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Selective Methods for C-X Activation in Carbohydrates 
Dr. Jennifer J. Becker 

 
 
Publication: “Oxidative Addition of Secondary C-X Bonds to Palladium(0): A Beneficial 
Anomeric Acceleration.”  Munro-Leighton, C.; Adduci, L. L.; Becker, J. J.; Gagné, M. R. 
Organometallics 2011, 30, 2646-2649.   
 
Our 2011 Organometallics paper reports that acetobromo-α-D-glucose reacts with Pd(PEt3)3 to 
give the product of invertive oxidative addition, Pd(PEt3)2(Br)(AcO-β-glucose).  This 
organometallic product, which was characterized by NMR and X-ray crystallography, represents 
the first reported crystal structure of a glycosyl-palladium compound.  Although the isolated 
compound is stable in air, dissolution in benzene initiates a β-acetoxy elimination process that 
generates tri-O-acetyl glucal and Pd(PEt3)2(Br)(OAc).  Replacement of PEt3 with other trialkyl 
phosphine ligands having similar steric and electronic properties, including PBu3, PEt2Ph, and 
PMePh2, also gave oxidative addition.  In contrast to the observed reactivity of acetobromo-α-D-
glucose, cyclohexyl bromide does not react with Pd(PEt3)3, indicating that the anomeric effect 
plays an important assistive role in the activation of a secondary alkyl halide by palladium(0). 
 

 
To explore the reactivity of the novel glucosyl palladium complex, we investigated the 
mechanism of β-acetoxy elimination.  Experiments in which the rate of elimination was 
monitored in the presence of excess Br- and PEt3 indicated that elimination is dissociative in 
PEt3, but not in Br-.  Noting that a syn elimination pathway was unlikely because the 
stereochemistry of the glucosyl ring prevents the compound from accessing the necessary 
synperiplanar conformation, we focused our attention on anti elimination mechanisms.  Since the 
crystal structure did not show an antiperiplanar arrangement of the palladium center and the 
acetate leaving group, we suggested that the ring undergoes an inversion process to adopt an 
antiperiplanar conformation.  Both full and partial ring inversion were proposed to result in 
plausible elimination intermediates.  To distinguish between the two, a tethering experiment was 
performed in which two carbon atoms on the glucosyl ring were linked by a benzylidene group, 
preventing complete inversion while allowing partial inversion.  The failure of this modification 
to prevent elimination indicated that complete inversion was unnecessary; we now believe that 
the structure adopts a “boat” conformation to position the palladium center and acetate group in 
an antiperiplanar arrangement that is ideally suited for β-acetoxy elimination. 
 



Publication: “Visible Light-Mediated Intermolecular Addition of Glycosyl Halides to Alkenes” 
R. S. Andrews, J. J. Becker, M. R. Gagné, Angew. Chem., Int. Ed. 2010, 49, 7274-7276. 
 
This publication represents the culmination of efforts to reductively activate C-X bonds in 
carbohydrates by the catching of photons from visible light with a photoredox catalyst.  A photo-
reductive cycle was established using Ru(bpy)3

2+ as the photocatalyst and a tertiary amine base 
as the stoichiometric reductant.  The methodology was demonstrated to readily reduce activated 
C-X bonds in carbohydrates and provide access to reactive glycosyl radicals, which selectively 
couple with activated alkenes to form important C-Glycosides.  The developed photocycle is as 
shown below, and is initiated by the absorption of a photon from a compact fluorescent light 
bulb to promote a high lying metal-based electron into the π* band of the bpy ligand; a so called 
metal to ligand charge transfer (MLCT) transition.  This charge separated state is thermally 
reduced with electron donors of matched redox character to generate an excited state species that 
has is electronically filled Ru center, a high lying electron in a ligand based orbital.  This ligand-
centered electron is highly reducing and is redox matched to quickly and efficiently react with 
activated carbohydrates.  When the carbohydrate is a glycosyl bromide, electron transfer to the 
carbohydrate generates a dissociative state that quickly cleaves the C-Br bond to generate the 
glucose radical and bromide anion.   
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The synthetic scope of this methodology is highlighted in Table 1, which shows how various 
types of carbohydrates can be activated, which types of activated alkenes functional optimally.  
The optimized conditions utilize 5 mol% catalyst or less, and rely on the output of department 
store 14 Watt compact fluorescent light bulbs.  Nearly all of the results collected in Table 1 
represent high water marks in terms of reaction yields and ease of synthesis.   
 
 
 



Table 1. Scope of the C-Alkylation with Activated Alkenes. 

Entry Product Yielda
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6, R = CO2Me: 94%b (75%c)
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 [a] Isolated yield; conditions: glycosyl bromide (0.12 mmol, 0.12 mM in CH2Cl2), alkene (0.24 mmol), 3 (0.36 
mmol), Ru(bpy)3(BF4)2 (0.06 mmol), 5 (0.24 mmol) at room temperature overnight irradiation with a 14W 
fluorescent bulb. [b] 0.134 mmol 5. [c] 1.2 mmol glucosyl bromide. [d] 1.2 mmol alkene. 
 
 
Publication: “Investigating the Rate of Photoreductive Glucosyl Radical Generation” R. S. 
Andrews, J. J. Becker, M. R. Gagné, Org. Lett. 2011, 13, 2406-2409. 
 
Our recent efforts are focused on the nature of the photoredox cycle and how changes in the 
initial concentrations of reagents affect the rate of the reaction.  In order to accomplish this, we 
utilized thiols as an electrophilic radical source to trap the photogenerated glucosyl radical.  By 
monitoring the reactions over a set period of time, we were able to determine that the 
concentration of thiol had no effect on the rate of starting material consumption, so the trapping 
of the radical is not the turnover limiting step in the reaction.   



 
We varied the concentration of terminal reductant (i.e. N,N-diisopropylethylamine) and observed 
saturation with the rate.  Similar results were observed with increasing catalyst concentrations 
under anhydrous conditions.  However, under aqueous conditions, in addition to a significant 
increase in rate, the reaction rates varied directly at low catalyst concentrations (< 1 mM) and 
inversely at high concentrations (> 1mM).   The use of hydrophobic ligands on the catalyst also 
resulted in increased rates of reaction.  We propose this is due to the increased ability to solvate 
ion pairs after electron transfer to prevent energy, and time, wasting back-electron transfer. 
 
Publication: “A Photoflow Reactor for the Continuous Photoredox-Mediated Synthesis of C-
Glycoamino Acids and C-Glycolipids.” Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. 
Chem. Int. Ed. 2012, 51, 4140-4143. 
 
The success of our photomediated C-glycoside synthesis prompted a plan to elaborate the 
product C-glycosides into C-glycopeptides and C-glycolipids.  The proposed divergent synthesis 
was plagued by difficulties in scaling up the C-glycoside synthesis to give a reasonable amount 
of starting material.  It was found that efficiency of the reaction was highly dependent on vessel 
size, with faster reaction rates in NMR tubes than in flasks.  This difference in efficiently is 
likely due to Beer’s law, which predicts that the excellent photon absorber Ru(bpy)3

2+, with its 
high molar extinction coefficient, absorbs the vast majority of incoming light within a short 
distance of the vessel wall, leaving the bulk of the reaction mixture essentially dark.  To 
overcome this limitation, a simple photoredox reactor was built.  

 



The design consists of flexible, transparent, inert tubing wrapped around a condenser.  Blue 
LEDs, located in the center of the condenser, illuminate the tubing containing the reaction 
mixture.  A water jacket insulates the reaction from the heat of the LEDs, and the reaction 
mixture is pushed through the tubing using an HPLC pump.   
 

 
 

Multiple photoflow reactors were connected in series if a longer residence time was necessary to 
ensure complete conversion to the desired C-glycoside.  This reactor allowed the synthesis of >5 
grams of C-glycoside per day.  With sufficient starting material in hand, a variety of 
glycoconjugates were successfully synthesized. 

 
 
Publication: “Oxidative Addition of Secondary C-X Bonds to Palladium(0): A Beneficial 
Anomeric Acceleration.”  Munro-Leighton, C.; Adduci, L. L.; Becker, J. J.; Gagné, M. R. 
Organometallics 2011, 30, 2646-2649.   
 
 



Publication: “Iridium-catalyzed hydrosilylative reduction of glucose to hexane(s).” McLaughlin, 
M. P.; Adduci, L. L.; Becker, J. J.; Gagné, M. R. J. Am. Chem. Soc. 2013, 135, 1225-1227. 
 
A previously reported iridium pincer catalyst was utilized for the hydrosilylative 
defunctionalization of glucose.  
 

 
The catalyst was found to efficiently reduce both α and β methyl protected glucoses (2 and 3) to 
give the 1-deoxy sugar (4) with good yield in minutes. 
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In contrast, the fully silylated sugar (5) yielded multiple products, included the 1-deoxy 
and ring opened producs 4 and 6, and was much slower reacting (likely due to the reduced 
basicity). 
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+
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(eq 1)

 
 Increasing the catalyst loading and using the more reactive silane SiEt2H2 allowed the full 
hydrosilylative reduction of glucose to multiple alkane products, with the major species being n-
hexane, 2- and 3-methylpentane. The initial reactivity showed selectivity for the anomeric and 
ethereal oxygens but those products reacted by promiscuous C-O activation yielding a plethora 
of reaction intermediates. Despite the large diversity of intermediates the sugar starting materials 
largely converged on hexane products.  



O

OR

OP

PO PO
PO

[Ir]

C6

O

PO
PO

PO

C2

O
OP

PO
PO

C1

OP
OP

PO
PO

PO+ C5', C3,
   C4, etc [O4]

[O3]

[O2]

1-hexanol, 2-hexanol,
3-hexanol, 2-Me-pyran [O1]

15 isomers (not including stereoisomers)

24 isomers (not including stereoisomers)

123

4 5
6

    silane
R = Me,SiR3

O
OP

PO PO
PO + OP

OPH2

OP

PO PO
PO

[O5-6]

7

8

9 10

+

PO

OP

OP

other observed products

other detected intermediate

PO
OP

PO PO
PO

11 (GC-MS, NMR)

4 62 and 5
OP

+

	  
Both the α and β anomers of MeO‐glu, 2 and 3, consistently yielded a higher proportion of the 
rearranged products than 5. A possible source for this surprising divergence in hexane isomer 
production was suggested by the comparative deoxygenation of 4 and 6 (glucitol). Like 2, the 
C1-deoxy 4 gives significant rearrangement, consistent with rapid conversion of 2 to 4 during the 
reaction. Reduction of 6, however, gives predominantly n‐hexane suggesting that 2 and 5 may 
bifurcate at the first reaction steps. It thus seems likely that pyranose 4 is the species most likely 
to initiate branching, presumably through carbocation(s) that may or may not involve 
neighboring group participation.  
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Unpublished preliminary results: “hydrosilylation of carbohydrates with borane catalysts” (2012-
2013). 
 
Borane lewis acids have previously been shown to be efficient catalysts for the hydrosilylation of 
carbon-oxygen bonds.1 Despite their remarkable activity, the only borane reports for sugar 
defunctionalization utilize BF3(Et2O) for the hydrosilylation of the activated C1 position.2 In 
order to seek new potential routes for carbohydrate defunctionalization we explored the 
hydrosilylation of carbohydrates by B(C6F5)3.  
 
Like the aforementioned iridium system, the major products observed for the hydrosilylation of 
monosaccharides were n-hexane, 2- and 3-methylpentane. Glucose hydrosilylation could be 
carried out on the methyl and silyl protected sugars to yield fully deoxygenated products within 
12 hours (5% catalyst and 20-24 eq of SiEt2H2).  Unprotected glucose was slower to react, 
requiring 4 days and twice the catalyst loading for complete reaction. 
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The B(C6F5)3 catalyst showed substantially higher rates of hydrosilylation on the silyl protected 
glucose than the iridium catalyst (at least 10x faster). In contrast, comparing the activity for 
unprotected glucose showed that both catalysts took days for complete reaction (probably in part 
because of slow in situ protection resulting from insolubility). Expanding the substrate scope, we 
found that sorbitol, mannose, 1,5-anhydroglucitol, 1,6-anhydroglucose, and the disaccharide α-
maltose were fully hydrosilylated under similar conditions, each yielding a different alkane 
product distribution.  
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The chain length of the substrate did not dramatically affect the rate of the reaction, with the 
methyl protected polysaccharide cellulose reacting faster than unprotected glucose. Complete 



hydrosilylation of methyl cellulose yielded a similar mixture of alkane products in under 24 
hours (5% catalyst, 24 eq of SiEt2H2 per monomer).  
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These preliminary studies have shown the distribution the alkane product distribution is quite 
sensitive to the catalyst, protecting groups, and identity of the sugar used.  In contrast, 
preliminary competition experiments with the primary and secondary alcohols 1- and 2-hexanol 
showed that both catalysts have a similar selectivity for the secondary alcohol and show no 
significant alkyl shift products (this is in contrast to alkyl halides and ethers where the iridium 
system reacts preferentially with primary substrates). Studies are underway to understand the 
various routes for carbohydrate defunctionalization, the effects of the sugar environment and 
catalyst on the downstream product distribution, and this reactions potential to yield value added 
chemicals. 
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