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1 Summary

In this final report, we summarize the algorithms developed and some results for hyperspectral imagery over
the period of the contract. It includes target detection, endmember detection, and change detection. The
change detection algorithm has been tested on a newer data set provided by the AFRL, with good results. A
new total variation(TV) based method for the unmixing of hyperspectral data through compressed sensing
is introduced. It allows unmixing directly from the compressed sensing data without first reconstructing
the entire hyperspectral cube. A nonnegative matrix factorization and completion algorithm is presented
which allows the reconstruction of partially observed or corrupted hyperspectral data. As a spinoff of our
hyperspectral effort we propose a novel video rate IR multispectral imaging system which achieves higher
accuracy at lower cost for offshore oil spill sensing.

2 Target Detection

We summarize our target detection algorithm as follows. Given a hyperspectral image (HSI) with NxN pixels
and M spectral bands, we wish to locate the positions of pixels that correspond to a given spectral signature
f , which also has M spectral bands. We rearrange A as an M × N2 matrix, where generally M < N2. The
signals ai are the columns of this spectral matrix A and correspond to each pixel in the image.

Our goal is to find u ∈ RN2

by solving the constrained minimization problem

u = argmin |u|1 s.t. ‖Au − f‖ < δ,
u ≥ 0,

(1)

where δ is a measure of the noise in the system. This is an extremely underdetermined system, but we seek
solutions u whose components ui ideally vanish when the ith column ai is not a match for f , and ui > 0
when ai is a match.

To solve this, we apply Bregman iteration [1, 2], by approximately solving a sequence of unconstrained
minimization problems.

un+1 = argmin

(

µ |u|1 +
λ

2
‖Au − fn‖

2

)

(2a)

fn = fn−1 + f − Aun−1 (2b)

for n = 1, 2, ..., with u0 = 0. The constant λ is usually chosen around λ = 100
‖AT A‖ . ‖Au − fn‖

2
monotonically

decreases to zero and un converges very quickly to a solution of (1) with δ = 0, see [2, 1]. The sparsity of
the solution, which is equivalent to the sensitivity of the matching, is controlled by the parameter µ.
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It now becomes a matter of solving (2a) and (1) efficiently. We propose the recently developed Split
Bregman[3] algorithm. The idea behind this is quite simple. There are two simple minimization problems
to be solved. To solve

argmin

(

µ |u|1 +
1

2
‖u − f‖

2

)

(3)

we have the following well known shrinkage formula

ui = shrink(fi, µ) =







fi − µ if fi > µ
0 if |fi| ≤ µ
fi + µ if fi < −µ

(4)

Moreover, if we add the constraint that ui ≥ 0, then

ui = shrink+(fi, µ) =

{

fi − µ if fi > µ
0 if fi ≤ µ

(5)

To solve

argmin

(

λ

2
‖Au − f‖

2
+

1

2
‖d − u‖

2

)

(6)

for a fixed vector d, we have

u =
(

λAT A + I
)−1 (

λAT f + d
)

(7)

The idea behind split Bregman is as follows: We replace the problem (2a) by a sequence of approximations
generated by Bregman iteration:

{
(

dk+1, Uk+1
)

= argminµ |d|1 + λ
2 ‖Au − f‖

2
+ 1

2

∥

∥d − U − bk
∥

∥

2

bk = bk−1 + Uk − dk−1 (8)

The steps used in the solution for (8a) and (8b) involve splitting

{

Uk+1 =
(

λAT A + I
)−1 (

λAT fn − bk + dk
)

dk+1 = shrink
(

Uk+1 + bk+1, µ
) (9)

Uk approaches un+1 monotonically,
∥

∥Uk − un
∥

∥ ց 0, and of course,
∥

∥d − Uk
∥

∥ ց 0. Thus we use an inner
iteration to obtain the sequence Uk,dk, which approximates the updated u. We then update using (2) to get
fn+1 and repeat the inner iteration to get un+2. This procedure is very efficient. The number of of inner
iterations needed is problem dependent, but usually between 5 and 10.

2.1 Incorporating Spatial Information in the Target Detection Process

Our L1 target detection method described above, as well as most other methods, does not directly take into
account the spatial relationship between pixels. Once the hyperspectral data cube has been converted to
a matrix, the relationship between the spectral pixels of the HSI is ignored. A more sophisticated model
would take this spatial information into account. We will describe a simple, yet effective method of using
the spatial information to increase the accuracy of target detection. The idea is to apply TV denoising [4] to
the output of the L1 target detection algorithm. It is reasonable to assume that in a natural scene, a target
is composed of several neighboring pixels. Therefore, it seems likely that a single pixel identified as a target,
but surrounded by non-target pixels is a false alarm. Conversely, a pixel identified as a non-target(or with a
small return value) surrounded by target pixels is likely missed target pixel. If spatial information is used,
such errors can be reduced or eliminated. This is especially true for the L1 target detection output. Due to
the sparsity of the method, most non-targets have a zero value, and isolated false alarm pixels are usually
eliminated by the TV denoising algorithm.
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2.1.1 TV Denoising

Here we briefly describe the total variation denoising model[4] we use in the above. Given an image I ∈ R2,
we solve the following L1 minimization problem to denoise the image:

minv |∇v|1 +
γ

2
‖v − I‖

2
2 ,

where γ is an adjustable fidelity parameter. The Split Bregman method as described in [3] is used to solve
this minimization problem very efficiently.

2.2 Experimental Results

To test our target detection algorithm, we used data that was provided by the AFRL. This data set has
300x600 spatial pixels, 124 spectral bands and consists of 4 panels of different material or paint, with grass
in the foreground and trees in the background. In order to compute ROC curves, the ground truth must
be known. We chose the panels as the 4 targets, but since the ground truth was not provided, we slightly
modified the data set. The boundaries of a panel were replaced with random background pixels, leaving the
center, which we could say for certain was the target and the ground truth. Figure 1 shows modified RGB
of the data. We tested the L1, L1 with TV, Matched Filter, and ACE on the modified data set to obtain
ROC curves for each of the 4 targets. Figures 2-5 show the results. All of the methods were able to detect
the last 3 panels, with no false alarms(using the proper thresholding), however on the first panel, L1 with
TV performed the best. We scaled the output of the L1 target detection to [0,255] before applying the TV
denoising. This was done so a consistent fidelity parameter could be used. All of the target detection results
below used the value γ = 0.05.

To test robustness to noise, we also added some random noise to the data and performed the same tests
with results shown in Figures 6-9. On the first panel, the L1 and L1 with TV methods performed much
better than Matched Filter and ACE. However, on the second panel, Matched Filter and ACE had better
performance than either of the L1 methods. The L1 with TV edged out the others for the 3rd panel in terms
of detecting all of the target pixels with the fewest false alarms. L1 with TV was able to detect all of the
target pixels for the 4th panel with no false alarms.

3 Endmember Detection

Our endmember detection algorithm is based on the work done in [5], and we summarize it as follows. Let
I be an HSI with NxN pixels and M spectral bands. We set A as an M × N2 matrix whose columns are
the spectral vectors of I. We want to find U ∈ RN2×N2

, referred to as the abundance matrix, such that
AU ≈ A. In order to minimize the number of endmembers, we need to minimize the number of nonzero
rows of U . Additionally, to make each pixel a sparse nonnegative linear combination of the endmembers, we
need to minimize the number of nonzero entries in each row, i.e. make the matrix sparse. In practical terms,
the matrix U is extremely large and solving for it would nearly impossible. In order to make the problem
manageable, we need to reduce the number of candidate endmembers by choosing a subset of the columns
of A to make a much smaller matrix As of size M × P , where P << N2. We then try find Us ∈ RP×P

such that AsUs ≈ As. One method of obtaining As is to cluster the pixels of A and choose a representative
subset from each cluster. The problem is then stated as

min
Us≥0

ζ
∑

i

max
j

(Us i,j) + 〈σcw, Us〉 +
β

2
‖(AsUs − Us)Cw‖

2
F . (10)

The data fidelity term is β
2 ‖(AsUs − Us)Cw‖

2
F , ‖·‖F is the Frobenius norm, and Cw is a diagonal matrix

used to weight the columns of (AsUs −Us). Since As is composed of representative members of clusters, we
want give those from larger clusters more weight. The term ζ

∑

i maxj(Us i,j) promotes the rows of Us to be
zero, and 〈σcw, Us〉 encourages the sparsity of Us. σ is a P ×P matrix of weights and the weights are chosen

as σi,j = ν

(

1 − e
−[1−(AT Xs)i,j ]2

2h2

)

. This choice of weights promotes the sparsity of Us. We solve (10) by using

split Bregman algorithm which is related to the alternating direction method of multipiers(ADMM[6]).
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Panel 1 Data Panel 2 Data

Panel 3 Data Panel 4 Data

Figure 1: RGB of the modified scenes for the 4 panels

3.1 Experimental Results

The test HSI is the URBAN data, which has 307x307 spatial pixels and 163 spectral bands. Figure 10 shows
a color composite of the scene. Six endmembers were computed, using parameter values ζ = 2 and β = 250.
Once the endmembers have been computed, we unmix the HSI to get abundance values for material. We
can “cluster” the data by setting the material with the largest abundance value as the material for the pixel.
Figure 11 shows a composite of the 6 clusters and Figure 12 shows the clusters plotted individually. By
comparing to the color image of the scene, the detected clusters appear to represent asphalt, trees, grass,
roofing material, dirt and some other type of vegetation.
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Ground Truth for panel 1 Matched Filter

L1(µ= 1) L1 after TV regularization

(a) The ground truth and outputs of Matched Filter, L1, and L1 after TV.
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(b) ROC curves

Figure 2: Detecting the 1st panel.
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Ground Truth for Panel 2 Matched Filter

L1(µ= 1) L1 after TV regularization

(a) The ground truth and outputs of Matched Filter, L1, and L1 after TV.

10
−4

10
−2

10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
L1(µ= 1) vs Matched Filter vs ACE

log(False alarm rate)

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

 

 

Ace
Matched Filter
L1
L1 and TV

(b) ROC curves

Figure 3: Detecting the 2nd panel.
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Ground Truth for Panel 3 Matched Filter

L1(µ= 5) L1 after TV regularization

(a) The ground truth and outputs of Matched Filter, L1, and L1 after TV.
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(b) ROC curves

Figure 4: Detecting the 3rd.
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Ground Truth for Panel 4 Matched Filter

L1(µ= 1) L1 after TV regularization

(a) The ground truth and outputs of Matched Filter, L1, and L1 after TV.
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(b) ROC curves

Figure 5: Detecting the 4th panel.

8



Ground Truth for Panel 1 Matched Filter

L1(µ= 0.01) L1 after TV regularization

(a) The output of the 4 methods
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(b) ROC curves

Figure 6: Detecting the 1st panel on data with noise.
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Ground Truth for Panel 2 Matched Filter

L1(µ= 0.0075) L1 after TV regularization

(a) The output of the 4 methods
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(b) ROC curves

Figure 7: Detecting the 2nd panel on data with noise.
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Ground Truth for Panel 3 Matched Filter

L1(µ=0.3) L1 after TV regularization

(a) The output of the 4 methods
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(b) ROC curves

Figure 8: Detecting the 3rd panel on data with noise.
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Ground Truth for Panel 4 Matched Filter

L1(µ= 0.0005) L1 after TV regularization

(a) The output of the 4 methods
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Figure 9: Detecting the 4th panel on data with noise.
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Figure 10: Color composite of the scene for the URBAN data.

Figure 11: Clustering of the 6 materials.
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Figure 12: The 6 clusters that appear to be(starting from top, left to right) asphalt, trees, grass, roofing
material, dirt and some other type of vegetation.
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4 Change Detection

In this report we apply our change detection algorithm to a new data set. First, we summarize the problem
and steps of the method. Given two hyperspectral images I1 and I2 of the same scene taken at different
times, we want to determine any changes or differences between them. The first step is to obtain a set of
endmembers for both HSIs simultaneously. This is done using our endmember detection algorithm presented
in previous reports, and it chooses pixels of the HSIs as endmembers. By using both HSIs in the endmember
detection, we will get some endmembers from the I1 and the rest from I2. Let

{

e1
1, e

1
2, . . . e

1
N1

}

be the N1

endmembers chosen from I1 and
{

e2
1, e

2
2, . . . e

2
N2

}

be the N2 endmembers chosen from I2. Using the combined
set of endmembers and the unmixing algorithm we developed in previous reports, we unmix each pixel of each
HSI obtaining an abundance vector for each pixel. The components of the abundance vectors correspond
to the endmembers. One measure of change is to compute the angle between the abundance vectors of I1

and I2. If there was a change in the materials of a given pixel, it is expected that the difference between
abundance vectors would indicate that change.

Although this method can work well for certain data sets, we have found that shadows present in one
image but not present in the other, are often detected as a change. We observed that the shadowed regions are
usually detected as an endmember by the endmember detection algorithm. Additionally, a similar material
that is not under a shadow is often chosen as an endmember as well. We observed that if the components of
the abundance vectors corresponding to these two endmembers representing similar materials under different
lighting conditions are combined, we can drastically reduce the detection of shadows as change. Through
numerical experimentation, we have developed a method that appears to help to determine which components
of the abundance vectors to combine. Essentially, we look at the angle between pairs of endmembers, one
from each HSI. The smaller the angle, the more similar we consider the materials to be. We have found
that taking an average of the pixels around the chosen endmembers produced better results. This may be
because the endmember detection algorithm tries to pick pixels that are different from each other. Therefore
if a pixel of a given material is chosen, it is likely to be fairly different from the average signature of that
material. The averaging process makes it easier to determine the similarity of materials, and thus is more
useful in determining which components of the abundance vector to combine. In previous reports, we did
experiments to determine the effect of the patch size that is used to get the average endmember signature,
and we found that the size is not that critical. Of course, this patch size may depend on the spatial resolution
of the image, but a patch size of 5x5 has worked well for all of the data sets we have tried. This is a simple
approach, and has produced good results, but other methods of determining which endmembers are similar
may work better. One example would be to use a library of spectral signatures of materials under different
lighting and atmospheric conditions.

Once we have a list of the “closest” endmembers, we need to determine whether or not to combine the
corresponding components of the abundance vectors. Again through numerical experiments of the data we
have, we found that combining averaged endmembers that have an angle less than 0.1-0.15 gave us good
results. Further experimentation on several data sets should give a better idea of what a good threshold
value is, and if that value is dependent on the data itself.

4.1 Results on Airport Data

The data set consists of two hyperspectral images of the same scene taken at different times. They have
961x521 spatial pixels and 40 spectral bands each. Figure 13 shows the first band of each HSI. We see that
almost half of the scene is runways and grass where there does not appear to be any change in the object
present, so we will work on two subsets of the scene where more change has taken place. Figure 14 is a
350x480 pixel subset of the image that includes planes, hangers, and other small objects. In these figures,
we can see the different shadows produced by taking the images at different times of day. Such dark and
pronounced shadows make change detection difficult, as they are often detected as change when it is simply
a change of lighting instead of an actual change in material.

The first step in our change detection algorithm is to compute endmembers, and Figure 15 shows the
locations of the pixels computed as endmembers. Figure 16 shows the spectral signatures of the endmembers.
Once the endmembers are obtained, each HSI is unmixed and an abundance vector is computed for each
pixel. The angle between corresponding abundance vectors are then computed. Figure 17 shows the angle
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between the abundance vectors from each HSI. We see that the areas of dark shadows are indicated as
areas of change. Following the next step of our method, we compute an average spectral signature for
each endmember by taking an average of a 5x5 patch centered on the endmember pixel. Figure 18 shows
the spectral signatures of the averaged endmembers. Then the angle between these averaged endmember
signatures was computed, and the components of the abundance vectors corresponding to the closest averaged
endmembers are combined. Table 1 lists the 3 closest endmember pairs and the angles between them. We
see that the 5th and 6th are the closest endmembers, and they appear to be shady concrete and sunny
concrete, respectively. Combining the 5th and 6th components of the abundance vectors and computing the
angle between the reduced abundance vectors gives us the result in Figure 19. A significant amount of the
shadows produced by the buildings and some of the planes has been reduced. The final step we used was to
apply total variation denoising to incorporate spatial information, and that result is shown in Figure 20.

(a) First image

(b) Second image

Figure 13: Plots of the first band for both images
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Endmember from first HSI Endmember from second HSI angle
1 Endmember 5 Endmember 6 0.0983
2 Endmember 3 Endmember 7 0.2386
3 Endmember 1 Endmember 4 0.3060

Table 1: Sorted table of closest averaged 7 endmembers.

5 TV-based Hyperspectral Compressed Sensing and Unmixing

Hyperspectral unmixing is to decompose each pixel spectrum to identify and quantify the relative abundance
of each endmember (material), which typically demands enormous computational resources in terms of
storage, computation and I/O throughput, especially when real-time processing is desired. Therefore, it
is particularly difficult to directly process and analyze hyperspectral data cubes in real time or near real
time. On the other hand, hyperspectral data are highly compressible with two-fold compressibility: 1) each
spatial image is compressible, and 2) the entire cube, when treated as a matrix, is of low rank. To fully
exploit such rich compressibility, we propose a scheme that never requires us to explicitly store or process
any hyperspectral cube itself. In this CSU (compressive sensing and unmixing) scheme, data are acquired
by means of CS and directly unmixed without reconstructing the underlying data cube.

Mathematically and ideally, the hyperspectral data model has the form

X = HW, H1ne
= 1np

, and H ≥ 0, (11)

where X , H and W are the matrix representations of hyperspectral cube, abundance fraction and signatures
of endmembers. 1 represents a vector of all ones, and ne, nb and np denote the number of endmembers, bands
and pixels, respectively. Similar to other CS models, we consider the data acquisition model AX = F where
A ∈ R

m×np is a random-like sensing matrix with m < np. To directly unmix the compressed observation F ,
we proposed to solve a compressed unmixing model (or its variants)

min
H

ne
∑

j=1

TV(Hej) s.t. AHW = F, H1ne
= 1np

, (12)

by TVAL3’s variation specially tailored to this model. When the endmember spectral signatures W is given,
we also propose a preprocessing procedure based on the singular value decomposition of F to substantially
reduce the problem sizes, and enable near-real-time processing speeds. The feasibility of the proposed
approach has been demonstrated by a test using compressed hyperspectral data collected by hardware
similar to the single-pixel camera [7], as shown in Figure 21. Our target image is the color wheel on the left,
composed of various intensity levels of three colors: yellow, cyan and magenta. The abundance fractions
corresponding to the three endmembers were computed from 10% measured data, and are shown on the
right side of Figure 21. The computational time to process the compressed unmixing was about 26 seconds.
As we can see, our model and algorithm have accurately detected the areas corresponding to each color at
various levels of brightness.

Four slices of the computed hyperspectral cube (corresponding to 4 different spectral bands), obtained
by multiplying the estimated abundance matrix H with W , are given on the left side of Figure 22. For a
comparison, we applied the 2D TV solver TwIST [8] to the same 10% measured data set and the results are
given on the right side of Figure 22. Clearly the results of CSU are much better than the TwIST algorithm.
Additionally, the computational time required for CSU is at least an order of magnitude less than that
required by state-of-the-art 2D TV solvers.

This work for the first time has proved the concept of unmixing a hyperspectral data cube without the
cube itself. We have also obtained results on “blind” unmixing where information of endmember signatures
is either only partially known or severely corrupted. These results may have potential impact in the field of
hyperspectral data processing.
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6 Nonnegative matrix factorization and completion

6.1 The model and an ADM-based algorithm

Our paper [9] focuses on the optimization problem

min
X,Y

‖PΩ(XY − M)‖2
F

s.t. X ∈ R
m×q, Y ∈ R

q×n, (13)

Xij ≥ 0, Yij ≥ 0, ∀ i, j,

where Ω ⊂ {1, · · · , m} × {1, · · · , n} indexes the known entries of M and PΩ(A) returns a copy of A that
zeros out entries not in Ω. We call this problem nonnegative matrix factorization/completion (NMFC)
since it is a combination of nonnegative matrix factorization (NMF)−which finds nonnegative factors of a
nonnegative matrix given all of its entries−and low-rank matrix completion (LRMC)−which recovers M from
an incomplete set of its entries without assuming nonnegativity.

We are interested in NMFC since it complements NMF and LRMC. NMF has been widely used in data
mining such as text mining, dimension reduction and clustering, as well as spectral data analysis. Unlike
NMF, NMFC assumes that the underlying matrix is incompletely sampled; hence, it leads to saving of
sampling time and storage (for data such as images) and has broader applicability. On the other hand,
LRMC has recently found a large number of applications including collaborative filtering, global positioning,
system identification and order reduction, as well as the background subtraction and structure-from-motion
problems in computer vision.

A rank-q matrix M can be written as M = XY for matrices X with q columns and Y with q rows. When
X and Y are known to be nonnegative a priori, empirical evidence shows that imposing nonnegativity on the
factors improves the recovery quality. In particular, in certain applications such as hyperspectral unmixing,
the factors are nonnegative due to their physical nature, so these applications will benefit from NMFC. To
summarize, NMFC combines NMF and LRMC, and NMFC is useful when the underlying matrix has both
low rank and nonnegative factors.

Since problem (13) is nonconvex, finding its solution becomes quite difficult. Although there is no
theoretical guarantee of a solution, we observe very good numerical results by applying the alternating
direction method (ADM) to NMF, which is also nonconvex.

6.2 Numerical results

We compared our algorithm in [9] to the algorithm proposed in [10], which takes complete samples of M and
performs similar ADM-based iterations on random matrices with varying number of sampled entries. The
recovery qualities and speeds are illustrated in Figure 23.

We compared our algorithm in [9] with LMaFit [11] and FPCA [12] on recovering three-dimensional
hyperspectral images from their incomplete observations. Our test hyperspectral datacube has 163 slices,
and the size of each slice is 80 × 80. Three selected slices are shown in Figure 24. The three algorithms
were compared on recovering M from incomplete observations of SR = 30%, 40%, 50%, and their results
were compared in terms of peak signal-to-noise ratio (PSNR), mean squared error (MSE), as well as relative
nonnegativity feasibility (FA). The results are given in table 2, and the three slices of the recovered data
cube that correspond to those in Figure 24 are given in Figure 25.

6.3 A Fast Algorithm with Convergence Guarantee

The method proposed in our recent paper [13] closes the gap between the above ADM-based algorithm,
which is very fast but lacks convergence guarantees, and ANLS-type (alternating nonnegative least-squares)
algorithms [14, 15, 16], which are widely used and have convergence guarantees but are comparatively slow.
The new method is based on applying the alternating proximal gradient method to

min
X,Y

F (X, Y ) ≡
1

2
‖XY − M‖2

F , s.t. X ∈ R
m×q
+ , Y ∈ R

q×n
+ , (14)
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Table 2: Recovered slices by Algorithm [9], LMaFit, and FPCA. The rank estimate for Algorithm [9] and
LMaFit is 30.

problem Alg [9] LMaFit FPCA
seed CPU PSNR MSE FA CPU PSNR MSE FA CPU PSNR MSE FA

SR: 30%
3445 35.04 47.52 1.85e+1 0 40.39 42.10 6.45e+1 8.57e-3 38.49 44.53 3.69e+1 1.12e-3
31710 34.77 47.32 1.94e+1 0 23.43 43.46 4.71e+1 5.08e-3 38.40 44.42 3.79e+1 1.24e-3
43875 34.31 47.42 1.89e+1 0 38.27 42.54 5.83e+1 7.70e-3 38.64 44.71 3.54e+1 1.21e-3
69483 34.19 47.36 1.92e+1 0 34.53 42.74 5.57e+1 6.83e-3 38.75 44.62 3.61e+1 1.04e-3
95023 33.69 47.42 1.90e+1 0 27.88 42.98 5.27e+1 6.19e-3 38.78 44.51 3.70e+1 1.19e-3

SR: 40%
3445 36.84 48.83 1.37e+1 0 35.05 43.90 4.26e+1 7.55e-3 42.76 44.72 3.53e+1 1.09e-3
31710 36.45 48.66 1.42e+1 0 24.45 44.71 3.54e+1 5.48e-3 42.57 44.53 3.69e+1 1.06e-3
43875 36.61 48.92 1.34e+1 0 17.67 46.07 2.59e+1 4.65e-3 42.85 44.66 3.58e+1 1.31e-3
69483 38.37 48.68 1.42e+1 0 19.13 45.59 2.89e+1 5.52e-3 42.88 44.52 3.70e+1 1.06e-3
95023 38.65 48.50 1.48e+1 0 22.16 45.30 3.09e+1 5.02e-3 43.22 44.56 3.66e+1 1.09e-3

SR: 50%
3445 39.87 49.74 1.11e+1 0 34.31 44.72 3.53e+1 9.62e-3 47.12 44.24 3.94e+1 8.55e-4
31710 39.77 49.75 1.11e+1 0 29.90 45.23 3.14e+1 4.78e-3 46.64 45.25 3.12e+1 1.12e-3
43875 37.78 49.78 1.10e+1 0 25.53 45.92 2.68e+1 6.12e-3 46.63 44.60 3.63e+1 1.44e-3
69483 38.24 49.65 1.14e+1 0 31.14 44.92 3.37e+1 7.77e-3 47.07 44.39 3.81e+1 1.08e-3
95023 40.09 49.64 1.14e+1 0 29.92 45.42 3.00e+1 5.64e-3 47.90 43.93 4.24e+1 1.16e-3

where for presentation brevity we have let PΩ = I in (13) and R
m×n
+ = {X ∈ R

m×n : Xij ≥ 0, 1 ≤ i ≤
m, 1 ≤ j ≤ n}. Specifically, proximal gradient steps are applied alternatively to the X-subproblem (15a)
and Y -subproblem (15b):

Xk = arg min
X≥0

1

2
‖XY k−1 − M‖2

F , (15a)

Y k = arg min
Y ≥0

1

2
‖XkY − M‖2

F , (15b)

respectively. Our method uses simple updates at each iteration and has fast convergence like the ADM-
based algorithm. In addition, it decreases the objective monotonically and has provable convergence like the
ANLS-type algorithms. Under some mild assumptions, we prove convergence and estimate the convergence
rate by applying the Kurdyka- Lojasiewicz inequality [17, 18].

6.3.1 Proximal gradient method

Consider the convex optimization problem
min
x∈X

f(x), (16)

where X is a convex set and f is a differentiable convex function. Assume f has Lipschitz continuous
gradient, i.e., there is a constant Lf > 0 such that

‖∇f(x) −∇f(y)‖2 ≤ Lf‖x − y‖2, for all x, y ∈ X .

The proximal gradient method for solving (16) is

xk+1 = PX (x̂k −∇f(x̂k)/Lf ), for k = 0, 1, · · · (17)

where PX denotes the projection to X . In (17), xk+1 is the solution of

min
x∈X

f(x̂k) + 〈∇f(x̂k), x − x̂k〉 +
Lf

2
‖x − x̂k‖2

2. (18)

With an appropriate choice of x̂k, this method is guaranteed to converge to a solution of (16).
Applying this method to our subproblem

min
W≥0

h(W ) ≡
1

2
‖AW − B‖2

F , (19)
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Algorithm 1 APG: Alternating proximal gradient method for NMF

Input: m × n nonnegative matrix M and pre-determined dimension q
Initialization: choose a positive number δω < 1 and randomize matrices X−1 = X0 ≥ 0 and Y −1 =
Y 0 ≥ 0
for k = 0, 1, 2, . . . do

Set ωk
X , ωk

Y according to (22) and let X̂k = Xk + ωk
X(Xk − Xk−1), Ŷ k = Y k + ωk

Y (Y k − Y k−1).
Update (Xk+1, Y k+1) according to (21).
if F (Xk+1, Y k+1) ≥ F (Xk, Y k) then

Update (Xk+1, Y k+1) according to (21) with X̂k = Xk, Ŷ k = Y k

end if
if some stopping criterion is met then

Stop and output (Xk+1, Y k+1)
end if

end for

we obtain
W k+1 = P+

(

Ŵ k −∇h(Ŵ k)/Lh

)

, (20)

where Lh is a Lipschitz constant of ∇h(W ). Although we can iterate (20) many times to obtain (15a) and
do the same to obtain (15b), we propose to run only one iteration of (20) toward (15a) and do the same
toward (15b). This way, we alternatively update X, Y by

Xk+1 = P+

(

X̂k −∇XF (X̂k, Y k)/Lk
X

)

, (21a)

Y k+1 = P+

(

Ŷ k −∇Y F (Xk+1, Ŷ k)/Lk
Y

)

, (21b)

where Lk
X and Lk

Y are Lipschitz constants of ∇XF (X, Y k) and ∇Y F (Xk+1, Y ) with respect to X and Y ,
respectively.

In our algorithm, we take Lk
X and Lk

Y as the spectral norm of Y k and Xk+1, respectively. In addition,

we set X̂k = Xk + ωk
X(Xk − Xk−1) and Ŷ k = Y k + ωk

Y (Y k − Y k−1), where ωk
X , ωk

Y are chosen based on

the Nesterov-type extrapolation weight.1 For ease of convergence analysis, we impose ωk
X ≤ δω

√

Lk−1
X

Lk
X

and

ωk
Y ≤ δω

√

Lk−1
Y

Lk
Y

with some nonnegative constant δω < 1. Specifically, we set

ωk
X = min



ω̂k, δω

√

Lk−1
X

Lk
X



 , ωk
Y = min



ω̂k, δω

√

Lk−1
Y

Lk
Y



 , (22)

where ω̂k = (tk−1 − 1)/tk and tk = 1
2

(

1 +
√

1 + 4t2k−1

)

with initial value t−1 = 1. To ensure monotonic

objective decrease, whenever F (Xk+1, Y k+1) ≥ F (Xk, Y k), we redo the kth iteration to update (Xk+1, Y k+1)
with X̂k = Xk, Ŷ k = Y k. The method is summarized in Algorithm 1, and we call it APG.

6.3.2 Convergence Guarantee

Below we present the theorems that summarize the convergence theory given in [13].

Theorem 6.1 (Global convergence). Assume that the sequence {Zk} generated by the algorithm APG is
uniformly away from zero and bounded, i.e., there exist positive constants ℓ, L such that ℓ ≤ Lk

X , Lk
Y ≤ L for

any k ≥ 0. In addition, assume δω ≤ δ
√

ℓ
L for some nonnegative δ < 1. Then, {Zk} converges to a critical

point of (14) from any starting point Z0.

1The dynamically updated extrapolation weight ωk used in [19, 20] also works well for our algorithm.
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APG ADM blockpivot

q relerr time relerr time relerr time

20 1.18e-2 34.2 2.34e-2 87.5 1.38e-2 62.5

30 9.07e-3 63.2 2.02e-2 116 1.10e-2 143

40 7.56e-3 86.2 1.78e-2 140 9.59e-3 194

50 6.45e-3 120 1.58e-2 182 8.e-3 277

Table 3: Comparison results of the solutions obtained by APG, ADM and blockpivot on hyperspectral
cube of size 150 × 150 × 163 with dimension q varying among {20, 30, 40, 50}

T = 50 APG-MC ADM-MC T = 100 APG-MC ADM-MC

SR PSNR MSE PSNR MSE SR PSNR MSE PSNR MSE

0.20 32.30 5.89e-4 28.72 1.35e-3 0.20 32.57 5.54e-4 28.80 1.33e-3

0.30 40.65 8.62e-5 33.58 4.64e-4 0.30 41.19 7.61e-5 33.69 4.52e-4

0.40 45.77 2.66e-5 38.52 1.46e-4 0.40 46.03 2.50e-5 38.69 1.41e-4

Table 4: Comparison results of the solutions obtained by APG-MC and ADM-MC on a hyperspectral cube
of size 150×150×163 for sample ratio SR = {0.20, 0.30, 0.40} and maximum running time (sec) T = 50, 100.

Theorem 6.2 (Convergence rate). Under the assumptions of Theorem 6.1, suppose that Zk converges to
some critical point Z̄. Then there exists some θ ∈ (0, 1) such that the following estimations hold:

1. If θ ∈ (0, 1
2 ], then ‖Zk − Z̄‖F ≤ Cτk for some constants C > 0 and τ ∈ [0, 1);

2. If θ ∈ (1
2 , 1), then ‖Zk − Z̄‖F ≤ Ck−(1−θ)/(2θ−1) for some constant C > 0.

6.4 Hyperspectral Simulation

It has been shown in [21] that NMF can be applied to spectral data analysis. In [21], a regularized NMF model
is also considered with penalty terms α‖X‖2

F and β‖F‖2
F added in the objective of (14). The parameters

α and β can be tuned for a specific purpose in practice. Here, we focus on the original NMF model (14) to
show the effectiveness of our algorithm. However, our method can be easily extended to solve the regularized
NMF model. In this test, we use a 150 × 150 × 163 hyperspectral cube to test the compared algorithms.
Each slice of the cube is reshaped as a column vector, and a 22500× 163 matrix M is obtained. In addition,
the cube is scaled to have the unit maximum element. Four selected slices are shown in the first row of
Figure 26 corresponding to the 1st, 50th, 100th and 150th columns of M . The dimension q is chosen from
{20, 30, 40, 50}, and Table 3 lists the average results of 10 independent trials. We can see from the table that
APG is superior to ADM and blockpivot in both speed and solution quality.

We also compare the algorithm APG-MC and the ADM-based algorithm (ADM-MC) in [9] on the
hyperspectral data used in last test. It is demonstrated in [9] that ADM-MC outperforms matrix completion
solvers APGL and LMaFit for nonnegative matrix completion problems, because ADM-MC utilizes the
nonnegativity property of the data while the latter two do not. We fix the dimension q = 40 in (13) and

choose sample ratio: SR ,
|Ω|
mn from {0.20, 0.30, 0.40}. The parameter δω for APG-MC is set to 1, and all

the parameters for ADM-MC are set to their default values. To make the comparison consistent and fair,
we let both of the two algorithms run to a maximum time (sec) T = 50, 100, and we employ peak-signal-
to-noise-ratio (PSNR) and mean squared error (MSE) to measure the performance of the two algorithms.
Table 4 lists the average results of 10 independent trials, and Figure 26 plots the 4 corresponding slices of
each algorithm for SR = 0.20 and T = 50 in the second and third row. From the table, we can see that
APG-MC is significantly better than ADM-MC in all cases.

21



7 Multispectral Oil Spill Detection

The paper [22] presents a novel application of sparse reconstruction for offshore oil spill sensing based on
multispectral measurements. Early detection of the onset of oil spills provides rapid first response and
more time to develop a post-accident strategy. It is the key to prevent the snowball effect where multiple
catastrophic events lead to a major accident such as the recent disastrous accident of British Petroleum.
The current solution employs routine helicopter fly-bys that rely on assisted human vision, which apparently
leaves out much useful information imperceptible to human eyes. Also, these fly-by surveys can only be
performed during daytime and when weather permits. In [22], we propose a novel video-rate infrared (IR)
multispectral imaging system, which aims to replace the traditional fly-by survey and achieve higher accuracy
at lower cost.

The proposed imaging system is shown in Figure 27, which is based on a similar system operating in the
visible wavelengths that was developed in [23] with a fixed random coded mask. First, the thermal emission
from a region of interest, represented by fs(x, y, λ), where (x, y) is the spatial coordinate and λ is spectrum.
It is first demagnified and imaged to the object plane of a telescopic 4f system f0(x, y, λ), and then passed
through a reflective pixelated spatial light modulator with a binary or greyscale reflection function T (x, y).
The resulting field, Tf0, is then imaged by the dispersive 4f system with a grating placed at its Fourier
plane. The field at the detector plane can be written as the convolution of the point spread function of the
spectrograph and Tf0 as

f(x, y, λ) = T (x, y)f0(x, y, λ). (23)

Then f is convolved with the dispersive 4f system. Since the detector array sensitivity covers the wavelength
range of 7–14µm, the measured quantity received is integrated over the wavelengths:

g(x, y) =

∫

f(x + α(λ − λc), y, λ)dλ, (24)

where α is the linear dispersion of the grating and λc is the center wavelength. The above equation serves
as the general imaging model in the continuous spatial domain. By recognizing that both the mask and
the detector array are in fact pixelated and measurement noise is always present, (24) can be rewritten in a
matrix form as

g = Hf + w. (25)

Our goal is to recover f0 from g and H with unknown noise w. The recovery process has two steps: first,
recover f from g; then recover f0 by inpainting f .

The recovery of f takes advantages of the fact that oil spills are approximately sparsely composed of a
small number of spectrum signatures (shown in Fig. 28), which form a dictionary Φ = (φ1, φ2, . . . , φJ ). If we
define a new matrix H2 := HΦ and let u be the coefficients of the combination, then we have H2u = Hf = g
and u is sparse. To find a sparse u such that H2u = g we use the following ℓ1 minimization model:

min |u|1, s.t. H2u = g and 0 ≤ u ≤ 1. (26)

The next task is essentially an image inpainting problem, i.e., to fill in the unknown region in the image
according to the known region. We skip the details of this part.

The simulated data in Fig. 29 is a lab picture. The left figure shows a 2D representative of the 3D
image (f0(x, y, λ)), where every pixel is classified as one of three different oil film thickness values (10µm,
50µm, 100µm) and surrounding water. Then, the mask T (x, y) is chosen with 30% random nonzero binary
elements. The middle subfigure shows the resulting measurement g, which contains Gaussian random noise
(SNR:30). The right subfigure displays the recovered result, demonstrating the efficacy of the proposed
method. Fig. 30 shows the performance with different noise levels in the measurements, and with randomly
selected 25% nonzeros in T . Overall, 90% pixels are correctly classified with noise less than 5%.

Learning Circulant Sensing Kernels

In the paper [24], we are motivated by [25] and propose numerical methods to minimize ‖(ΦΨ)∗(ΦΨ)− I‖F

to improve the recoverability of the basis pursuit problem

min
θ

‖θ‖1, s.t. ΦΨθ = b, (27)
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or the denoising model

min
θ

‖θ‖1 +
1

ρ
‖ΦΨθ − b − ση‖2

2, (28)

where Φ is either a full or partial circulant matrix, Ψ is either an analytic or learned dictionary, b is the
measurement vector and η is noise with noise level σ. Like [25], we also learn Φ and Ψ together (namely,
coupled learning of Φ and Ψ), rather than just learning Φ for a given Ψ.

Let Φ = PC, where P is a downsampling matrix selecting m out of n rows from C and C is a square
circulant matrix. We first optimize C by minimizing ‖(CΨ)∗(CΨ)− I‖F for a given Ψ and then P by mini-
mizing ‖(PCΨ)∗(PCΨ) − I‖F for given C and Ψ. Let F be the normalized discrete Fourier transformation
matrix. Then C can be written as C = Fdiag(d)F ∗ for some d. Using this fact, the problem of minimizing
‖(CΨ)∗(CΨ) − I‖F can be equivalently transformed to

min
x≥0

1

2
x⊤B̄x − x⊤diag(B), (29)

where x = [|d1|
2, . . . , |dn|

2]⊤, B = F ∗ΨΨ∗F and B̄ = [|Bij |
2]. In addition, the problem of minimizing

‖(PCΨ)∗(PCΨ) − I‖F can be tranformed to

min
p

p⊤Hp − 2f⊤p, s.t.
∑

i

pi = m and pi ∈ {0, 1}, ∀i, (30)

where pi = 1 if P selects row i and zero otherwise, H = [|Gij |
2], and f = diag(G) with G = CΨΨ∗C∗.

To get a real valued C, we can make d conjugate symmetric by confining di = conj(di′ ) for every i and
i′ = mod(n − i + 1, n) + 1 in the problem (29).

In synthetic tests, we use YALL1 [26] to solve (27) with Gaussian random basis and Fourier basis to
compare four different sensing matrices: rand-circ (randomly generated complex partial circulant matrix
Φ), Gaussian (complex Gaussian random matrix Φ), opt-circ (Φ = PC with optimized C and uniformly
random P ) and opt-circ-and-P (Φ = PC with optimized C and P ). Figure 31 depicts the success rate out
of 50 independent trials (a recovery is called successful if the relative error is less than 10−4). Both the two
subfigures of Figure 31 reveal that optimized circulant sensing matrices lead to equally good performance as
Gaussian random matrices. For the random basis, random circulant matrices achieve similar recovery success
rate, while they perform extremly bad for the Fourier basis. On the other hand, optimizing the selection
matrix P hardly makes further improvement. We believe that unless the underlying signal has dominant
frequencies, optimizing the selection matrix P will not lead to consistent improvement.
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(a) First image

(b) Second image

Figure 14: Plots of the first band for both images
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(a) 3 endmembers from first scene.
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(b) 4 endmembers from second scene.

Figure 15: Locations of the computed endmembers.
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Figure 16: Spectral signatures of the 7 endmembers

Figure 17: Angle between abundance vectors computed using 7 endmembers.
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Figure 18: Averaged spectral signatures of the 7 endmembers

Figure 19: Angle between reduced abundance vectors combining the 5th and 6th components.
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Figure 20: Change detection result after applying TV regularization.
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Figure 21: Target image “Color wheel” (left) and estimated abundance from 10% measurements.
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Figure 22: Four slices computed by the proposed approach (left) and by TwIST (right)
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Figure 23: Matrix completion with different sample rates (SRs). Left: relative error in Frobenious norm;
Right: cpu time in seconds. The algorithm in [10] was used for SR=100%. Algorithm [9] was used for
SR=70%, 50%, 25%. All tests used the same parameters and stopping tolerances, and results are the
averages over 50 independent trials

Figure 24: Three selected slices for hyperspectral data cube
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(a) q=30, SR = 30% (b) q=30, SR = 40% (c) q=30, SR = 50%

Figure 25: Real data: the first, second and third row of each subfigure are recovered images by Algorithm
[9], LMaFit, and FPCA, respectively

Figure 26: Hyperspectral data: four selected slices (first row) and the corresponding recovered slices by
APG-MC (second row) and ADM-MC (third row) for sample ratio SR = 0.20 and maximum running time
T = 50.

Figure 27: Proposed imaging system.
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Figure 28: Spectral response of different oil film thickness and water.

Figure 29: Simulated results (92% recovered correctly) on a 67×92 image with 30% nonzeros in T and noise
(SNR=30) added, and the running time is 5 seconds.

Figure 30: The percentage of correctly recovered pixels for different SNR values with 25% nonzeros in T .
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Figure 31: Comparison results of four different sensing matrices: rand-circ, Gaussian, opt-circ and opt-circ-
and-P with Gaussian random basis (left) and Fourier basis (right).

Figure 32: Comparison results of four different sensing matrices: rand-circ, Gaussian, opt-plus-rand-circ and
coupled-plus-rand-circ on Berkeley segmentation dataset for sampled row numbers m = 16 (left) and m = 24
(right).

For real image, we did two sets of tests. In the first set, we use YALL1 to solve (28) with learned
dictionaries Ψ by KSVD method [27] using 20,000 randomly extracted 8 × 8 patches from the 200 training
images in the Berkeley segmentation dataset [28]. We test rand-circ, Gaussian and opt-plus-rand-circ (opt-
circ with C added by a real random circulant), as well as coupled-plus-rand-circ (Φ = PC with uniformly
random P and C the sum of a real random circulant and that learned simultaniously with its corresponding
dictionary Ψ) on 600 uniformly randomly chosen 8 × 8 patches from the 100 testing images in the Berkeley

segmentation dataset. Figure 32 depicts the mean squared error: MSE =
∑ℓ

i=1 ‖x
i − Ψθi‖2

2/(64ℓ), where xi

is the ith selected patch, ℓ is the number of tested patches, and θi was the solution of (28) output by YALL1.
All results are averages of 20 independent trials. Both the two pictures in Figure 32 reveal that uncoupled
and coupled learning approaches achieve significantly better recovery performance over random circulant
matrices, and they are even better than Gaussian random matrices when m = 16. The coupled learning
approach makes a slightly better performance over the uncoupled one. We believe that coupled learned
circulant matrices will not make a large improvement over uncoupled learned ones unless the underlying
signal is sparser under the learned dictionary.

In the second set of tests, we use a 150 × 150 × 163 hyperspectral cube and learn a dictionary from all
the 21025 overlapping 6 × 6 patches extracted from the first slice of the hyperspectral cube, which is shown
in the left side of Figure 33. The four different sensing matrices rand-circ, Gaussian, opt-plus-rand-circ and
coupled-plus-rand-circ are compared on 500 uniformly randomly selected patches from the remaining 162
slices. Figure 34 depicts the average MSEs of 20 independent trials, and Figure 35 plots one set of recovered
slices corresponding to the 150th slice shown in the right side of Figure 33. Again, the learned circulant
sensing matrices make greater improvement over the random circulant one and even better than the Gaussian
random one.
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Figure 33: Two selected slices of the hyperspectral data

Figure 34: Comparison results of four different sensing matrices: rand-circ, Gaussian, opt-plus-rand-circ and
coupled-plus-rand-circ on hyperspectral data for sampled row numbers m = 8 (left) and m = 12 (right).

Figure 35: One set of recovered slices by YALL1 with rand-circ, Gaussian, opt-plus-rand-circ and coupled-
plus-rand-circ for m = 12

PSNR = 20.60 PSNR = 26.83 PSNR = 27.35 PSNR = 28.18
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