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Our grant project “Combinatorial and Algorithmic Rigidity: Beyond Two Di-
mensions” was submitted in 2008, under the DARPA solicitation “Mathemat-
ical Challenges, BAA 07-68”. It addressed Mathematical Challenge Ten: Al-
gorithmic Origami and Biology and proposed “a line of attack on the central
problem in three-dimensional rigidity theory: the combinatorial characterization
of minimally rigid bar-and-joint frameworks”. Appearing implicitly in James
C. Maxwell’s work from the 1860’s, this problem is currently referred to as
Maxwell’s problem.

i. Accomplishments compared with the goals of the grant

The main tenet of the project was that “rigidity should be explored on a wide
array of frameworks and structures with various blendings of combinatorial spar-
sity and geometrical constraints”. Indeed, this principle guided our investiga-
tions throughout the grant effort and led to significant results and advances
which exceed, in many respects, the explicit goals of the grant.

Regarding theoretical foundations, a prominent accomplishment is our defor-
mation theory of periodic frameworks which established and developed
new concepts and techniques for understanding periodic structures. By relating
finite and periodic frameworks , we disclosed unsuspected connections and depth
in Maxwell’s problem and opened a new avenue of research. Equally important,
in our estimate, are the applications of our deformation theory to displacive
phase transitions in crystalline materials.
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A second prominent theoretical and algorithmic accomplishment relates to robot
arms with revolute joints. This line of investigation was directly motivated
by protein backbone chains modeled as serial hinge structures. Again, our rigor-
ous mathematical formulations led beyond the initial horizons and we were able
to solve a whole string of fundamental problems in robotics, which had been
open for more than forty years: characterization of extremal reaches and de-
termination of the singularity locus and the workspace boundary. In addition,
we devised a number of optimal algorithms and provided critical complexity
analysis.

The topic of algorithmic origami was successfully engaged from the same
perspective of hinge structures, more precisely as panel-and-hinge surfaces. We
explored Lang’s Universal Molecule Algorithm, clarified the conceptual setting
of heuristic sections, obtained a first complete proof of correctness and im-
proved the algorithmic analysis. In the process, our rigidity analysis uncovered
important families of non-foldable designs. These results have implications for
deployable structures and nano-origami materials.

All our theoretical endeavors and accomplishments occurred in steady dialogue
with the gradual growth and refinement of the rigidity analysis of proteins
integrated in the KINARI software (KINematics And RIgidity analysis).

This overview of our grant efforts shows that the project’s established goals
were met and that our anticipations about lines of approach and effective tech-
niques were, on the whole, correct and fruitful. In fact, several of our reported
accomplishments went far beyond initial expectations and opened new areas of
discovery and development.

In the following paragraphs, we give a closer correspondence between our com-
pleted results and objectives listed in the milestone chart of the grant project.

1. Setting up the models: theoretical foundations. This milestone
objective was instrumental and influential in several directions: periodic frame-
works with their own diversity, ranging from bar-and-joint to mixed plate-and-
bar articulations [6, 9, 14, 15, 11], volume frameworks [13], Delauney triangula-
tions [1], linkages [19], hinge structures, either serial [4, 3, 5, 7, 12] or surface-like
(origami) [17, 18, 39, 38, 35, 37, 16].

2. Developing proof techniques: Invariant theory Factoring out equiv-
alences under the action of a given group of ‘trivial’ transformations was all-
important for enumerative estimates and effective parametrizations. We used
invariant theory perspectives to full advantage in [14, 2, 13]. Matroidal tech-
niques are implicated in [15, 44]. Theorems of Maxwell-Laman type were ob-
tained in [9, 15, 43].
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3. Counting and Enumeration. As anticipated in the project, we relied on
methods of algebraic-geometry for obtaining bounds on the number of realiza-
tions of various types of minimally rigid frameworks and for complexity analysis
of robot arm workspaces [9, 13, 12].

4. Studies of configuration spaces. General properties of configuration
spaces for periodic frameworks were determined in [6, 14]. We obtained precise
descriptions for periodic structures of high significance in mineralogy, such as
quartz, cristobalite and tridymite [10]. Previous insights into geometric defor-
mation possibilities for these structures were limited to a few one-parameter
illustrations, in spite of a long tradition of studies. Cyclic volume frameworks
also lead to remarkable configuration spaces [13]. Geometric descriptions of sin-
gularities played an essential role in our solution of the workspace determination
problem for robot arms [7].

5. Protein chains and hinge structures. All our discoveries about robot
arms with revolute joints and origami folding were guided by this milestone ob-
jective. The definitive theoretical and algorithmic results obtained on extremal
reaches and workspace boundaries [3, 5, 8, 7, 12] are now apt to be integrated
with related components of protein structure determination or validation pro-
cedures. The steady growth of capabilities in the KINARI software for rigidity
analysis of proteins is documented in a series of contributions, which include pro-
filing, benchmarking and validation efforts on up to 10,000 protein structures
from the Protein Data Bank (PDB) [22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 40].

6. Rigid clusters and flexibility. Algorithms for finding rigid clusters and
flexibility parameters (such as degrees of freedom and of redundancy) have been
devised for very general classes of sparsity in [41, 42, 28, 34]. New obstructions
to the accurate calculation of 3D bar-and-joint rigid clusters have been identified
in [19].

The development of KINARI [24] led to new mathematical problems motivated
by the mechanical modeling of biological macro-molecules for which the rigidity
and flexibility analysis can be accurately and efficiently performed [26, 20, 27].
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We summarize in tabular form the results of our grant efforts which we deem
of breakthrough or new departure character and indicate related new directions.

topics and key papers definitive results new directions
Robot arms with extremal reaches: singular configurations
revolute joints: complete characterization and for the general
panel-and-hinge chains polynomial time algorithms body-and-hinge case;

workspace boundary criteria for recognizing
determination: the workspace boundary
exact description and among singular points;

[3, 5, 8, 7, 12] complexity analysis robot arm design
Periodic frameworks: fundamental concepts and ultrarigidity,
bar-and-joint, deformation theory: geometric auxetics,
body-and-bar, characterizations of minimal liftings: from
mixed plate-and-bar; rigidity , crystallographic quotient graphs

symmetry, flexibility and to periodic graphs
[6, 9, 10, 14, 15] deformation spaces
Frameworks related sparsity in the finite a general principle
to various groups: and periodic context; on periodicity and
volume frameworks, bounds for possible sparsity
symplectic frameworks. realizations
[13, 39] singularities
Origami rigid origami as foldability and
[17, 18] panel-and-hinge surfaces connected components
Rigidity analysis for KINARI web-server and library extension to nucleic
proteins and KINARI http://kinari.cs.umass.edu acids, viruses and
software [24, 32] crystalline materials

ii. Established goals

All established goals were met.

iii. Other pertinent information

For further dissemination of our results, we have presented tutorials on robot
arms and rigidity analysis for proteins and biological molecules [36, 40, 25] at
international conferences and gave video-taped talks at mathematical meetings
[11, 38]. In addition, PI Streinu has been interviewed for the NSF-funded docu-
mentary on bio-mathematics, Darwin’s Extra sense http://www.math.dartmouth.
edu/publicity/general/extrasense/.

We also (co-)organized annual workshops on rigidity theory and applications
in computational biology http://linkage.cs.umass.edu/barbados/, http:

//biophysics.asu.edu/workshops/2008_GeomSimTech/, two conferences on
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Rigidity Theory, at the Fields Institute of Mathematics in Toronto (Oct. 2011)
and at the Banff International research Station (July 2012) and a 2 day Collo-
quium, “100 Years of Crystallography” at Rider University. We served on the
program committee of several competitive conferences in computational geom-
etry (SoCG’13), discrete mathematics and algorithms (SODA’11 and ESA’11),
computational biology (ICCABS’12, ISBRA’12, CSBW’12 at IEEE-BIBM’12).

Educational efforts included the training of two post-docs and 5 graduate stu-
dents, three of whom [45, 29, 21] have defended their PhD theses.

PI Streinu’s mathematical work on the Carpenter’s Rule Problem (which can
be viewed as an abstract model for a 2-dimensional “protein” backbone) was
rewarded in 2010 with the Robbins Prize of the American Mathematical Soci-
ety. The Robbins Prize is given every three years for a paper that reports on
novel research in algebra, combinatorics, or discrete mathematics. The full ci-
tation and additional information can be found at http://www.ams.org/ams/

prizebooklet-2010.pdf. In November 2012, PI Streinu became a Fellow of
the American Mathematical Society.

We are very grateful for the stimulus and opportunities generated through this
grant.

Ciprian S. Borcea
Department of Mathematics
Rider University
Lawrenceville, NJ 08648, USA

Ileana Streinu
Department of Computer Science
Smith College
Northampton, MA 01063, USA
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