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ABSTRACT 

 
We present an agile framework for automated tracking of moving objects in full motion video (FMV). The framework is robust, being able to 
track multiple foreground objects of different types (e.g., person, vehicle) having disparate motion characteristics (like speed, uniformity) 
simultaneously in real time  under changing lighting conditions, background, and disparate dynamics of the camera. It is able to start tracks 
automatically based on a confidence-based spatio-temporal filtering algorithm and is able to follow objects through occlusions. Unlike existing 
tracking algorithms, with high likelihood, it does not lose or switch tracks while following multiple similar closely-spaced objects.  The 
framework is based on an ensemble of tracking algorithms that are switched automatically for optimal performance based on a performance 
measure without losing state.  Only one of the algorithms, that has the best performance in a particular state is active at any time providing 
computational advantages over existing ensemble frameworks like boosting. A C++ implementation of the framework has outperformed 
existing visual tracking algorithms on most videos in the Video Image Retrieval and Analysis Tool (VIRAT: www.viratdata.org) and the 
Tracking-Learning-Detection [12] data-sets. 
 

Keywords — Full Motion Video, object tracking, Confidence-based spatio-temporal filtering, Agile tracking, Ensemble algorithm 
 

1. INTRODUCTION 
 
Automated tracking of moving objects in a video in real time is important for different applications such as video surveillance, activity 
recognition, etc. Existing visual tracking algorithms [8,11,12,13,21,22,23,24] cannot automatically adapt to changes in lighting conditions, 
background, types of  sensors (e.g., EO vs IR) and their dynamics (zooming, panning, etc.) easily.  They cannot gracefully handle data that 
simultaneously contains different types of motions such as both slow and fast moving objects, motion behind an occlusion, etc. Many of the 
existing tracking algorithms [8,12] cannot start the  tracking process automatically; they require a user to draw a box on an object that needs to 
be tracked for the process to be initiated. 
 We present an agile framework for automated tracking of moving objects of full motion video (FMV). The framework is robust, 
being able to track multiple foreground objects of different types (e.g., person, vehicle) having disparate motion characteristics (like speed, 
uniformity) simultaneously in real time  under changing lighting conditions, background, and disparate dynamics of the camera. It is able to 
start tracks automatically based on a spatio-temporal filtering algorithm and is able to gracefully handle objects in occluded surroundings. 
Unlike existing tracking algorithms [12], with high likelihood, it does not lose or switch tracks while following multiple similar closely-spaced 
objects.  The framework is based on an ensemble of tracking algorithms that are switched automatically for optimal performance based on a 
performance measure without losing state.  Only one of the algorithms, that provides the best performance in a particular state is active at any 
time providing computational advantages over existing ensemble frameworks like boosting. We prove theoretically (lemmas 1 and 2) that the 
presented agile tracking framework is more accurate than existing individual/ensemble-based algorithms. A spatial classification algorithm 
based on blob sizes and aspect ratio allows our framework to distinguish vehicles from humans.  A C++ implementation of the framework (for 
the purposes of this paper, we consider three algorithms in our ensemble: Gaussian Mixture Background Subtraction (GM), a color histogram 
approach, and optical flow) has outperformed existing visual tracking algorithms on most videos in the Video Image Retrieval and Analysis 
Tool (VIRAT: www.viratdata.org) and the Tracking-Learning-Detection [12] data-sets.  
 
1.1. RELATED WORK 
 A new particle filter, Kernel Particle Filter (KPF), was proposed in the [16] for visual tracking for multiple objects in image sequences. The 
idea proposed in [17] shows tracking using a single classification SVM. A boosting based approach was proposed in [20] that used a cascade of 
classifiers for object detection. However, it didn’t address the problem of tracking objects through consecutive frames of a video sequence.     

A spatio-temporal tracking algorithm was proposed in [11] that involved tracking articulated objects in image sequences through self-
occlusions and changes in viewpoint. However, they did not provide capabilities of automatic track starting or tracking multiple objects.  Also 
unlike our framework, the approach in [11] does not involve adapting to changing (environmental condition/data distribution) through agile 
dynamic switching of trackers based on a performance measure.  The work in [13] combines background subtraction, feature tracking, and 
grouping algorithms. However, their work doesn’t have any suitable classification method based on the spatial features of the objects detected.  

Among the existing tracking frameworks, the one most relevant to our work is the TLD algorithm proposed in [12]. But, a problem 
inherent in this algorithm is its inability to start tracks automatically as well as lacking a multi-object tracking feature. Also, TLD is based on 
template matching and hence fails for videos with multiple numbers of similar looking objects (e.g., in the Indian driving scene video, Figure 
4). 



The approach proposed in [22] uses color histograms as the only feature. They use a cascade composition of a particle filter and mean 
shift.  The approach of [22] does not adaptively switch between multiple trackers at runtime based on a performance measure, unlike our 
framework.  Also, the approach is limited to two fixed algorithms (particle filter and mean shift) whereas in our framework an ensemble 
consisting of a plurality of algorithms can be used providing more flexibility.  For example, for the embodiment of the framework used for the 
experiments in Section 4, we used Gaussian mixture background subtraction method, color histogram and flow, as well as stateful switching 
between an ensemble of trackers. The method proposed in [23] uses an incremental update function to learn the object model. It uses principal 
component analysis to update the sample mean and uses a forgetting factor for older observations. We use a spatial classification algorithm 
based on blob sizes and aspect ratio allows our framework to distinguish vehicles from humans. The work in [23] does not provide insights on 
the way the track is started, manually or automatically. The method proposed in [24] is similar to the approach proposed in TLD. The 
difference between this and TLD is that they use multiple instances as the positive examples in each frame. However, like TLD, they lack the 
ability to start tracks automatically as marking the location of the object initially is a pre-requisite.  

An approach on multi-target object detection is proposed in [30] while [28, 31] enumerate approaches to target tracking based on 
Markov models and Gait recognition respectively. Another method for detecting event sequences in surveillance videos is proposed in [29] but 
it is applicable only to videos at very low frame rate.  

None of these approaches are based on stateful dynamic switching between an ensemble of trackers based on a performance measure. 
Our tracking architecture is also parallelized resulting in an efficient implementation for real time visual tracking.  
  

2.  THE PROPOSED APPROACH 
 

 
Figure 1: Schematic representation of our approach 

 
Figure 1 shows the schematic of our approach.  First, a moving object must be automatically identified as part of the foreground. This involves 
starting tracks at particular pixels on the subsequent frames that have a higher probability of being part of the moving foreground object. This is 
achieved by 1) stabilizing the image and 2) feeding the stabilized image to the spatial and temporal filtering algorithms described below. Once 
the track starter algorithm has precisely marked the object coordinates, the objects must be tracked if any motion is to be identified. Issues such 
as camera instability (shaking, panning, rotating) come into play and require image stabilization for the tracking to be successful.  

 
2.1. IMAGE STABILIZATION 
 
In nearly all Full Motion Video (FMV), there is at least slight camera motion. Aerial videos in particular typically contain jitter as well as 
significant rotational and translational camera motion. For good quality tracking, a tracker must be robust to this significant camera motion. If 
the camera moves even slightly, the GM background subtraction algorithm, an algorithm used to detect motion and determine the target 
object’s location, will incorrectly detect stationary objects as moving.  

In order to stabilize an incoming streaming video, we use the following iterative algorithm which attempts to hold each background 
pixel in the same position regardless of lateral and rotational camera motion: 
    

1 Apply Shi and Tomasi's [4] edge-finding algorithm to the first frame to identify significant feature points in the image.  
2 For each subsequent frame, apply Lucas-Kanade optical flow [1] to track the motion of the features identified by Shi and Tomasi's 

algorithm, refreshing the feature points when necessary.  
3 With increasing precision for each iteration:   

a For each angle of rotation in a certain range, determine the translation of each point.  
b Find the most common (mode) translation/rotation pair (Ө, x) and (Ө, y) of all the features.  

4 Warp the image to adjust for the total mode of the translational and rotational motion.  
 
  Before we can adjust for background motion, we must identify features of the frame; to do so, we use the Shi-Tomasi method [4]. 
The Shi-Tomasi method detects features such as corners and edges by approximating the weighted sum of squares of image patches shifted by 
certain values. The approximation results in the vector (x, y) multiplied by the structure tensor, for which there are two eigenvalues λ1 and λ2; if 
either or both is large and positive, an edge or corner is found.  

Next, we apply a pyramidal Lucas-Kanade method for determining optical flow at each point of interest. We then find the mode of 
the resulting flow value pairs, including rotation, by placing the pairs in bins. Each iteration, the bin widths are decreased, yielding an 
increasingly accurate estimate of the motion. The image is then adjusted to account for the determined background movement. When the image 
is stabilized in this manner, not only are fewer false foreground objects detected, but the correct coordinates of objects are also maintained. 

If a stabilization failure is detected from Lucas-Kanade (LK) flow having many points with a large mean-square error distance (due 
probably to video corruption, or a perspective motion for which we do not compensate), stabilization transforms of nearby frames are 
interpolated, and GM background is considered unreliable so LK flow and the color histogram model are used exclusively for these frames. 

At present, our method stabilizes the videos for small amounts of translational and rotational camera movement. Thus, for wide 
camera sweeps or changes in perspective or scale, our stabilization method is not appropriate. Scale compensation, however, may be integrated 
similarly to rotation. 
 



2.2. TRACK STARTING 
 
The automated track starting algorithm based on a confidence-based spatio-temporal filtering algorithm first detects blobs using the GM 
Background Subtraction method [9]. This yields difference images, which are fed into the spatial filtering module below. 
 
2.2.1. OPENING OR CLOSING OF IMAGES VIA IMAGE MORPHING 
 
The image obtained through the background subtraction algorithm is initially opened by a structuring element with diameter 3 pixels to filter 
out unnecessary noise. By opening, we mean the dilation of the erosion of a set A by a structuring element B. Then it is closed with k-means 
clustering [2]. This helps in detecting blobs over subsequent frames.  
 
2.2.2. SPATIAL FILTERING 
 
Once blobs are detected in the difference images, they are filtered according to their spatial features. The pseudo code for the spatial filtering 
algorithm is provided below. Scale information available from the metadata accompanying the videos is used to filter blobs specifically based 
on their area and orientation. The filtered blobs are then passed as input to the temporal filtering algorithm below.  
 
2.2.3. TEMPORAL FILTERING 
 
To filter blobs in the temporal domain we use a confidence measure.  Each blob has a confidence measure δ associated with it.  
Initially the confidence value for each blob is zero. Confidence value for a blob increases as it is detected across successive frames In case a 
blob appears in consecutive frames, the confidence value increases according to a prior confidence measure. The confidence update equation is 
as follows: 
Equation for confidence gain,  

 
n0.5=                       … (1) 

And, equation for confidence loss,  

 
n0.5=                       … (2) 

Where, n is the frame number. 
 
The composite confidence update equation is as follows: 
 

                 δ = (0.5-n)  (-0.5-n)      … (3) 
Where, 0.5 indicates the increase in confidence, -0.5 the decrease in confidence and n is the frame number. 
So –n denotes that as frame number increases, the confidence keeps increasing either in positive or negative direction. 
The confidence update equation takes the form portrayed in fig 2.  

 
 

Figure 2: Confidence value update for the frames (for increasing confidence). 
   
2.2.4. ADAPTIVE THRESHOLDING 
 
If the confidence value for a blob exceeds a specified upper threshold σ, a track is started on it. The moment the confidence value for a blob 
falls beneath a lower threshold τ, the corresponding object is discarded. If the confidence value is between σ and τ, the corresponding blob is 
maintained in the list of prospective tracks. If the confidence measure increases to a value higher than the upper threshold σ, then a track is 
started at the pixel representing the object coordinates. For videos that have higher noise, clutter and random changes in lighting conditions, as 
is often the case for outdoor videos taken from moving cameras, the upper threshold value σ is set higher. On the other hand, for videos with 
more stable conditions σ is set lower because of the lesser probability of encountering random classification noise. 
 



The track-starting algorithm: 
1 begin: 
2 img  getFrame(video); 
3 img  STABILIZE_IMAGE(img); 
4 bw_img  GM_BACKGROUND_SUBTRACTION(img); 
5 sl  create_structuring_element(3);   /*here 3 is the diameter of the structuring element*/ 
6 img  PERFORM_OPEN_ON_IMAGE(bw_img,sl); /*performs morphological opening on the image */ 
7 sl  create_structuring_element(n);   /*n is chosen adaptively acc. to the image */  
8 img  PERFORM_CLOSE_ON_IMAGE(img,sl); /* performs morphological closing on the image */ 
9 contour_img  FIND_CONTOUR(img);  /* finds the boundaries on the image */ 
10 count = 0; 
11 while(contour != NULL) 
12 prob_obj  GET_OBJ_FROM_CONTOUR(contour_img); /* GET_OBJ_FROM_CONTOUR finds each element from the list of 

contours */   
/* prob_obj contains probable object */ 

13 count  count + 1; 
14 end while 
15 for i  0 to count  
16 temp  SPATIAL_FILTERING(prob_obj); 
17 end for 
18 while temp != NULL 
19 obj  TEMPORAL_FILTERING(temp); 
20 end while 
21 end 

 
SPATIAL_FILTERING(prob_obj) 

1 begin: 
2 if (prob_obj.size < τ1 AND prob_obj.size > τ2 AND prob_obj.height/prob_obj.width < τ3 AND prob_obj.height/prob_obj.width > τ4) 

      /* Here τ1 ,τ2 ,τ3 and τ4 indicate the respective thresholds*/ 
3                   return prob_obj; 
4 else  
5                   return NULL; 
6 endif 
7 end 

 
8 TEMPORAL_FILTERING(temp) 
9 begin: 
10 for each prob_obj 
11                   δprob_obj  0;    /* intialize weight of each object detected as 0. */ 
12 end for 
13 if for video.nextframe obj_detected = prob_obj 
14                   δprob_obj  δprob_obj + (0.5)-n; 
15 Else      /* confidence update equations */ 
16                   δprob_obj  δprob_obj - (0.5)-n; 
17 end if 
18 if δprob_obj ≤ τ 
19                   remove prob_obj from list of objects; 
20 else  obj  obj Φ prob_obj;  /* append prob_obj to the list of objects detected. Φ represents the append operator */ 
21 end if 
22 for each obj, if δprob_obj ≥ σ 
23               start tracks on obj(x,y); /* start tracks on the pixel(x,y) representing the centroids of objects */ 
24 end for 
25 return obj; 
26 end 

 
 
2.3. THE AGILE TRACKING FRAMEWORK 
 
Object tracking is a matter of determining the apparent motion of the target object, keeping track of its pixel coordinates. Many object tracking 
methods are based on optical flow. The fundamental assumption of any method used to compute optical flow is that the intensity of the target 
object moves with constant velocity across frames. Existing methods like Kalman Filter [8], based on a Bayesian model, and TLD [11], based 
on Template Matching, primarily use a single learner to perform the underlying computations. In statistics and machine learning, ensemble 
methods use multiple models to obtain better predictive performance than could be obtained from any of the constituent models [3,7,10]. It can 
be shown through the following lemma that an ensemble learner performs better than any of the constituent learners.  
 
Lemma 1. Even a strong learner cannot endure situational variances, i.e., it cannot perform well in all situations.   



Proof.  The Boosting algorithm described by Schapire and subsequently proposed implementations like Adaboost use Convex Potantial 
Boosters. As shown in [19], for a wide range of convex potential functions, any boosting algorithm is bound to encounter random classification 
noise. They show that any such boosting algorithm is able to classify examples correctly in absence of noise but in the presence of noise the 
learner cannot learn to an accuracy better than 1/2. This holds even if the boosting algorithm stops early or the voting weights are bounded. 

Consider two sets of disjoint concept classes C1 and C2 such that C1  C2 = Φ. Now, if we consider an instance space X containing 
elements from C1, then any �  C2 can be classified as random noise in X. So, effectively at least two different learners L1 and L2 are needed א
for classifying the instances in X according to C1 and C2. 
 
In the light of the above lemma, we present a new agile learning based tracking framework that dynamically switches between an ensemble of  
classifiers based on a performance measure while preserving  state to deal with unforeseen situational variances.  An embodiment of the 
framework with which experiments in Section 4 were conducted uses a combination of three methods for tracking object motion: Gaussian 
Mixture (GM) background subtraction [9] with mean-shift, Lucas-Kanade (LK) optical flow [1], and a color-histogram [32] approach also 
utilizing mean-shift. A combination of these algorithms allows our tracker to track fast, slow, stopped, and partially-occluded objects. By an 
agile learning based tracker, we imply that our tracker can adaptively switch dynamically between the constituent learners at runtime based on 
velocities and certain measures of track quality while preserving state. The next lemma proves that dynamic switching between the learners at 
runtime yields more accurate results. 

The new agile tracking framework uses an ensemble of k individual trackers. It allows adaptive switching between the constituent 
trackers dynamically based on a performance measure. The algorithm for adaptive switching is described below.  

The switching algorithm: 

1 SWITCH(): 
2 j  1; 
3 active_tracker  Tj      // Note: Tj is the jth tracker 
4 compute the performance measure λ   
5 if λ ≥ threshold Φ 
6        CHECKPOINT_CURRENT_STATE();  //saves the current state   
7        active_tracker CALL_TRACKER_SELECTOR(); //calls a new tracker                            
8        state  GET_CHECKPOINTED_STATE();  //returns the currently checkpointed state 
9        state  active_tracker(state); 
10 else 
11        continue; 
12 endif 
13 if performance measure λ is minimized 
14        i  i+1 
15 endif 

 
 
The switching module is called by the agile tracking algorithm below: 

The tracking algorithm: 

1 AGILE_TRACKER(freq): 
2 for each frame i, 
3      if frame_number % freq = 0 
4           call SWITCH(); 
5      endif  
6 endfor 

 
 

In the above, state refers to the set of tuples (x,y,n,I), where x and y are the pixel coordinates, n is the frame number and I is the 
intensity. The agile tracker calls the switching algorithm at a user-specified frequency. The switching algorithm computes the performance 
measure at the current state. If it exceeds a threshold, the current tracker is then substituted with a new one obtained from an ensemble through 
a pre-defined policy in such a way that the application of the new tracker to the current state results in a state whose performance measure 
value is below the threshold. While switching, the current state is checkpointed so that it can be accessed by the new tracker. For the current 
embodiment of the framework, we use the linear function given below as the performance measure 
P = k1 * stabilization_error + k2 * track_overlap_amount + k3 * probability_jump_detected + k4 * probability_drift_detected + k5 * 
high_track_speed + k6 * low_track_speed 
where k1,k2, … ,k6 are constants whose sum is 1 and whose values depend on the constituent trackers in the ensemble. Drift is defined as a lack 
of movement of the track while there is foreground motion present which would cause the track to continue to move.  

GM background performs poorly during stabilization failure, moderately well during track overlaps (when combined with the object 
passing algorithm described in 2.3.4), sometimes jumps to background noise, tends not to drift, and works best for fast moving objects. Thus, 
for GM, k1 is large, k2 is slightly smaller, k3 is large, k4 and k5 are 0, and k6 is large. For simplicity, assume k1=k3=k6=0.3, k2=0.1, k4=k5=0. 

The color histogram tracker performs well during stabilization failures, moderately well during track overlaps, rarely jumps, 
occasionally drifts, and performs well for fast or slow moving objects, though is especially good for slow or stopped objects. For this tracker, 
reasonable parameters are k1=k6=0, k2=k3=0.25, k4=0.4, k5=0.1. 



LK flow performs quite well during stabilization failure, very well during object passing, typically does not jump, though often drifts, 
and performs best for slow, but not stopped, objects. Assuming high_track_speed and low_track_speed are both small for objects moving at 
such a moderate speed, reasonable values are k1=k2=k3=0, k4=0.5, k5=k6=0.25. 

Parameters such as k4-k6 may be determined experimentally, since the ability to track at specific speeds is not prior knowledge, and 
may also vary based on the type of video to be tracked. The performance measure quantifies the tracking error at the current state. If more 
information regarding the video characteristics is known, it may be beneficial to experimentally adjust the performance measure based on those 
characteristics. 

The next lemma shows that dynamic switching between individual trackers yields more accurate results. 
 

Lemma 2. Switching between individual trackers dynamically can decrease the upper bound for error up to a certain pre-defined 
value.  
Proof. Suppose c(v) is the correct classification for v and h1(v), h2(v) etc. are the classifications produced by the trackers T1, T2, etc 
respectively. h(v) is the estimate produced by the effective composite tracker T.  

Here, T = T1 ∆ T2 ∆ … ∆ Tn, where, T1, T2, etc indicates the trackers and ∆ indicates the switch operator on the trackers. 
Also, let a1, a2, etc be the respective probabilities of error or misclassifications. Also, for switching between trackers dynamically at runtime we 
incorporate the idea of defining adaptive thresholds τ1, τ2 etc. So, we define the set τ = { τ1, τ2 , τ3, τ4, τ5,…, τn } as the threshold for the number 
of misclassifications. If the number of misclassifications for a particular tracker Ti exceeds the corresponding threshold τi we switch the learner. 

Suppose for the ith tracker, the no. of misclassifications become (τi+1) at the (ni+1)th instance. So, up to the ni 
th instance, probability 

of error or misclassification  

Pr(hi(v) ≠ c(v)) =ሺ
൫��
τi ൯

ni!
ሻ Χ ai                                                      … (4)                                                         

 
Also, let � be the upper bound of error on any of the individual trackers. Hence, for the total tracking process, the composite probability of 
misclassification is given by 
 Pr(h(v) ≠ c(v)) = Pr((h1(v) ≠ c(v)) Λ (h2(v) ≠ c(v)) Λ … Λ (hn(v) ≠ c(v)))     
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Here, N is the number of switches performed at runtime.  
 
Observations:  

1) Inequation (5) holds because each of the terms ൬
൫��
τi ൯

ni!
൰ ≤ 1 as well as � (τ1+τ2+τ3+…+τN) ≤ �, since, � ≤ 1. 

2) So, the overall upper bound for the error of the composite tracker is reduced owing to switching at runtime. 
3) Inequation (5) proves that the effective composite error bound of the agile tracker T is less than that of the individual trackers Ti.   

1, 2 and 3 justify our argument that using switching reduces the overall error bound.  
Threshold value selection is a very important criterion in optimizing the agile tracker. In order to evaluate the threshold selection 

criteria, let us concentrate on the simplified version of the equation presented in (5).  
So, we have, Classification error 

= Pr(h(v) ≠ c(v)) ≤  ∏ ሺ
൫��
τi ൯

ni!
ሻ �τi�

�ୀ1   =  ∏ ሺ
1

τi!ሺniିτiሻ!
ሻ �τi�

�ୀ1       … (6)                                            

The error bound can be minimized by increasing τi until τi = ┌ni/2┐. 

 
In a typical video scenario, most features are stationary from frame to frame with only a few objects moving. The stationary features 

are considered to be in the background, and the moving objects are foreground. The GM background subtraction method described in [9] 
efficiently segments foreground and background objects in real time, allowing for effective object tracking with the mean-shift algorithm. 
However, as is typical of background segmentation methods, it becomes less effective when there is uncompensated camera instability. Even 
with a stable camera, this method tends to lose foreground objects if there is relatively small movement in the foreground. To compensate for 
these deficiencies, we also use a more traditional and robust optical flow method for object tracking. 

The Lucas-Kanade (LK) method, like many algorithms used to compute optical flow, imposes a constraint on the optical flow 
problem: the displacement (δx, δy) of the image intensity from a pixel (x,y) to a pixel (x+δx,y+δy) in the subsequent frame is small and constant 
over time. That is, it must satisfy for all pixels p the equation: 

  
),(=)()( pIVpIVpI txyxx 

                   … (7) 
where Ix, Iy and It are the partial derivatives of the image intensity with respect to x, y and t, and Vx and Vy are the velocity vectors. This usually 
results in an over-determined system and uses least-squares to find a solution. Due to the constraint imposed by the method, it is best suited for 
an object moving slowly with constant velocity. We use pyramidal LK. That is, we compute LK at the lowest-resolution image I0; then, having 
obtained this lower-resolution result, we compute LK incrementally for the next lowest resolution I1. Similarly, we obtain I2 from I1, and so 
forth until reaching the full resolution. 

Combined, the LK method and GM background tracking ensure motion-tracking performance superior that of either method used 
alone. However, neither method performs well on objects which are stopped; GM tends to jump to nearby moving objects and noise while LK 
drifts significantly over time. To track these objects, we introduce a third method based on a color histogram of the object being tracked. We 
create a model of the object based on the frequency of red, green and blue intensities in the foreground and background, as obtained from GM. 



This model slowly updates over time. A probability image is created, which is an image where each pixel value corresponds to the predicted 
probability of the object existing at that point. Each pixel probability is computed from the color histograms of the region of interest using the 
equations P(x,y) = Pf(x,y)*Pf(x,y)/(Pf(x,y)+Pb(x,y)), where Pf is the normalized frequency of each RGB value on the foreground histogram and 
Pb is the frequency on the background histogram. Mean-shift is then used on the probability image to track the object by re-centering the region 
of interest on the center of mass of the probability image. 

When used on full motion videos, object tracking presents an array of challenges. One is camera instability; often, during recording, 
the camera shakes, pans, or rotates, which causes background objects to appear to move. A second is poor image quality due to low-definition 
recording equipment or long distance; this obscures images and interferes with the tracking process. A third is the need for real-time tracking, 
which requires simple, efficient methods to keep up with the pace of real-time input. 
 
2.3.2. AGILE TRACKING VS. OTHER ENSEMBLE BASED TRACKERS 
 
A tracker based on an ensemble machine learning technique like boosting (e.g., Adaboost) will create, based on training data an optimal tracker 
of the form: 
 

T ൌ ෍ αptp
�

�ୀ1
                                                                      … (8) 

 

where P is the number of rounds, tp is a tracker in the ensemble, and �� are weights such that ෍ αp ൌ 1
�

�ୀ1
 

While running on actual data T will need to run all the P trackers on each data point (i.e., frame) and compute a weighted sum of the 
outputs. In our case only one tracker is active at any particular time, i.e., only one tracker is run on each data point. This is crucial for real time 
performance.   

Moreover, in boosting, the weights �� are fixed once the training is over. This can create problems if the character of the data 
changes drastically from the examples on which the training is performed due to changes in background, lighting conditions, etc. This can be 
avoided in the agile framework by having multiple boosted trackers in the ensemble and switching them accordingly using the SWITCH() 
method (of course increasing the computational cost) but definitely yielding higher performance. 
 
2.3.3. IMAGE QUALITY AND REAL-TIME TRACKING 
 
In the current embodiment of the framework, handling poor image quality with real-time tracking is primarily handled through the use of the 
three tracking algorithms. Utilizing all these methods ensures a better result than any one alone; LK flow succeeds where GM background 
subtraction fails, and vice versa. For a blurry, low-quality, quickly-moving object, GM background subtraction works well as long as the image 
is well-stabilized. LK flow can track slower objects well, and works without stabilization information. The color histogram also works during 
stabilization failure, and can track stopped objects better than the other algorithms. If a failure is detected in any algorithm, defined as the 
performance measure exceeding a certain threshold, we can simply switch to another algorithm and continue tracking. 
 LK flow is used for stabilizing the image, so the marginal cost to use it as a tracking algorithm is relatively low. Using the stated 
algorithms together is an efficient choice to achieve real-time tracking. 
 
2.3.4. OBJECT PASSING  
 
One problem with GM background subtraction is when two moving objects are nearby or occluded, it becomes difficult to separate them. 
Likewise, with Lucas-Kanade, the boundaries of the tracked objects must be approximately known. Even the color histogram model will not 
always separate two similarly colored cars. To account for this, we create a probability image when two objects are nearby, consisting of two 
Gaussians. This probability image contains pixel values equal to the expected probability of the object being centered at each pixel location, 
based on the expected motion of each object. The first object cannot move to where the probability is 0 (e.g. at the center of the second object), 
and likewise for the second object. This, along with preventing large jumps, usually solves the problem when two objects pass each other in the 
near vicinity.  
 
2.3.5. DISTINGUISHING BETWEEN HUMANS AND CARS  
 
A track is classified as a human or car based on the blob size and aspect ratio. A confidence measure is built up over time, and, if necessary, a 
correction may be made. If either the area or aspect ratio alone is a strong indicator of the presence of a car, then only this metric is used to 
devise the classifier. Otherwise, both area and aspect ratio must be used.  σcar and σhuman are initially set to zero, so an estimate may be 
immediately obtained. They should then be changed to nonzero values to prevent fluctuations between human and car detections due to 
inaccurate blobs. The size and aspect ratio of the region of interest used depends on the human or car classification. 
 
The human/car classification algorithm: 

1 begin: 
2 sz  getBlobSize(track); 
3 if sz.width*sz.height>τcar_area1 OR sz.width*sz.height>τcar_area2 AND sz.width/sz.height>τcar_aspect2 OR  sz.width/sz.height>τcar_aspect1 

/* τcar_area1 and τcar_aspect1 are thresholds where it is almost certain that the tracked object is a car. τcar_area2 and τcar_aspect2 have a 
lower confidence */ 

4                    probableCar  1; 
5                    probableHuman   0; 
6 else 



7                    probableCar  0; 
8                    probableHuman   1; 
9 endif 
10 carConfidence  carConfidence + probableCar - probableHuman; 
11 if carConfidence> σcar   
12                    track is a car  /* σcar is generally > 0 and σhuman < 0 */ 
13 else if carConfidence< σhuman 
14                    track is a human 
15 endif 
16 end 

 
 

3. IMPLEMENTATION OF OUR APPROACH 
 
We implemented tracking in C++ using the OpenCV library for real-time computer vision. The ensemble in our case consisted of three 
individual algorithms: Gaussian Mixture Background Subtraction with mean-shift, Lucas-Kanade optical flow, and the color histogram model 
with mean-shift. The selection of k1 to k6 is explained above in section 2.3, and may vary based on known tracking algorithm characteristics. 
The switching algorithm is called by the agile tracker every frame. 
 

4. RESULTS AND COMPARITIVE STUDIES 
 
We compare the results from our tracker against seven existing trackers whose outputs are available at the publicly available TLD dataset [12]. 
Table 1 shows the number of frames after which the trackers lost track for the first time. Table 2 gives the number of frames up to the first track 
loss for the TUD dataset [21]. The measure proves to be effective in the absence of a track merging algorithm. The agile tracker performs 
significantly well in most of the cases. Fig 3 shows the outputs of the agile tracker on the TLD dataset. Also TLD is based on template 
matching and hence fails for videos with multiple numbers of similar looking objects. This is illustrated in Fig 4 where TLD switches tracks 
arbitrarily between similar looking foreground objects whereas the agile tracker keeps tracking a particular object for the entire time frame of 
its visibility. The full length tracked videos along with further results on VIRAT data are available at [15].   
 
We also compare our tracker against the TUD Pedestrian Detector for multi-object tracking. A measure of the total number of correct and false 
object detections is used. 
 

  
                 
Algorithms 

Jumping 
Total 
number of 
frames=313 

Car 
Total 
number of 
frames=945 

Motocross 
Total 
number of 
frames=2665 

Car chase 
Total 
number of 
frames=9928 

Panda 
Total 
number of 
frames=3000 

Beyond semi-
supervised 
tracking [12] 

14 28 6 66 130 

Co-trained 
Generative-
Discriminative 
tracking  [12] 

11 34 1 1 1 

“CVPR” results 
as given in [12] 

96 29 59 334 358 

Online Multiple 
Instance 
Learning [12] 

313 220 63 321 992 

On-line 
Boosting [12] 

26 545 15 316 1004 

Semi-Supervised 
On-line 
Boosting [12] 

21 652 59 190 83 

TLD [12] 313 802 173 244 277 
Agile Tracker 313 581 110 402 2568 

 
Table 1. Comparison of the various single-object trackers 

 
 
 
 
 
 
 
 
 



 Campus 
Correct (False) 

Crossing 
Correct (False) 

Expected Detections 303 1008 
TUD Pedestrian Detector [21] 227 (0) 692 (7) 
Agile Tracker 222 (0) 541 (28) 

 
Table 2. Comparison of the multi-object trackers 

  



 

 

 

 

 
Figure 3: Results from the agile tracker 

 
 

 
 



 
Figure 4: The top one represents the output from the agile tracker and the bottom one represents that from TLD. 

 

 

 
Figure 5: Agile Tracker results for the TUD campus and crossing videos 

 
 

5. CONCLUSIONS 
 
Our novel algorithm  for starting tracks  using confidence measure and adaptive thresholding not only performs in real time but is also accurate. 
The agile tracking framework allows dynamic  adaptive switching within an ensemble of tracking algorithms based on a performance measure 
while preserving state providing more accuracy than any of the individual algorithms. We believe that the presented framework provides the 
foundation for real time video activity recognition. 
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