
 

 

 

 
 
FOUNDATIONS OF NEUROMORPHIC COMPUTING 
 
 
MAY 2013 
 
FINAL TECHNICAL REPORT 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 
 
 
 

STINFO COPY 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

 
 
 
 
 
 
 
 
 

AFRL-RI-RS-TR-2013-125 

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND  



 

 

NOTICE AND SIGNATURE PAGE 
 
 
Using Government drawings, specifications, or other data included in this document for any purpose 
other than Government procurement does not in any way obligate the U.S. Government. The fact that 
the Government formulated or supplied the drawings, specifications, or other data does not license the 
holder or any other person or corporation;  or convey any rights or permission to manufacture, use, or 
sell any patented invention that  may relate to them.  
 
This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public Affairs Office 
and is available to the general public, including foreign nationals. Copies may be obtained from the 
Defense Technical Information Center (DTIC) (http://www.dtic.mil).   
 
 
 
AFRL-RI-RS-TR-2013-125   HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
FOR THE DIRECTOR:  
 
 
 / S /         / S / 
 

JOSEPH A. CAROLI       MARK LINDERMAN 
Chief, High Performance Systems Branch    Technical Advisor ,Computing & 
             Communications Division 
         Information Directorate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 
 



 

 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

MAY 2013 
2. REPORT TYPE 

FINAL TECHNICAL REPORT 
3. DATES COVERED (From - To) 

SEP 2009 – SEP 2012 
4. TITLE AND SUBTITLE 
 
FOUNDATIONS OF NEUROMORPHIC COMPUTING 

5a. CONTRACT NUMBER 
IN-HOUSE 

5b. GRANT NUMBER 
N/A 

5c. PROGRAM ELEMENT NUMBER 
62788F 

6. AUTHOR(S) 
 
AFRL/RITB: 
Clare Thiem, Bryant Wysocki, Morgan Bishop, Nathan McDonald 
 
Rome Research Corp: 
James Bohl 

5d. PROJECT NUMBER 
NEUR 

5e. TASK NUMBER 
PR 

5f. WORK UNIT NUMBER 
0J 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
Air Force Research Laboratory/RITB                    Rome Research Corporation 
525 Brooks Road                                                  421 Ridge St. 
Rome, NY 13441-4505                                         Rome, NY 13440 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
 

N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory/Information Directorate 
Rome Research Site/RITB 
525 Brooks Road 
Rome NY 13441-4505 

10. SPONSOR/MONITOR'S ACRONYM(S) 

AFRL/RI 
11. SPONSORING/MONITORING 

AGENCY REPORT NUMBER 
AFRL-RI-RS-TR-2013-125 

12. DISTRIBUTION AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited.  PA#  88ABW-2013-2241 
Date Cleared:  9 May 2013 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
This neuromorphic computing research and development effort explored the design and implementation of 
computationally intelligent computer architectures and high performance computer software algorithms.  The in-house 
research concentrated on the design of mathematical models, algorithms, computing architectures, and computational 
efficiencies for the advancement of neuromorphic computing and neuroprocessors. The software aspect of the research 
demonstrated the combination of computational power with human level cognitive functionality to create a system that 
can increase Department of Defense (DoD) operators’ and analysts’ ability to analyze textual and character data. The 
hardware aspect of the research explored memristor-based and zero instruction set computing technology to provide 
neuromorphic computing for size, weight, and power limited applications. Progress was made on both the hardware and 
software side of neuromorphic computing research setting the stage for future agile information systems. 
15. SUBJECT TERMS 
Neuromorphic Computing, Confabulation, Memristor, Reasoning, Perception, Artificial Neural Networks, Modeling, 
Simulation, Optic Flow, Zero Instruction Set Computing 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
 

SAR 

18. NUMBER 
OF PAGES 
 

48 

19a. NAME OF RESPONSIBLE PERSON 
JOSEPH A. CAROLI 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

19b. TELEPONE NUMBER (Include area code) 
315-330-4893 

           Standard Form 298 (Rev. 8-98) 
  Prescribed by ANSI Std. Z39.18 



 
i 

 

TABLE OF CONTENTS 
 

Section                  Page 

 

LIST OF FIGURES ........................................................................................................................ ii 

LIST OF TABLES ......................................................................................................................... iii 

1.0  SUMMARY .........................................................................................................................1 

2.0  INTRODUCTION ...............................................................................................................2 

3.0  METHODS, ASSUMPTIONS AND PROCEDURES  .......................................................3 

3.1 Software Focused Research .................................................................................................3 

3.2 Hardware Focused Research ................................................................................................5 

3.2.1 Memristive Device Based Technology   ..................................................................5 

3.2.2 Operating in a Constrained Environment ..............................................................14 

3.2.3 Hardware-based Artificial Neural Networks .........................................................24 

4.0   RESULTS AND DISCUSSION ........................................................................................31 

4.1 Software Focused Research ...............................................................................................31 

4.2 Hardware Focused Research ..............................................................................................32 

4.2.1 Memristive Device Based Technology   ................................................................32 

4.2.2 Operating in a Constrained Environment ..............................................................33 

4.2.3 Hardware-based Artificial Neural Networks .........................................................34 

5.0 CONCLUSIONS................................................................................................................35 

6.0 REFERENCES ..................................................................................................................36 

APPENDIX  – Patents and Publications ........................................................................................39 

LIST OF ABBREVIATIONS AND ACRONYMS ......................................................................42 

 

  



 
ii 

LIST OF FIGURES 
 
Figures              Page 
 
    1 The multidisciplinary aspect of neuromorphic computing science. . . . . . . . . . . . . . . . . . .1 
    2 Synaptic system (a) circuit representation and (b) simplified circuit representation . . . . .6 
    3 CMOS inverter voltage transfer curve (adapted from [9]) . . . . . . . . . . . . . . . . . . . . . . . . .6 
    4  Multiple synaptic outputs converge at the floating adding node. . . . . . . . . . . . . . . . . . . . 7 
    5 Multiple synaptic outputs converge at the adding neuron. . . . . . . . . . . . . . . . . . . . . . . . . 8 
    6 Neuromorphic computing implementation of the XOR function. . . . . . . . . . . . . . . . . . . . 8 
    7 Typical memristor device DC electrical Lissajous I-V curve characteristic behavior. . .10 
    8 Memristor device physical structural diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 
    9 Memristor hardware and model fit correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
    10 Memristor hardware versus model correlation (a) and memristor hardware fit versus 
 compact model as function of time (b) . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . 14 
    11 Centeye Tam 2 chip mounted on an ArduEye Rox1 shield board . . . . . . . . . . . . . . . . . .16 
    12 Band Pass Filter Magnitude Response  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
    13 Frequency Spectrum of Squared Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 
    14 Magnitude Response of Low Pass Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 
    15 Frequency Spectrum after Low Pass Filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 
    16 Ardueye Shield mounted to an Ardunio Uno board on a robotic platform . . . . . . . . . . . 19 
    17 Neural Network Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 
    18 a) A captured video frame showing the subject and b) A pictorial representation of the 
 neuron content trained with the above image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 
    19 A block diagram depicting the system configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . .29 
    20 Images from experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 
  



iii 

LIST OF TABLES 
 
Tables           Page 
 
     1 Band Pass Filter Poles and Zeros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 
     2 Low Pass Filter Poles and Zeros. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 
 
 
 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
1 

1.0  SUMMARY 

 
This neuromorphic computing research and development effort explored the design and 
implementation of computationally intelligent computer architectures and high performance 
computer software algorithms.  Neuromorphic computing is instrumental in the development of 
intelligent systems able to imitate natural neuro-biological processes. This is achieved by 
artificially recreating the highly parallelized computing architecture of the mammalian brain. In 
particular, neuromorphic systems have demonstrated potential for applications in pattern 
recognition and optimization such as behavior modeling, target finding, intelligent automated 
data processing, and intelligence analysis. This neuromorphic computing research exploited 
emerging computing architectures, the characteristic behaviors of novel complex materials, and 
the parallel nature of biological intelligence. The research concentrated on the design of 
mathematical models, algorithms, computing architectures, and computational efficiencies for 
the advancement of neuromorphic computing and neuroprocessors where the development of 
such systems draws from many fields.  This multidisciplinary work was based on recent 
advancements in nanotechnology (Nano – e.g. nano-scale engineering and material science), 
high performance computing (HPC – e.g. computer engineering), electronics (e.g. design and 
fabrication of hybrid electronic systems) and neuroscience (NeuroSci – e.g.  computational 
intelligence and cognitive psychology) as depicted in Figure 1.  This research area focuses on 
developing enhanced autonomy and perception for use in Air Force systems.   
 
 

 
 

Figure 1. The multidisciplinary aspect of neuromorphic computing science 
 
More specifically, the overall focus of the Information Directorate’s in-house neuromorphic 
research was in application modeling and memristive system development for computing 
architectures that exploit the physical properties of nano-enabled materials and electronics for 
energy efficient computing and computationally intelligent systems.   This work leveraged the 
previous in-house research on genetic algorithms and the concurrent nanotechnology effort 
which explored development and deployment opportunities in the emerging disciplines of 
nanoscience, nanoengineering, and nanobioscience, for advanced computing architectures.   
 
The effort began with the examination of leading computational intelligence theories for 
implementation on massively parallel HPCs.  Brain state in a box (BSB), Confabulation, and 
Spiky hierarchical temporal models were explored.  A hybrid BSB/confabulation model was 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
2 

developed and scaled to infer meaning from text documents with errors and occluded letters.  
The application was successfully expanded to include both English and Chinese characters. 
 
The program also explored the physical nature of memristive systems in an effort to uncover the 
basic principles behind their operation and to aid in the design of improved synaptic devices.  
Both physical and compact models were developed as tools for memristive device design and for 
circuit simulation and testing.  The models were compared to fabricated memristive systems and 
refined.  In addition, the models were used to direct memristor design in an iterative process.  
Neuromorphic circuits were simulated, built, and tested demonstrating successful training and 
response of electronic neural circuits with synaptic weighting.    
 
The program further examined the utility of application-specific integrated circuit (ASIC) - based 
artificial neural networks (ANNs) which are ideally suited for mobile or portable platforms with 
strictly limited size, weight, and power (SWaP) resources. Effort was expended to gain a better 
understanding of issues related to operating in a SWaP constrained environment. A fully parallel, 
silicon-based artificial neural network (CogniMem CM1K) built on zero instruction set computer 
technology was then used for change detection and object identification in video data and 
network intrusion detection for surveillance and cyber security applications. 
 
In the end progress was made on both the hard and software side of neuromorphic computing 
research.  The stage has been set for creating future agile information systems with more 
capability for reasoning and perception that will allow the command chain to make informed 
decisions quicker than our adversaries. 
 
 
2.0 INTRODUCTION 
 
The increasing resolution and speed of today’s advanced sensor platforms provide an 
overwhelming and exponentially growing supply of data, which has subsequently created a 
demand for autonomous pattern recognition systems that scour raw or preprocessed data in an 
effort to extract meaningful information [1 - 3].  Such large amounts of data choke 
communications channels and restrict or prohibit real-time analysis.  High performance 
computers and increased bandwidth can alleviate some of the strain but are only part of a more 
sophisticated solution.  Computationally intelligent systems that convert data into information at 
the source of detection are required to limit the burden on communications, processing, and 
analytical resources so that relevant real-time analysis can occur. Massively parallel hardware 
based neuromorphic computing can achieve the size, weight, and power requirements needed for 
such platform applications while providing an intelligent scan of the data prior to transition.  
Rather than relying on brute force computations that require large amounts of resources and can 
be relatively slow due to their serial nature, neuromorphic systems provide a more elegant 
method for signature recognition and autonomous operations. 
 
The improved processing power of modern high performance computers enables implementation 
of large, sophisticated pattern recognition systems based on statistical analysis and neural 
network schemes.  But programmable machines are limited in their ability to address fuzzy 
combinatorially complex scenarios.  Neuromorphic processors, which are based on the highly 
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parallelized computing architecture of the mammalian brain, show great promise in providing the 
environmental perception and comprehension required for true adaptability and autonomy and is 
thought to be better able to solve fuzzy perception and classification problems historically 
difficult for traditional, von Neumann-based computers. 
 
Therefore, the research objective of this effort was to investigate, develop and demonstrate 
application of a scalable neuromorphic computer to Air Force (AF) relevant problems and 
applications such as intelligent autonomic, recognizant, and image processing systems.  The goal 
of our research effort is to identify, evaluate, develop, and demonstrate prototype neuromorphic 
computer elements and circuit forms, working toward scalable systems that employ leading edge 
and emerging computing architectures (i.e. complementary metal-oxide semiconductor (CMOS), 
optical, thin film, or nanotechnology, i.e. memristor-based technologies) that will target the 
integration of thousands (x,000’s) of neurons and millions of synapses (house fly, x=338 [4], 
honeybee, x=960  [5]). The thought is that this level of integration is required in order to carry 
out AF intelligence functions such as autonomous pattern, image, voice, video, and/or sound 
recognition. 
 
 
3.0 METHODS, ASSUMPTIONS AND PROCEDURES 
 
Work under this effort can be broken down into two broad areas of research, one of which was 
software focused and the other which was hardware focused. The software focused research 
pursued the development of algorithms and the utilization of high performance computing (HPC) 
assets for neuromorphic computing.  The hardware focused research examined the development 
of hardware technology for neuromorphic computing in size, weight and power (SWaP) 
constrained environments which involved memristive device based technology, open source 
hardware, and off of the shelf technology such as zero instruction set computing (ZISC) 
technology [6]. 
 
3.1 Software Focused Research 
 
The software focused area of this effort focused on the research and development of highly-
scalable neuroscience inspired computing models, algorithms and architectures suitable for 
massively parallel computing systems for robust information extraction and exploitation. These 
models are currently being applied to occluded text recognition, autonomous motion detection, 
object recognition and predictive sensing. 
 
The concept for intelligent textual extraction, recognition, and understanding on HPC systems is 
divided into 3 layers. This layered structure has some analogies to human information 
processing.  Research discoveries in human psychology show that information is first processed 
by the sensory cortex where the complex data is reduced to abstract representations. The abstract 
representation is compared to stored patterns at the basal ganglia and neocortex to generate 
perception and quick reaction. If more sophisticated processing such as reasoning is needed then 
a relatively slow sequential process will occur in the prefrontal cortex. For the research activity 
covered by this section of the report, the character recognition layer serves as the interface with 
the physical world, the word and sentence confabulation layer generates knowledge based 
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perception of the abstract information coming from the lower layer. The output from the 
perception level is then fed into an information fusion framework in the top layer. The input of 
the system is the text image.  
 
The first layer is the character recognition phase based upon Brain-State-in-a-Box (BSB) models. 
The BSB tries to recall the input image with stored image patterns of the English alphabet, 
punctuation and other entities in natural text. If there is noise in the image, multiple matching 
patterns may be found. For example, a horizontal scratch will make the letter “T” look like the 
letter “F”. In this case this is ambiguous information. The ambiguity can be removed by 
considering the word level and sentence level context, which is achieved in the second and third 
layer where word and sentence recognition is performed using cogent confabulation models. The 
models fill in the missing characters in a word and missing words in a sentence. The three layers 
work cooperatively. The BSB layer feeds forward the character recall information to the word 
recognition layer while the word recognition layer feeds back word level context information 
that directs the BSB models to perform pattern matching more efficiently. The word recognition 
layer sends words and partial words to the sentence recognition layer while the sentence 
recognition layer also sends back sentence level context information that helps the word 
recognition layer to fill in missing characters more efficiently. Larger dimensional BSB models 
provide a means for enhancing character recognition. Finally, the third layer performs natural 
language processing (NLP) on the sentence level confabulated text. It implements part of speech 
(POS) tagging, full or chunk parsing, and relevant noun phrase to do entity extraction. In 
addition, the text and entity extraction algorithms work in parallel and a globally networked 
knowledge database uses a multi-dimensional index within a distributed relational framework to 
allow extra degrees of freedom and enable real-time data processing. This additional processing 
and storage of the text enables natural language queries to be formulated by a user against the 
data store to return concise, relevant, and consolidated information based on their information 
requests. 
 
The hardware platform of the system is based on the 500 Tera Floating-point Operations Per 
Second (TFLOPS) Condor cluster. The cluster consists of 80 sub-clusters and each sub-cluster is 
composed of two Intel Xeon Hexa-core processors as the head node, 22 Sony PlayStation3 (PS3) 
computers based on IBM Cell-BE processor, and 2 NVIDIA GPGPUs. Each cell processor has 
one PowerPC processor and 6 synergistic processing elements (SPE). Each SPE processor is a 
self-contained vector processor that runs 4 floating point operations at 3.2 GHz. With 6 of these 
SPEs, a cell processor provides 192 GFLOPS performance. Each PS3 only has 256MB memory, 
which is relatively small comparing to the conventional desktop PCs. Overall, the 1,760 cell 
processors deliver 338 TFLOPS computing power and form the first layer hardware of the 
system. The Intel Xeon processor based headnodes naturally form the second layer. Each 
headnode has 12 cores and 24GB SMART memory. The memory access speed could reach as 
high as 2GB/s per core. The GPGPUs will be utilized as larger dimensional BSB models and 
placed in the feedback loop of the word and sentence level confabulation to further enhance 
character recognition. 78 of the GPGPUs are the NVIDIA Tesla C1060 model which has 240 
cores running at 1.3GHz providing 933 GFLOPs. The other half are the NVIDIA Tesla C2050 
model which has 448 cores running at 1.15 GHz providing 1.03 TFLOPs. 
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3.2 Hardware Focused Research 
 
Neuromorphic computing seeks to mimic brain functions and efficiencies through parallel 
operation, reconfigurability, high density, and low power consumption.  The natural ability of the 
brain to perform high numbers of complex functions in parallel is currently unmatched by even 
the fastest most powerful super computers.  Neuromorphic computers promise to provide 
machines the ability to perform complex functions by mimicking the brain’s engineering but 
building such systems represents a great technological engineering challenge. Software based 
implementations of neuromorphic computing have demonstrated limited brain functionality [7]. 
However, software based techniques require high performance computers for processing that in                                                   
turn make their use within mobile and/or low cost systems impractical.  In short, the 
development of hardware based neuromorphic computers will enable new solutions to 
traditionally difficult computer problems that involve high mathematical variance or fuzziness, 
such as pattern recognition, nonlinear modeling, and process prediction. 
 
3.2.1   Memristive Device Based Technology 

 
The amazing computing power of the brain is in part due to its highly parallelized 
interconnectivity amongst neurons through synaptic connections.  The synaptic connection plays 
an important role in brain activity as these connections can be strengthened or weakened as the 
brain learns and stores knowledge within the system [7].  Neuron behavior has been 
characterized as an adding system that provides an output based on the sum of all inputs (through 
synaptic connections), and its connectivity to other neurons [8].  In addition, the amount of 
information or knowledge a neuromorphic computer can retain depends on the number neurons 
and synaptic connections within the system. For example, the brain of an ant is said to contain 
approximately 338,000 neurons [4]. Given the large number of neurons and synaptic connections 
(approximately 1,000 synaptic connections per neuron) required to design systems capable of 
mimicking practical brain functionality, it is important for the individual electronic devices to be 
small.  This facilitates fabrication within a reasonable physical area, similar to how computer 
microprocessors are fabricated today. In this section, a physical description is presented by 
which three transistor synaptic circuit functions mimic brain synaptic behavior. The 
implementation of synaptic circuitry within an adding node and single transistor adding neuron 
(a simple neuromorphic computing architecture) is also demonstrated.  As an example to show 
the utility of a reconfigurable logic gate, we demonstrate our neuromorphic architecture as a 
reconfigurable XOR logic gate. 
 
Computer simulations based on the physical principles described above demonstrate the 
feasibility of the neuromorphic architectures [9].  Variations of neuromorphic computing 
architectures can be constructed employing transistors, memristors, and inverter circuits coupled 
to floating node neurons or thresholding neurons to perform the desired computations. 
 
We define our synaptic system as a building block employing a variable resistor (either a CMOS 
transistor operating within the weak inversion and Ohmic region modes or a memristor) and 
inverter circuit elements [9]. Figure 2 depicts our complete synaptic system where (a) illustrates 
the circuit implementation of the synapse, and (b) illustrates the simplified circuit element form 
that will be employed when designing the neuromorphic network. From the figure, we can 
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observe that the output of the synaptic system is a function of the Vm potential that will either 
strengthen, weaken, or completely cut-off the connection between the synapse input (SI) and the 
CMOS inverting circuit operating within its transition bias point range. 
 

 
 
 

Figure 2. Synaptic system (a) circuit representation and (b) simplified circuit representation 
 

 
We can model the synapse output (SO) employing a linear approximation to the electronic 
characteristic behavior of the CMOS inverting circuit as: 
 

SO(𝑆𝐼,𝑉𝑚) =  𝑓[𝐼(𝑉𝑚) ∗ 𝑅],                                                (1) 
 
where f represents the transfer function of the CMOS inverter and I(Vm) is current across the 
transistor channel or memristor device, and R is a resistor used to reset and properly bias the 
synapse. For example, for synaptic inputs between 0 and 2 V, as shown in Figure 2, the inverter 
transfer functions can be made to range from 3 to ~0 V approximately as a function of the 
biasing operating voltage Vin as shown in Figures 2 and 3. 
 
 

 
 

Figure 3. CMOS inverter voltage transfer curve. 
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The implementation of the neuron functionality will be performed with an adding node and/or a 
single transistor as displayed in Figures 4 and 5. The adding node is the physical connection 
where all post-synaptic outputs will converge. The combined response is fed to the next neuron 
synaptic layer of the neuromorphic computing architecture.  As the synaptic outputs converge, 
they will increase or decrease the potential at the floating neuron adding node. Thus, the 
resulting added potential will become the input to the following synaptic layer. In addition, if the 
neuron adding node were connected to the gate of, for example, an NFET transistor, and if the 
total combined potential at the adding node is greater than the threshold voltage, Vth, of the 
MOSFET transistor, the output of the neuron will be Vo=Vn. The neuron output Vo will be fed 
to the next synaptic layer of the neuromorphic computing architecture.  Otherwise, the neuron 
won’t output a high potential (the neuron won’t fire). Finally, Figure 6 displays the computing 
architecture required to implement the XOR function with our in-house developed neuromorphic 
computing architecture [9] classically described in [8].  Figure 6 is also an example of a 
neuromorphic computing concept that demonstrates how a computing architecture can be 
implemented with thresholding neurons. 
 

 
 
 

Figure 4. Multiple synaptic outputs converge at the floating adding node 
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Figure 5. Multiple synaptic outputs converge at the adding neuron 
 

 
 
 

Figure 6. Neuromorphic computing implementation of the XOR function 
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Memristor Compact Modeling and Simulation 
 
In order to successfully implement a memristor powered neuromorphic computer processor, it is 
important to be able to describe mathematically the electronic characteristic behavior of such 
devices to enable development and simulation of the computing architecture. Therefore, Air 
Force Research Laboratory Information Directorate’s High Performance Systems Branch 
(AFRL/RITB) obtained access to memristor device hardware physical experimental data from 
Professor Kris Campbell’s memristor research group at Boise State University. Utilizing this 
memristor hardware data, in-house memristor device compact models and simulation 
methodologies for chalcogenide memristor devices were developed. From a microprocessor 
design viewpoint, it is important to be able to simulate large numbers of devices within the 
integrated circuit architecture in order to reliably speed up the development process. Ideally, 
device models would accurately describe the characteristic device behavior and would be 
represented by single-valued equations without requiring the need for recursive or numerically 
intensive solutions. With this in mind, an empirical chalcogenide compact memristor model was 
developed that accurately describes all regions of operations of memristor devices employing 
single-valued equations [10]. 
 
The memristor device postulated in 1971 by Leon Chua [11] as the fourth basic circuit element 
has received much attention in the research community since the publication of Strukov’s 2008 
paper titled “The missing memristor found” [12]. The memristor name is a contraction for 
memory resistor because that is exactly its function: to remember its history [13]. The memristor 
is a two terminal passive device whose resistance state depends on its previous state and present 
electrical biasing conditions, and when combined with transistors in a hybrid chip, memristors 
could radically improve the performance of digital circuits without the need for further reduction 
of transistor dimensions [13]. Given their two terminal structural simplicity and electronic 
passivity, the applications for memristor technology range from non-volatile memory, instant on 
computers, reconfigurable electronics and neuromorphic computing [13,14]. According to Chua 
[14], the memristor behaves like a linear resistor with memory but also exhibits many interesting 
nonlinear characteristics, and several electronic models have been presented to describe the 
electrical behavior of memristor devices [11,12,14,15,16]. However, given that memristor 
devices are not commercially available, good physical model-to-hardware correlations have not 
yet been reported in the published literature. Therefore, in this work, we present what we believe 
to be the first model-to-hardware correlation of chalcogenide memristor electrical characteristics. 
In our studies, we have employed both linear and nonlinear models from the published literature 
to fit our memristor hardware. However, we have observed that these published models do not 
represent accurately the electrical characteristic behavior of our memristor device hardware. 
Therefore, we have developed a simple compact model that accurately represents the electrical 
behavior of chalcogenide based memristors. Our model consists of a threshold memristor model 
similar to those utilized in state-of-the-art CMOS modeling and simulation as, for example, the 
well-known BSIM4.6.4 from the University of California, Berkeley. These types of compact 
models have proven very valuable within the microelectronics industry given their 
straightforward single-valued mathematical formulations that make modeling and simulation 
within very large scale integrated circuits fast, reliable, and accurate. Common CMOS transistors 
operate within various regions of operation: Cutoff, Ohmic, and Saturation. Similarly, we have 
developed a memristor model that operates within three regions: off, nonlinear and on. It is our 
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goal to develop a compact memristor model that describes the electrical behavior of memristor 
devices, and it is simple and accurate to enable large scale device simulations. 
 
All experimental hardware memristor devices studied were fabricated and tested at Boise State 
University, and the fabrication details have been described elsewhere [17]. The physical structure 
of the memristor devices characterized was comprised of three thin films of Ag, SnSe and 
Ge2Se3 sandwiched between tungsten metal contacts. All electrical DC experimental 
measurements were performed with an Agilent B1500A (HP4145B) semiconductor parameter 
analyzer and Micromanipulator 6200 microprobe station equipped with temperature controllable 
wafer chuck and tungsten probe W tips (Micromanipulator size 7A) at room temperature. The 
tested memristor devices were 180 nm in diameter with 80 µm x 80 µm tungsten pads for 
electrical contact to the top and bottom electrodes. Figure 7 displays the typical DC electrical 
Lissajous I-V curve characteristic response behavior of a memristor device under a sinusoidal 
input of 0.5 V amplitude and 100 Hz frequency. The memristor physical hardware experimental 
results were provided by Professor Kris Campbell, Boise State University.  From the figure one 
can clearly observe that the memristor device toggles between two states of high and low 
conductivity. As the memristor device transitions from a low to high conductivity state it goes 
through high nonlinear diode-like processes at approximately -0.35 and 0.2 V threshold voltages 
respectively that switched the device from a low conductivity state to a high conductivity state 
and vice-versa. The threshold voltage analogy is used here to describe the voltage biasing region 
where nonlinear behavior occurs. 
 
 

 
 

Figure 7. Typical memristor device DC electrical Lissajous I-V curve characteristic behavior 
 
 
The most basic mathematical definition of a memristor is that of a current-controlled device for 
circuit analysis in the generalized class of nonlinear dynamical systems called memristive 
systems described by the equations [12,14]: 
 

𝑣 = 𝑅(𝑤, 𝑖)𝑖 , and                                                       (2) 
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𝑑𝑤
𝑑𝑡

= 𝑓(𝑤, 𝑖),                                                              (3) 
 
where w can be a set of state variables and R and f can in general be explicit functions of time 
[12,14]. For simplicity and ease of simulation, the memristor’s resistance or memristance 
definition has been reduced to that of a current-controlled, time-invariant, one-port device given 
by [12]: 
 

𝑀(𝑤) = 𝑤
𝐷
𝑅𝑜𝑛 + �1 − 𝑤

𝐷
�𝑅𝑜𝑓𝑓,                             (4) 

 
where w represents the doped region of the memristor, D the total length of the memristor 
device, Ron the lowest resistance state and Roff the highest resistance state as graphically 
described in Figure 8. 
 
 

 
 

Figure 8. Memristor device physical structural diagram 
 
In order to describe the velocity at which w increases, meaning the memristor device is 
becoming less resistive, Equation (3) can be described as [12]: 
 

𝑑𝑤(𝑡)
𝑑𝑡

= 𝑢𝑣
𝑅𝑜𝑛
𝐷
𝑖(𝑡),                                           (5) 

 
where uv is the average ion mobility for the simplest case of ohmic electronic conduction and 
linear ionic drift in a uniform field [12]. 
 
Utilizing Ohm’s law that states that the voltage across a resistor is directly proportional to the 
resistance times the current through the conductor, we can obtain from Equations (4) and (5) the 
following relationship [15]: 
 

𝑤(𝑡) = 𝑢𝑣
𝑅𝑜𝑛
𝐷
𝑞(𝑡).                                           (6) 

 
By inserting Equation (6) into Equation (4), we can obtain the memristance of the system, which 
for a Ron much less than Roff can be simplified to [12]: 
 

𝑀(𝑞) = 𝑅𝑜𝑓𝑓 �1 − 𝑢𝑣
𝑅𝑜𝑛
𝐷2

𝑞(𝑡)�.                        (7) 
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Equation (6) describes the memristance of the memristor system as a function of the charge q(t). 
Additional improvements have been proposed to the aforementioned memristor model to include 
non-linear boundary conditions [15, 16]. The non-linear boundary condition proposed is of the 
form: 
 

𝑓𝑝(𝑤) = 1 − �2 𝑤
𝐷
− 1�

2𝑝
.                                 (8) 

 
The nonlinear window function in Equation (8) guarantees zero velocity of the doped/undoped 
barrier interface described in Figure 8 as w approaches either boundary, w=0 or w=D. Moreover, 
the differences between the models with linear and nonlinear drift disappear when p increases 
[11]. The incorporation of the window function described by Equation (8) requires the redefining 
of Equation (5) as follows [19]: 
 

𝑑𝑤(𝑡)
𝑑𝑡

= 𝑢𝑣
𝑅𝑜𝑛
𝐷
𝑖(𝑡)𝑓𝑝(𝑤).                               (9) 

 
For p = 1, it is possible to integrate Equation (9) analytically; however, for values of p larger than 
1 only numerical solutions are possible [19]. 
 
Attempts have been made to perform a model fit utilizing both the linear [12] and nonlinear [1, 
15] memristor models. Figure 9 shows the memristor model-to-hardware correlation fit between 
experimental results and the linear memristor model, green line, described by [12] and nonlinear 
memristor model, magenta line, described by [16].  From the figure, we can observe that the 
linear model does not capture accurately the high memristor nonlinearities located at 
approximately the -0.35 and 0.2 V threshold voltages. In particular, there appear to be two 
regions of memristor operation between -0.35 to -0.05 V and between 0.05 and 0.2 V which the 
linear memristor model fails to predict accurately. 
 
 

 
 

Figure 9. Memristor hardware and model fit correlation  
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Similarly, Figure 9 describes the nonlinear theoretical I-V curves for a memristor device with 
(realistic) dopant drift modeled by window functions obtained by Joglekar et. al [16], nonlinear 
model curve in magenta color. From the figure, it is clear that the nonlinear model results do not 
accurately describe the DC electrical Lissajous I-V characteristic behavior of our experimental 
physical memristor device hardware. For the nonlinear model, if we consider the memristor 
regions of operation where the nonlinear behavior dominates below or above the threshold 
voltages, -0.35 and 0.2 V respectively, both hardware and linear and nonlinear models exhibit 
completely different characteristic behaviors as displayed in Figure 4 respectively. Given the 
lack of experimental and model correlation for both linear and nonlinear memristor models, we 
have developed a simple empirical memristor compact model that we can employ to accurately 
capture the DC electrical Lissajous I-V curve characteristic behavior of memristor devices. 
 
One important characteristic of memristor devices is the fact that their present behavior is 
dependent on their past state. Therefore, our simple compact model electronic characteristic 
behavior is dependent on the previous memristor state requiring initial conditions. For example, 
Rmem(t=T) represents the state of the memristor device at an initial time T, and Ron and Roff 
represent final states of the memristor device. Assuming that the memristor device initial state 
corresponds to Rmem(t=0)=Ron and that in time an input potential voltage greater than Vth is 
present across the device, we can describe the behavior of the memristor device as follows: 
 

𝑅𝑚𝑒𝑚(𝑡) = �
𝑅𝑚𝑒𝑚(𝑡 − ∆𝑡) −  ∆𝑡𝐾ℎ1𝑒𝐾ℎ2(𝑉𝑖𝑛(𝑡)− 𝑇ℎ),          𝑖𝑓 𝑅𝑚𝑒𝑚(𝑡 − ∆𝑡) < 𝑅𝑜𝑛 

𝑅𝑜𝑛 ,                                                                    𝑒𝑙𝑠𝑒
              (10) 

               
 
where Δt=1e-3/f corresponds to the minimum integral time step between memresistance 
observations, f is the frequency of the sinusoidal input voltage, Th corresponds to the threshold 
voltage required to enter the nonlinear region from the off region and Kh1 and Kh2 correspond to 
fitting parameters used to capture the nonlinear effects characteristic of the memristor device. 
 
On the other hand, if an input potential voltage lower than Vtl is present across the device, we can 
describe the behavior of the memristor device as follows: 
 

𝑅𝑚𝑒𝑚(𝑡) =  �
𝑅_𝑚𝑒𝑚(𝑡 − ∆𝑡) − ∆𝑡𝐾𝑙1𝑒𝐾𝑙2(𝑉𝑖𝑛(𝑡)− 𝑇𝑙),           𝑖𝑓 𝑅𝑚𝑒𝑚(𝑡 − ∆𝑡) > 𝑅𝑜𝑓𝑓 

𝑅𝑜𝑓𝑓,                                                                   𝑒𝑙𝑠𝑒 
  (11) 

 
where Tl corresponds to the threshold voltage required to enter the nonlinear region from the on 
region, Kl1 and Kl2 correspond to fitting parameters to capture the nonlinear effects characteristic 
of the memristor device. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
14 

 (a) (b) 
 
Figure 10. Memristor hardware versus model correlation (a) and memristor hardware fit versus 

compact model as function of time (b) 
 
Otherwise, the state of the memristor device remains unchanged, and therefore the present state 
of the memristor equals that of its previous resistance state, Rmem(t) = Rmem(t-∆t). It is important 
to highlight the diode-like behavior exhibited by our memristor devices driven by their internal 
highly nonlinear transport process. In fact, a closer look at the compact model equations (10) and 
(11) will reveal that our compact model equation resembles that of semiconductor diode devices 
from which we obtain the inspiration to develop our memristor compact model. Figure 10(a) 
shows the correlation between the hardware electrical characterization data and the memristor 
model’s results for the linear memristor model (for reference) and our proposed memristor 
compact model. From Figure 10(a), we can observe that the compact model is able to describe all 
regions of DC electrical operation of the memristor device including the high and low 
conductivity regions and the nonlinear regions. The compact model fitting parameters to achieve 
the compact model fit displayed in Figure 10 correspond to Ron=160, Roff=1200, Th=0.2, Tl=-
0.35, Kh1=5.e6, Kh2=-20, Kl1=4e6, Kl2=20, an input sinusoidal voltage of 0.5 V amplitude and 
100 Hz frequency and the initial condition that the state of the memristor = Roff. In addition, 
Figure 10(b) displays the time dependent compact model results versus the experimental results 
for the memristor device hardware showing a good model-to-hardware correlation in the time 
domain. 
 
3.2.2 Operating in a Constrained Environment 
 
Developing neuromorphic computing architectures is challenging no matter what environment 
and size platform one is dealing with in their research and development effort.  The problem is 
only compounded when one seeks to implement advanced neuromorphic computing technology 
in a SWaP constrained platform such as a micro air vehicle (MAV) in a contested environment.  
A contested environment is a difficult place to operate if there is limited information about the 
location, access to global positioning satellite information (GPS) to aid in navigation is impeded, 
and communications links are unavailable for long periods of time.  Operating in this kind of 
environment requires technology that will allow an unmanned system to have more autonomous 
capability.  This is where neuromorphic computing and other bio-inspired technologies for 
SWaP constrained environments can play a key role.   
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One portion of this effort was spent obtaining a better understanding the requirements of a 
constrained environment, what can be done with existing technology, integration issues and 
technology gaps for on-board processing that exist.  In order to conduct this research, since the 
interest is in developing advanced on-board processing capability not developing new robotics 
platforms and sensors, we relied heavily on commercial off-the-shelf robotics technology and 
hardware from the open source community.  More specifically we used a DFRobot basic four 
wheel platform, Arduino Uno and Mega 2560 microcontroller boards, a motor shield that 
interfaced with the Arduino boards, and a variety of sensors.  These sensors included: a 
“PING)))” ultrasonic sensor, Sharp infrared (IR) GP2Y0A21YK0F range finder, and a Maxbotix 
LV-MAXSONAR-EZ0 sonar range finder.  Work progressed in increments starting with 
learning to program the Arduino boards, to integrating the Arduino boards with the robotic 
platform and getting initial movement, to incorporating a single sensor for obstacle avoidance, 
and on to the use of multiple sensors for simple navigation.  Once the initial integration issues 
were overcome and basic functionality was achieved, more advanced concepts such as object 
tracking and the utilization of optical flow were pursued. 
 
Object Tracking 
 
One of the operational challenges for an unmanned system is to track and follow an object.  In 
order to obtain firsthand knowledge of the issue of object tracking, a light tracking algorithm was 
used in conjunction with a vision chip to track a flashing light-emitting diode (LED).  For this 
part of the effort, Tam 2 chips mounted on ArduEye Rox1 shield boards were obtained from 
Centeye, Inc. [18]. Figure 11 shows a mounted Tam with a pinhole lens. This vision chip is a 16 
x 16 array of pixels that respond to the intensity of light striking them. Since it is flashing, the 
LED signal received by the vision chip can be easily distinguished from other light sources. In 
the present implementation, the LED flashes at a frequency of 180Hz. At this frequency, the 
LED appears to be continuously lit to the human eye. The tracking algorithm works by finding 
the position of the LED in the image at each time step and adjusting the rotation of the robot to 
center the LED horizontally in the image. 
 
The first step of the light tracking algorithm is to sample the vision chip image. The image is 
sampled at 200 frames per second. This sampling rate results in the downshifting of the LED 
frequency to 20Hz. To reduce the necessary computation, the sum of each column is taken since 
the vertical position of the LED does not need to be known. Adding the pixels in the columns 
reduces the number of pixels to 1/16 of its original value and reduces the required computation 
by the same amount. 
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Figure 11.  Centeye Tam 2 chip mounted on an ArduEye Rox1 shield board 
 
After the 16 pixel values have been obtained, each of the 16 pixel values are band pass filtered 
with a center frequency of 20Hz to remove signals that are not the desired LED signal. The poles 
and zeros of the band pass filter transfer function are listed in Table 1. The magnitude of this 
transfer function is plotted in Figure 12. 
 
After each pixel signal has been bandpass filtered, the value of each pixel is squared. The 
multiplication of the signal by itself in the time domain results in a convolution of the signal with 
itself in the frequency domain. The frequency response after squaring the signal is plotted in 
Figure 13. 
 
 

Table 1. Band Pass Filter Poles and Zeros 
 
 

Zeros Poles 
1 0.94𝑒𝑗0.24𝜋 
-1 0.94𝑒−𝑗0.24𝜋 

𝑒𝑗0.1𝜋 0.93𝑒𝑗0.16𝜋 
𝑒−𝑗0.1𝜋 0.93𝑒−𝑗0.16𝜋 
𝑒𝑗0.3𝜋  
𝑒−𝑗0.3𝜋  
𝑒𝑗0.4𝜋  
𝑒−𝑗0.4𝜋  
𝑒𝑗0.6𝜋  
𝑒−𝑗0.6𝜋  
𝑒𝑗0.8𝜋  
𝑒−𝑗0.8𝜋  
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Figure 12. Band Pass Filter Magnitude Response 
 
 

 
 

Figure 13. Frequency Spectrum of Squared Signal 
 
 
The lobe centered at 0 Hz represents the intensity of the signal received by the pixel. This is the 
part of the signal that we are interested in, so the other two side lobes are removed using a low 
pass filter. Table 2 gives the poles and zeros for the low pass filter. 
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Table 2. Low Pass Filter Poles and Zeros 

 
 

Zeros Poles 
-1 0.9𝑒𝑗0.09𝜋 

𝑒𝑗0.3𝜋 0.9𝑒−𝑗0.09𝜋 
𝑒−𝑗0.3𝜋  
𝑒𝑗0.4𝜋  
𝑒−𝑗0.4𝜋  
𝑒𝑗0.5𝜋  
𝑒−𝑗0.5𝜋  
𝑒𝑗0.8𝜋  
𝑒−𝑗0.8𝜋  

 
 
The magnitude of the frequency response of this transfer function is plotted in Figure 14. The 
filter was designed to increase the bandwidth of the center lobe of the signal and to provide large 
attenuation to the two side lobes. Increasing the bandwidth of the center lobe decreases the 
response time of the system so that the robot will react more quickly as the position of the LED 
changes. It also makes the system more susceptible to noise. A tradeoff is made between low 
noise and quick response time. The frequency response of the signal after low pass filtering is 
shown in Figure 15. 
 

 
 

Figure 14. Magnitude Response of Low Pass Filter 
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Figure 15.  Frequency Spectrum after Low Pass Filtering 
 
 
The signal at this point represents the intensity of the pixel. To determine the position of the 
LED, all 16 pixel intensity values are compared to each other and the maximum pixel represents 
the position of the LED.  
 
To make the robot follow the LED, the robot is made to turn either left or right while it is 
moving forward so that the LED always remains centered in the image. An infrared (IR) 
rangefinder sensor placed in the front of the robot is used to stop the robot when it gets too close 
to the LED. Figure 16 shows an early picture of the Ardueye Shield attached to an Arduino Uno 
board prior to the mounting of the IR sensor. 
 

                   
 
 

Figure 16.  Ardueye Shield mounted to an Ardunio Uno board on a robotic platform 
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Optical Flow 
 
Optical flow is a technique that measures the speed of objects picked up by a camera and can be 
used in various applications such as robot navigation. Two different methods of optical flow are 
discussed: the gradient method and feature tracking method. The gradient method is employed to 
detect when an object is in front of the robot. The principle idea of this method is when the 
robotic platform moves toward the object, objects closer to the robotic platform will move across 
the screen at a greater velocity than objects farther away. The feature tracking method is used to 
accurately turn the robot. As the robot turns, image features will move across the screen and the 
amount of rotation can be determined by how far the features move. The optical flow is 
calculated from images received by a vision chip that captures a 16 x 16 pixel image. The 
performance of using neural networks versus a defined algorithm to interpret the optical flow 
information for detection of an object is presented in between the explanation of the 
implementation of the gradient and feature tracking methods.  
 
Optical Flow Gradient Method 
 
The gradient method of optical flow calculation uses the spatial derivative and time derivative to 
determine the optical flow at each pixel in the image. The gradient method employs the equation 
given in [19], 
  

𝑣 = −𝐼𝑡
𝐼𝑥

,                 (12) 
 
where 𝐼𝑡 is the time derivative of each pixel, 𝐼𝑥 is the spatial derivative at each pixel, and v is the 
optical flow. 
 
The first step in implementing this method is to read an image off of the vision chip.  The pixels 
in each of the 16 columns of the image were summed to obtain an array of 1x16 vertical pixels. 
This is done since one only wants to find the optical flow in the horizontal direction. Next, pixel 
offsets are removed by high pass filtering the signal from each pixel in time. The high pass filter 
removes the DC offset of the signal. The DC offset of the pixels needs to be removed because 
differences in the DC offset of each pixel led to DC offsets in the spatial derivative which will 
create errors in the optical flow calculation. The high pass filter is implemented using: 
 

𝑌[𝑛] =  0.9 𝑌[𝑛 − 1] +  𝑋[𝑛] − 𝑋[𝑛 − 1],                                         (13) 
 
where Y is the output of the filter, X is the input, and n is the current time step. 
 
Next, to make the calculation of the spatial derivative more accurate, each frame is up-sampled 
by a factor of 4 so the 16 pixel horizontal array becomes a 64 pixel array. This is accomplished 
by repeating each pixel 4 times and then spatially low pass filtered the resulting array. The low 
pass filtering smoothes out the boundary between pixels. The low pass filter is implemented 
using the following equation: 
 
𝑌[𝑛]  =  0.8 𝑌[𝑛 − 1]  +  𝑋[𝑛]  +  0.64 𝑋[𝑛 − 1]  +  0.2548 𝑋[𝑛 − 2],            (14) 
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After the initial processing of each frame, the optical flow is calculated using Equation 12. A 
problem with this equation is that as the derivative 𝐼𝑥 approaches zero, the optical flow 
approaches infinity. Since the DC value of the pixels is removed, 𝐼𝑥 is zero when there is no 
movement in the image. This equation will give a large value for the optical flow when there is 
no movement in the image. To remedy this, the 1/𝐼𝑥 term is approximated using the following 
exponential function: 
 

1
𝐼𝑥

= �𝐴𝑒
−𝐵𝐼𝑥    𝑤ℎ𝑒𝑛  𝐼𝑥 > 0

−𝐴𝑒𝐵𝐼𝑥   𝑤ℎ𝑒𝑛  𝐼𝑥 < 0
                                    (15) 

 
In this approximation, as 𝐼𝑥 approaches zero, the output approaches +/-A. 
 
After calculating the optical flow at each pixel, the absolute value of the optical flow values in 
the left and right half of the image are added up to get the total optical flow in the left half of the 
image and in the right half of the image. To determine when an object is in front of the robot, the 
sum of the two optical flow values are compared against a threshold. A total optical flow that is 
greater than the threshold means that there is an object in front of the robot. By comparing the 
left and right optical flow, it can be determined if the object is skewed to the left or right of the 
robot. 
 
A second gradient method optical flow algorithm was created to attempt to get more 
performance. When the algorithm is first started, a calibration image is taken with the camera 
covered up so that no light enters the vision chip. This calibration image is stored in memory. 
Next, the algorithm loop starts and an image is taken from the vision chip. For each pixel in the 
image, the corresponding pixel in the calibration image is subtracted from the pixel value. Next, 
the top 4 rows and bottom 4 rows in the image are removed. This is done because we do not 
want the movement of the floor or ceiling to interfere with the output. Next, the pixels in each 
column of the image are summed resulting in a 16 integer array. Next, the optical flow for each 
pixel is calculated as follows: 
 
𝑂𝑝𝑓𝑙𝑜𝑤 =  −100 ∗  (𝑖𝑚𝑎𝑔𝑒1[𝑖] − 𝑖𝑚𝑎𝑔𝑒2[𝑖])/(𝑖𝑚𝑎𝑔𝑒1[𝑖 + 1] − 𝑖𝑚𝑎𝑔𝑒1[𝑖]) .                (16) 
 
This equation is an approximation of -𝐼𝑡/𝐼𝑥 where 𝐼𝑡 is the derivative of the pixel with respect to 
time and 𝐼𝑥 is the derivative with respect to position. The equation is multiplied by 100 to 
increase the precision when the equation is implemented using integer arithmetic. When 
implemented in C, the order of operations is such that the multiplication is performed before the 
division reducing the loss of precision in the division. 
 
Once the optical flow values are found, the total optical flow is found for the left side of the 
image and the right side of the image. This is done by taking the sum of optical flow values from 
index 0 to index 6 for the left side of the image and index 8 to index 14 for the right side. These 
optical flow values are low-pass filtered in time to reduce fluctuations in the output. This low 
pass filter is as follows: 
 

𝑂𝑢𝑡𝑝𝑢𝑡 =  𝑂𝑢𝑡𝑝𝑢𝑡 ∗ 19
20

+  𝑂𝑝𝑓𝑙𝑜𝑤.    (17) 
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Finally, the two optical flow values are divided by 20 so that the magnitude of each will fit into 
an 8 bit integer. This is done to simplify the transmission of the two optical flow values between 
the two microcontroller boards. 
 
The following gives a list of the steps in the improved optical flow algorithm: 
 

1. Cover camera and store the calibration image into memory. 
2. Retrieve image 
3. Subtract calibration image from image 
4. Remove top and bottom 4 rows. 
5. Add the pixel values of each column to get a 16 integer array. 
6. Opflow = -100 * (image1[i]-image2[i])/(image1[i+1]-image1[i]) 
7. Output1 = Output1*19/20 + opflow(0:6) 
8. Output2 = Output2*19/20 + opflow(8:14) 
9. Output1 = Output1/20 
10. Output2 = Output2/20 
11. Go to 2 

 
Software Neural Networks and Fixed Algorithms 
 
Embedded systems typically have stringent SWAP constraints which can influence the selection 
of capability implementation strategies.  A series of experiments were conducted that utilized 
either software ANN’s or fixed algorithms to determine when the robot should stop in front of an 
object based on the optical flow information. In this case, the fixed algorithmic method was 
found to have several advantages with increased performance over the neural network approach.  
This was due in part to the memory and processor constraints of the platform and the limited 
training of the network. 
 
In order to achieve good performance with the neural network, it is necessary to train the 
network with many training samples. These training samples consume a large amount of memory 
that is not needed with the algorithmic method. The number of training samples required is 
dependent on the complexity of the input data and test scenario, where increased numbers of 
input parameters corresponds to higher dimensional analysis. The neural network works by 
partitioning the input’s space of the network into regions. If an input vector is in a region trained 
to be 1, the network outputs a 1 and if it is in a region trained as 0, the network outputs 0. The 
regions of the input space that the network partitions is programmed into the network by training 
it with samples of the input with known output. With a greater number of dimensions, a greater 
number of input samples are needed to accurately describe the desired partitioning of the input’s 
space.  
 
In this neural network approach, a feed forward neural network using the back propagation 
training algorithm was trained using all of the optical flow values for the 16 pixels. The neural 
network had 16 inputs and 1 output, one input for each optical flow value and the output to 
specify if there is an object or is not an object in front of the robot.  
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To reduce the number of training samples needed, the number of inputs on the network needs to 
be reduced as much as possible. Each input must be optimized to contain meaningful 
information. For determining when to stop the robot, the number of inputs could be reduced to 
one by adding all of the optical flow values. A one input neural network simply outputs a one if 
the input is greater or less than some threshold. Since the threshold is the only value that needs to 
be set, it is faster and more memory efficient to set this threshold manually as is done in the 
algorithmic approach. This approach is restricted to the simplest scenarios where data 
compression does not drastically affect task performance. 
 
Another reason for the lower performance of the neural network in selecting when to stop the car 
is that the training samples must come from a wide range of different possible scenarios, which 
was not addressed in this simplified training approach. For example, if the robotic platform is 
trained to stop in front of a box with a certain orientation, it may very reliably stop in front of the 
box when the box is oriented in the position the robot was trained with but may fail completely if 
the box is rotated or if a different object is placed in front of the robot. Training samples must be 
taken from a large range of possible scenarios in order to accurately map out the entire desired 
region in the network’s input space.  The restricted training plan and memory for the storage of 
training data was the most significant aspect that limited ANN performance. 
 
The use of neural networks in applications such as that discussed above can be beneficial in 
scenarios when an algorithm for selecting the correct output for a given input is unknown and a 
large amount of training data is available. It is generally beneficial to implement a fixed 
algorithm to perform such tasks in a predictable and stable environment, resulting in a simplified 
design that uses less computational resources than adaptable software based ANN schemes.  
However, the hardware implementation of neural networks has been shown to offer increased 
performance on a low power budget which is considered later in section 3.2.3.  
 
Optical Flow Feature Tracking 
 
The feature tracking optical flow algorithm was implemented to determine how far the robot is 
rotated. The method works by filtering out features from the image and tracking these features as 
the robot moves. In this case, the features are edges in the image. 
 
This algorithm starts by creating a 16 pixel array as was done with the gradient method since we 
are still only interested in horizontal movement. An edge detection filter is then applied to the 
pixel array. This edge detection filter is a finite impulse response filter with the following 
impulse response: [1,0,-1]. Next, each pixel output from the edge detection filter is applied to a 
high pass filter to remove most of the DC component of the signal. This high pass filter is an 
infinite impulse response filter implemented using the following equation: 
 

𝑌[𝑛] =  0.9 𝑌[𝑛 − 1] +  𝑋[𝑛]–  0.7 𝑋[𝑛 − 1].   (18) 
 
After high pass filtering, the location of the maximum pixel, corresponding to one of the edges in 
the image, is found and this location is compared with the location of the maximum pixel in the 
previous image. If the difference between the two locations is 1 then this difference is equal to 
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the optical flow. If the difference between the two locations is greater than 1 then the optical 
flow is set to zero. This method assumes that the frame rate is high enough so that the features 
will move across the screen at a maximum rate of one pixel per frame. With this assumption, any 
difference between feature location greater than 1 means that the features being tracked in the 
two frames are two different features and using the difference in their location would give the 
wrong value for the optical flow. 
 
A test was done to determine how well the turning algorithm worked. This test consisted of 
having the robot stop in front of a box and turn 90 degrees. The test was done at different light 
levels and with different orientations of the box. It was found that varying light levels did not 
have a noticeable effect on the performance of the algorithm while different orientations of the 
box did have a large effect. With some orientations the robot would repeatedly turn 90 degrees 
while with other orientations the robot would turn much more than 90 degrees. This lack of 
performance is most likely caused by the low resolution of the vision chip in relation to scene 
complexity, where the image that the vision chip captures may not have edges that the algorithm 
can track. To increase the performance of the system, a camera with a higher resolution would be 
needed that would be able to see more detail in the image which would allow more edges to be 
detected. 
 
An alteration to the above algorithm was made to attempt to increase the accuracy. This new 
algorithm operates on the same principle but the details of its computation have changed. With 
this new algorithm, pixels in the columns are added up as before, and the mean value of the 
pixels in the image is subtracted from each pixel. During initialization a calibration image is 
created with all light blocked from entering the vision chip. This calibration image is used to 
removes pixel offsets. After each image is found and the average has been removed from each 
pixel, the calibration image is subtracted from each image to remove pixel offsets. Next, the edge 
detection filter is applied to the image as before. After edge detection, the local maximums and 
local minimums of pixel values are found for the image. This is done by assigning a 1 to a local 
maximum, -1 for a local minimum, and 0 if neither. After this, each local maximum and 
minimum point is compared with the same image point as well as the points beside it in the 
image from the previous time step to see if the minimum or maximum point has moved left or 
right. If the point has moved left, 1/N where N is the total number of maximum and minimums is 
subtracted from the optical flow value for that time step. If the point moves right, 1/N is added to 
the optical flow.   
 
3.2.3 Hardware-based Artificial Neural Networks 
 
The neuromorphic community was revitalized when, in 2008, memristive devices were brought 
to public attention by Hewlett Packard (HP), though devices possessing similar behavior, as 
predicted by Leon Chua in 1971 [20], had been observed since the 1970s [21-24].  These 
“memory resistors” possessed several attributes which make them effective hardware 
incarnations of biological synapses.  First, these two-terminal devices function as variable 
resistors, satisfying the “learning” requirement seen in real synapses.  Additionally, these devices 
are non-volatile.  Unlike transistors, each memristive device’s state persists even in the absence 
of applied power.  Lastly, these devices exhibit this behavior even in the nanoscale regime.  For 
traditional computing, these properties could lead to instant-ON computers or non-volatile field-
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programmable gate arrays (FPGAs).  These devices potentially offer to neuromorphic circuit 
engineers the means to achieve the density, reconfigurability, and low power requirements 
needed to build analog neural circuitry.  Memristive technology, however, must mature before it 
can be utilized in such designs. Memristor-built non-volatile memory is expected to be 
commercially available by 2014 [25], and HP predicts that memristive memory will eventually 
replace FLASH, solid state, and DRAM as a universal memory format [26].  Due to the 
disruptive nature of technology developments and to the exponential growth of technology as a 
whole, it is difficult to predict when, or if, memristive technology will enable neuromorphic 
thinking machines.  Recent advances in silicon-based ANNs offer an alternative approach with 
many of the capabilities desired in future memristive systems but which are available now, 
CMOS compatible, and inexpensive. 
 
Neuromorphic computing goals such as emulating mammalian brains prove daunting due to the 
processing power required to emulate all 4 million neurons of even a mouse’s brain, much less 
that of a household cat, with approximately 300 million neurons.  At the same time, 
extraordinary examples of pattern recognition and behavior are evident throughout the animal 
kingdom with significantly fewer neurons.  For example, the roundworm, with 302 neurons and 
8,000 synapses, can sense and track waterborne chemical signatures and navigate towards their 
locations [27].  We have found in the experimentation with hardware-based neural networks, 
presented in a later section of this report, that useful applications can be realized with relatively 
few active neurons.  In fact, in one instance discussed later, only a single neuron was required to 
enable relevant change detection in a video surveillance system.   Limited neuron approaches 
employed near the sensor may be used to reduce large data sets, saving critical transition 
bandwidth while reducing the burden on analysts and system operators. 
  
Hardware-based ANNs are ideally suited for mobile or portable platforms with strictly limited 
SWaP resources.  Such hardware implementations that operate without internal software offer 
improved efficiencies over traditional ANN software methods built on Von Neumann 
architectures, such as the ANN system described in section 3.2.2. The robotics industry 
(currently a $10 billion enterprise) is poised for exponential growth with an expected commercial 
market of over $15 billion by 2015 [28].  As an enabling technology, hardware ANNs will play a 
substantial role in the development of autonomous and semi-autonomous robots for use in 
industrial, commercial, and military markets.  The demand for small, mobile, battery-powered 
systems will favor low-energy hybrid processing units consisting of both standard 
microcontrollers and hardware-based neural networks on the same chip.  The parallel nature of 
these neural co-processors makes them superior over software techniques for SWaP restricted 
applications.   
  
Our research focuses on the implementation of real-time ANN pattern recognition in platforms 
with severe SWAP constraints, such as micro air vehicles (MAVs), mobile sensor platforms, and 
pocket-sized robots.  These restrictions practically rule out traditional software approaches which 
often run too slowly due to the inherent serial nature of von Neumann architectures or require 
high performance processing for operation.  Hardware implementation of ANNs provides a 
reduced footprint with the additional benefit of massively parallel execution.  While nano-
enabled neuromorphic architectures are extremely promising, their realization will take time. 
Meanwhile, there exist commercially available technologies today that offer partial solutions.  In 
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particular, parallel processing capabilities are afforded by FPGAs [29] and general-purpose 
computing on graphics processing units (GPGPUs).  With the recent availability of application-
specific integrated circuits (ASIC) based on zero instruction set computing (ZISC), not only is 
there an even greater reduction in footprint and power but also native support for massively 
parallel operation.  It is technically feasible using current state-of-the-art fabrication techniques 
at the 22 nm node to manufacture ASIC ANN chips approaching 500,000 parallel neurons. 
  
This research first examined the current state of memristive development with emphasis on 
architectural and fabrication challenges followed by a review the technical aspects of the CM1K 
ASIC chip and its ZISC operation.  Next, two experiments demonstrating change detection and 
object recognition in live video feed will be presented.  Lastly, the results of these experiments 
will be used to weigh in on two competing perception paradigms: few sensors/complex 
computations and many sensors/simple computation.  
 
Challenges with Nano-enabled Neuromorphic Chips 
 
A wide variety of technologies can be classified as “memristive devices” including resistive 
random access memory (ReRAM), phase change RAM (PCRAM), magnetoresistive RAM 
(MRAM), and spin-transfer torque MRAM (SST-RAM).  While all these devices operate under 
different physical principles, they all possess two key attributes: 1) variable resistance and 2) 
non-volatility.  Despite all the progress that has been made in memristive devices over the past 
several years, commercial memristive device products are still unavailable. 
 
There are two critical tasks for successful memristive device integration with CMOS: 
manufacturability and usability.  Concerning the former, the devices to be used must consist of 
materials that are permitted inside a CMOS foundry, which further restricts the materials allowed 
in the front end of line (FEOL) as compared to the back end of line (BEOL).  All the processing 
steps needed to make the devices’ structure must be scalable to fabricate devices en masse.  
Lastly, the devices must be all functionally identical (though some applications may actually 
exploit device non-uniformities).  Part of the difficulty of manufacturing memristive devices is 
that the physics of device switching is not well understood at nanometer size scales.  In 
particular, ReRAM (of which PCRAM is a subset) may be composed of binary metal oxides, 
chalcogenides, or perovskites, among other materials, and switch due to filament formation, 
vacancy migration, phase change, or other processes [30].  At these scales, small variations in the 
device size or material composition often have large effects upon subsequent device switching 
parameters. 
 
However, because of this variety of materials and mechanisms, different device resistance 
values, switching voltages, and switching times are available to the circuit designer.  When 
considering the appropriate device metrics of reliability and endurance that must be attained, one 
must first consider the intended use of the device.  For von Neumann computing applications, if 
these devices are to replace Flash or SRAM, then endurance cycles of about 106 and write 
speeds of a couple tens of nanoseconds must be achieved, respectively.  Even if memristive 
devices cannot meet these requirements, SWaP savings may still be achieved by strategically 
replacing some transistors in a circuit.  For devices used in neuromorphic applications, the range 
of addressable resistance values and the operative voltages will be more critical than the write 
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speed.  Because of these varied ends, there will likely be a variety of memristive device “flavors” 
available to the circuit designer in the future. 
 
In the meantime, ZISC neural networks may be usable to partially replicate some of the 
anticipated advantages of a memristive device-based hardware neural network.  In this way, 
learning algorithms and neural network structures may be further developed now and 
subsequently mapped onto memristive device technology if and when it becomes available. 
 
ASIC Neural Networks 
 
A fully parallel, silicon-based neural network chip (CM1K) developed by CogniMem 
Technologies Inc., based on IBM’s earlier series of ZISC chips [31,32], was used in this work.  
The CM1K is configured with two available types of non-linear classifiers: a Radial Basis 
Function Network (RBF) and a K-Nearest Neighbor classifier (KNN).  The chip possesses 1024 
neurons, each with its own memory for trained signature storage and a processor for recognition 
and distance calculations. The memory within every neuron contains 256 elements, each with an 
8-bit capacity for a total of 256 bytes of information per neuron.  The identical neurons learn and 
respond to vector inputs in parallel while they incorporate information from all the trained 
neurons in the network through a bi-directional parallel neuron bus.  Execution of the recognition 
logic is independent of the number of participating neurons, and multiple chips can be cascaded 
in parallel for scalable implementation.  Figure 17 shows the general topology of such a 
restricted coulomb energy network.  Each input node accepts a maximum of 256 elements (xN), 
each with 8-bit resolution.  These are fed in parallel to up to 1024 neurons.  All recognition 
events are passed through to the output layer with the associated category and confidence level.  
CogniMem recently demonstrated a cascaded network of 100 chips with over 100,000 parallel 
neurons, all contained within 1/10 of a cubic foot and consuming less than 20 Watts of power yet 
performing at a level equivalent to 13.1 Teraops of pattern recognition performance [33].  
Additional details regarding CM1K operation and architecture may be found in [34,35]. 
 
 

 
 

Figure 17.  Neural Network Diagram 
 
  
In such an architecture, the operational status of each neuron can be in one of three possible 
states: idle, ready-to-learn, and committed.  The idle neurons are empty of knowledge but can be 
trained sequentially with the next neuron in the chain configured in the ready-to-learn state.  
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Once a neuron is trained it becomes committed and any pre-existing influence fields are adjusted 
to accommodate the new knowledge.  During recognition, the input vector is passed to all the 
committed neurons in parallel, where it is compared to the stored vector or trained prototype.  If 
the distance between the input vector and a neuron prototype falls within the influence field, the 
neuron “fires” generating local output signals consisting of fire flag, signal distance, and 
category type.  In the case that no neurons fire, the input signal can be used to train the ready-to-
learn neuron with the unrecognized signature.  This provides the means for recognition and 
training to be accomplished simultaneously.  A sample visual cue and grey scale image of the 
vector signature within a neuron’s memory is given in Figure 18. 
 
 

a.       b.    
 
Figure 18.  a) A captured video frame showing the subject and b) A pictorial representation of 
the neuron content trained with the above image 
 
 
The program scans a 60 frames per second live video feed and compares the region of interest to 
those trained into the neuron’s memory.  Fine tuning of neuron sensitivity for a specific signature 
can be manually adjusted by adjusting the neuron active influence field or the distance from 
ideal, where a neuron will still recognize the target as a specific category.  The distances can be 
calculated using one of two norms: the Manhattan method, 
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where DMan is the sum of the differences between n dimensional vector signatures Vi and Pi, or 
the Lsup method, 
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Manhattan distances were chosen for our design to emphasize the general differences between 
signatures with equal weights on all components.  A neuron fires when the input vector lies 
within a specified distance, that is, falls within the influence field of a neuron in the decision 
space.   
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Experimentation with Minimum Neuron Requirements 
 
Part 1 - Changes Detection in Live Video 
 
We examined the problem of change detection in video surveillance with the intent of utilizing 
the least amount of processor resources.  We started with the straightforward task of monitoring 
the entry point into a room for any activity.  A single neuron was trained to recognize an image 
of the entry point.  The neuron’s influence field was manually adjusted to the sensitivity required 
to detect a subtle change to the field of view.  The native monochromatic video feed to the 
CM1K was a progressive scan at 752x480 pixel resolution and 60 frames per second while the 
neuron memory was scaled down to 187 elements each with 8-bit depth.  While maintaining the 
context of the broadcast vector, it required N+2 clock cycles to pass the input to the network. 
With the CM1K clocked at 27 MHz or 37 ns per clock cycle, the broadcast of our 187 element 
input vector took only 7.0 µs.  A block diagram of the complete system configuration is shown in 
Figure 19. 
 
Despite the low resolution of the stored prototype (187 bytes), the system reliably responded to 
changes in the camera’s field of view (FOV) or to more localized changes in a region of interest 
within the FOV.  In this case, the system was programmed to alert a human analyst of any 
change and to capture images of the disturbance for review.  Data capture and transmission 
continued until the intrusion moves outside the sensor’s FOV.  It is important to mention that 
although we implemented our system under the control of a personal computer, the ZISC chip 
learns and recalls patterns without internal code or the need for constant external supervision.  
This simple implementation of a single neuron for video change detection proved to be very 
reliable over a 36 hour period of entryway monitoring identifying 26 events with zero false 
positives and zero missed occurrences. 
 
Part 2 - Specific Target Recognition 
 
Pattern recognition in complex scenes often plagues ANNs, since a subject’s spatial orientation 
along with environmental variables such as lighting and background affect the system’s ability to 
accurately perceive the target.  These inconsistencies can be addressed using three basic 
techniques: increasing the number of neurons to account for variability, preprocessing the video 
to reduce variance, and controlling the environment or setting of the scan.  While applications 
exist where control over situational effects can be adequately controlled by engineering the 
platform’s environment [35], reducing the variance in video streams can be particularly 
challenging due to the inherent inclusion of erroneous and unpredictable background effects 
[36]. 
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Figure 19. A block diagram depicting the system configuration 
 
 
In this portion of the experiment, we tested the system’s ability to detect specific targets in a 
controlled setting.  Simulated vehicle traffic was monitored at the entrance point of a scaled 
model parking facility.  A video camera monitored the incoming traffic (remote controlled cars), 
and the system alerted an attendant when either an unrecognized vehicle or a prespecified vehicle 
approached the gate.  For this experiment, a pool of four vehicles under constant lighting was 
used.  A single neuron was sufficient to identify a particular vehicle such as the one in Figure 
20a.  Figure 20b is a pictorial representation of the neuron content trained with the image in 
Figure 20a, while Figure 20c is a plot of a neuron’s prototype vector. Since these neurons do not 
interpolate data, all flagged images had to be consistent with the orientation of the trained image.   
 
With as few as one neuron per vehicle the system accurately identified each of the four vehicles 
and subsequently notified the analyst when a specifically flagged or unrecognized vehicle 
approached.  Additional training was not required as long as the environmental aspects were held 
constant but improved reliability when environmental controls were lessoned. 
  
The number of neurons required to distinguish N objects did not grow linearly but at a much 
faster rate, such that, 257 neurons were required to properly categorize 34 distinct targets under 
very controlled conditions.  The realm of applications within a single processor’s 1024 neuron 
capacity is significant but the need for additional performance through cascaded chips is required 
for complex relationships.  Using this platform, we plan to construct a +100,000 parallel neuron 
network for additional research.   
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            a)     b)       
 

c)  
 
Figure 20.  Images from experiment. a) Profile view of one of the vehicles recognized by one 
neuron,  b) A pictorial representation of the neuron content trained with the above image, c) A 
plot of the neuron’s prototype vector 
 
 
4.0 RESULTS AND DISCUSSION 
 
Numerous results were obtained in both the software and hardware focused research areas. The 
results are presented in the sections of the report which follow along with a discussion of their 
significance. 
 
4.1 Software Focused Research 
 
The Intelligent Text Recognition System (ITRS) achieved 2 critical milestones. First, it 
recognized 7000+ Chinese characters more quickly and precisely than its human counterpart. 
The 60x60 pixel recognition models can recognize characters possessing 40% pixel toggle with 
80% success or with 20-pixel strike at 60% accuracy. Pixel toggle distortion at this magnitude is 
well beyond human-level cognition recognition capabilities. The ITRS can recognize the Chinese 
characters at a rate of 40-60 pages per second when instantiated on all the Graphics Processing 
Units (GPUs) on the AFRL/RI Condor Supercomputer. Secondly, ITRS incorporated semantic 
linguistic knowledge into its neuromorphic based sentence confabulation procedure. The 
Stanford Part-of-Speech (POS) tagger software was used to tag the existing training corpus and 
results indicate that tag-assisted confabulation improves sentence recognition 10%-55% of the 
time. The improvements vary with respect to the amount of sentence input noise, but the tag-



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
32 

assisted confabulation shows clear improvement at all levels. Without tag-assisted semantic 
information, the overall success rate is expected to drop exponentially with respect to higher 
noise levels.  Research continues under a complementary effort to incorporate confabulation into 
the Chinese character recognition aspect of ITRS.  Furthermore, the utilization of POS for 
Chinese sentence recognition is still being explored.  In the case of the English object character 
recognition with character occlusions, testing showed that ITRS out performed commercial 
object character recognition software in speed (40-60 pages/sec vs. 0.57 pages/sec), word 
accuracy (98.0% vs. 82.5%), and sentence accuracy (62-70% vs. 20%). 
 
 
 
4.2 Hardware Focused Research 
 
 
4.2.1   Memristive Device Based Technology 
 
The memristor research outlined in this report consisted of physical modeling, compact 
modeling, device fabrication, testing, and application with the bulk of the device research 
focused on two memristor configurations, ion conductor chalcogenide-based memristor devices 
and Al/CuxO/Cu memristive devices.  Physical and empirical models of these devices were 
created for MATLAB, HSPICE, & Verilog A environments. The models were compared to 
device testing results.   It has been shown that memristive devices are a viable technology that 
may play a significant role in future neuromorphic and CMOS circuit design.  
 
This work showed that a wide range of performance characteristics can be achieved using varied 
material and architectural designs, all demonstrating the characteristic pinched I-V hysteresis and 
non-volatility. Such variety makes standardization slow, but gives neuromorphic circuit 
designers expanded fabrication options.  An in-house designed and fabricated reconfigurable 
logic circuit was used to demonstrate the utility of memristive behavior.  
 
Although memristors are analog devices, both smooth and binary switching mechanisms were 
recorded.  The smooth Lissajous curves typically documented in the chalcogenide based device 
testing more closely represents the traditional model of memristive behavior.  These devices 
were very analog in function making them ideal for synaptic roles in neuromorphic circuits.  
Such analog systems allow the device physics to do the computation which more closely mimics 
the nonlinear dynamics of biological systems.   But such complex circuits are difficult to reliably 
design and lack reprogrammability limiting their applications.  Such subthreshold analog circuits 
are additionally sensitive to device variations, which can result in reduced bit resolutions after 
digital conversions. Fortunately many of the applications for neuromorphic systems do not 
require such exactness and are designed to solve the fuzzy computational problems too 
ambiguous for traditional processing.  The Al/CuxO/Cu devices switched in a nearly binary 
fashion, providing a strikingly different Lissajous curve than the chalcogenides. There are 
several practical benefits of binary systems that are well known.  Chief among these benefits is 
their insensitivity to noise followed by comparatively easy integration into current digital 
systems.  Binary memristors are natural candidates for memory applications in nano-matrix 
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architectures.  The most probable near term realizations of large scale neuromorphic circuits will 
continue to use both analog and digital circuitry in hybrid CMOS designs. 
 
4.2.2 Operating in a Constrained Environment 
 
The initial look at operating in a constrained environment provided some insight into issues that 
need to be addressed when trying to develop new technology for on-board processing with 
severe SWaP limitations.  The integration of the right sensors with a microcontroller will provide 
basic functionality such as avoiding obstacles and navigating along a wall without direct human 
contact. Key to this work was having enough accessible input/output (I/O) points to bring all of 
the necessary data together. The Arduino Mega2560, with a 16MHz Atmega 2560 processor, 
was used as the primary board on the robotic platform carrying multiple sensors since it has 54 
digital I/O pins, 14 pulse width modulation (PWM) pins, 16 analog inputs and four hardware 
serial ports. [37]. The Arduino Uno, with a 16 MHz Atmega 328 processor, on the other hand 
only has 14 digital I/O pins, six pulse PWM pins, 16 analog inputs and one hardware serial ports. 
While the Uno was more than capable of running the Tam2 on the Ardueye shield, there was 
difficulty using it with a motor shield and several different sensors due to accessing its smaller 
number of I/O pins. While this work with navigating a robotic platform is relatively simple 
compared to what will be needed to operate a small autonomous system in a contested 
environment, it was informative.  The code for the target tracking research was separated into 
two programs. The first program was loaded onto the Arduino Uno board which was interfaced 
to the vision chip. This program performs all of the signal processing done to the image. The 
Uno board program contained 101 lines of code excluding comments of which only 4 lines 
actually perform the signal processing. The other lines were used to retrieve information from 
the vision chip, send processed information to the Arduino Mega2560 board, and for initializing 
the microcontroller. After processing the image, the LED position in the image was transmitted 
by Inter-Integrated Circuit (I2C) to the Mega2560 board. The second program was loaded onto 
the Arduino Mega2560 board which has the interface for controlling the robot drive motors. This 
program receives information from the Uno board and adjusts the speed of the wheels in the 
appropriate manner so that the LED is positioned in the center of the image.  The Mega2560 
board program contained 107 lines of code excluding comments. Most of the lines of code were 
for initializing and controlling the motors, the rest were used for receiving information from the 
Uno board and deciding how to control the motors depending on the information received.  It 
will be interesting to see, in future effort to actually build and field small, autonomous, mobile 
systems, how many lines of code are required for the system to fulfill its mission and to process 
information closer to the sensor.  Fancy and complex concepts do not always mean a better 
solution.   
 
It has become more apparent, after this initial work and reviewing other published research, that 
autonomous operations in contested environments will require more on-board processing horse 
power. This requirement cannot be addressed by just using any chip with more processing 
capability especially if it requires much more power to run.  One will not be able to just port over 
code from legacy systems.  The challenge lies in determining the right mix of processing power 
and energy efficiency for a system. That is why other approaches, such as those that are bio-
inspired such as vision chips and optical flow, need to be examined more closely to determine 
their merit and best way to use them. Dr. Geoffrey Barrows, in his dissertation for his doctorate, 
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for instance, acknowledged that, “The main challenge of using optic flow for navigation is that 
the computation of optic flow is known to be a CPU intensive problem.”[19]  If a fly can out 
maneuver a F-35 fighter in the low Reynolds number flight regime [4], than there are non-
traditional means of computing that already exist in nature that need to explored and exploited. 
Traditional solutions will not get us to the computing efficiencies needed to operate small, 
autonomous, mobile platforms in a contested environment.  At the time this work was conducted 
there was not a good guide for estimating, or a standard process for determining, the computing 
need of a small unmanned system.  Researchers exploring navigation theories, mechanisms of 
bio-inspired flight, and fabrication of small vehicles tend to work with what they have worked 
with in the past, or that which was easy to obtain for their project that had adequate computing 
power. Relatively little effort has been made to address the on-board computing needs. 
 
 
4.2.3 Hardware-based Artificial Neural Networks 
 
The two simplified tests conducted under this effort illustrate that useful ANN systems can be 
designed to operate with extremely limited resources for use in SWAP constrained platforms.  A 
nonlinear relationship was found between the number of prototype categories and the number of 
neurons required for identification, highlighting the need for increased density, low-power chip 
designs. 
 
SRAM currently serves as the neuron’s memory in this integrated circuit which consumes a 
significant amount of wafer real-estate and requires substantial energy resources for periodic 
refreshing.  SRAM typically uses 6 transistors for storage and control of a single bit of CMOS 
memory.  Additionally, since all the neuron knowledge is presently stored in SRAM, it must be 
saved off-chip in Flash when power is removed.  Such requirements severely reduce the 
achievable density in SRAM-based neural networks.  As mentioned previously, memristive 
devices hold great potential for the development of ultra-high density memory with reduced 
resource requirements.  The non-volatile nature of memristive memory could lead to super-
efficient ANNs that lay dormant without consuming power, ready to instantly respond when 
needed.  By selectively replacing certain SRAM and DRAM transistors with CMOS-compatible 
memristive devices, ANNs can subsequently achieve increased density, reduced power, and 
instant-ON capabilities.  
 
As was shown in both of the previous examples, a single neuron in this system was sufficient to 
achieve reasonable discrimination for pattern recognition.  Coarse resolution in trained neurons 
may not necessarily be something that must be improved upon.  In general, modern 
environmental processing relies heavily upon a small number of high resolution sensors and a 
computer capable of solving complex differential equations in real time.  It is very unlikely that 
flying insects are performing such computationally intensive sensor processing in their brains.  
Rather, such biological systems perform simple computations using measurements from 
numerous crude sensors.  This is called the sensor-rich feedback control paradigm.  For example, 
it is thought that a fly determines a global vector representing how the fly is moving with respect 
to its environment.  From observed vector patterns, select neurons fire when preferable flight 
directions are identified [4].  Extending this many sensors/limited computation paradigm to 
autonomous systems is a natural progression towards bio-inspired. 
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5.0 CONCLUSIONS 
 
This neuromorphic computing research and development effort explored the design and 
implementation of computationally intelligent computer architectures and high performance 
computer software algorithms.  The research concentrated on the design of mathematical models, 
algorithms, computing architectures, and computational efficiencies for the advancement of 
neuromorphic computing and neuroprocessors where the development of such systems draws 
from many fields. 
 
The software focused research in neuromorphic computing demonstrated the combination of 
computational power with human level cognitive functionality.  This sets the stage to create a 
system that can increase Department of Defense (DoD) operators and analysts ability to process 
textual data in depth, drawing more relationships among entities of interest. The neuromorphic 
software research is an enabling technology that will give cognitive functionality to the 
hardware. 
 
The hardware focused research has evolved into a two prong approach to develop neuromorphic 
computing hardware for Air Force systems. One approach seeks to exploit memristive-based 
technologies for far-term concepts.  As stated earlier, the memristor research outlined in this 
report consisted of physical modeling, compact modeling, device fabrication, testing, and 
application.  A considerable amount of work was accomplished in this area under this effort, and 
in conjunction with AFOSR investment, leading to several papers and patents which can be 
found in the appendix. This is a very promising technology that will require more investment to 
develop the computer architectures which can exploit the technology for many Air Force 
applications such as autonomous operations in contested environments and enhanced on-board 
processing close to the sensor. While the memristive-based technologies mature, the second 
approach seeks to utilize CogniMem Technologies’ CM1K-based hardware to explore system 
and architectural issues for more near-term solutions along with guiding memristive-based 
technology development.   
 
A fully parallel, silicon-based ANN was used to monitor video data.  In this work, change 
detection and simple object recognition were demonstrated with reduced neuron numbers 
utilizing only a few, or in some cases one, neuron per category.  This simplified approach was 
used to validate the utility of few neuron networks for use in applications that necessitate severe 
SWaP restrictions.  The limited resource requirements and massively parallel nature of 
hardware-based ANNs make them superior to many software approaches in such resource 
limited systems, such as MAVs, mobile sensor platforms, and pocket-sized robots.  These fully 
CMOS compatible designs will likely play a substantial role in the development of semi-
autonomous robotic platforms. Configurations having multitudes of crude sensors connected to 
layered ANNs will more closely emulate the structure of biological systems and may outperform 
systems which rely upon brute forcing complex equations upon data from a few high resolution 
sensors. 
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In the end progress was made on both the hardware and software side of neuromorphic 
computing research.  The stage has been set for creating the future agile information systems 
with more capability for reasoning and perception that will allow the command chain to make 
informed decisions quicker than our adversaries. 
 
 
 
6.0 REFERENCES 
 
 
[1]  Singer, P. W., Wired for War: The Robotics Revolution and Conflict in the 21st 

Century, The Penguin Press, New York, NY, 2009. 
[2]  Dahm, W. J. A., "Report on Technology Horizons: A Vision for Air Force Science & 

Technology During 2010-2030," URL: http://www.af.mil/shared/media/document/AFD-
101130-062.pdf, May 15, 2010.  Accessed March 29, 2013. 

[3]  Misra, J. and Saha, I., “Artificial neural networks in hardware: A survey of two decades of 
progress, Neurocomputing, 74, 2010, pp. 239-255. 

[4]   Zbikowski, R.,“Fly like a fly,” IEEE Spectrum,  42(11), 2005, p 46-51. 
[5]   Menzel, R. and Giurfa, M. “Cognitive architecture of a mini-brain: the honeybee,” TRENDS 

in Cognitive Science, 5 (2), 2001, pp. 62-71. 
[6]  Wysocki, B., McDonald, N., Thiem, C., Rose, G. and Gomez, M. “Hardware-based 

Computational Intelligence”, submitted for Invited Book Chapter - Neuromorphic 
Information Processing, Springer Berlin/Heidelberg, expected publication summer 2013. 

 [7]  Bi, G. and Poo, M., “Synaptic Modification by Correlated Activity: Hebb’s Postulate 
Revisited,” Annual Review of Neuroscience, 24,2001, pp. 139–66. 

[8]  Lawrence, J. and Luedeking, S., Introduction to Neural Networks, California Scientific 
Software, Grass Valley, CA 1991. 

[9] Pino, R., Patent US8275728.  URL: http://patft.uspto.gov/netacgi/nph-
Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-
bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/8275728. Accessed March 
29, 2013.   

[10] Pino, R., Bohl, J., McDonald, N., Wysocki, B., Rozwood, P., Campbell, K., Oblea, A., and 
Timilsina, A., "Compact method for modeling and simulation of memristor devices: Ion 
conductor chalcogenide-based memristor devices," Nanoscale Architectures (NANOARCH), 
2010 IEEE/ACM International Symposium on , vol., no., pp.1,4, 17-18 June 2010.  

[11] Chua, L., "Memristor - The Missing Circuit Element," IEEE Transactions on Circuits 
Theory, 18 (5), 1971, pp. 507–519. 

[12] Strukov, D., Snider, G., Stewart, D., and Williams, R., "The missing memristor found," 
Nature, 453, 2008, pp. 80-83. 

[13] Williams, R., “How We Found the Missing Memristor,” IEEE Spectrum, 45(12), 2008, pp. 
28-35. 

[14] Chua, L., and Kang, S., “Memristive Device and Systems,” Proceedings of IEEE, 64(2), 
1976, pp. 209-223. 

[15] Biolek, Z., Biolek, D., Biolková, V., "Spice Model of Memristor with Nonlinear Dopant 
Drift," Radioengineering, 18 (2), 2009, pp. 210-214. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
37 

[16] Joglekar, Y., and Wol, S., "The elusive memristor: properties of basic electrical circuits," 
European Journal of Physics, 30, 2009, pp. 661–675. 

[17] Campbell, K., and Anderson, C., "Phase-change memory devices with stacked Ge-
chalcogenide/Sn-chalcogenide layers," Microelectronics Journal, 38, 2007, pp. 52-59. 

[18] Centeye, Inc. URL: http://centeye.com/products/current-vision-chips-2/. (Accessed March 
25, 2013). 

[19] Barrows, G., Mixed-Mode VLSI Optic Flow Sensors for Micro Air Vehicles, Ph.D. 
Dissertation, Department of Electrical Engineering, University of Maryland at College Park, 
December 1999. 

[20] Chua, L., “Memristor - the missing circuit element,” IEEE Trans. Circuit Theory, 18, 1971, 
pp. 507–519. 

[21] Hirose Y., and Hirose, H., “Polarity-dependent memory switching and behaviour of Ag 
dendrite in Ag-photodoped amorphous As2S3 films,” J.Appl. Phys., 47(6), 1976, p. 2767.  

[22] Beck, A., Bednorz, J., Gerber, Ch., Rossel, C., and Widmer, D., “Reproducible switching 
effect in thin oxide films for memory applications,” Appl. Phys. Lett., 77(1), 2000, p. 140. 

[23] van der Sluis, P., “Non-volatile memory cells based on ZnxCd1-xS ferroelectric Schottky 
diodes”, Appl. Phys. Lett., 82(23), 2003, p. 4089. 

[24] Seo, S., Lee, M., “Reproducible resistance switching in polycrystalline NiO films,” Appl. 
Phys. Lett., 85(23), 2004, p. 5655. 

[25] Mellor, C., “HP's faster-than-flash memristor at least TWO years away, Plus: Storage 
boffins discuss photonic chip comms,” The Register, URL: 
http://www.theregister.co.uk/2012/07/09/hp_memristor_and_photons/. Accessed September 
19, 2012. 

[26] Nickel, J., “Memristor Memory: A Fundamental Shift,” 2011 IEDM, 2011. 
[27] Shen K., and Bargmann, C., "The immunoglobin superfamily protein SYG-1 determines the 

location of specific synapses in C. Elegans", Cell, 112(5), 2003, pp. 619–630.l 
[28] ABI Research. “Personal Robots Are Here (and by 2015 They'll Be Worth $15 Billion)”, 

URL: http://www.abiresearch.com/abiprdisplay.jsp?pressid=1023. Accessed January 3, 2012. 
[29] Omondi, A., and Rajapakse, J., FPGA Implementations of Neural Networks, Springer, 

2006.  
[30] Pershin, Y., and  Di Ventra, M., “Memory effects in complex materials and nanoscale 

systems,” Adv. Phys., 60, 2011, pp. 145–227. 
[31] Eide, A., Lindblad, T., Lindsey, C., Minerskjöld, M., Sekhniaidze, G., and Székely, G., "An 

implementation of the zero instruction set computer (ZISC036) on a PC/ISA-bus card",  
WNN/FNN, 1994.   

[32] Dias, F., Antunes, A., Mota, A., “Artificial Neural Networks: a Review of Commercial 
Hardware”, Engineering Applications of Artificial Intelligence, IFAC, 17(8), 2004, pp. 945-
952. 

[33] Cognimem Technologies, Inc. Cognimem Communique, 1(2), URL: http://general-
vision.com/_docs/Newsletters/CogniMem%20Communique%27,%20Vol%201,%20Issue%2
02.pdf. January 10, 2012. 

[34] Boulet, J.,  Louis, D., Godefroy, C., Steimle, A., Tannhof, P., and  Paillet, G., Patent 
US5621863 URL: http://patft.uspto.gov/netacgi/nph-
Parser?Sect2=PTO1&Sect2=HITOFF&p=1&u=/netahtml/PTO/search-
bool.html&r=1&f=G&l=50&d=PALL&RefSrch=yes&Query=PN/5621863. Accessed March 
29, 2013. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
38 

[35] Liu, Y., Wei, D., Zhang, N., and Zhao, M. , "Vehicle-license-plate recognition based on 
neural networks," Information and Automation (ICIA), 2011 IEEE International Conference 
on , vol., no., 2011, pp.363-366. 

[36] Leoputra, W., Tan, T., and Venkatesh, S., “Unified 2D-3D Video Scene Change 
Detection Framework for Mobile Camera Platforms,” 11th Int. Conf. Control, Automation, 
Robotics and Vision, 2010. 

[37] Adafruit Industries.  URL: 
http://learn.adafruit.com/system/assets/assets/000/006/316/original/Table.JPG?1364045818. 
Accessed 29 march 2013. 

 
  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
39 

APPENDIX – Patents and Publications 
 
Patents: 
 
1.  U. S. Patent No.7,902,857, “Reconfigurable electronic circuit,” by Dr. Robinson Pino.  Issued 
March 8, 2011. 

2.  U. S. Patent No. 8,249,838, “Method and Apparatus for Modeling Memristor Devices,” by 
Dr. Robinson Pino and James Bohl. Issued August 21, 2012.  

3.  U. S. Patent No. 8,275,728, “Neuromorphic Computer," by Dr. Robinson Pino. Issued 
September 25, 2012.   

4.  U. S. Patent No.  8,274,312, “Self-Reconfigurable Memristor-Based Analog Resonant 
Computer,” by Dr. Robinson Pino and James Bohl. Issued September 25, 2012.  

 
Publications:  
 
 
1. Pino, R., Li, H., Chen, Y., Hu, M., and Liu, B., "Statistical memristor modeling and case 

study in neuromorphic computing," Design Automation Conference (DAC), 2012 49th 
ACM/EDAC/IEEE , vol., no., 2012, pp. 585-590. 

2. Bishop, M., Moore, M., Burns, D., Pino, R., and Linderman, R., "Affordable emerging 
computer hardware for neuromorphic computing applications," Neural Networks (IJCNN), 
The 2010 International Joint Conference on , vol., no., 2010, pp. 1-5. 

3. Yakopcic, C., Taha, T., Subramanyam, G., Pino, R., and Rogers, S., "Analysis of a memristor 
based 1T1M crossbar architecture," Neural Networks (IJCNN), The 2011 International Joint 
Conference on, vol., no., 2011, pp. 3243-3247. 

4. Pino, R., Genello, G., Bishop, M., Moore, M., and Linderman, R., "Emerging neuromorphic 
computing architectures & enabling hardware for cognitive information processing 
applications," Cognitive Information Processing (CIP), 2010 2nd International Workshop on, 
vol., no., 2010, pp. 35-39. 

5. McDonald, N., Pino, R., Rozwood, P., and Wysocki, B., "Analysis of dynamic linear and 
non-linear memristor device models for emerging neuromorphic computing hardware 
design," Neural Networks (IJCNN), The 2010 International Joint Conference on, vol., no., 
2010, pp. 1-5. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
40 

6. Bi, X., Zhang, C., Li, H., Chen, Y., and Pino, R., "Spintronic memristor based temperature 
sensor design with CMOS current reference," Design, Automation & Test in Europe 
Conference & Exhibition (DATE), 2012, vol., no., 2012, pp. 1301-1306. 

7. Hu, M., Li, H., Chen, Y., Wang, X., and Pino, R., "Geometry variations analysis of TiO2 
thin-film and spintronic memristors," Design Automation Conference (ASP-DAC), 2011 16th 
Asia and South Pacific , vol., no., 2011, pp. 25-30. 

8. Chen, Y., Li, H., Chen, Y., and Pino, R., "3D-ICML: A 3D bipolar ReRAM design with 
interleaved complementary memory layers," Design, Automation & Test in Europe 
Conference & Exhibition (DATE), 2011 , vol., no., 2011, pp.1-4. 

9. Chen, Y., Li, H., Zhang, W., and Pino, R., "3D-HIM: A 3D High-density Interleaved 
Memory for bipolar RRAM design," Nanoscale Architectures (NANOARCH), 2011 
IEEE/ACM International Symposium on, vol., no., 2011, pp.59-64. 

10. Rose, G., Pino, R., and Wu, Q., "Exploiting memristance for low-energy neuromorphic 
computing hardware," Circuits and Systems (ISCAS), 2011 IEEE International Symposium 
on, vol., no., 2011, pp. 2942-2945. 

11. Rose, G.S.; Rajendran, J.; Manem, H.; Karri, R; Pino, R.E., "Leveraging Memristive Systems 
in the Construction of Digital Logic Circuits," Proceedings of the IEEE , 100(6), 2012, pp. 
2033-2049. 

12. Miao Hu; Hai Li; Pino, R.E., "Fast statistical model of TiO2 thin-film memristor and design 
implication," Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference 
on , vol., no., 2011, pp. 345-352. 

13. Pino, R.E.; Bohl, J.W.; McDonald, N.; Wysocki, B.; Rozwood, P.; Campbell, K.A.; Oblea, 
A.; Timilsina, A., "Compact method for modeling and simulation of memristor devices: Ion 
conductor chalcogenide-based memristor devices," Nanoscale Architectures (NANOARCH), 
2010 IEEE/ACM International Symposium on , vol., no., 2010, pp.1-4. 

14. Pino, R.E.; Moore, M.; Rogers, J.; Qing Wu, "A columnar V1/V2 visual cortex model and 
emulation using a PS3 cell-BE array," Neural Networks (IJCNN), The 2011 International 
Joint Conference on , vol., no., 2011, pp. 1667-1674. 

15. Hui Wang; Hai Li; Pino, R.E., "Memristor-based synapse design and training scheme for 
neuromorphic computing architecture," Neural Networks (IJCNN), The 2012 International 
Joint Conference on , vol., no., 2012, pp.1-5. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
41 

16. Moore, M., Linderman, R., Bishop, M., and Pino, R., "A columnar primary visual cortex 
(V1) model emulation using a PS3 Cell-BE array," Neural Networks (IJCNN), The 2010 
International Joint Conference on , vol., no., 2010, pp.1-8. 

17. Rose, G., Pino, R., Wu, Q., "A low-power memristive neuromorphic circuit utilizing a 
global/local training mechanism," Neural Networks (IJCNN), The 2011 International Joint 
Conference on , vol., no., 2011, pp. 2080-2086. 
 

18. Pino, R., Bohl, J., McDonald, N., Wysocki, B., Rozwood, P., Campbell, K., Oblea, A., and 
Timilsina, A., "Compact method for modeling and simulation of memristor devices: Ion 
conductor chalcogenide-based memristor devices," Nanoscale Architectures (NANOARCH), 
2010 IEEE/ACM International Symposium on , vol., no., 2010, pp.1-4. 

19. Qiu, Q., Wu, Q., Bishop, M., Pino, R., and Linderman, R., "A Parallel Neuromorphic Text 
Recognition System and Its Implementation on a Heterogeneous High-Performance 
Computing Cluster," Computers, IEEE Transactions on, 62(5), 2013, pp. 886-899. 
 

20. Yang, F., Qiu, Q., Bishop, M., and Wu, Q., "Tag-assisted sentence confabulation for 
intelligent text recognition," Computational Intelligence for Security and Defence 
Applications (CISDA), 2012 IEEE Symposium on, vol., no., 2012, pp. 1-7. 
 

21. Qiu, Q., Wu, Q., and Burns, D., Moore, M., Pino, R., Bishop, M., and  Linderman, R., 
"Confabulation based sentence completion for machine reading," Computational 
Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), 2011 IEEE Symposium on, 
vol., no., 2011, pp. 1-8. 
 

22. Bishop, M., Moore, M., Burns, D., Pino, R., and Linderman, R., "Affordable emerging 
computer hardware for neuromorphic computing applications," Neural Networks (IJCNN), 
The 2010 International Joint Conference on, vol., no., 2010, pp. 1-5. 

 
23. Kozma, R., Pino, R., and Pazienza, G. (Eds.), Advances in Neuromorphic Memristor 

Science and Applications, Springer Science+Business Media, Dordecht, 2012. 
 
24.  Wysocki, B., McDonald, N., Thiem, C., Rose, G. and Gomez, M. “Hardware-based 

Computational Intelligence”, submitted for Invited Book Chapter - Neuromorphic 
Information Processing, Springer Berlin/Heidelberg, expected publication summer 2013. 
  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
42 

 
 

LIST OF ABBREVIATIONS AND ACRONYMS 
 
 
AF  Air Force 
ASIC  Application Specific Integrated Circuit 
BEOL  Back End of Line 
BSB   Brain-State-in-a-Box 
DoD  Department of Defense 
DRAM Dynamic Random-Access Memory 
FEOL  Front End of Line 
FLASH Flash memory 
FOV  Field of View 
FPGA  Field-Programmable Gate Array 
GFLOPS Giga FLoating-point Operations Per Second 
GPGPUs General-Purpose Graphics Processing Unit 
GPU  Graphics Processing Unit 
HP  Hewlett Packard 
HPC  High Performance Computing 
I/O  Input/Output 
IR  Infrared 
KNN  K-Nearest Neighbor Classifier 
LED  Light-Emitting Diode 
MAVs  Micro Air Vehicles 
MRAM Magnetoresistive Random-Access Memory 
MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor 
NFET  N-Channel Metal–Oxide–Semiconductor Field-Effect Transistor 
NLP  Natural Language Processing 
PCs  Personal Computers 
PCRAM Phase Change Random-Access Memory 
PFET  P-Channel Metal–Oxide–Semiconductor Field-Effect Transistor 
POS  Part of Speech 
PWM  Pulse Width Modulation 
RBF  Radial Basis Function Network 
ReRAM Resistive Random-Access Memory 
SI  Synapse Input 
SO  Synapse Output 
SPE  Synergistic Processing Element 
SRAM  Static Random-Access Memory 
SST-RAM Spin-Transfer Torque Magnetoresistive Random-Access Memory 
SWaP  Size, Weight and Power 
TFLOPS Tera FLoating-point Operations Per Second 
ZISC  Zero Instruction Set Computing 
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