet

distributor with that packet. However, if the message to be sent is larger than

n − sizeof(size t), then the message is broken down into multiple packets. The

packets will have a header of sizeof(size t) + sizeof(int) + 8 bytes where the

first sizeof(size t) bytes stores the overall message length, the next sizeof(int)

bytes identifies the sending processor, the following four bytes contains a message

identifier, and the last four bytes contains the relative placement of the packet among

the other packets for the same message. The string distributor then calls send on

the underlying packet distributor to send all the packets. Recall, though, that the

packet distributor can refuse to send a packet by returning false. In this case, the

string distributor buffers the packets. Then true is returned. Later, when send or

done is called, the string distributor attempts to send the packets again. In the case

of send, if any of the buffered packets could not be sent, then false is returned.

That is, the string distributor will only buffer one message at a time and will refuse

other messages until it is able to send the buffered packets. If all the buffered pack-

ets are successfully sent (to the packet distributor), then the string distributor will

attempt to send the new message as well.

Receiving messages in the string distributor is a bit like putting together a

puzzle. A std::multimap is used to collect incoming packets. The keys of the

std::multimap are the (treated as a unit) message length, sender rank, and message

identifier. When receive is called, the string distributor calls receive on the

underlying packet distributor for another packet. If no packet is available, the

string distributor returns NULL. If a packet is received, the string distributor check

to see if it is the last packet for a message, and if so, composes the message (it could

be just the single packet) and returns it. Otherwise, it places the packet into the

std::multimap and returns false.

Now when noMoreSends is called, the string distributor notes that is has been

called, but it will not call noMoreSends on the underlying packet distributor if it

has buffered packets. If it does have buffered packets, it will attempt to send them,

and if they can all be sent, it will call noMoreSends on the packet distributor. When

done is called, if there are buffered packets, the string distributor attempts to send
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them. If it is successful, then it will call noMoreSends on the packet distributor.

Regardless, done is called on the packet distributor and its value returned.

Having described the packet distributor which handles fixed-length messages,

and having described the string distributor which handles variable-length messages,

the final component to be discussed is the controller. The controller coordinates be-

tween a distributed computation and a distributor, and so a distributed computation

must first be described.

A distributed computation has two main methods: pickup and dropoff.

When pickup is called, it is a request by the controller that the distributed compu-

tation provide a message to be sent. If the distributed computation has a message

to send, it writes it into the provided buffer (which may be resized as necessary)

and returns the rank of the processor to which the message should be sent. Alterna-

tively, it may return -1 to indicate there is currently nothing to send, or a value less

than -1 to indicate that there is no more need to send messages. A call to dropoff

simply provides a received message to the distributed computation.

The function of the controller is given in algorithm 4 which consists primarily

of two loops. In the first loop, a message is “picked up” (if sendto ≥ 0) and the

inner “receiving” loop is entered. Every iteration of the receiving loop attempts to

receive a message, and if a message is received, it is “dropped off” to the distribution

computation. The repeating condition of this condition loop is important. Note that

|| is short-circuited, meaning that the subconditions are evaluation from left to right,

and once a subcondition evaluates to true, the entire condition is considered true

and no subconditions to the right are evaluated. The call too dist.done will always

return false on line eight, but as mentioned, it is important to call it periodically

to prevent deadlock, which is why it is placed in the loop condition. Then, if

sendto < 0, then that means the distributed computation did not have a message to

send, and so this will short-circuit the evaluation of the loop condition and prevent

dist.send from being called. However, if sendto ≥ 0, then dist.send will be called,

and only when the send is successful will the receiving loop terminate. The first loop

(lines 1-9) will terminate when the distributed computation indicates that there are

no more messages to be sent, and dist.noMoreSends is called on line 10. Lines
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11-16 are another receiving loop which terminates when dist.done returns true,

indicating that there are no more messages being sent and no more messages to be

received.

Algorithm 4: Control between Distributed Computation and Distributor

Input: Distributor dist and distributed computation comp.
/* buffer and msg are resizable strings of bytes */

/* sendto is an integer */

1 repeat
2 sendto = comp.pickup(buffer)
3 repeat
4 msg = dist.receive()
5 if msg 6= NULL then
6 comp.dropoff(msg)
7 end

8 until dist.done() || sendto < 0 || dist.send(sendto, buffer)

9 until sendto < -1
10 dist.noMoreSends()
11 repeat
12 msg = dist.receive()
13 if msg 6= NULL then
14 comp.dropoff(msg)
15 end

16 until dist.done()

Finally, the actual dictionary encoding can be described as a distributed com-

putation. Recall that triples are continually being read and encoded triples contin-

ually being buffered and written to disk. In between, they are being encoded.

Algorithm 5 gives a high-level overview of the pickup method. On line 1, the

cached response method checks to see if there are any lookup responses cached

that need to be sent (since the pickup method is the mechanism by which messages

are sent), and if so, writes the lookup response in the buffer, writes the request-

ing processor’s rank in sendto, and returns true. Otherwise, cached response

returns false. On line 4, the next lookup method checks to see whether an-

other lookup request needs to be made, and if so, sets term to the term for which

lookup is needed and returns true. Otherwise, next lookup returns false. On line

5, check termination handles termination of the distributed dictionary encoding
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computation, an important method which will be described in greater detail later.

On line 7, the lookup in progress method checks to see if there is already an

outstanding lookup request and, if so, caches term to await for completion of the

request and returns true. Otherwise, lookup in progress returns false. On line

10, local lookup checks to see whether the encoded value for term already exists

in the local dictionary, and if so, encodes the term and returns true. Otherwise,

local lookup returns false. On line 13, remote lookup determines which pro-

cessor is responsible for encoding term, writes a lookup request in the buffer, and

return the rank of the processor to which the request should be sent.

The dropoff method for distributed dictionary encoding is given in algorithm

6. On line 1, message is no more requests returns true iff the buffer contains a

message stating that the sending processor will make no more requests. On line

4, message is no responses expected returns true iff the buffer contains a mes-

sage stating that the sending processor expects no more responses. On line 7,

message is request returns true iff buffer contains a lookup request.

Algorithm 5: Pickup Method for Distributed Dictionary Encoding

Input: A buffer buffer in which to write the message.
Output: The rank of the processor to which the message should be sent,

or -1 to indicate no message, or less than -1 to indicate no more
messages.

1 if cached response(buffer, sendto) then
2 return sendto
3 end
4 if !next lookup(term) then
5 return check termination(buffer)
6 end
7 if lookup in progress(term) then
8 return -1
9 end

10 if local lookup(term) then
11 return -1
12 end
13 return remote lookup(buffer, term)

Algorithms 5 and 6 have been given to provide clarity concerning the overall

flow of the distributed computation. Greater detail is not given in the form of
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Algorithm 6: Dropoff Method for Distributed Dictionary Encoding

Input: A buffer containing a message.
1 if message is no more requests(buffer) then
2 increment the “no more requests” counter
3 end
4 if message is no responses expected(buffer) then
5 increment the “no responses expected” counter
6 end
7 if message is request(buffer) then
8 perform the lookup request and cache the response for pickup
9 else

/* buffer contains a lookup response */

10 encode terms awaiting the response
11 write out any completely encoded triples

12 end

pseudocode since, due to complexity, it would not be significantly clearer than the

actual source code. Instead, a written description of the important points follows.

It is easiest to understand from the perspective of the lifecycle of a triple,

from being read, to getting encoded, to being written. A triple is read in the call to

next lookup (after requests have been made for the previous triple and assuming

there are any triples left to be read), and immediately a “pending triple” is created.

A pending triple is an array of three 8-byte integers along with a count called the

“need” of the pending triple. The need is initialized to three because none of the

terms in the triple have been encoded yet.

Now consider the lifecycle of a single term, from being retrieved from a triple,

to getting encoded, to being written into a pending triple. This term is the term

parameter (by reference) of next lookup. Skipping over lookup in progress for a

moment, on line 10 of algorithm 5, the processor checks its local dictionary to see

if it already has an ID set for the term. If so, the processor writes that ID into

the current pending triple at the correct position and decrements the need of the

pending triple. If the need is now zero, then the pending triple is fully encoded and

written to output.

However, if the term does not have an ID associated with it in the local

dictionary, then a remote lookup must be performed on line 13 of algorithm 5. Each
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processor keeps a count of the number of lookup requests it has sent out. When a

remote lookup is performed, the current value of the count is used as the request ID,

and the count is incremented. A “pending position” is then created, which consists

of a pointer to the current pending triple and an integer for the position of the term

being looked up (zero, one, or two). The request ID is then associated with the

pending position in a std::multimap. A hash function is used to determine which

processor is responsible for encoding the term.

Eventually, that processor receives the lookup request in a call to dropoff.

Skipping over lines 1-6 of algorithm 6 for a moment, on line 7, the processor deter-

mines that the message is a lookup request, and on line 8, it encodes the term and

caches the response to be sent in a later call to pickup. Eventually, a call to pickup

for that processor will select that cached response on line 1 of algorithm 5 and send

it back to the requesting processor.

The requesting processor will receive the response in a call to dropoff and will

go down to line 10 of algorithm 6. The response includes with it the request ID which

is used to lookup all the pending positions associated with it in the std::multimap.

The pending positions each specify a position in a specific pending triple to which

the encoded term ID should be written. The ID is written to that position in the

pending triple, and the need for that pending triple is decremented. If the need is

zero, then the pending triple has been completely encoded and written to output.

The term is then associated with the ID in the processor’s local dictionary.

Returning to lookup in progress on line 7 of algorithm 5, every time a re-

quest is sent, the term is associated with the request ID in a std::map. That way,

when lookup in progress is called, it checks that std::map to see if a request is in

progress for the current term. If so, a new pending position is created and associated

with the request ID, thus avoiding the need for an additional lookup.

One final detail remains to be explained, and that is check termination.

Since distributed dictionary encoding is not just a matter of redistributing data

(since every request is followed by a response), determining when encoding is finished

is a delicate matter. next lookup returns false only when no more triples can be

read. The first p (where p is the number of processors) calls to check termination
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write a special message in the buffer that indicates that the processor will make no

more requests. One such message is sent to each processor. Each processor counts

the number of such messages it receives on line 2 of algorithm 6. Subsequent calls to

check termination return -1 until the processor has no more pending positions (i.e.,

all of its requests have been answered). Then, the next p calls to check termination

write a special message into the buffer indicating that the processor expects no more

responses. One of such messages is sent to each processor, and each processor counts

such messages on line 5 of algorithm 6. Subsequent calls to check termination

return -1 until the sum of the “no more requests” counter and the “no responses

expected” counter is equal to 2p, in which case -2 is returned guaranteeing that

there are no more messages.

The complexity here is because even if a processor will make no more lookup

requests, it might still service lookup requests and hence need to send responses.

Thus any one processor is not necessarily done sending messages unless all the

processors are done sending messages, which is why this explicit termination test is

required.



APPENDIX B

RULESETS

This appendix contains original and restricted, RDFS and OWL2RL rulesets. In the

restricted versions, special sets of terms are used to more concisely represent restric-

tions. Using the terminology of Hogan et al. [19], these sets are the set of “meta-

classes” MC and the set of “metaproperties” MP . MPT = MP ∪{rdf:type}. To

improve the brevity of patterns and restricted rules, the ∈ and /∈ symbols will be

used with MP , MPT , and MC to compress multiple restrictions, patterns, or rules

into (syntactically) single restrictions, patterns, or rules (respectively).

B.1 RDFS-based Rulesets

This section provides some of the specific details regarding restriction of the

RDFS ruleset into the Par-RDFS ruleset. Table B.1 contains the RDFS ruleset prior

to restriction. Note that it does not contain the infinite number of axiomatic triples

of the form rdf: i[rdf:type->rdfs:ContainerMembershipProperty] where i is

any positive integer. Also, literal generalization (rules lg and gl from [17]) has been

excluded since, in the context of RIF inference, there is no need to create RDF blank

nodes representing RDF literals.

In section 4.3.1, the restriction of the RDFS ruleset into the Par-RDFS rule-

set is described. The forced variable assignments for patterns are given in table

B.4. Table B.5 gives the rules that were not eliminated, referred to herein as the

Par-RDFS ruleset. Comparing table B.5 with table B.1 reveals which rules were

eliminated. Rules marked with an asterisk (∗) in table B.5 are rules that resulted

from a split during step 2. Table B.4 gives patterns such that, when facts matching

the patterns are replicated, parallel Par-RDFS inference is correct.

Table B.1: The RDFS Ruleset

Rule ID If And(. . .) Then Do(Assert(. . .))

rdf1 ?u[?a->?y] ?a[rdf:type->rdf:Property]

rdf2 ?u[?a->?l] ?l[rdf:type->rdf:XMLLiteral]
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External(pred:is-literal-XMLLiteral(?l))

rdfs1 ?u[?a->?l] ?l[rdf:type->rdfs:Literal]

External(pred:is-literal-PlainLiteral(?l))

rdfs2 ?p[rdfs:domain->?c] ?x[rdf:type->?c]

?x[?p->?y]

rdfs3 ?p[rdfs:range->?c] ?y[rdf:type->?c]

?x[?p->?y]

rdfs4a ?u[?a->?x] ?u[rdf:type->rdfs:Resource]

rdfs4b ?u[?a->?v] ?v[rdf:type->rdfs:Resource]

rdfs5 ?p1[rdfs:subPropertyOf->?p2] ?p1[rdfs:subPropertyOf->?p3]

?p2[rdfs:subPropertyOf->?p3]

rdfs6 ?u[rdf:type->rdf:Property] ?u[rdfs:subPropertyOf->?u]

rdfs7 ?p1[rdfs:subPropertyOf->?p2] ?x[?p2->?y]

?x[?p1->?y]

rdfs8 ?u[rdf:type->rdfs:Class] ?u[rdfs:subClassOf->rdfs:Resource]

rdfs9 ?c1[rdfs:subClassOf->?c2] ?x[rdf:type->?c2]

?x[rdf:type->?c1]

rdfs10 ?u[rdf:type->rdfs:Class] ?u[rdfs:subClassOf->?u]

rdfs11 ?c1[rdfs:subClassOf->?c2] ?c1[rdfs:subClassOf->?c3]

?c2[rdfs:subClassOf->?c3]

rdfs12 ?u[rdf:type-> ?u[rdfs:subPropertyOf->rdfs:member]

rdfs:ContainerMembershipProperty]

rdfs13 ?u[rdf:type->rdfs:Datatype] ?u[rdfs:subClassOf->rdfs:Literal]

rdfsax1 rdf:type[rdf:type->rdf:Property]

rdfsax2 rdf:subject[rdf:type->rdf:Property]

rdfsax3 rdf:predicate[rdf:type->rdf:Property]

rdfsax4 rdf:object[rdf:type->rdf:Property]

rdfsax5 rdf:first[rdf:type->rdf:Property]

rdfsax6 rdf:rest[rdf:type->rdf:Property]

rdfsax7 rdf:value[rdf:type->rdf:Property]

rdfsax8 rdf:nil[rdf:type->rdf:List]

rdfsax9 rdf:type[rdfs:domain->rdf:Property]

rdfsax10 rdfs:domain[rdfs:domain->rdf:Property]

rdfsax11 rdfs:range[rdfs:domain->rdf:Property]

rdfsax12 rdfs:subPropertyOf[

rdfs:domain->rdf:Property]

rdfsax13 rdfs:subClassOf[rdfs:domain->rdfs:Class]

rdfsax14 rdf:subject[rdfs:domain->rdf:Statement]

rdfsax15 rdf:predicate[rdfs:domain->rdf:Statement]

rdfsax16 rdf:object[rdfs:domain->rdf:Statement]

rdfsax17 rdfs:member[rdfs:domain->rdfs:Resource]

rdfsax18 rdf:first[rdfs:domain->rdf:List]

rdfsax19 rdf:rest[rdfs:domain->rdf:List]

rdfsax20 rdfs:seeAlso[rdfs:domain->rdfs:Resource]

rdfsax21 rdfs:isDefinedBy[

rdfs:domain->rdfs:Resource]
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rdfsax22 rdfs:comment[rdfs:domain->rdfs:Resource]

rdfsax23 rdfs:label[rdfs:domain->rdfs:Resource]

rdfsax24 rdf:value[rdfs:domain->rdfs:Resource]

rdfsax25 rdf:type[rdfs:range->rdfs:Class]

rdfsax26 rdfs:domain[rdfs:range->rdfs:Class]

rdfsax27 rdfs:range[rdfs:range->rdfs:Class]

rdfsax28 rdfs:subPropertyOf[

rdfs:range->rdf:Property]

rdfsax29 rdfs:subClassOf[rdfs:range->rdfs:Class]

rdfsax30 rdf:subject[rdfs:range->rdfs:Resource]

rdfsax31 rdf:predicate[rdfs:range->rdfs:Resource]

rdfsax32 rdf:object[rdfs:range->rdfs:Resource]

rdfsax33 rdfs:member[rdfs:range->rdfs:Resource]

rdfsax34 rdf:first[rdfs:range->rdfs:Resource]

rdfsax35 rdf:rest[rdfs:range->rdf:List]

rdfsax36 rdfs:seeAlso[rdfs:range->rdfs:Resource]

rdfsax37 rdfs:isDefinedBy[rdfs:range->rdfs:Resource]

rdfsax38 rdfs:comment[rdfs:range->rdfs:Literal]

rdfsax39 rdfs:label[rdfs:range->rdfs:Resource]

rdfsax40 rdf:value[rdfs:range->rdfs:Resource]

rdfsax41 rdf:Alt[rdfs:subClassOf->rdfs:Container]

rdfsax42 rdf:Bag[rdfs:subClassOf->rdfs:Container]

rdfsax43 rdf:Seq[rdfs:subClassOf->rdfs:Container]

rdfsax44 rdfs:ContainerMembershipProperty[

rdfs:subClassOf->rdf:Property]

rdfsax45 rdfs:isDefinedby[

rdfs:subPropertyOf->rdfs:seeAlso]

rdfsax46 rdf:XMLLiteral[rdf:type->rdfs:Datatype]

rdfsax47 rdf:XMLLiteral[

rdfs:subClassOf->rdfs:Literal]

rdfsax48 rdfs:Datatype[rdfs:subClassOf->rdfs:Class]

Table B.2: The RDFS Metaclasses and Metaproperties

MC MP

rdfs:Class rdfs:domain

rdfs:Datatype rdfs:range

rdfs:ContainerMembershipProperty rdfs:subClassOf

rdfs:subPropertyOf

Table B.3: Forced Assignments from Steps 1 and 3 of the Methodology

applied to the RDFS ruleset

Replicate (α) Arbitrary (ε)



148

And(?x1[?x2->?x3] ?x2 ∈MP) And(?x1[?x2->?x3] ?x2 /∈MPT)

And(?x1[rdf:type->?x3] ?x3 ∈MC) And(?x1[rdf:type->?x3] ?x3 /∈MC)

And(External(pred:is-literal-XMLLiteral(?x1)))

And(External(pred:is-literal-PlainLiteral(?x1)))

Table B.4: Replication Patterns for Correct, Parallel Par-RDFS Infer-

ence

Replicate (α)

And(?x1[?x2->?x3] ?x2 ∈MP)

And(?x1[rdf:type->?x3] ?x3 ∈MC)

And(External(pred:is-literal-XMLLiteral(?x1)))

And(External(pred:is-literal-PlainLiteral(?x1)))

Table B.5: The Par-RDFS Ruleset

Rule ID If And(. . .) Then Do(Assert(. . .))

rdf1 ?u[?a->?y] ?a[rdf:type->rdf:Property]

rdf2 ?u[?a->?l] ?l[rdf:type->rdf:XMLLiteral]

External(pred:is-literal-XMLLiteral(?l))

rdfs1 ?u[?a->?l] ?l[rdf:type->rdfs:Literal]

External(pred:is-literal-PlainLiteral(?l))

rdfs2∗ ?p[rdfs:domain->?c] ?x[rdf:type->?c]

?x[?p->?y]

?c /∈ MC

rdfs3∗ ?p[rdfs:range->?c] ?y[rdf:type->?c]

?x[?p->?y]

?c /∈ MC

rdfs4a ?u[?a->?x] ?u[rdf:type->rdfs:Resource]

rdfs4b ?u[?a->?v] ?v[rdf:type->rdfs:Resource]

rdfs5 ?p1[rdfs:subPropertyOf->?p2] ?p1[rdfs:subPropertyOf->?p3]

?p2[rdfs:subPropertyOf->?p3]

rdfs7a∗ ?p1[rdfs:subPropertyOf->?p2] ?x[?p2->?y]

?x[?p1->?y]

?p2 /∈ MPT

rdfs7b∗ ?p1[rdfs:subPropertyOf->?p2] ?x[?p2->?y]

?x[?p1->?y]

?y /∈ MC

rdfs8 ?u[rdf:type->rdfs:Class] ?u[rdfs:subClassOf->rdfs:Resource]

rdfs9∗ ?c1[rdfs:subClassOf->?c2] ?x[rdf:type->?c2]

?x[rdf:type->?c1]

?c2 /∈ MC

rdfs10 ?u[rdf:type->rdfs:Class] ?u[rdfs:subClassOf->?u]

rdfs11 ?c1[rdfs:subClassOf->?c2] ?c1[rdfs:subClassOf->?c3]
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?c2[rdfs:subClassOf->?c3]

rdfs12 ?u[rdf:type-> ?u[rdfs:subPropertyOf->rdfs:member]

rdfs:ContainerMembershipProperty]

rdfs13 ?u[rdf:type->rdfs:Datatype] ?u[rdfs:subClassOf->rdfs:Literal]

rdfsax1 rdf:type[rdf:type->rdf:Property]

rdfsax2 rdf:subject[rdf:type->rdf:Property]

rdfsax3 rdf:predicate[rdf:type->rdf:Property]

rdfsax4 rdf:object[rdf:type->rdf:Property]

rdfsax5 rdf:first[rdf:type->rdf:Property]

rdfsax6 rdf:rest[rdf:type->rdf:Property]

rdfsax7 rdf:value[rdf:type->rdf:Property]

rdfsax8 rdf:nil[rdf:type->rdf:List]

rdfsax9 rdf:type[rdfs:domain->rdf:Property]

rdfsax10 rdfs:domain[rdfs:domain->rdf:Property]

rdfsax11 rdfs:range[rdfs:domain->rdf:Property]

rdfsax12 rdfs:subPropertyOf[

rdfs:domain->rdf:Property]

rdfsax13 rdfs:subClassOf[rdfs:domain->rdfs:Class]

rdfsax14 rdf:subject[rdfs:domain->rdf:Statement]

rdfsax15 rdf:predicate[rdfs:domain->rdf:Statement]

rdfsax16 rdf:object[rdfs:domain->rdf:Statement]

rdfsax17 rdfs:member[rdfs:domain->rdfs:Resource]

rdfsax18 rdf:first[rdfs:domain->rdf:List]

rdfsax19 rdf:rest[rdfs:domain->rdf:List]

rdfsax20 rdfs:seeAlso[rdfs:domain->rdfs:Resource]

rdfsax21 rdfs:isDefinedBy[

rdfs:domain->rdfs:Resource]

rdfsax22 rdfs:comment[rdfs:domain->rdfs:Resource]

rdfsax23 rdfs:label[rdfs:domain->rdfs:Resource]

rdfsax24 rdf:value[rdfs:domain->rdfs:Resource]

rdfsax25 rdf:type[rdfs:range->rdfs:Class]

rdfsax26 rdfs:domain[rdfs:range->rdfs:Class]

rdfsax27 rdfs:range[rdfs:range->rdfs:Class]

rdfsax28 rdfs:subPropertyOf[

rdfs:range->rdf:Property]

rdfsax29 rdfs:subClassOf[rdfs:range->rdfs:Class]

rdfsax30 rdf:subject[rdfs:range->rdfs:Resource]

rdfsax31 rdf:predicate[rdfs:range->rdfs:Resource]

rdfsax32 rdf:object[rdfs:range->rdfs:Resource]

rdfsax33 rdfs:member[rdfs:range->rdfs:Resource]

rdfsax34 rdf:first[rdfs:range->rdfs:Resource]

rdfsax35 rdf:rest[rdfs:range->rdf:List]

rdfsax36 rdfs:seeAlso[rdfs:range->rdfs:Resource]

rdfsax37 rdfs:isDefinedBy[rdfs:range->rdfs:Resource]

rdfsax38 rdfs:comment[rdfs:range->rdfs:Literal]

rdfsax39 rdfs:label[rdfs:range->rdfs:Resource]
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rdfsax40 rdf:value[rdfs:range->rdfs:Resource]

rdfsax41 rdf:Alt[rdfs:subClassOf->rdfs:Container]

rdfsax42 rdf:Bag[rdfs:subClassOf->rdfs:Container]

rdfsax43 rdf:Seq[rdfs:subClassOf->rdfs:Container]

rdfsax44 rdfs:ContainerMembershipProperty[

rdfs:subClassOf->rdf:Property]

rdfsax45 rdfs:isDefinedby[

rdfs:subPropertyOf->rdfs:seeAlso]

rdfsax46 rdf:XMLLiteral[rdf:type->rdfs:Datatype]

rdfsax47 rdf:XMLLiteral[

rdfs:subClassOf->rdfs:Literal]

rdfsax48 rdfs:Datatype[rdfs:subClassOf->rdfs:Class]

B.2 OWL2-based Rulesets

This section provides some of the specific details regarding restriction of the

OWL2RL ruleset into the Par-OWL2 ruleset. Table B.6 contains the OWL2RL

ruleset prior to restriction. Note that the OWL2RL rules presented herein are

different than those from [3]. They are a RIF variation of the OWL2RL rules from

[61], deviating to make the rules amenable to forward-chaining, following advice

from [61] as well.

In section 4.3.2, the restriction of the OWL2 ruleset into the Par-OWL2 ruleset

is briefly described. The forced variable assignments for patterns are given in table

B.8. Table B.10 gives the rules that were not eliminated, referred to herein as the

Par-OWL2 ruleset. Comparing table B.10 with table B.6 reveals which rules were

eliminated. Rules marked with an asterisk (∗) in table B.10 are rules that resulted

from a split during step 2. Table B.8 gives patterns such that, when facts matching

the patterns are replicated, parallel Par-OWL2 inference is correct.

Rules marked with a dagger (†) in table B.10 are rules that were excluded in

the evaluation. The ruleset consisting of the Par-OWL2 rules not marked with a

dagger is referred to as the Par-MemOWL2 ruleset. Discussion regarding the reason

for further restriction is given in section 5.1.4.

Table B.6: The OWL2RL Ruleset

scm-int ?c[owl:intersectionOf->?l] markAllTypes(?c ?l)

scm-int-1 markAllTypes(?c ?r) markAllTypes(?c ?l)
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?r[rdf:rest->?l]

Not(?l = rdf:nil)

scm-int-2 markAllTypes(?c ?l) ?c[rdfs:subClassOf->?ci]

?l[rdf:first->?ci]

scm-uni ?c[owl:unionOf->?l] checkUnionOf(?c ?l)

scm-uni-1 checkUnionOf(?c ?r) checkUnionOf(?c ?l)

?r[rdf:rest->?l]

Not(?l = rdf:nil)

scm-uni-2 checkUnionOf(?c ?l) ?ci[rdfs:subClassOf->?c]

?l[rdf:first->?ci]

scm-cls ?c[rdf:type->owl:Class] ?c[rdfs:subClassOf->?c]

scm-cls1 ?c[rdf:type->owl:Class] ?c[owl:equivalentClass->?c]

scm-cls2 ?c[rdf:type->owl:Class] ?c[rdfs:subClassOf->owl:Thing]

scm-cls3 ?c[rdf:type->owl:Class] owl:Nothing[rdfs:subClassOf->?c]

scm-sco ?c1[rdfs:subClassOf->?c2] ?c1[rdfs:subClassOf->?c3]

?c2[rdfs:subClassOf->?c3]

scm-eqc1 ?c1[owl:equivalentClass->?c2] ?c1[rdfs:subClassOf->?c2]

scm-eqc11 ?c1[owl:equivalentClass->?c2] ?c2[rdfs:subClassOf->?c1]

scm-eqc2 ?c1[rdfs:subClassOf->?c2] ?c1[owl:equivalentClass->?c2]

?c2[rdfs:subClassOf->?c1]

scm-op ?p[rdf:type->owl:ObjectProperty] ?p[rdfs:subPropertyOf->?p]

scm-op1 ?p[rdf:type->owl:ObjectProperty] ?p[owl:equivalentProperty->?p]

scm-dp ?p[rdf:type->owl:DatatypeProperty] ?p[rdfs:subPropertyOf->?p]

scm-dp1 ?p[rdf:type->owl:DatatypeProperty] ?p[owl:equivalentProperty->?p]

scm-spo ?p1[rdfs:subPropertyOf->?p2] ?p1[rdfs:subPropertyOf->?p3]

?p2[rdfs:subPropertyOf->?p3]

scm-eqp1 ?p1[owl:equivalentProperty->?p2] ?p1[rdfs:subPropertyOf->?p2]

scm-eqp11 ?p1[owl:equivalentProperty->?p2] ?p2[rdfs:subPropertyOf->?p1]

scm-eqp2 ?p1[rdfs:subPropertyOf->?p2] ?p1[owl:equivalentProperty->?p2]

?p2[rdfs:subPropertyOf->?p1]

scm-dom1 ?p[rdfs:domain->?c1] ?p[rdfs:domain->?c2]

?c1[rdfs:subClassOf->?c2]

scm-dom2 ?p2[rdfs:domain->?c] ?p1[rdfs:domain->?c]

?p1[rdfs:subPropertyOf->?p2]

scm-rng1 ?p[rdfs:range->?c1] ?p[rdfs:range->?c2]

?c1[rdfs:subClassOf->?c2]

scm-rng2 ?p2[rdfs:range->?c] ?p1[rdfs:range->?c]

?p1[rdfs:subPropertyOf->?p2]

scm-hv ?c1[owl:hasValue->?i] ?c1[rdfs:subClassOf->?c2]

?c1[owl:onProperty->?p1]

?c2[owl:hasValue->?i]

?c2[owl:onProperty->?p2]

?p1[rdfs:subPropertyOf->?p2]

scm-svf1 ?c1[owl:someValuesFrom->?y1] ?c1[rdfs:subClassOf->?c2]

?c1[owl:onProperty->?p]

?c2[owl:someValuesFrom->?y2]

?c2[owl:onProperty->?p]
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?y1[rdfs:subClassOf->?y2]

scm-svf2 ?c1[owl:someValuesFrom->?y] ?c1[rdfs:subClassOf->?c2]

?c1[owl:onProperty->?p1]

?c2[owl:someValuesFrom->?y]

?c2[owl:onProperty->?p2]

?p1[rdfs:subPropertyOf->?p2]

scm-avf1 ?c1[owl:allValuesFrom->?y1] ?c1[rdfs:subClassOf->?c2]

?c1[owl:onProperty->?p]

?c2[owl:allValuesFrom->?y2]

?c2[owl:onProperty->?p]

?y1[rdfs:subClassOf->?y2]

scm-avf2 ?c1[owl:allValuesFrom->?y] ?c2[rdfs:subClassOf->?c1]

?c1[owl:onProperty->?p1]

?c2[owl:allValuesFrom->?y]

?c2[owl:onProperty->?p2]

?p1[rdfs:subPropertyOf->?p2]

eq-ref ?s[?p->?o] ?s[owl:sameAs->?s]

eq-ref1 ?s[?p->?o] ?p[owl:sameAs->?p]

eq-ref2 ?s[?p->?o] ?o[owl:sameAs->?o]

eq-sym ?x[owl:sameAs->?y] ?y[owl:sameAs->?x]

eq-trans ?x[owl:sameAs->?y] ?x[owl:sameAs->?z]

?y[owl:sameAs->?z]

eq-rep-s ?s[owl:sameAs->?s2] ?s2[?p->?o]

?s[?p->?o]

eq-rep-p ?p[owl:sameAs->?p2] ?s[?p2->?o]

?s[?p->?o]

eq-rep-o ?o[owl:sameAs->?o2] ?s[?p->?o2]

?s[?p->?o]

eq-diff1 ?x[owl:sameAs->?y] rif:error()

?x[owl:differentFrom->?y]

prp-ap-l rdfs:label[rdf:type->

owl:AnnotationProperty]

prp-ap-c rdfs:comment[rdf:type->]

owl:AnnotationProperty]

prp-ap-sa rdfs:seeAlso[rdf:type->]

owl:AnnotationProperty]

prp-ap-idb rdfs:isDefinedBy[rdf:type->]

owl:AnnotationProperty]

prp-ap-d owl:deprecated[rdf:type->]

owl:AnnotationProperty]

prp-ap-pv owl:priorVersion[rdf:type->]

owl:AnnotationProperty]

prp-ap-bcw owl:backwardCompatibleWith[rdf:type->]

owl:AnnotationProperty]

prp-ap-iw owl:incompatibleWith[rdf:type->]

owl:AnnotationProperty]

prp-dom ?p[rdfs:domain->?c] ?x[rdf:type->?c]
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?x[?p->?y]

prp-rng ?p[rdfs:range->?c] ?y[rdf:type->?c]

?x[?p->?y]

prp-fp ?p[rdf:type->owl:FunctionalProperty] ?y1[owl:sameAs->?y2]

?x[?p->?y1]

?x[?p->?y2]

prp-ifp ?p[rdf:type->owl:InverseFunctionalProperty] ?x1[owl:sameAs->?x2]

?x1[?p->?y]

?x2[?p->?y]

prp-irp ?p[rdf:type->owl:IrreflexiveProperty] rif:error()

?x[?p->?x]

prp-symp ?p[rdf:type->owl:SymmetricProperty] ?y[?p->?x]

?x[?p->?y]

prp-asyp ?p[rdf:type->owl:AsymmetricProperty] rif:error()

?x[?p->?y]

?y[?p->?x]

prp-trp ?p[rdf:type->owl:TransitiveProperty] ?x[?p->?z]

?x[?p->?y]

?y[?p->?z]

prp-spo1 ?p1[rdfs:subPropertyOf->?p2] ?x[?p2->?y]

?x[?p1->?y]

prp-eqp1 ?p1[owl:equivalentProperty->?p2] ?x[?p2->?y]

?x[?p1->?y]

prp-eqp2 ?p1[owl:equivalentProperty->?p2] ?x[?p1->?y]

?x[?p2->?y]

prp-pdw ?p1[owl:propertyDisjointWith->?p2] rif:error()

?x[?p1->?y]

?x[?p2->?y]

prp-inv1 ?p1[owl:inverseOf->?p2] ?y[?p2->?x]

?x[?p1->?y]

prp-inv2 ?p1[owl:inverseOf->?p2] ?y[?p1->?x]

?x[?p2->?y]

cls-thing owl:Thing[rdf:type->owl:Class]

cls-nothing1 owl:Nothing[rdf:type->owl:Class]

cls-nothing2 ?x[rdf:type->owl:Nothing] rif:error()

cls-svf1 ?x[owl:someValuesFrom->?y] ?u[rdf:type->?x]

?x[owl:onProperty->?p]

?u[?p->?v]

?v[rdf:type->?y]

cls-svf2 ?x[owl:someValuesFrom->owl:Thing] ?u[rdf:type->?x]

?x[owl:onProperty->?p]

?u[?p->?v]

cls-avf ?x[owl:allValuesFrom->?y] ?v[rdf:type->?y]

?x[owl:onProperty->?p]

?u[rdf:type->?x]

?u[?p->?v]

cls-hv1 ?x[owl:hasValue->?y] ?u[?p->?y]
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?x[owl:onProperty->?p]

?u[rdf:type->?x]

cls-hv2 ?x[owl:hasValue->?y] ?u[rdf:type->?x]

?x[owl:onProperty->?p]

?u[?p->?y]

cls-maxc1 ?x[owl:maxCardinality->0] rif:error()

?x[owl:onProperty->?p]

?u[rdf:type->?x]

?u[?p->?y]

cls-maxc2 ?x[owl:maxCardinality->1] ?y1[owl:sameAs->?y2]

?x[owl:onProperty->?p]

?u[rdf:type->?x]

?u[?p->?y1]

?u[?p->?y2]

cls-maxqc1 ?x[owl:maxQualifiedCardinality->0] rif:error()

?x[owl:onProperty->?p]

?x[owl:onClass->?c]

?u[rdf:type->?x]

?u[?p->?y]

?y[rdf:type->?c]

cls-maxqc2 ?x[owl:maxQualifiedCardinality->0] rif:error()

?x[owl:onProperty->?p]

?x[owl:onClass->owl:Thing]

?u[rdf:type->?x]

?u[?p->?y]

cls-maxqc3 ?x[owl:maxQualifiedCardinality->1] ?y1[owl:sameAs->?y2]

?x[owl:onProperty->?p]

?x[owl:onClass->?c]

?u[rdf:type->?x]

?u[?p->?y1]

?y1[rdf:type->?c]

?u[?p->?y2]

?y2[rdf:type->?c]

cls-maxqc4 ?x[owl:maxQualifiedCardinality->1] ?y1[owl:sameAs->?y2]

?x[owl:onProperty->?p]

?x[owl:onClass->owl:Thing]

?u[rdf:type->?x]

?u[?p->?y1]

?u[?p->?y2]

cax-sco ?c1[rdfs:subClassOf->?c2] ?x[rdf:type->?c2]

?x[rdf:type->?c1]

cax-eqc1 ?c1[owl:equivalentClass->?c2] ?x[rdf:type->?c2]

?x[rdf:type->?c1]

cax-eqc2 ?c1[owl:equivalentClass->?c2] ?x[rdf:type->?c1]

?x[rdf:type->?c2]

cax-dw ?c1[owl:disjointWith->?c2] rif:error()

?x[rdf:type->?c1]
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?x[rdf:type->?c2]

prp-npa1 ?x[owl:sourceIndividual->?i1] rif:error()

?x[owl:assertionProperty->?p]

?x[owl:targetIndividual->?i2]

?i1[?p->?i2]

prp-npa2 ?x[owl:sourceIndividual->?i] rif:error()

?x[owl:assertionProperty->?p]

?x[owl:targetValue->?lt]

?i[?p->?lt]

cax-dw ?c1[owl:disjointWith->?c2] rif:error()

?x[rdf:type->?c1]

?x[rdf:type->?c2]

cls-com ?c1[owl:complementOf->?c2] rif:error()

?x[rdf:type->?c1]

?x[rdf:type->?c2]

eq-diff2a ?x[rdf:type->owl:AllDifferent] checkDifferent(?x ?y)

?x[owl:distinctMembers->?y]

eq-diff3a ?x[rdf:type->owl:AllDifferent] checkDifferent(?x ?y)

?x[owl:members->?y]

eq-diff23b checkDifferent(?x ?z) checkDifferent(?x ?y)

?z[rdf:rest->?y]

Not(?y = rdf:nil)

eq-diff23c checkDifferent(?x ?y1) rif:error()

checkDifferent(?x ?y2)

Not(?y1 = ?y2)

?y1[rdf:first->?z1]

?y2[rdf:first->?z2]

?z1[owl:sameAs->?z2]

prp-adp ?r[rdf:type->owl:AllDisjointProperties] checkDisjointProperties(?r ?l)

?r[owl:members -> ?l]

prp-adp-1 checkDisjointProperties(?r ?x) checkDisjointProperties(?r ?l)

?x[rdf:rest->?l]

Not(?l = rdf:nil)

prp-adp-2 checkDisjointProperties(?r ?l1) rif:error()

checkDisjointProperties(?r ?l2)

Not(?l1 = ?l2)

?l1[rdf:first->?x]

?l2[rdf:first->?y]

?o[?x->?v]

?o[?y->?v]

cax-adc ?r[rdf:type -> owl:AllDisjointClasses] checkDisjointClasses(?r ?l)

?r[owl:members -> ?l]

cax-adc-1 checkDisjointClasses(?r ?x) checkDisjointClasses(?r ?l)

?x[rdf:rest->?l]

Not(?l = rdf:nil)

cax-adc-2 checkDisjointClasses(?r ?l1) rif:error()

checkDisjointClasses(?r ?l2)
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Not(?l1 = ?l2)

?l1[rdf:first->?x]

?l2[rdf:first->?y]

?o[rdf:type->?x]

?o[rdf:type->?y]

prp-spo2 ?p[owl:propertyChainAxiom->?pc] markCheckChain(?p ?pc)

prp-spo2-1 markCheckChain(?p ?q) markCheckChain(?p ?pc)

?q[rdf:rest->?pc]

Not(?pc = rdf:nil)

prp-spo2-2 markCheckChain(?q ?pc) checkChain(?q ?start ?pc ?last)

?pc[rdf:first->?p]

?pc[rdf:rest->rdf:nil]

?start[?p->?last]

prp-spo2-3 ?pc[rdf:first->?p] checkChain(?q ?start ?pc ?last)

?pc[rdf:rest->?tl]

?start[?p->?next]

checkChain(?q ?next ?tl ?last)

prp-spo2-4 ?p[owl:propertyChainAxiom->?pc] ?start[?p->?last]

checkChain(?p ?start ?pc ?last)

cls-int1 markAllTypes(?c ?l) allTypes(?c ?l ?y)

?l[rdf:first->?ty]

?l[rdf:rest->rdf:nil]

?y[rdf:type->?ty]

cls-int1-1 ?l[rdf:first->?ty] allTypes(?c ?l ?y)

?l[rdf:rest->?tl]

?y[rdf:type->?ty]

allTypes(?c ?tl ?y)

cls-int1-2 ?c[owl:intersectionOf->?l] ?y[rdf:type->?c]

allTypes(?c ?l ?y)

prp-key ?c[owl:hasKey->?u] markSameKey(?c ?u)

prp-key-1 markSameKey(?c ?v) markSameKey(?c ?u)

?v[rdf:rest->?u]

Not(?u = rdf:nil)

prp-key-2 markSameKey(?c ?u) sameKey(?c ?u ?x ?y)

?u[rdf:first->?key]

?u[rdf:rest->rdf:nil]

?x[?key->?v]

?y[?key->?v]

prp-key-3 ?u[rdf:first->?key] sameKey(?c ?u ?x ?y)

?u[rdf:rest->?tl]

?x[?key->?v]

?y[?key->?v]

sameKey(?c ?tl ?x ?y)

prp-key-4 ?c[owl:hasKey->?u] ?x[owl:sameAs->?y]

?x[rdf:type->?c]

?y[rdf:type->?c]

sameKey(?c ?u ?x ?y)
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cls-uni checkUnionOf(?c ?l) ?y[rdf:type->?c]

?l[rdf:first->?ci]

?y[rdf:type->?ci]

cls-oo-a ?c[owl:oneOf->?l] checkOneOf(?c ?l)

cls-oo-b checkOneOf(?c ?r) checkOneOf(?c ?l)

?r[rdf:rest->?l]

Not(?l = rdf:nil)

cls-oo-c checkOneOf(?c ?l) ?yi[rdf:type->?c]

?l[rdf:first->?yi]

cls-int2 markAllTypes(?c ?l) ?y[rdf:type->?ci]

?l[rdf:first->?ci]

?y[rdf:type->?c]

Table B.7: The OWL2RL Metaclasses and Metaproperties

MC MP

owl:FunctionalProperty rdfs:domain

owl:InverseFunctionalProperty rdfs:range

owl:IrreflexiveProperty rdfs:subPropertyOf

owl:SymmetricProperty owl:equivalentProperty

owl:AsymmetricProperty owl:propertyDisjointWith

owl:TransitiveProperty owl:inverseOf

owl:Class owl:someValuesFrom

owl:ObjectProperty owl:onProperty

owl:DatatypeProperty owl:allValuesFrom

owl:AllDifferent owl:hasValue

owl:AllDisjointProperties owl:onClass

owl:AllDisjointClasses rdfs:subClassOf

owl:equivalentClass

owl:disjointWith

owl:complementOf

owl:distinctMembers

owl:members

owl:propertyChainAxiom

owl:intersectionOf

owl:hasKey

owl:unionOf

owl:oneOf

rdf:first

rdf:rest

owl:maxCardinality

owl:maxQualifiedCardinality
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Table B.8: Forced Assignments from Steps 1 and 3 of the Methodology

applied to the OWL2RL ruleset

Replicate (α) Arbitrary (ε)

And(?x1[?x2->?x3] ?x2 ∈MP) And(?x1[?x2->?x3] ?x2 /∈MPT)

And(?x1[rdf:type->?x3] ?x3 ∈MC) And(?x1[rdf:type->?x3] ?x3 /∈MC)

And( markAllTypes(?x1 ?x2))

And( allTypes(?x1 ?x2))

And( checkUnionOf(?x1 ?x2))

And( checkDifferent(?x1 ?x2))

And( checkDisjointProperties(?x1 ?x2))

And( checkDisjointClasses(?x1 ?x2))

And( markCheckChain(?x1 ?x2))

And( checkChain(?x1 ?x2 ?x3 ?x4))

And( markSameKey(?x1 ?x2))

And( sameKey(?x1 ?x2 ?x3 ?x4))

And(?x1 = ?x2)

Table B.9: Replication Patterns for Correct, Parallel Par-OWL2 Infer-

ence

Replicate (α)

And(?x1[?x2->?x3] ?x2 ∈MP)

And(?x1[rdf:type->?x3] ?x3 ∈MC)

And( markAllTypes(?x1 ?x2))

And( allTypes(?x1 ?x2))

And( checkUnionOf(?x1 ?x2))

And( checkDifferent(?x1 ?x2))

And( checkDisjointProperties(?x1 ?x2))

And( checkDisjointClasses(?x1 ?x2))

And( markCheckChain(?x1 ?x2))

And( checkChain(?x1 ?x2 ?x3 ?x4))

And( markSameKey(?x1 ?x2))

And( sameKey(?x1 ?x2 ?x3 ?x4))

And(?x1 = ?x2)

And( checkOneOf(?x1 ?x2))

Table B.10: The Par-OWL2 Ruleset

Rule ID If And(. . .) Then Do(Assert(. . .))

scm-int1 ?c[owl:intersectionOf->?l] markAllTypes(?c ?l)

scm-int2 markAllTypes(?c ?r) markAllTypes(?c ?l)

?r[rdf:rest->?l]

Not(?l = rdf:nil)
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scm-int3 markAllTypes(?c ?l) ?c[rdfs:subClassOf->?ci]

?l[rdf:first->?ci]

scm-uni1 ?c[owl:unionOf->?l] checkUnionOf(?c ?l)

scm-uni2 checkUnionOf(?c ?r) checkUnionOf(?c ?l)

?r[rdf:rest->?l]

Not(?l = rdf:nil)

scm-uni3 checkUnionOf(?c ?l) ?ci[rdfs:subClassOf->?c]

?l[rdf:first->?ci]

scm-cls† ?c[rdf:type->owl:Class] ?c[rdfs:subClassOf->?c]

scm-cls1† ?c[rdf:type->owl:Class] ?c[owl:equivalentClass->?c]

scm-cls2† ?c[rdf:type->owl:Class] ?c[rdfs:subClassOf->owl:Thing]

scm-cls3† ?c[rdf:type->owl:Class] owl:Nothing[rdfs:subClassOf->?c]

scm-sco ?c1[rdfs:subClassOf->?c2] ?c1[rdfs:subClassOf->?c3]

?c2[rdfs:subClassOf->?c3]

scm-eqc1 ?c1[owl:equivalentClass->?c2] ?c1[rdfs:subClassOf->?c2]

scm-eqc11 ?c1[owl:equivalentClass->?c2] ?c2[rdfs:subClassOf->?c1]

scm-eqc2 ?c1[rdfs:subClassOf->?c2] ?c1[owl:equivalentClass->?c2]

?c2[rdfs:subClassOf->?c1]

scm-op† ?p[rdf:type->owl:ObjectProperty] ?p[rdfs:subPropertyOf->?p]

scm-op1† ?p[rdf:type->owl:ObjectProperty] ?p[owl:equivalentProperty->?p]

scm-dp† ?p[rdf:type->owl:DatatypeProperty] ?p[rdfs:subPropertyOf->?p]

scm-dp1† ?p[rdf:type->owl:DatatypeProperty] ?p[owl:equivalentProperty->?p]

scm-spo ?p1[rdfs:subPropertyOf->?p2] ?p1[rdfs:subPropertyOf->?p3]

?p2[rdfs:subPropertyOf->?p3]

scm-eqp1 ?p1[owl:equivalentProperty->?p2] ?p1[rdfs:subPropertyOf->?p2]

scm-eqp11 ?p1[owl:equivalentProperty->?p2] ?p2[rdfs:subPropertyOf->?p1]

scm-eqp2 ?p1[rdfs:subPropertyOf->?p2] ?p1[owl:equivalentProperty->?p2]

?p2[rdfs:subPropertyOf->?p1]

scm-dom1 ?p[rdfs:domain->?c1] ?p[rdfs:domain->?c2]

?c1[rdfs:subClassOf->?c2]

scm-dom2 ?p2[rdfs:domain->?c] ?p1[rdfs:domain->?c]

?p1[rdfs:subPropertyOf->?p2]

scm-rng1 ?p[rdfs:range->?c1] ?p[rdfs:range->?c2]

?c1[rdfs:subClassOf->?c2]

scm-rng2 ?p2[rdfs:range->?c] ?p1[rdfs:range->?c]

?p1[rdfs:subPropertyOf->?p2]

scm-hv ?c1[owl:hasValue->?i] ?c1[rdfs:subClassOf->?c2]

?c1[owl:onProperty->?p1]

?c2[owl:hasValue->?i]

?c2[owl:onProperty->?p2]

?p1[rdfs:subPropertyOf->?p2]

scm-svf1 ?c1[owl:someValuesFrom->?y1] ?c1[rdfs:subClassOf->?c2]

?c1[owl:onProperty->?p]

?c2[owl:someValuesFrom->?y2]

?c2[owl:onProperty->?p]

?y1[rdfs:sbuClassOf->?y2]
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scm-svf2 ?c1[owl:someValuesFrom->?y] ?c1[rdfs:subClassOf->?c2]

?c1[owl:onProperty->?p1]

?c2[owl:someValuesFrom->?y]

?c2[owl:onProperty->?p2]

?p1[rdfs:subPropertyOf->?p2]

scm-avf1 ?c1[owl:allValuesFrom->?y1] ?c1[rdfs:subClassOf->?c2]

?c1[owl:onProperty->?p]

?c2[owl:allValuesFrom->?y2]

?c2[owl:onProperty->?p]

?y1[rdfs:subClassOf->?y2]

scm-avf2 ?c1[owl:allValuesFrom->?y] ?c2[rdfs:subClassOf->?c1]

?c1[owl:onProperty->?p1]

?c2[owl:allValuesFrom->?y]

?c2[owl:onProperty->?p2]

?p1[rdfs:subPropertyOf->?p2]

eq-ref† ?s[?p->?o] ?s[owl:sameAs->?s]

eq-ref1† ?s[?p->?o] ?p[owl:sameAs->?p]

eq-ref2† ?s[?p->?o] ?o[owl:sameAs->?o]

eq-sym ?x[owl:sameAs->?y] ?y[owl:sameAs->?x]

prp-ap-l† rdfs:label[rdf:type->

owl:AnnotationProperty]

prp-ap-c† rdfs:comment[rdf:type->

owl:AnnotationProperty]

prp-ap-sa† rdfs:seeAlso[rdf:type->

owl:AnnotationProperty]

prp-ap-idb† rdfs:isDefinedBy[rdf:type->

owl:AnnotationProperty]

prp-ap-d† owl:deprecated[rdf:type->

owl:AnnotationProperty]

prp-ap-pv† owl:priorVersion[rdf:type->

owl:AnnotationProperty]

prp-ap-bcw† owl:backwardCompatibleWith[rdf:type->

owl:AnnotationProperty]

prp-ap-iw† owl:incompatibleWith[rdf:type->

owl:AnnotationProperty]

prp-dom∗ p[rdfs:domain->?c] ?x[rdf:type->?c]

?x[?p->?y]

?c /∈ MC

prp-rng∗ ?p[rdfs:range->?c] ?y[rdf:type->?c]

?x[?p->?y]

?c /∈ MC

prp-irp ?p[rdf:type->owl:IrreflexiveProperty] rif:error()

?x[?p->?x]

prp-symp1∗ ?p[rdf:type->owl:SymmetricProperty] ?y[?p->?x]

?x[?p->?y]

?p /∈ MPT
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prp-symp2∗ ?p[rdf:type->owl:SymmetricProperty] ?y[rdf:type->?x]

?x[rdf:type->?y]

?x /∈ MC

prp-trp∗ ?p[rdf:type->owl:TransitiveProperty] ?x[?p->?z]

?x[?p->?y]

?y[?p->?z]

?p ∈ MP

prp-spo11∗ ?p1[rdfs:subPropertyOf->?p2] ?x[?p2->?y]

?x[?p1->?y]

?p2 /∈ MPT

prp-spo12∗ ?p1[rdfs:subPropertyOf->rdf:type] ?x[rdf:type->?y]

?x[?p1->?y]

?y /∈ MC

prp-eqp11∗ ?p1[owl:equivalentProperty->?p2] ?x[?p2->?y]

?x[?p1->?y]

?p2 /∈ MPT

prp-eqp12∗ ?p1[owl:equivalentProperty->rdf:type] ?x[rdf:type->?y]

?x[?p1->?y]

?y /∈ MC

prp-eqp21∗ ?p1[owl:equivalentProperty->?p2] ?x[?p1->?y]

?x[?p2->?y]

?p1 /∈ MPT

prp-eqp22∗ rdf:type[owl:equivalentProperty->?p2] ?x[rdf:type->?y]

?x[?p2->?y]

?y /∈ MC

prp-inv11∗ ?p1[owl:inverseOf->?p2] ?y[?p2->?x]

?x[?p1->?y]

?p2 /∈ MPT

prp-inv12∗ ?p1[owl:inverseOf->rdf:type] ?y[rdf:type->?x]

?x[?p1->?y]

?x /∈ MC

prp-inv21∗ ?p1[owl:inverseOf->?p2] ?y[?p1->?x]

?x[?p2->?y]

?p1 /∈ MPT

prp-inv22∗ rdf:type[owl:inverseOf->?p2] ?y[rdf:type->?x]

?x[?p2->?y]

?x /∈ MC

cls-thing† owl:Thing[rdf:type->owl:Class]

cls-nothing1† owl:Nothing[rdf:type->owl:Class]

cls-nothing2 ?x[rdf:type->owl:Nothing] rif:error()

cls-svf2∗ ?x[owl:someValuesFrom->owl:Thing] ?u[rdf:type->?x]

?x[owl:onProperty->?p]

?u[?p->?v]

?x /∈ MC

cls-hv11∗ ?x[owl:hasValue->?y] ?u[?p->?y]

?x[owl:onProperty->?p]
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?u[rdf:type->?x]

?p /∈ MPT

cls-hv12∗ ?x[owl:hasValue->?y] ?u[rdf:type->?y]

?x[owl:onProperty->rdf:type]

?u[rdf:type->?x]

?y /∈ MC

cls-hv2∗ ?x[owl:hasValue->?y] ?u[rdf:type->?y]

?x[owl:onProperty->?p]

?u[?p->y]

?x /∈ MC

cax-sco∗ ?c1[rdfs:subClassOf->?c2] ?x[rdf:type->?c2]

?x[rdf:type->?c1]

?c2 /∈ MC

cax-eqc1∗ ?c1[owl:equivalentClass->?c2] ?x[rdf:type->?c2]

?x[rdf:type->?c1]

?c2 /∈ MC

cax-eqc2∗ ?c1[owl:equivalentClass->?c2] ?x[rdf:type->?c1]

?x[rdf:type->?c2]

?c1 /∈ MC

eq-diff2a ?x[rdf:type->owl:AllDifferent] checkDifferent(?x ?y)

?x[owl:distinctMembers->?y]

eq-diff3a ?x[rdf:type->owl:AllDifferent] checkDifferent(?x ?y)

?x[owl:members->?y]

eq-diff23b checkDifferent(?x ?z) checkDifferent(?x ?y)

?z[rdf:rest->?y]

Not(?y = rdf:nil)

eq-diff23c checkDifferent(?x ?y1) rif:error()

checkDifferent(?x ?y2)

Not(?y1 = ?y2)

?y1[rdf:first->?z1]

?y2[rdf:first->?z2]

?z1[owl:sameAs->?z2]

cls-uni∗ checkUnionOf(?c ?l) ?y[rdf:type->?c]

?l[rdf:first->?ci]

?y[rdf:type->?ci]

?c /∈ MC

cls-oo-a ?c[owl:oneOf->?l] checkOneOf(?c ?l)

cls-oo-b checkOneOf(?c ?r) checkOneOf(?c ?l)

?r[rdf:rest-?l]

Not(?l = rdf:nil)

cls-oo-c1∗ checkOneOf(?c ?l) ?yi[rdf:type->?c]

?l[rdf:first->?yi]

?c /∈ MC

cls-oo-c2∗ checkOneOf(?c ?l) ?yi[rdf:type->?c]

?l[rdf:first->?yi]

?c ∈ MC

cls-int2∗ markAllTypes(?c ?l) ?y[rdf:type->?ci]
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?l[rdf:first->?ci]

?y[rdf:type->?c]

?ci /∈ MC

B.3 Verbatim Rulesets Used in Evaluation

For the purposes of reproducibility, this section simply includes the rulesets as

they were provided to the inference engine. They are specified in a modified RIF-

Core syntax which is likely intuitively understandable to those familiar with RIF-

Core. Note that the # symbol is used at the beginning of lines to indicate comments,

some of which are interpreted by the rule compiler (e.g., #DEFINE and #PRAGMA).

#PRAGMA is used to specify patterns for replication or arbitrary placement. Note that

unlike the definition of Pattern used in this thesis which utilizes negated equality

formulas as restrictions, the rules below instead specify restrictions by negating

a built-in formula with predicate pred:list-contains. This detail is obscured,

however, by using symbols IN and NOTIN. #DEFINE has similar behavior to #define

in C++. Note that rule labels given in (* *) may not necessarily be consistent

with the names used throughout the rest of this thesis.

B.3.1 Par-CoreRDFS
Prefix(rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(rdfs <http://www.w3.org/2000/01/rdf-schema#>)

Prefix(owl <http://www.w3.org/2002/07/owl#>)

Prefix(xsd <http://www.w3.org/2001/XMLSchema#>)

Prefix(rif <http://www.w3.org/2007/rif#>)

Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)

Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)

Prefix(dc <http://purl.org/dc/terms/>)

#DEFINE IN External(pred:list-contains(

#DEFINE /IN ))

#DEFINE NOTIN Not({IN}

#DEFINE /NOTIN {/IN})

#DEFINE $MP List(rdfs:domain rdfs:range rdfs:subPropertyOf rdfs:subClassOf)

#PRAGMA REPLICATE And(?p[rdfs:domain -> ?c])

#PRAGMA REPLICATE And(?p[rdfs:range -> ?c])

#PRAGMA REPLICATE And(?p1[rdfs:subPropertyOf -> ?p2])

#PRAGMA REPLICATE And(?c1[rdfs:subClassOf -> ?c2])

#PRAGMA ARBITRARY And(?x[?p2 -> ?y] {NOTIN}{$MP} ?p2{/NOTIN})
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(* <#scm-spo> *)

Forall ?p3 ?p2 ?p1 (

?p1[rdfs:subPropertyOf->?p3] :- And(

?p1[rdfs:subPropertyOf->?p2]

?p2[rdfs:subPropertyOf->?p3] ))

(* <#scm-sco> *)

Forall ?c1 ?c2 ?c3 (

?c1[rdfs:subClassOf->?c3] :- And(

?c1[rdfs:subClassOf->?c2]

?c2[rdfs:subClassOf->?c3] ))

(* <#prp-spo1> *)

Forall ?x ?y ?p2 ?p1 (

?x[?p2->?y] :- And(

?p1[rdfs:subPropertyOf->?p2]

{NOTIN}{$MP} ?p2{/NOTIN}

?x[?p1->?y] ))

(* <#prp-dom> *)

Forall ?p ?c ?x ?y (

?x[rdf:type->?c] :- And(

?p[rdfs:domain->?c]

?x[?p->?y] ))

(* <#prp-rng> *)

Forall ?p ?c ?x ?y (

?y[rdf:type->?c] :- And(

?p[rdfs:range->?c]

?x[?p->?y] ))

(* <#cax-sco> *)

Forall ?x ?c1 ?c2 (

?x[rdf:type->?c2] :- And(

?c1[rdfs:subClassOf->?c2]

?x[rdf:type->?c1] ))

#EOF

B.3.2 Par-MemOWL2
Prefix(rdf <http://www.w3.org/1999/02/22-rdf-syntax-ns#>)

Prefix(rdfs <http://www.w3.org/2000/01/rdf-schema#>)

Prefix(owl <http://www.w3.org/2002/07/owl#>)

Prefix(xsd <http://www.w3.org/2001/XMLSchema#>)

Prefix(rif <http://www.w3.org/2007/rif#>)

Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)
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Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)

Prefix(dc <http://purl.org/dc/terms/>)

#DEFINE IN External(pred:list-contains(

#DEFINE /IN ))

#DEFINE NOTIN Not({IN}

#DEFINE /NOTIN {/IN})

#DEFINE $MC List(owl:FunctionalProperty owl:InverseFunctionalProperty

owl:IrreflexiveProperty owl:SymmetricProperty owl:AsymmetricProperty

owl:TransitiveProperty owl:Class owl:ObjectProperty owl:DatatypeProperty

owl:AllDifferent owl:AllDisjointProperties owl:AllDisjointClasses)

#DEFINE $MP List(rdfs:domain rdfs:range rdfs:subPropertyOf owl:equivalentProperty

owl:propertyDisjointWith owl:inverseOf owl:someValuesFrom owl:onProperty

owl:allValuesFrom owl:hasValue owl:onClass rdfs:subClassOf owl:equivalentClass

owl:disjointWith owl:complementOf owl:distinctMembers owl:members

owl:propertyChainAxiom owl:intersectionOf owl:hasKey owl:unionOf owl:oneOf

rdf:first rdf:rest owl:maxCardinality owl:maxQualifiedCardinality)

#DEFINE $MPT List(rdfs:domain rdfs:range rdfs:subPropertyOf owl:equivalentProperty

owl:propertyDisjointWith owl:inverseOf owl:someValuesFrom owl:onProperty

owl:allValuesFrom owl:hasValue owl:onClass rdfs:subClassOf owl:equivalentClass

owl:disjointWith owl:complementOf owl:distinctMembers owl:members

owl:propertyChainAxiom owl:intersectionOf owl:hasKey owl:unionOf owl:oneOf

rdf:first rdf:rest owl:maxCardinality owl:maxQualifiedCardinality rdf:type)

# REPLICATE ONTOLOGY

#PRAGMA REPLICATE And(?s[?p->?o] {IN}{$MP} ?p{/IN})

#PRAGMA REPLICATE And(?s[rdf:type->?o] {IN}{$MC} ?o{/IN})

#PRAGMA REPLICATE And(_markAllTypes(?a ?b))

#PRAGMA REPLICATE And(_allTypes(?a ?b ?c))

#PRAGMA REPLICATE And(_checkUnionOf(?a ?b))

#PRAGMA REPLICATE And(_checkDifferent(?a ?b))

#PRAGMA REPLICATE And(_checkDisjointProperties(?a ?b))

#PRAGMA REPLICATE And(_checkDisjointClasses(?a ?b))

#PRAGMA REPLICATE And(_markCheckChain(?a ?b))

#PRAGMA REPLICATE And(_checkChain(?a ?b ?c ?d))

#PRAGMA REPLICATE And(_markSameKey(?a ?b))

#PRAGMA REPLICATE And(_sameKey(?a ?b ?c ?d))

# REPLICATE BUILTINS (pred:list-contains special, don’t worry about it)

# REPLICATE SELECTIVE PATTERNS

#PRAGMA REPLICATE And(?a = ?b)

#PRAGMA ARBITRARY And(?s[?p->?o] {NOTIN}{$MPT} ?p{/NOTIN})

#PRAGMA ARBITRARY And(?s[rdf:type->?o] {NOTIN}{$MC} ?o{/NOTIN})
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(* <#scm-int> *)

Forall ?c ?l (

_markAllTypes(?c ?l) :- ?c[owl:intersectionOf->?l] )

Forall ?c ?l ?r (

_markAllTypes(?c ?l) :- And (

_markAllTypes(?c ?r)

?r[rdf:rest->?l]

Not(?l = rdf:nil) ))

Forall ?c ?ci ?l (

?c[rdfs:subClassOf->?ci] :- And (

_markAllTypes(?c ?l)

?l[rdf:first->?ci] ))

(* <#scm-uni> *)

Forall ?c ?l (

_checkUnionOf(?c ?l) :- ?c[owl:unionOf->?l] )

Forall ?c ?l ?r (

_checkUnionOf(?c ?l) :- And(

_checkUnionOf(?c ?r)

?r[rdf:rest->?l]

Not(?l = rdf:nil) ))

Forall ?c ?ci ?l (

?ci[rdfs:subClassOf->?c] :- And (

_checkUnionOf(?c ?l)

?l[rdf:first->?ci] ))

#UNINTERESTING

#(* <#scm-cls> *)

#Forall ?c (

# ?c[rdfs:subClassOf->?c] :- ?c[rdf:type->owl:Class])

#UNINTERESTING

#(* <#scm-cls1> *)

#Forall ?c (

# ?c[owl:equivalentClass->?c] :- ?c[rdf:type->owl:Class])

#NOT WORTH THE MEMORY

#(* <#scm-cls2> *)

#Forall ?c (

# ?c[rdfs:subClassOf->owl:Thing] :- ?c[rdf:type->owl:Class])

#NOT WORTH THE MEMORY

#(* <#scm-cls3> *)
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#Forall ?c (

# owl:Nothing[rdfs:subClassOf->?c] :- ?c[rdf:type->owl:Class])

(* <#scm-sco> *)

Forall ?c1 ?c2 ?c3 (

?c1[rdfs:subClassOf->?c3] :- And(

?c1[rdfs:subClassOf->?c2]

?c2[rdfs:subClassOf->?c3] ))

(* <#scm-eqc1> *)

Forall ?c1 ?c2 (

?c1[rdfs:subClassOf->?c2] :- ?c1[owl:equivalentClass->?c2])

(* <#scm-eqc11> *)

Forall ?c1 ?c2 (

?c2[rdfs:subClassOf->?c1] :- ?c1[owl:equivalentClass->?c2])

(* <#scm-eqc2> *)

Forall ?c1 ?c2 (

?c1[owl:equivalentClass->?c2] :- And(

?c1[rdfs:subClassOf->?c2]

?c2[rdfs:subClassOf->?c1] ))

#UNINTERESTING

#(* <#scm-op> *)

#Forall ?p (

# ?p[rdfs:subPropertyOf->?p] :- ?p[rdf:type->owl:ObjectProperty])

#UNINTERESTING

#(* <#scm-op1> *)

#Forall ?p (

# ?p[owl:equivalentProperty->?p] :- ?p[rdf:type->owl:ObjectProperty])

#UNINTERESTING

#(* <#scm-dp> *)

#Forall ?p (

# ?p[rdfs:subPropertyOf->?p] :- ?p[rdf:type->owl:DatatypeProperty])

#UNINTERESTING

#(* <#scm-dp1> *)

#Forall ?p (

# ?p[owl:equivalentProperty->?p] :- ?p[rdf:type->owl:DatatypeProperty])

(* <#scm-spo> *)

Forall ?p3 ?p2 ?p1 (

?p1[rdfs:subPropertyOf->?p3] :- And(

?p1[rdfs:subPropertyOf->?p2]
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?p2[rdfs:subPropertyOf->?p3] ))

(* <#scm-eqp1> *)

Forall ?p2 ?p1 (

?p1[rdfs:subPropertyOf->?p2] :- ?p1[owl:equivalentProperty->?p2])

(* <#scm-eqp11> *)

Forall ?p2 ?p1 (

?p2[rdfs:subPropertyOf->?p1] :- ?p1[owl:equivalentProperty->?p2])

(* <#scm-eqp2> *)

Forall ?p2 ?p1 (

?p1[owl:equivalentProperty->?p2] :- And(

?p1[rdfs:subPropertyOf->?p2]

?p2[rdfs:subPropertyOf->?p1] ))

(* <#scm-dom1> *)

Forall ?p ?c1 ?c2 (

?p[rdfs:domain->?c2] :- And(

?p[rdfs:domain->?c1]

?c1[rdfs:subClassOf->?c2] ))

(* <#scm-dom2> *)

Forall ?c ?p2 ?p1 (

?p1[rdfs:domain->?c] :- And(

?p2[rdfs:domain->?c]

?p1[rdfs:subPropertyOf->?p2] ))

(* <#scm-rng1> *)

Forall ?p ?c1 ?c2 (

?p[rdfs:range->?c2] :- And(

?p[rdfs:range->?c1]

?c1[rdfs:subClassOf->?c2] ))

(* <#scm-rng2> *)

Forall ?c ?p2 ?p1 (

?p1[rdfs:range->?c] :- And(

?p2[rdfs:range->?c]

?p1[rdfs:subPropertyOf->?p2] ))

(* <#scm-hv> *)

Forall ?c1 ?c2 ?i ?p2 ?p1 (

?c1[rdfs:subClassOf->?c2] :- And(

?c1[owl:hasValue->?i]

?c1[owl:onProperty->?p1]

?c2[owl:hasValue->?i]

?c2[owl:onProperty->?p2]
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?p1[rdfs:subPropertyOf->?p2] ))

(* <#scm-svf1> *)

Forall ?p ?y2 ?c1 ?c2 ?y1 (

?c1[rdfs:subClassOf->?c2] :- And(

?c1[owl:someValuesFrom->?y1]

?c1[owl:onProperty->?p]

?c2[owl:someValuesFrom->?y2]

?c2[owl:onProperty->?p]

?y1[rdfs:subClassOf->?y2] ))

(* <#scm-svf2> *)

Forall ?c1 ?c2 ?y ?p2 ?p1 (

?c1[rdfs:subClassOf->?c2] :- And(

?c1[owl:someValuesFrom->?y]

?c1[owl:onProperty->?p1]

?c2[owl:someValuesFrom->?y]

?c2[owl:onProperty->?p2]

?p1[rdfs:subPropertyOf->?p2] ))

(* <#scm-avf1> *)

Forall ?p ?y2 ?c1 ?c2 ?y1 (

?c1[rdfs:subClassOf->?c2] :- And(

?c1[owl:allValuesFrom->?y1]

?c1[owl:onProperty->?p]

?c2[owl:allValuesFrom->?y2]

?c2[owl:onProperty->?p]

?y1[rdfs:subClassOf->?y2] ))

(* <#scm-avf2> *)

Forall ?c1 ?c2 ?y ?p2 ?p1 (

?c2[rdfs:subClassOf->?c1] :- And(

?c1[owl:allValuesFrom->?y]

?c1[owl:onProperty->?p1]

?c2[owl:allValuesFrom->?y]

?c2[owl:onProperty->?p2]

?p1[rdfs:subPropertyOf->?p2] ))

#NOT WORTH THE MEMORY

#(* <#eq-ref> *)

#Forall ?p ?o ?s (

# ?s[owl:sameAs->?s] :- ?s[?p->?o])

#NOT WORTH THE MEMORY

#(* <#eq-ref1> *)

#Forall ?p ?o ?s (

# ?p[owl:sameAs->?p] :- ?s[?p->?o])
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#NOT WORTH THE MEMORY

#(* <#eq-ref2> *)

#Forall ?p ?o ?s (

# ?o[owl:sameAs->?o] :- ?s[?p->?o])

(* <#eq-sym> *)

Forall ?x ?y (

?y[owl:sameAs->?x] :- ?x[owl:sameAs->?y])

#ELIMINATED

#(* <#eq-trans> *)

#Forall ?x ?z ?y (

# ?x[owl:sameAs->?z] :- And(

# ?x[owl:sameAs->?y]

# ?y[owl:sameAs->?z] ))

#SPLIT

#ELIMINATED

#(* <#eq-rep-s> *)

#Forall ?p ?o ?s ?s2 (

# ?s2[?p->?o] :- And(

# ?s[owl:sameAs->?s2]

# ?s[?p->?o]

# {NOTIN}{$MPT} ?p{/NOTIN} ))

#ELIMINATED

#Forall ?p ?o ?s ?s2 (

# ?s2[?p->?o] :- And(

# ?s[owl:sameAs->?s2]

# ?s[?p->?o]

# {IN}{$MP} ?p{/IN} ))

#ELIMINATED

#Forall ?p ?o ?s ?s2 (

# ?s2[rdf:type->?o] :- And(

# ?s[owl:sameAs->?s2]

# ?s[rdf:type->?o]

# {NOTIN}{$MC} ?o{/NOTIN} ))

#ELIMINATED

#Forall ?p ?o ?s ?s2 (

# ?s2[rdf:type->?o] :- And(

# ?s[owl:sameAs->?s2]

# ?s[rdf:type->?o]

# {IN}{$MC} ?o{/IN} ))
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#SPLIT

#ELIMINATED

#(* <#eq-rep-p> *)

#Forall ?p ?o ?s ?p2 (

# ?s[?p2->?o] :- And(

# ?p[owl:sameAs->?p2]

# ?s[?p->?o]

# {NOTIN}{$MPT} ?p2{/NOTIN} ))

#ELIMINATED

#Forall ?p ?o ?s ?p2 (

# ?s[?p2->?o] :- And(

# ?p[owl:sameAs->?p2]

# ?s[?p->?o]

# {IN}{$MP} ?p2{/IN} ))

#ELIMINATED

#Forall ?p ?o ?s ?p2 (

# ?s[rdf:type->?o] :- And(

# ?p[owl:sameAs->rdf:type]

# ?s[?p->?o]

# {NOTIN}{$MC} ?o{/NOTIN} ))

#ELIMINATED

#Forall ?p ?o ?s ?p2 (

# ?s[rdf:type->?o] :- And(

# ?p[owl:sameAs->rdf:type]

# ?s[?p->?o]

# {IN}{$MC} ?o{/IN} ))

#SPLIT

#ELIMINATED

#(* <#eq-rep-o> *)

#Forall ?p ?o ?s ?o2 (

# ?s[?p->?o2] :- And(

# ?o[owl:sameAs->?o2]

# ?s[?p->?o]

# {NOTIN}{$MPT} ?p{/NOTIN} ))

#ELIMINATED

#Forall ?p ?o ?s ?o2 (

# ?s[?p->?o2] :- And(

# ?o[owl:sameAs->?o2]

# ?s[?p->?o]

# {IN}{$MP} ?p{/IN} ))

#ELIMINATED
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#Forall ?p ?o ?s ?o2 (

# ?s[rdf:type->?o2] :- And(

# ?o[owl:sameAs->?o2]

# ?s[rdf:type->?o]

# {NOTIN}{$MC} ?o2{/NOTIN} ))

#ELIMINATED

#Forall ?p ?o ?s ?o2 (

# ?s[rdf:type->?o2] :- And(

# ?o[owl:sameAs->?o2]

# ?s[rdf:type->?o]

# {IN}{$MC} ?o2{/IN} ))

#ELIMINATED

#(* <#eq-diff1> *)

#Forall ?x ?y (

# rif:error() :- And(

# ?x[owl:sameAs->?y]

# ?x[owl:differentFrom->?y] ))

#UNINTERESTING

#(* <#prp-ap-label> *)

# rdfs:label[rdf:type->owl:AnnotationProperty]

#UNINTERESTING

#(* <#prp-ap-comment> *)

# rdfs:comment[rdf:type->owl:AnnotationProperty]

#UNINTERESTING

#(* <#prp-ap-seeAlso> *)

# rdfs:seeAlso[rdf:type->owl:AnnotationProperty]

#UNINTERESTING

#(* <#prp-ap-isDefinedBy> *)

# rdfs:isDefinedBy[rdf:type->owl:AnnotationProperty]

#UNINTERESTING

#(* <#prp-ap-deprecated> *)

# owl:deprecated[rdf:type->owl:AnnotationProperty]

#UNINTERESTING

#(* <#prp-ap-priorVersion> *)

# owl:priorVersion[rdf:type->owl:AnnotationProperty]

#UNINTERESTING

#(* <#prp-ap-backwardCompatibleWith> *)

# owl:backwardCompatibleWith[rdf:type->owl:AnnotationProperty]
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#UNINTERESTING

#(* <#prp-ap-incompatibleWith> *)

# owl:incompatibleWith[rdf:type->owl:AnnotationProperty]

#SPLIT

(* <#prp-dom> *)

Forall ?p ?c ?x ?y (

?x[rdf:type->?c] :- And(

?p[rdfs:domain->?c]

?x[?p->?y]

{NOTIN}{$MC} ?c{/NOTIN} ))

#ELIMINATED

#Forall ?p ?c ?x ?y (

# ?x[rdf:type->?c] :- And(

# ?p[rdfs:domain->?c]

# ?x[?p->?y]

# {IN}{$MC} ?c{/IN} ))

#SPLIT

(* <#prp-rng> *)

Forall ?p ?c ?x ?y (

?y[rdf:type->?c] :- And(

?p[rdfs:range->?c]

?x[?p->?y]

{NOTIN}{$MC} ?c{/NOTIN} ))

#ELIMINATED

#(* <#prp-rng> *)

#Forall ?p ?c ?x ?y (

# ?y[rdf:type->?c] :- And(

# ?p[rdfs:range->?c]

# ?x[?p->?y]

# {IN}{$MC} ?c{/IN} ))

#ELIMINATED

#(* <#prp-fp> *)

#Forall ?p ?y2 ?x ?y1 (

# ?y1[owl:sameAs->?y2] :- And(

# ?p[rdf:type->owl:FunctionalProperty]

# ?x[?p->?y1]

# ?x[?p->?y2] ))

#ELIMINATED

#(* <#prp-ifp> *)

#Forall ?p ?x1 ?x2 ?y (
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# ?x1[owl:sameAs->?x2] :- And(

# ?p[rdf:type->owl:InverseFunctionalProperty]

# ?x1[?p->?y]

# ?x2[?p->?y] ))

(* <#prp-irp> *)

Forall ?p ?x (

rif:error() :- And(

?p[rdf:type->owl:IrreflexiveProperty]

?x[?p->?x] ))

#SPLIT

(* <#prp-symp> *)

Forall ?p ?x ?y (

?y[?p->?x] :- And(

?p[rdf:type->owl:SymmetricProperty]

?x[?p->?y]

{NOTIN}{$MPT} ?p{/NOTIN} ))

Forall ?p ?x ?y (

?y[?p->?x] :- And(

?p[rdf:type->owl:SymmetricProperty]

{IN}{$MP} ?p{/IN}

?x[?p->?y] ))

Forall ?p ?x ?y (

?y[rdf:type->?x] :- And(

rdf:type[rdf:type->owl:SymmetricProperty]

?x[rdf:type->?y]

{NOTIN}{$MC} ?x{/NOTIN} ))

#ELIMINATED

#Forall ?p ?x ?y (

# ?y[rdf:type->?x] :- And(

# rdf:type[rdf:type->owl:SymmetricProperty]

# ?x[rdf:type->?y]

# {IN}{$MC} ?x{/IN} ))

#ELIMINATED

#(* <#prp-asyp> *)

#Forall ?p ?x ?y (

# rif:error() :- And(

# ?p[rdf:type->owl:AsymmetricProperty]

# ?x[?p->?y]

# ?y[?p->?x] ))

#SPLIT
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#ELIMINATED

#(* <#prp-trp> *)

#Forall ?p ?x ?z ?y (

# ?x[?p->?z] :- And(

# ?p[rdf:type->owl:TransitiveProperty]

# ?x[?p->?y]

# ?y[?p->?z]

# {NOTIN}{$MPT} ?p{/NOTIN} ))

Forall ?p ?x ?z ?y (

?x[?p->?z] :- And(

?p[rdf:type->owl:TransitiveProperty]

{IN}{$MP} ?p{/IN}

?x[?p->?y]

?y[?p->?z] ))

#ELIMINATED

#Forall ?p ?x ?z ?y (

# ?x[rdf:type->?z] :- And(

# rdf:type[rdf:type->owl:TransitiveProperty]

# ?x[rdf:type->?y]

# ?y[rdf:type->?z]

# {NOTIN}{$MC} ?z{/NOTIN} ))

#ELIMINATED

#Forall ?p ?x ?z ?y (

# ?x[rdf:type->?z] :- And(

# rdf:type[rdf:type->owl:TransitiveProperty]

# ?x[rdf:type->?y]

# ?y[rdf:type->?z]

# {IN}{$MC} ?z{/IN} ))

#SPLIT

(* <#prp-spo1> *)

Forall ?x ?y ?p2 ?p1 (

?x[?p2->?y] :- And(

?p1[rdfs:subPropertyOf->?p2]

?x[?p1->?y]

{NOTIN}{$MPT} ?p2{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?x[?p2->?y] :- And(

# ?p1[rdfs:subPropertyOf->?p2]

# ?x[?p1->?y]

# {IN}{$MP} ?p2{/IN} ))



176

Forall ?x ?y ?p2 ?p1 (

?x[rdf:type->?y] :- And(

?p1[rdfs:subPropertyOf->rdf:type]

?x[?p1->?y]

{NOTIN}{$MC} ?y{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?x[rdf:type->?y] :- And(

# ?p1[rdfs:subPropertyOf->rdf:type]

# ?x[?p1->?y]

# {IN}{$MC} ?y{/IN} ))

#SPLIT

(* <#prp-eqp1> *)

Forall ?x ?y ?p2 ?p1 (

?x[?p2->?y] :- And(

?p1[owl:equivalentProperty->?p2]

?x[?p1->?y]

{NOTIN}{$MPT} ?p2{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?x[?p2->?y] :- And(

# ?p1[owl:equivalentProperty->?p2]

# ?x[?p1->?y]

# {IN}{$MP} ?p2{/IN} ))

Forall ?x ?y ?p2 ?p1 (

?x[rdf:type->?y] :- And(

?p1[owl:equivalentProperty->rdf:type]

?x[?p1->?y]

{NOTIN}{$MC} ?y{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?x[rdf:type->?y] :- And(

# ?p1[owl:equivalentProperty->rdf:type]

# ?x[?p1->?y]

# {IN}{$MC} ?y{/IN} ))

#SPLIT

(* <#prp-eqp2> *)

Forall ?x ?y ?p2 ?p1 (

?x[?p1->?y] :- And(

?p1[owl:equivalentProperty->?p2]

?x[?p2->?y]
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{NOTIN}{$MPT} ?p1{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?x[?p1->?y] :- And(

# ?p1[owl:equivalentProperty->?p2]

# ?x[?p2->?y]

# {IN}{$MP} ?p1{/IN} ))

Forall ?x ?y ?p2 ?p1 (

?x[rdf:type->?y] :- And(

rdf:type[owl:equivalentProperty->?p2]

?x[?p2->?y]

{NOTIN}{$MC} ?y{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?x[rdf:type->?y] :- And(

# rdf:type[owl:equivalentProperty->?p2]

# ?x[?p2->?y]

# {IN}{$MC} ?y{/IN} ))

#ELIMINATED

#(* <#prp-pdw> *)

#Forall ?x ?y ?p2 ?p1 (

# rif:error() :- And(

# ?p1[owl:propertyDisjointWith->?p2]

# ?x[?p1->?y]

# ?x[?p2->?y] ))

#SPLIT

(* <#prp-inv1> *)

Forall ?x ?y ?p2 ?p1 (

?y[?p2->?x] :- And(

?p1[owl:inverseOf->?p2]

?x[?p1->?y]

{NOTIN}{$MPT} ?p2{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?y[?p2->?x] :- And(

# ?p1[owl:inverseOf->?p2]

# ?x[?p1->?y]

# {IN}{$MP} ?p2{/IN} ))

Forall ?x ?y ?p2 ?p1 (

?y[rdf:type->?x] :- And(
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?p1[owl:inverseOf->rdf:type]

?x[?p1->?y]

{NOTIN}{$MC} ?x{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?y[rdf:type->?x] :- And(

# ?p1[owl:inverseOf->rdf:type]

# ?x[?p1->?y]

# {IN}{$MC} ?x{/IN} ))

#SPLIT

(* <#prp-inv2> *)

Forall ?x ?y ?p2 ?p1 (

?y[?p1->?x] :- And(

?p1[owl:inverseOf->?p2]

?x[?p2->?y]

{NOTIN}{$MPT} ?p1{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?y[?p1->?x] :- And(

# ?p1[owl:inverseOf->?p2]

# ?x[?p2->?y]

# {IN}{$MP} ?p1{/IN} ))

Forall ?x ?y ?p2 ?p1 (

?y[rdf:type->?x] :- And(

rdf:type[owl:inverseOf->?p2]

?x[?p2->?y]

{NOTIN}{$MC} ?x{/NOTIN} ))

#ELIMINATED

#Forall ?x ?y ?p2 ?p1 (

# ?y[rdf:type->?x] :- And(

# rdf:type[owl:inverseOf->?p2]

# ?x[?p2->?y]

# {IN}{$MC} ?x{/IN} ))

#UNINTERESTING

#(* <#cls-thing> *)

# owl:Thing[rdf:type->owl:Class]

#UNINTERESTING

#(* <#cls-nothing1> *)

# owl:Nothing[rdf:type->owl:Class]
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(* <#cls-nothing2> *)

Forall ?x (

rif:error() :- ?x[rdf:type->owl:Nothing])

#SPLIT

#ELIMINATED

#(* <#cls-svf1> *)

#Forall ?p ?v ?u ?x ?y (

# ?u[rdf:type->?x] :- And(

# ?x[owl:someValuesFrom->?y]

# ?x[owl:onProperty->?p]

# ?u[?p->?v]

# ?v[rdf:type->?y]

# {NOTIN}{$MC} ?x{/NOTIN} ))

#ELIMINATED

#Forall ?p ?v ?u ?x ?y (

# ?u[rdf:type->?x] :- And(

# ?x[owl:someValuesFrom->?y]

# ?x[owl:onProperty->?p]

# ?u[?p->?v]

# ?v[rdf:type->?y]

# {IN}{$MC} ?x{/IN} ))

#SPLIT

(* <#cls-svf2> *)

Forall ?p ?v ?u ?x (

?u[rdf:type->?x] :- And(

?x[owl:someValuesFrom->owl:Thing]

?x[owl:onProperty->?p]

?u[?p->?v]

{NOTIN}{$MC} ?x{/NOTIN} ))

#ELIMINATED

#Forall ?p ?v ?u ?x (

# ?u[rdf:type->?x] :- And(

# ?x[owl:someValuesFrom->owl:Thing]

# ?x[owl:onProperty->?p]

# ?u[?p->?v]

# {IN}{$MC} ?x{/IN} ))

#SPLIT

#ELIMINATED

#(* <#cls-avf> *)

#Forall ?p ?v ?u ?x ?y (

# ?v[rdf:type->?y] :- And(

# ?x[owl:allValuesFrom->?y]
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# ?x[owl:onProperty->?p]

# ?u[rdf:type->?x]

# ?u[?p->?v]

# {NOTIN}{$MC} ?y{/NOTIN} ))

#ELIMINATED

#Forall ?p ?v ?u ?x ?y (

# ?v[rdf:type->?y] :- And(

# ?x[owl:allValuesFrom->?y]

# ?x[owl:onProperty->?p]

# ?u[rdf:type->?x]

# ?u[?p->?v]

# {IN}{$MC} ?y{/IN} ))

#SPLIT

(* <#cls-hv1> *)

Forall ?p ?u ?x ?y (

?u[?p->?y] :- And(

?x[owl:hasValue->?y]

?x[owl:onProperty->?p]

?u[rdf:type->?x]

{NOTIN}{$MPT} ?p{/NOTIN} ))

#ELIMINATED

#Forall ?p ?u ?x ?y (

# ?u[?p->?y] :- And(

# ?x[owl:hasValue->?y]

# ?x[owl:onProperty->?p]

# ?u[rdf:type->?x]

# {IN}{$MP} ?p{/IN} ))

Forall ?p ?u ?x ?y (

?u[rdf:type->?y] :- And(

?x[owl:hasValue->?y]

?x[owl:onProperty->rdf:type]

?u[rdf:type->?x]

{NOTIN}{$MC} ?y{/NOTIN} ))

#ELIMINATED

#Forall ?p ?u ?x ?y (

# ?u[rdf:type->?y] :- And(

# ?x[owl:hasValue->?y]

# ?x[owl:onProperty->rdf:type]

# ?u[rdf:type->?x]

# {IN}{$MC} ?y{/IN} ))

#SPLIT
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(* <#cls-hv2> *)

Forall ?p ?u ?x ?y (

?u[rdf:type->?x] :- And(

?x[owl:hasValue->?y]

?x[owl:onProperty->?p]

?u[?p->?y]

{NOTIN}{$MC} ?x{/NOTIN} ))

#ELIMINATED

#Forall ?p ?u ?x ?y (

# ?u[rdf:type->?x] :- And(

# ?x[owl:hasValue->?y]

# ?x[owl:onProperty->?p]

# ?u[?p->?y]

# {IN}{$MC} ?x{/IN} ))

#ELIMINATED

#(* <#cls-maxc1> *)

#Forall ?p ?u ?x ?y (

# rif:error() :- And(

# ?x[owl:maxCardinality->0]

# ?x[owl:onProperty->?p]

# ?u[rdf:type->?x]

# ?u[?p->?y] ))

#ELIMINATED

#(* <#cls-maxc2> *)

#Forall ?p ?y2 ?u ?x ?y1 (

# ?y1[owl:sameAs->?y2] :- And(

# ?x[owl:maxCardinality->1]

# ?x[owl:onProperty->?p]

# ?u[rdf:type->?x]

# ?u[?p->?y1]

# ?u[?p->?y2] ))

#ELIMINATED

#(* <#cls-maxqc1> *)

#Forall ?p ?c ?u ?x ?y (

# rif:error() :- And(

# ?x[owl:maxQualifiedCardinality->0]

# ?x[owl:onProperty->?p]

# ?x[owl:onClass->?c]

# ?u[rdf:type->?x]

# ?u[?p->?y]

# ?y[rdf:type->?c] ))

#ELIMINATED



182

#(* <#cls-maxqc2> *)

#Forall ?p ?u ?x ?y (

# rif:error() :- And(

# ?x[owl:maxQualifiedCardinality->0]

# ?x[owl:onProperty->?p]

# ?x[owl:onClass->owl:Thing]

# ?u[rdf:type->?x]

# ?u[?p->?y] ))

#ELIMINATED

#(* <#cls-maxqc3> *)

#Forall ?p ?y2 ?c ?u ?x ?y1 (

# ?y1[owl:sameAs->?y2] :- And(

# ?x[owl:maxQualifiedCardinality->1]

# ?x[owl:onProperty->?p]

# ?x[owl:onClass->?c]

# ?u[rdf:type->?x]

# ?u[?p->?y1]

# ?y1[rdf:type->?c]

# ?u[?p->?y2]

# ?y2[rdf:type->?c] ))

#ELIMINATED

#(* <#cls-maxqc4> *)

#Forall ?p ?y2 ?u ?x ?y1 (

# ?y1[owl:sameAs->?y2] :- And(

# ?x[owl:maxQualifiedCardinality->1]

# ?x[owl:onProperty->?p]

# ?x[owl:onClass->owl:Thing]

# ?u[rdf:type->?x]

# ?u[?p->?y1]

# ?u[?p->?y2] ))

#SPLIT

(* <#cax-sco> *)

Forall ?x ?c1 ?c2 (

?x[rdf:type->?c2] :- And(

?c1[rdfs:subClassOf->?c2]

?x[rdf:type->?c1]

{NOTIN}{$MC} ?c2{/NOTIN} ))

#ELIMINATED

#Forall ?x ?c1 ?c2 (

# ?x[rdf:type->?c2] :- And(

# ?c1[rdfs:subClassOf->?c2]

# ?x[rdf:type->?c1]

# {IN}{$MC} ?c2{/IN} ))
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#SPLIT

(* <#cax-eqc1> *)

Forall ?x ?c1 ?c2 (

?x[rdf:type->?c2] :- And(

?c1[owl:equivalentClass->?c2]

?x[rdf:type->?c1]

{NOTIN}{$MC} ?c2{/NOTIN} ))

#ELIMINATED

#Forall ?x ?c1 ?c2 (

# ?x[rdf:type->?c2] :- And(

# ?c1[owl:equivalentClass->?c2]

# ?x[rdf:type->?c1]

# {IN}{$MC} ?c2{/IN} ))

#SPLIT

(* <#cax-eqc2> *)

Forall ?x ?c1 ?c2 (

?x[rdf:type->?c1] :- And(

?c1[owl:equivalentClass->?c2]

?x[rdf:type->?c2]

{NOTIN}{$MC} ?c1{/NOTIN} ))

#ELIMINATED

#Forall ?x ?c1 ?c2 (

# ?x[rdf:type->?c1] :- And(

# ?c1[owl:equivalentClass->?c2]

# ?x[rdf:type->?c2]

# {IN}{$MC} ?c1{/IN} ))

#ELIMINATED

#(* <#cax-dw> *)

#Forall ?x ?c1 ?c2 (

# rif:error() :- And(

# ?c1[owl:disjointWith->?c2]

# ?x[rdf:type->?c1]

# ?x[rdf:type->?c2] ))

#ELIMINATED

#(* <#prp-npa1> *)

#Forall ?x ?i1 ?p ?i2 (

# rif:error() :- And(

# ?x[owl:sourceIndividual->?i1]

# ?x[owl:assertionProperty->?p]

# ?x[owl:targetIndividual->?i2]

# ?i1[?p->?i2] ))
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#ELIMINATED

#(* <#prp-npa2> *)

#Forall ?x ?i ?p ?lt (

# rif:error() :- And(

# ?x[owl:sourceIndividual->?i]

# ?x[owl:assertionProperty->?p]

# ?x[owl:targetValue->?lt]

# ?i[?p->?lt] ))

#ELIMINATED

#(* <#cax-dw> *)

#Forall ?c1 ?c2 ?x (

# rif:error() :- And(

# ?c1[owl:disjointWith->?c2]

# ?x[rdf:type->?c1]

# ?x[rdf:type->?c2] ))

#ELIMINATED

#(* <#cls-com> *)

#Forall ?c1 ?c2 ?x (

# rif:error() :- And(

# ?c1[owl:complementOf->?c2]

# ?x[rdf:type->?c1]

# ?x[rdf:type->?c2] ))

(* <#eq-diff2-3> *)

Forall ?x ?y (

_checkDifferent(?x ?y) :- And (

?x[rdf:type->owl:AllDifferent]

?x[owl:distinctMembers->?y] ))

Forall ?x ?y (

_checkDifferent(?x ?y) :- And (

?x[rdf:type->owl:AllDifferent]

?x[owl:members->?y] ))

Forall ?x ?y ?z (

_checkDifferent(?x ?y) :- And (

_checkDifferent(?x ?z)

?z[rdf:rest->?y]

Not(?y = rdf:nil) ))

Forall ?x ?y1 ?y2 ?z1 ?z2 (

rif:error() :- And (

_checkDifferent(?x ?y1)
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_checkDifferent(?x ?y2)

Not(?y1 = ?y2)

?y1[rdf:first->?z1]

?y2[rdf:first->?z2]

?z1[owl:sameAs->?z2] ))

#AUXILIARY ELIMINATION

#(* <#prp-adp> *)

# Forall ?r ?l (

# _checkDisjointProperties(?r ?l) :- And (

# ?r[rdf:type->owl:AllDisjointProperties]

# ?r[owl:members -> ?l] ))

#AUXILIARY ELIMINATION

# Forall ?r ?l ?x (

# _checkDisjointProperties(?r ?l) :- And (

# _checkDisjointProperties(?r ?x)

# ?x[rdf:rest->?l]

# Not(?l = rdf:nil) ))

#ELIMINATED

# Forall ?x ?y ?o ?v ?l1 ?l2 ?r (

# rif:error() :- And (

# _checkDisjointProperties(?r ?l1)

# _checkDisjointProperties(?r ?l2)

# Not(?l1 = ?l2)

# ?l1[rdf:first->?x]

# ?l2[rdf:first->?y]

# ?o[?x->?v]

# ?o[?y->?v] ))

#AUXILIARY ELIMINATION

#(* <#cax-adc> *)

# Forall ?r ?l (

# _checkDisjointClasses(?r ?l) :- And (

# ?r[rdf:type -> owl:AllDisjointClasses]

# ?r[owl:members -> ?l] ))

#AUXILIARY ELIMINATION

# Forall ?r ?l ?x (

# _checkDisjointClasses(?r ?l) :- And (

# _checkDisjointClasses(?r ?x)

# ?x[rdf:rest->?l]

# Not(?l = rdf:nil) ))

#ELIMINATED

# Forall ?x ?y ?o ?l1 ?l2 ?r (
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# rif:error() :- And (

# _checkDisjointClasses(?r ?l1)

# _checkDisjointClasses(?r ?l2)

# Not(?l1 = ?l2)

# ?l1[rdf:first->?x]

# ?l2[rdf:first->?y]

# ?o[rdf:type->?x]

# ?o[rdf:type->?y] ))

#AUXILIARY ELIMINATION

#(* <#prp-spo2> *)

# Forall ?p ?pc (

# _markCheckChain(?p ?pc) :- ?p[owl:propertyChainAxiom->?pc] )

#AUXILIARY ELIMINATION

# Forall ?p ?pc (

# _markCheckChain(?p ?pc) :- And (

# _markCheckChain(?p ?q)

# ?q[rdf:rest->?pc]

# Not(?pc = rdf:nil) ))

#ELIMINATED

# Forall ?q ?start ?pc ?last ?p (

# _checkChain(?q ?start ?pc ?last) :- And (

# _markCheckChain(?q ?pc)

# ?pc[rdf:first->?p]

# ?pc[rdf:rest->rdf:nil]

# ?start[?p->?last] ))

#ELIMINATED

# Forall ?q ?start ?pc ?last ?p ?tl (

# _checkChain(?q ?start ?pc ?last) :- And (

# ?pc[rdf:first->?p]

# ?pc[rdf:rest->?tl]

# ?start[?p->?next]

# _checkChain(?q ?next ?tl ?last) ))

#SPLIT

#AUXILIARY ELIMINATION

# Forall ?p ?last ?pc ?start (

# ?start[?p->?last] :- And (

# ?p[owl:propertyChainAxiom->?pc]

# _checkChain(?p ?start ?pc ?last)

# {NOTIN}{$MPT} ?p{/NOTIN} ))

#AUXILIARY ELIMINATION

# Forall ?p ?last ?pc ?start (
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# ?start[?p->?last] :- And (

# ?p[owl:propertyChainAxiom->?pc]

# _checkChain(?p ?start ?pc ?last)

# {IN}{$MP} ?p{/IN} ))

#AUXILIARY ELIMINATION

# Forall ?p ?last ?pc ?start (

# ?start[rdf:type->?last] :- And (

# rdf:type[owl:propertyChainAxiom->?pc]

# _checkChain(rdf:type ?start ?pc ?last)

# {NOTIN}{$MC} ?last{/NOTIN} ))

##AUXILIARY ELIMINATION

# Forall ?p ?last ?pc ?start (

# ?start[rdf:type->?last] :- And (

# rdf:type[owl:propertyChainAxiom->?pc]

# _checkChain(rdf:type ?start ?pc ?last)

# {IN}{$MC} ?last{/IN} ))

#ELIMINATED

#(* <#cls-int1> *)

# Forall ?c ?l ?y ?ty (

# _allTypes(?c ?l ?y) :- And (

# _markAllTypes(?c ?l)

# ?l[rdf:first->?ty]

# ?l[rdf:rest->rdf:nil]

# ?y[rdf:type->?ty] ))

#ELIMINATED

# Forall ?c ?l ?y ?ty ?tl (

# _allTypes(?c ?l ?y) :- And (

# ?l[rdf:first->?ty]

# ?l[rdf:rest->?tl]

# ?y[rdf:type->?ty]

# _allTypes(?c ?tl ?y) ))

#SPLIT

#AUXILIARY ELIMINATION

# Forall ?y ?c ?l (

# ?y[rdf:type->?c] :- And (

# ?c[owl:intersectionOf->?l]

# _allTypes(?c ?l ?y)

# {NOTIN}{$MC} ?c{/NOTIN} ))

#AUXILIARY ELIMINATION

# Forall ?y ?c ?l (

# ?y[rdf:type->?c] :- And (
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# ?c[owl:intersectionOf->?l]

# _allTypes(?c ?l ?y)

# {IN}{$MC} ?c{/IN} ))

#AUXILIARY ELIMINATION

#(* <#prp-key> *)

# Forall ?c ?u (

# _markSameKey(?c ?u) :- ?c[owl:hasKey->?u] )

#AUXILIARY ELIMINATION

# Forall ?c ?u ?v (

# _markSameKey(?c ?u) :- And (

# _markSameKey(?c ?v)

# ?v[rdf:rest->?u]

# Not(?u = rdf:nil) ))

#ELIMINATED

# Forall ?c ?u ?x ?y (

# _sameKey(?c ?u ?x ?y) :- And (

# _markSameKey(?c ?u)

# ?u[rdf:first->?key]

# ?u[rdf:rest->rdf:nil]

# ?x[?key->?v] ?y[?key->?v] ))

#ELIMINATED

# Forall ?c ?u ?x ?y (

# _sameKey(?c ?u ?x ?y) :- And (

# ?u[rdf:first->?key]

# ?u[rdf:rest->?tl]

# ?x[?key->?v] ?y[?key->?v]

# _sameKey(?c ?tl ?x ?y) ))

#ELIMINATED

# Forall ?x ?y ?c ?u (

# ?x[owl:sameAs->?y] :- And (

# ?c[owl:hasKey->?u] ?x[rdf:type->?c] ?y[rdf:type->?c]

# _sameKey(?c ?u ?x ?y) ))

#SPLIT

(* <#cls-uni> *)

Forall ?y ?c ?l ?ci (

?y[rdf:type->?c] :- And (

_checkUnionOf(?c ?l)

?l[rdf:first->?ci]

?y[rdf:type->?ci]

{NOTIN}{$MC} ?c{/NOTIN} ))



189

#ELIMINATED

# Forall ?y ?c ?l ?ci (

# ?y[rdf:type->?c] :- And (

# _checkUnionOf(?c ?l)

# ?l[rdf:first->?ci]

# ?y[rdf:type->?ci]

# {IN}{$MC} ?c{/IN} ))

(* <#cls-oo> *)

Forall ?c ?l (

_checkOneOf(?c ?l) :- ?c[owl:oneOf->?l] )

Forall ?c ?l ?r (

_checkOneOf(?c ?l) :- And (

_checkOneOf(?c ?r)

?r[rdf:rest->?l]

Not(?l = rdf:nil) ))

#SPLIT

Forall ?yi ?c ?l (

?yi[rdf:type->?c] :- And (

_checkOneOf(?c ?l)

?l[rdf:first->?yi]

{NOTIN}{$MC} ?c{/NOTIN} ))

Forall ?yi ?c ?l (

?yi[rdf:type->?c] :- And (

_checkOneOf(?c ?l)

?l[rdf:first->?yi]

{IN}{$MC} ?c{/IN} ))

#SPLIT

(* <#cls-int2> *)

Forall ?y ?c ?ci ?l (

?y[rdf:type->?ci] :- And (

_markAllTypes(?c ?l)

?l[rdf:first->?ci]

?y[rdf:type->?c]

{NOTIN}{$MC} ?ci{/NOTIN} ))

#ELIMINATED

# Forall ?y ?c ?ci ?l (

# ?y[rdf:type->?ci] :- And (

# _markAllTypes(?c ?l)

# ?l[rdf:first->?ci]

# ?y[rdf:type->?c]

# {IN}{$MC} ?ci{/IN} ))
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#EOF


