
 M T R 1 0 0 0 9 3
M I T R E T E C H N I C A L R E P O R T

 RESTful

Services Guidance for

Developers v 1.0

 G. Beuchelt C. Partridge
T. Kehoe M. Patron
P. J. Miller D. P. Robbins
R. Modeen R. O. Wilson

April 2010

mastro
Text Box
Approved for Public Release; Distribution UnlimitedCase # 10-1691

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2010 2. REPORT TYPE

3. DATES COVERED
 00-00-2010 to 00-00-2010

4. TITLE AND SUBTITLE
RESTful Services Guidance for Developers v 1.0

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The MITRE Corp,7515 Colshire Dr,McLean,VA,22102

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Representative State Transfer (REST) is an architectural pattern that explains the technical underpinnings
responsible for the tremendous success of the World Wide Web. The REST pattern and supporting
technologies not only support human focused web browser operations but also machine-to-machine
information exchanges. In this document we focus on the latter. REST is less complicated than other
approaches, easy for developers and users to understand, and easy to implement. Further, the approach is
scalable to large enterprises due to a fundamental tenet of REST: stateless interactions. The same aspects
of REST which drive companies such as Amazon and Google to use REST to deliver capability to their
users make it an attractive and useful technology for the Department of Defense (DoD). The goal of this
document is to introduce the REST pattern and to share lessons learned gathered through our own
development efforts using REST for the DoD, and the study of current commercial practices. We cover
both the REST concept in general and the supporting technologies needed to employ REST effectively for
developing web services. The authors do not consider this document to be an authoritative mandate, but
instead an informational snapshot of current practices for REST services that includes areas which are still
evolving such as service security. Release of V1.0 is intended to serve as the vehicle for further review by a
more extensive developer community. As required, revised versions of this document will be published.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

45

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 M T R 1 0 0 0 9 3
M I T R E T E C H N I C A L R E P O R T

 RESTful

Services Guidance for

Developers v 1.0

Sponsor: ESC
Dept. No.: E111
Contract No.: FA8721-09-C-0002
Project No.: 03101CF0-AA

The views, opinions and/or
findings contained in this report
 are those of The MITRE Corporation
and should not be construed as an
official Government position, policy, or
decision, unless designated by other
documentation.

©2010 The MITRE Corporation.
All Rights Reserved.

Approved for public release;
distribution unlimited.

G. Beuchelt C. Partridge
T. Kehoe M. Patron
P. J. Miller D. P. Robbins
R. Modeen R. O. Wilson

April 2010

iii

Abstract

Representative State Transfer (REST) is an architectural pattern that explains the technical
underpinnings responsible for the tremendous success of the World Wide Web. The REST
pattern and supporting technologies not only support human focused web browser operations
but also machine-to-machine information exchanges. In this document we focus on the
latter. REST is less complicated than other approaches, easy for developers and users to
understand, and easy to implement. Further, the approach is scalable to large enterprises due
to a fundamental tenet of REST: stateless interactions. The same aspects of REST which
drive companies such as Amazon and Google to use REST to deliver capability to their users
make it an attractive and useful technology for the Department of Defense (DoD).

The goal of this document is to introduce the REST pattern and to share lessons learned
gathered through our own development efforts using REST for the DoD, and the study of
current commercial practices. We cover both the REST concept in general and the
supporting technologies needed to employ REST effectively for developing web services.
The authors do not consider this document to be an authoritative mandate, but instead an
informational snapshot of current practices for REST services that includes areas which are
still evolving such as service security.

Release of V1.0 is intended to serve as the vehicle for further review by a more extensive
developer community. As required, revised versions of this document will be published.

iv

This Page Intentionally Blank

v

Table of Contents

1 Introduction 1

2 Service Styles and Usage Patterns 3

2.1 Key Elements of RESTful Services 3

2.1.1 Resource 3

2.1.2 Uniform Resource Locators 3

2.1.2.1 Scheme 3

2.1.2.2 Domain 3

2.1.2.3 Resource Path 4

2.1.2.4 Querystring 4

2.1.3 Representation 5

2.1.3.1 HTTP Request Headers 5

2.1.3.2 Media Type Query Parameter 6

2.1.3.3 Declared Resource Path Extension 6

2.1.4 Context Free Request and Reply 6

3 Design Patterns: The Operations 7

3.1 HTTP Methods 7

3.2 Representing Collections 9

4 Documenting RESTful Services 11

4.1 Describing the Resources 12

4.2 Describing the Representations 12

4.2.1 Constructing the URL 13

4.2.2 Describe the Operations 14

4.2.3 Describe the HTTP Headers 14

4.3 Example 14

4.4 Machine-Readable Specifications 17

4.4.1 Web Services Description Language 2.0 18

4.4.2 Web Application Description Language 21

5 Service Management 23

vi

5.1 Simple Network Management Protocol 23

5.2 Service Heartbeat 23

5.3 Versioning 23

5.4 Service Identification 25

6 Discovery 27

6.1 REST Discovery 27

7 Service Security 29

7.1 General RESTful Security 29

7.2 Data Transport Confidentiality and Integrity 30

7.3 Authentication 30

7.3.1 End-User Without DoD PKI Certificate 31

7.3.2 Machine Clients With PKI Certificates 31

7.3.3 Machine Clients Without Certificates 31

7.4 Authorization 31

7.4.1 Resource Pattern Matching 32

7.4.2 OAuth Authorization 32

Appendix A A-1

Appendix B B-1

vii

List of Tables

Table 1. HTTP Operations ... 8

Table 2. Business.com Invoice REST Service .. 15

viii

This Page Intentionally Blank

1

1 Introduction

Introduction

Representative State Transfer (REST) is an architectural pattern that explains the technical
underpinnings responsible for the tremendous success of the World Wide Web. The REST
pattern and supporting technologies not only support human focused web browser operations
but also machine-to-machine information exchanges. In this document we focus on the
latter. REST is less complicated than other approaches, easy for developers and users to
understand, and easy to implement. Further, the approach is scalable to large enterprises due
to a fundamental tenet of REST: stateless interactions. The same aspects of REST, which
drive companies such as Amazon and Google to use REST to deliver capability to their
users, make it an attractive and useful technology for the Department of Defense (DoD).

The goal of this document is to introduce the REST pattern and to share lessons learned
gathered through our own development efforts using REST for the DoD and study of current
commercial practices. We cover both the REST concept in general and the supporting
technologies needed to employ REST effectively for developing web services. The authors
do not consider this document to be an authoritative mandate, but instead an informational
snapshot of current practices for REST services that includes areas which are still evolving
such as service security.

2

This Page Intentionally Blank

3

2 Service Styles and Usage Patterns

REST is an architectural pattern that explains the technical underpinnings responsible for the
tremendous success of the World Wide Web. The term Representational State Transfer was
coined by Roy Fielding in his 20001 Doctoral Dissertation in which he explores the basic
structure of the Web. REST does not describe specific protocols, data formats, or a sequence
for interaction that is typical for most specifications. REST does describe the architectural
principles and components that enable the World Wide Web to function successfully.

2.1 Key Elements of RESTful Services

2.1.1 Resource

REST is built on the concept of an information resource. An information resource is any
piece of information or content that is uniquely identifiable and can be expressed in a textual
or binary representation transmittable over a network. In the past a resource was regarded as
the data intended for viewing within a browser, such as a HyperText Markup Language
(HTML) page with embedded images and video clips. However, as the Web evolved,
software consumers of web services emerged so that now the concept of a web resource or
web content can just as often refer to data objects consumable by software applications.

2.1.2 Uniform Resource Locators

Every resource has an identity in order to manipulate it. REST services use standard
Uniform Resource Locator (URL)2 semantics to identify the resources being retrieved or
modified. The most frequently used, but not complete, elements of a URL are:

scheme://domain/resource_path?query_string

2.1.2.1 Scheme

Since REST uses HyperText Transfer Protocol (HTTP) as its fundamental protocol, the URL
scheme will be either “http” or “https”, for requests over unsecured and secured connections
respectively.

2.1.2.2 Domain

The domain is the Domain Name Service (DNS) name entry that will resolve to a network
location, typically a server, which holds the resource. For example, maps.google.com is the

1
 “Architectural Styles and the Design of Network-based Software Architectures,” DISSERTATION submitted in

partial satisfaction of the requirements for the degree of Doctor of Philosophy in Information and Computer
Science by Roy Thomas Fielding, 2000.

2
 There is an important, but not significant in this context, distinction between a Uniform Resource Identifier

(URI) and a Uniform Resource Locator (URL). A URI is the general class of names, while a URL is a particular
type in that it is a URI that resolves to a resource. In this discussion, as in Roy Fielding’s dissertation, our
focus will be on names that resolve, so we will always use the term URL.

4

domain name for the Google tile server, and s3.amazon.com is the domain name for the
Amazon storage services.

2.1.2.3 Resource Path

A resource path uniquely identifies a resource contained within the domain. While not
required to be a meaningful name, it is common usage that a resource path looks much like a
file path and may identify a set of resources of the same type (like a directory path) or
identify a single resource (like a file path). Conventionally, a REST URL is comprised of
resource collection type and resource identity pairs:

http://domain.com/<collection>/<item>/<subgroup>/<item>

To return a collection of a given resource type, the following URL would be used:

http://domain.com/<collection>

Best practice encourages that the set of resources, represented by a collection of URLs, be of
the same resource type. For example, if resources in the collection are expressed via
Extensible Markup Language (XML), they should all conform to the same XML schema.

To return a single resource within the collection, the following URL would be used:

http://domain.com/<collection>/<item>

2.1.2.4 Querystring

Best practices encourages that URL querystring in RESTful services be used to control the
view into data and not to be used to provide either “identification” data which should be part
of the resource path, or any functional semantics beyond what the HTTP verbs imply. One
of the problems of placing identification data in the querystring are that programs can no
longer check equivalence by just looking at the URL base and resource path. Consider the
following three URLs:

http://business.com/invoices?invoiceId=10000&lineItem&=3
http://business.com/invoices?lineItem=3&invoiceId=10000
http://business.com/invoices/?acceptType=excel&invoiceId=10000&lineItem=3

Intuitively, we recognize that all three reference the third line item of invoice 10000.
However, from a machine standpoint, checking the equivalence of these URLs becomes
complex and problematic. However, by keeping the identifying information in the resource
path, a single representation of the URL emerges and software can do simple identity
comparisons with URLs by simply dropping the Querystring:

http://business.com/invoices/10000/lineItem/3

Another common “anti-practice” is packaging “business operations” into the URL query
string. These types of service invocations often package some action, command, or verb into
the URL. For example:

5

http://business.com/invoices&action=addLineItem&partNum=6543&quantity=1&cost=1.00

In general, the querystring should not be used to control the output of the REST operation
and directly impact the state of the resource or server. Most often, querystrings are used with
REST operations that return collections of resources. For example, the following URL
references the set of all invoices belonging to business.com:

http://business.com/invoices

However, a complete referenced collection may be too large to return to the requester in a
reasonable time frame or require too much server and network bandwidth to retrieve and
transmit (business.com made millions of invoices). Querystring parameters can then be
applied as constraints or filters to indicate to the service to only return the subset of resources
for which the requester has interest. For example, the following URL only returns the
invoices that were invoiced in January 2010 (dates are represented as YYYYMMDD).

http://business.com/invoices?earliestInvoiceDate=20100101&latestInvoiceDate=20100131

Querystring parameters can either control the maximum number of results returned or control
a “window” onto a larger collection. This is commonly called pagination in the web
community. The following example is a query that returns the next 20 invoices starting at
the 80th invoice ordered by invoiceDate:

http://business.com/invoices?numInvoices=20&startIndex=80&sortOrder=invoiceDate

2.1.3 Representation

REST makes an important distinction between the representation of a resource and the
resource itself. Clients can manipulate many different forms of the resources stored on
servers. A client negotiates with the server to agree upon a representation that the server can
produce and that the client can handle using the Internet Media Types registered with the
Internet Assigned Numbers Authority (IANA) and documented in RFC 2046.3 If a server is
unable to deliver a resource in a requested representation, it returns an error.

In practice, there are three techniques for requesting the representation type of a resource.

2.1.3.1 HTTP Request Headers

The HTTP protocol specifies the use of the “Accept” request header field for requesting
representation types. The “Accept” field may contain a number of content types with
explicit preferences that the client will accept. A server is obligated to provide the resource
in the representation with the highest client preference or to return an error when it cannot
provide the resource in any of the requested content types.

For example, a basic HTTP Request that returns the XML representation of invoice 11111 is:

3
 The name of the original specification was the Multipurpose Internet Mail Extensions (MIME). A full list of the

current authorized types is at http://www.iana.org/assignments/media-types/.

http://www.iana.org/assignments/media-types/

6

GET http://business.com/invoices/11111 HTTP/1.1
Accept: text/xml

And a basic HTTP Request that returns the JavaScript Object Notation (JSON)
representation of invoice 11111 is:

GET http://business.com/invoices/11111 HTTP/1.1
Accept: application/json

2.1.3.2 Media Type Query Parameter

Most browsers do not readily allow users to modify the acceptable content types of the
HTTP Request Headers. To get around this problem, developers of RESTful services have
devised mechanisms for embedding information about the desired representation in the URL.
Many REST services will accept a special query parameter such as “mimeType”. For
example:

http://business.com/invoices/11111?mimeType=text%2Fxml
Returns the XML representation of invoice 11111. Note that the slash („/‟) character in
the query parameter value must be URL-encoded.

http://business.com/invoices/11111?mimeType=application%2Fjson
Returns the JSON representation of invoice 11111

2.1.3.3 Declared Resource Path Extension

An alternative to the query parameter approach uses the file extension of the required
representation type at the end of the resource path to identify the requested content type.
Ruby on Rails is an example framework that employs this approach.

http://business.com/invoices/11111.xml
Returns the XML representation of invoice 11111

http://business.com/invoices/11111.json
Returns the JSON representation of invoice 11111

2.1.4 Context Free Request and Reply

RESTful services use the strict request and reply pattern of HTTP for invocation. A service
consumer (i.e., client) sends a request to a service provider (i.e., server) in the form of the
HTTP request. The service provider then responds with an HTTP response.

It is important to note that in the RESTful pattern, the client holds the conversation state in
all client-to-server interactions. The employment of context free request and response
exchanges is critical to the tremendous scalability enjoyed by the Web today.

7

3 Design Patterns: The Operations

REST uses HTTP operations to modify resources. An HTTP GET operation retrieves a
representation of a resource identified by a URL and never changes the actual resource on
the server. An HTTP PUT operation creates or replaces an information resource with a
provided representation of it. HTTP DELETE removes a resource from the provider. The
POST operation is extremely powerful; it presents information to a resource, typically a form
processor that may create, delete, retrieve, or modify resources in complying with the
supplied information.

This restricted set of operations makes working within the REST paradigm different from
working with other data exchange protocols. Protocols such as Remote Procedure Call
(RPC) and Simple Object Access Protocol (SOAP) allow developers to define their own
methods as well as the objects passed through these methods. REST only allows the
developers to define their own objects. The advantage of this approach is that it is a well
understood standard for what is similar to the Create, Retrieve, Update, Delete (CRUD)4
operations against the information resources.

Software developers will often overload the HTTP operations when implementing their own
actions. Since HTTP is perhaps the most widely accepted protocol and most frequently
opened port through firewalls, HTTP becomes overloaded with embedded protocols
(e.g., SOAP over HTTP) that relegate it to a transport level protocol instead of an application
level protocol as intended. While perhaps sometimes required by the engineering need, these
implementations risk violating the principles articulated in REST. A REST-compliant
exchange should use only HTTP verbs and manipulate representations to work with an
information resource.

3.1 HTTP Methods

There are eight methods defined in the HTTP protocol as outlined in RFC 2616. These are
GET, PUT, POST, DELETE, HEAD, OPTIONS, TRACE, and CONNECT. Of these
methods, REST services are primarily concerned with GET, PUT, POST, and DELETE.

The RFC 2616 specification defines two important concepts when dealing with the HTTP
methods: “safe” and “idempotent”. “Safe” means the HTTP operation should have no
“significant action” other than retrieval, and be “side-effect” free. In other words “safe”
methods should not modify the state of the referenced resources. They should be “safe” for
requesters to use without any unintended actions or consequences.

“Idempotent” means that that the results of sending the request multiple times should be the
same as sending it once. A common example is the PUT operation which is used to “put” a

4
 Create, Retrieve, Update, and Delete operations familiar to database developers. We should note that the

analogy is not complete; the four database operations do not map directly to HTTP verbs.

http://tools.ietf.org/html/rfc2616

8

resource on the “server”. Making the same “PUT” request multiple times for a given
resource should leave the resource in the same operational state (audit logs notwithstanding).

The following table shows the HTTP operations commonly used with RESTful services and
their basic “semantics” as defined under RFC 2616.

Table 1. HTTP Operations

Method Safe Idempotent Description

GET Yes Yes Used to retrieve a resource referenced by the passed-in
URL. The required representation to be returned by the
GET can be declared in the “Accept” HTTP Header
allowing for multiple representations to be returned for a
single resource (i.e., an XML, JSON, HTML, etc.,). A
conditional retrieval based on the modified time can also
be expressed by using the “If-Modified-Since” header.

PUT No Yes Used to associate the representation content of the request
body (typically some XML or JSON payload) to the
referenced URL. If the URL does not exist, then a new
resource is created using passed representation. If the
URL refers to existing resources, then it is replaced by
the representation in the request body.

DELETE No Yes Used to remove a resource associated to the passed-in
URL.

POST No No Used to submit data such as a form to a server to perform
some processing against a resource. May involve the
creation of a new resource or appending additional data to
an existing resource.

POST Operations

The RFC 2616 does not clearly identify the intentions of the POST method. Hence the exact
nature and best practices associated with the “POST” method is a subject of much debate. In
general, it is agreed that POST should be used if:

 The service is creating and identifying a new resource (i.e., generates the Id) based on
partial information and returning the “completed” resource with Id.

 The service is adding information to an existing resource without passing a complete
new state. This includes information such as annotations, additional data items, and
modifications (based on partial state).

9

There is no consensus on when to use POST vs. PUT. The general rule of thumb is, when
passing the complete state of a resource to create or replace it, then use PUT. When creating
a new resource from partial information, then use POST. Also use POST when modifying an
existing resource based on passed-in information or attributes. For example, a POST could
increment a total count or change some single text field.

3.2 Representing Collections

As discussed previously, it is possible to have URLs that reference and invoke RESTful
services that return collections of resources. To answer these requests, a RESTful service
will need to package multiple objects in to a single response. Best practices on
recommended ways to package these collections have yet to emerge. However, the three
primary methodologies for handling collections with RESTful services include container
objects, feeds, and multipart responses.

Container Objects

By far the most common method of packaging collections of resources is to “wrap” them
into a higher level “collection” object. For XML representations, this is done by embedding
the resources XML into a root collection or list element. This can also be done for
collections represented in JSON. If this collection is described in an XML Schema, typically
each resource schema type will have a corresponding resource collection schema type, vs. a
generic collection type. This enables tools such as XML object-binding code to properly
validate and generate the parsing code for these collection objects.

The advantages of this method include being simple and well understood. This method is
also easier to implement, especially since it benefits from better tool support, especially from
code generators. Perhaps the biggest disadvantage is the introduction of new “collection”
types which correspond to each resource type. This makes generic processing of collections
and lists a bit difficult. Heterogeneous lists which support more than resource type,
especially those types that are not known at development time, can also become a problem.

Feeds

Feeds are commonly seen on the Internet as Atom or Real Simple Syndication (RSS) news
feeds. These news feeds typically provide a list of hyperlinks with corresponding summary
information to content items or resources on a site. The goal of a news feed is to allow the
consumer to review large collections of summary items without having to pull the entire
content for each item. These feeds also support a polling model in which an application
known as a feed reader or aggregator could periodically poll the feed to determine if there are
any updates to the content associated to the feed.

As stated previously with RESTful services, it is usually beneficial to reuse existing
representation standards and models. Since feeds are basically a container object for generic
content, the existing feed standards can be reused to return resource collections. The two
primary standards for feed representations are RSS and Atom. RSS is able to represent a list

10

as a collection of annotated hyperlinks to the resources. Like RSS, Atom also provides a list
of annotated hyperlinks, but also allows embedding the actual content in an entry‟s “content”
tag. This prevents the requester from having to send a separate request for each feed entry to
retrieve the content associated with that entry.

The advantage of using feeds to represent resource collections are that the RESTful services
will behave like a web news feed. This enables the existing feed readers and aggregators to
monitor or poll the content of this RESTful service just like a normal news feed. The
RESTful service can then support both human and machine consumers, using existing
applications. It is important that such services implement HTTP “If Modified Since” header
behavior to prevent returning duplicate responses to the periodic queries that occur when
aggregators poll the feed.

A disadvantage of this method is that the feed type is a generic XML collection that does not
specifically identify the types of resources it contains. This can be problematic with XML
binding and code generation tools that developers use to alleviate the time-consuming work
of parsing XML. There are potential ways around this by using sophisticated XML schema
extension techniques.

Multipart HTTP Responses

The HTTP protocol enables the passing of multiple resources in a single response message
body by the use of Multipurpose Internet Mail Extensions (MIME) multipart content types
(defined in RFC 2046 Section 5.1). This enables a collection of resources to be passed to a
requester in a single HTTP response without the use of any extra “container” or feed
semantics. This method is not commonly used or known, but is gaining popularity with the
advent of “HTTP Push” or “Comet” techniques.

Comet techniques use long-running multipart responses across persistent HTTP connections
to enable servers to “push” content to the browser. The advantage of using this technique
with RESTful services is that long-running queries, or queries with large result sets, can start
trickling resources back to the requester before the query has been completed. This enables
the requester to start utilizing these resources immediately without having to wait for the full
set of results. This alleviates a huge disadvantage of XML, in that to easily construct and
return an XML container element or feed, the complete set of returned resources have to be
known. The disadvantage also manifests on the receiving end, in that many XML parsers
and technologies require the complete document, before allowing usage. Constructing an
XML document from a large collection can also consume tremendous amounts of server
resources, especially since these results can be held in server memory until transmitted to the
requester. This tremendous performance and resource advantage is starting to drive more
developers to look at his methodology despite the technical difficulties in leveraging it.

http://tools.ietf.org/html/rfc2046#section-5.1
http://en.wikipedia.org/wiki/Comet_(programming)

11

4 Documenting RESTful Services

Like any interface or Application Program Interface (API), RESTful services need some
level of documentation to be useful to an external consumer or developer. REST does try to
keep documentation light by reusing the existing specifications and standards which include
primarily the HTTP specification. By leveraging the HTTP specification, the details of
constructing valid requests and responses, exchanging them over a network, describing the
set of allowed operations (i.e., GET, POST, PUT), and even generating errors have already
been worked out and do not need additional documentation. This leaves five primary pieces
of documentation a RESTful service developer needs to provide to their consumers.

1. Describe the resource
2. Describe representations
3. Describe the details on how to form a valid request in the form of a URL
4. Detail any actions or behaviors performed by a RESTful service request beyond the

HTTP basic operations
5. Set the terms of usage for the service

RESTful services are primarily described and documented with human-readable text. This is
a departure from SOAP-style services which heavily leverage machine-readable
specifications known as Web Services Description Language (WSDL) definitions. The
advantage of a machine-readable specification is that it allows software tooling to generate
scaffolding code that assists in invoking and providing a service. It also allows for
automated validation of exchanged information and content. One of the primary reasons the
REST community did not adopt a machine-readable specification is that the existing
standards, such as WSDL or Interface Definition Language (IDL), were incapable of
describing a RESTful interface. Another reason is that the existing specification standards
were considered too complex to describe simple RESTful exchanges. With the advent of
new standards such as WSDL 2.0 and the less complex Web Application Description
Language (WADL), RESTful services can now be described in machine-readable
documents. This enables the RESTful services to have the same tooling support and
advantages originally only enjoyed by SOAP and RPC-style interfaces.

Describing SOAP vs. REST Operations

A SOAP-service endpoint has a clearly defined boundary with a well defined set of
operations. The set of operations supported by a SOAP service are clearly laid out and
documented with a WSDL definition. The SOAP-service endpoint even has its own identity
with the service URL, which provides the location for invoking the service and for accessing
its definition.

A RESTful service on the other hand is not so clearly defined. A single RESTful service
may be defined as an arbitrary collection of HTTP operations working against an arbitrary
set of resources. Perhaps this grouping was established because they share a common

12

underlying code base, infrastructure, or development team. Many times a single RESTful
service describes a set HTTP operation against a single type of resource. REST does not
have a clear URL that “points” to clearly documented, well defined, machine describable set
of operations that are included into a well-defined service endpoint as described by SOAP-
based services. At the end of the day, a RESTful service endpoint boils down to a grouped
set of operations (commonly called methods) that work against a set of resources. The
“how” and “why” these methods are grouped into a single RESTful endpoint is largely
irrelevant to the invoker, since this information is not needed to make a RESTful service
work (unlike a SOAP endpoint in which the invoker needs the service endpoint URL before
invoking any operation).

4.1 Describing the Resources

It is always helpful to have a general description of the actual resource being exchanged.
The general description should include a brief statement or definition that describes the
resource being exchanged. This establishes context which enables the engineer to verify that
the resource type is indeed what they required and are expecting. This is especially
important if the service is providing information using heavily overloaded terms. The classic
example is a service that returns information for a “tank”. It can be difficult to discern
whether it is a storage tank, a tracked vehicle with big guns tank, or a video game character
archetype tank. Often, the knowledge of the source itself will provide the appropriate
context (i.e., http://homedepot.com it will provide info on storage tanks, http://janes.com will
provide info on tracked vehicles with big guns, http://worldofwarcraft.com will provide info
on the later). However, it is a mistake to assume the consumer will be able to discern the
type of resource directly from knowledge of the source. (What kind of tank information will
http://www.armysurpluswarehouse.com provide?)

For structural information, in which the content is broken up into some arrangement of data
items or fields, a description of each item should be provided. The description should be
fairly generic and independent of the actual format or representation that gets transmitted.
This is because a RESTful service may be able to return multiple representations of a
resource, such as XML, JSON, or Excel. These representations will usually include the same
information and data items regarding the resource, only packaged in different formats.

4.2 Describing the Representations

A resource is a concept; a representation is the actual characters or binary bits that convey a
resource between consumers and providers. A RESTful service may be capable of producing
several different kinds of representations of a resource on request. Documentation should list
all supported representations by their content type.

The contrast between SOAP handling of information and the REST paradigm is significant.
SOAP typically works only with XML documents and attempts to encode other types of
information within the XML document. The documentation for these services must describe
the nature and arrangement of the component data elements and clearly spell out methods for

http://homedepot.com/
http://janes.com/
http://worldofwarcraft.com/
http://www.armysurpluswarehouse.com/

13

interacting with the information hidden behind the service and provide machine-readable
descriptions known as schemas. Schemas, and similar techniques for describing the requests,
responses, and sequence of flow, allow consumers to use automated software generation
tools to develop client applications.

Under REST, representations enjoy a rich variety of more than 350 content types that also
include the SOAP document type. A RESTful service may provide images and video or may
exchange invoices, medical records, or contact information. Information exchanges typically
use well established text or binary formats that are documented elsewhere. For example,
Joint Photographic Experts Group (JPEG) and Portable Network Graphics (PNG) are
common representations for images, Moving Pictures Experts Group (MPEG) is a common
representation for video data, and Windows Wave (WAV) is a common format for sound
recordings. For these representations of the underlying resource, simply declaring supported
exchange formats is sufficient. Usually this is done by listing the Internet Media Types
associated with the resource.5

Structured textual representations need to be documented to be useful. Structured
information using individually crafted formats employing XML or JSON require
documentation because their encoding, by its nature, cannot convey meaning. The provision
of details on the structure of information also allows consumers to check for correctness.
XML-based representations use schemas in the same fashion as the SOAP protocol; JSON-
based representations typically use documentation intended for people to read. Machine
readable specifications exist for JSON-based representations, but they are not in wide use.

Ideally, for a RESTful service, the information model and the access method are the same;
one does not have to understand the information and then learn how to access it. The degree
of success in achieving this goal will depend on the laying out of the structure of the
information and then constructing resources that provide it. The software implementation of
the service then handles only the details of producing the information and converting it into a
requested content type.

4.2.1 Constructing the URL

The documentation for a RESTful service needs to describe how to construct a URL to
reference either a single resource or collection of resources. Generally, a URL consists of a
base, the resource path, and the acceptable parameters that can be included in a query string.

Base

Typically, the base of the URL identifies a collection of resources that have the same type or
some common relationship that allows grouping together. The following, previously used
example, demonstrates a URL to a collection of invoices for business.com:

5
 This information can, of course, be obtained at run time through the use of the HEAD verb to request

the so-called metadata about a resource; but in practice, this technique is not used.

14

http://business.com/invoices

Path

A path denotes a way to reach a specific resource, often as a series of progressively finer
descriptions or greater detail. The following URL identifies a single line item within an
invoice by walking down the hierarchy from the unique identifier through the line number.

Query String

Query strings often filter particular information from a set of data or qualify the
representation returned. A specification must include all optional and required parameters
along with acceptable values and legitimate combinations:

http://business.com/invoices/<InvoiceId>/line/<LineNumber>?lang=en-us&maxlines=25

4.2.2 Describe the Operations

When creating a resource, one has the option of specifying which operations it supports.
Because REST relies on the HTTP protocol, the operations should align with the defined
semantics of the HTTP verb. For example, the HTTP GET operation should “retrieve” or
“read” something. A PUT should “create” or “replace” a resource. DELETE should
“remove” it. Finally, POST operations should interact with a resource, either “modifying” or
“manufacturing” it directly or initiating other activity through the form processer.

4.2.3 Describe the HTTP Headers

The most common HTTP headers that RESTful services include are “Accept”, “Content-
Type”, and “If-Modified-Since”. The “Accept” header declares the content type(s)
acceptable to the invoker. The “Content-Type” header declares the content type (i.e., mime-
type) of the body of the request for HTTP PUT and POST requests. This is useful if a
RESTful service allows different representations to be uploaded, such as JSON and XML.
The “If-Modified-Since” header requests that the service return only a “304-Not Modified”
response if the content is unchanged after a certain date.

4.3 Example

The following table is an example of the documentation for a basic invoice RESTful service
provided by “business.com”. This invoice service reuses the OASIS Universal Business
Language (UBL) XML representation for invoices. The RESTful service enables the
retrieval and modification of existing invoices, and enables the creation of new invoices.

http://docs.oasis-open.org/ubl/os-UBL-2.0/xsd/maindoc/UBL-Invoice-2.0.xsd
http://docs.oasis-open.org/ubl/os-UBL-2.0/xsd/maindoc/UBL-Invoice-2.0.xsd

15

Table 2. Business.com Invoice REST Service

Business.com Invoice REST Service

The business.com invoice service enables the storage and retrieval of the invoices that are
currently or have been processed by business.com. Invoices are exchanged using an OASIS
Universal Business Language (UBL) 2.0 XML as defined by the UBL XML Invoice
Schema.

This service has five Methods which provide the ability to retrieve a set of invoices, retrieve
a single invoice, create a new invoice, update an existing invoice, and delete an invoice.

Terms of Usage

Retrieve Invoices

Description:

This operation will retrieve a set of invoices based on the set of criteria passed in the query
string.

Base URL:

http://business.com/invoices/

HTTP Operation:

GET

QueryString Parameters

The following parameters can be passed to the service to control the set of invoices returned
in the collections.

earliestIssueDate Excludes all invoices that were issued before the passed-in dates
from the returned result. Dates are based on GMT time zone and
are encoded as YYYYMMDD.

latestIssueDate Excludes all the invoices issued after the passed-in date.

http://docs.oasis-open.org/ubl/os-UBL-2.0/xsd/maindoc/UBL-Invoice-2.0.xsd
http://docs.oasis-open.org/ubl/os-UBL-2.0/xsd/maindoc/UBL-Invoice-2.0.xsd

16

customerCountries Includes only invoices that were sold to customers within the
passed-in set of countries. Countries are passed using two-
character country codes as defined by ISO3166. Multiple
countries are comma delimited (i.e., U.S., UK, FR) and maximum
of 10 countries can be passed.

lowAmount Excludes all invoices in which the total sales amount was less
than the passed-value in U.S. dollars.

highAmount Excludes all invoices in which the total sales amount was more
than the passed-value in U.S. dollars.

state Can either be of the values of SUBMITTED, PROCESSED,
SHIPPED, RECEIVED.

HTTP Headers Supported

If-Modified-Since If this HTTP header is set, then the service will return a “304-Not
Modified” HTTP result if no invoices were added, modified, or
removed since the passed-in date. This supports the common
“feed” semantics of only returning a feed if it has changed.

Response

Invoices will be returned in an Atom feed in which each entry‟s “content” element contains a
complete UBL 2.0 “Invoice” element as defined by the UBL Invoice Schema. The feed will
be sorted from most recent to least recent based on the “Issue Date” of the invoice. A
maximum of 100 Invoices will be returned. If no invoices match the passed-in filter, an
HTTP 404-Not Found will be returned.

HTTP Response Codes

200-OK Success

404-Not Found Returned if no invoices were found to match the passed-in criteria.

403-Not Modified Returned if the “If-Modified-Since” header is set and no invoice
has been added, updated, or deleted since the passed-in date.

Examples:

http://business.com/invoices/?customerCountries=%22US,UK%22

http://tools.ietf.org/html/rfc4287
http://docs.oasis-open.org/ubl/os-UBL-2.0/xsd/maindoc/UBL-Invoice-2.0.xsd

17

Returns the invoices for customers in the U.S. and UK.

http://business.com/invoices/?earliestIssueDate=20100101&lates

tIssueDate=20100131

Returns all invoices for the month of January 2010.

4.4 Machine-Readable Specifications

SOAP-based services are heavily reliant on machine-readable specifications expressed in
WSDL. WSDL is a specification for how to define and declare a web-service endpoint
interface in an XML document, simply called a WSDL file or simply the “the WSDL”. The
WSDL primarily details the operations and XML messages utilized by these messages. The
advantages of such a machine-consumable description include the following:

 Automated validation of web-service messages. Validation software could check
incoming messages for correctness and “well-formedness” before passing it to the
web service for processing.

 Automated code generation and scaffolding. Tooling enabled developers to quickly
generate the required code to both consume and provide web services with WSDL
descriptions.

 Useful for brokering machine interfaces between multiple organizations and
communities. Standards bodies have determined that WSDLs and XML schemas are
especially useful for expressing standard interfaces and models.

 Useful for endpoint discovery and dynamic resolution of service endpoints.
Early REST proponents argued against the utilization of these machine-readable
specifications and opted for just human-readable documentation. Many of their reasons
include the following:

 WSDL 1.x was unable to describe the HTTP semantics required by REST
interactions. The standards and technologies that were originally available were
engineered for SOAP interactions, not the simplified REST models.

 It was argued that SOAP, WSDL, and related technologies standards were too
complex and too heavy weight for most of the basic interactions that were happening
on the web.

 WSDLs were often used as a substitute for proper human-readable documentation.
Since RESTful services could only be documented via human-readable text, it could

http://business.com/invoices/?earliestIssueDate=20100101&latestIssueDate=20100131
http://business.com/invoices/?earliestIssueDate=20100101&latestIssueDate=20100131

18

be argued that they produced superior documentation which made them easier to use
(despite the superior tooling available for SOAP).

 The advent of Rich Internet Applications (RIA) and corresponding technologies, such
as Asynchronous Javascript and XML (AJAX) and JSON, were much better suited
for RESTful-style services over SOAP-based services. RIAs largely eliminated the
tooling advantages of SOAP since the tooling was designed for “heavy clients”.
JSON, a browser friendly, non-XML data representation became widely used for
RIAs due to ease of use and performance advantages within the browser. Wide
adoption of JSON representations, which were incompatible with SOAP and WSDL,
also drove developers away from both SOAP and WSDL‟s machine-readable
descriptions.

 Code generation and automated validation made interfaces brittle. It is often argued
that generated clients and stubs were less forgiving to small interface changes and
nuances than human-coded invocations, which again mitigates the value of machine-
readable descriptions.

 Original SOAP services and their corresponding WSDL definitions interfaces were
often of poor quality since they were largely machine generated from legacy code
using SOAP‟s advanced tooling. RESTful interfaces were largely “hand-crafted” due
to the lack of tooling, and so were seen as having superior quality.

 Finally the web-service marketplace never emerged. Vendors and providers resisted
complying with standards to deliver “low-profit” commodity services. They instead
delivered highly proprietary services which enabled them to deliver differentiated
value and to better lock-in customers. This is perhaps why the storage services
offered by companies such as Amazon (Simple Storage Service), Microsoft (Azure),
and Google (Google Docs) have very different APIs (although all are using REST).

Despite the disadvantages, many developers have missed the advantages of machine
descriptions such as automated code generation and scaffolding, automated validation, and a
robust interface specification. To this end, many potential description languages have
emerged as the various communities attempt to converge onto a small set of description
languages standards that support RESTful services. Currently, the two leading candidates
that have the largest adoption and the most tool support are WSDL 2.0 and WADL.

It is important to note that REST machine-readable specifications and description languages
are not in wide use. Many REST proponents argue that machine descriptions are still overly
complex and largely unnecessary. They also argue that code generated from these
descriptions can be “brittle” and is prone to break on small interface changes.

4.4.1 Web Services Description Language 2.0

WSDL is an XML grammar for describing protocols, message formats, and operations
needed to support interactions between one or more systems that typically communicate on a
TCP/Internet Protocol (IP) based network (i.e., the web). WSDLs are often called network-

http://aws.amazon.com/s3
http://www.microsoft.com/windowsazure/
http://code.google.com/apis/documents/overview.html

19

based APIs, which allow intersystem communications (vs. the standard software code API
which is typically used for intra-system communications). WSDL is very general purpose
and can be used to describe a wide range of interfaces using various data representations and
network protocols. However, despite this flexibility, an interface described by a WSDL
definition is almost always based on an XML data representation transmitted using SOAP
over HTTP (this is the “classic” definition of a web service).

In response to the large developer movement toward RESTful interfaces and to reduce
WSDL 1.x‟s complexity, the W3C Web Services Description Working Group released the
WSDL 2.0 Recommendation in 2007. WSDL 2.0 provided a simplified definition of web
services and introduced a much enhanced HTTP binding specification aligned to describing
REST invocations. This specification enabled developers to map XML types and elements
to URL context paths and query string. This enabled the specification of dynamic and
parameterized URLs critical in the description of RESTful services. The HTTP Binding
specification also enabled the declaring of the supported HTTP operations and header
variables which can also be used by a RESTful service.

The following XML samples show a WSDL 2.0 example of the Yahoo Web Search REST
Service. This service takes a set of keywords, a maximum number of results, and a start
index. It returns a set of search results from the Yahoo search engine. The first XML sample
shows the XML schema for the “Result Set” resource which is used to represent the search
results returned by the service. The second XML sample is the actual WSDL 2.0 interface
specification of the REST service.

Please note that for brevity the original WSDL was edited to scale it down for this paper.

XML Schema for WebSearchResponse.xsd

<?xml version="1.0" encoding="utf-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="urn:yahoo:srch"

targetNamespace="urn:yahoo:srch" elementFormDefault="qualified">

 <xs:element name="ResultSet">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Result" type="ResultType" minOccurs="0" maxOccurs="100"/>

 </xs:sequence>

 <xs:attribute name="totalResultsAvailable" type="xs:integer"/>

 <xs:attribute name="totalResultsReturned" type="xs:integer"/>

 <xs:attribute name="firstResultPosition" type="xs:integer"/>

 </xs:complexType>

 </xs:element>

 <xs:complexType name="ResultType">

 <xs:sequence>

 <xs:element name="Title" type="xs:string"/>

 <xs:element name="Summary" type="xs:string"/>

 <xs:element name="Url" type="xs:string"/>

 <xs:element name="ClickUrl" type="xs:string"/>

 <xs:element name="ModificationDate" type="xs:string" minOccurs="0"/>

20

 <xs:element name="MimeType" type="xs:string" minOccurs="0"/>

 <xs:element name="Cache" type="CacheType" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="CacheType">

 <xs:sequence>

 <xs:element name="Url" type="xs:string"/>

 <xs:element name="Size" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

WSDL 2.0 Definition of the Yahoo Web Search REST Service

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:description xmlns:wsdl=http://www.w3.org/ns/wsdl
 xmlns:yahoosrch="urn:yahoo:srch" xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:whttp="http://www.w3.org/ns/wsdl/http"

 xmlns:wsdlx="http://www.w3.org/ns/wsdl-extensions"

 xmlns:ysearchtypes="http://wso2.org/ns/2007/yahoo/srch/types/"

 xmlns:tns="http://wso2.org/ns/2007/yahoo/srch/"

 targetNamespace="http://wso2.org/ns/2007/yahoo/srch/">

 <wsdl:documentation>

 WSDL 2.0 description for Yahoo REST Search API.

 </wsdl:documentation>

 <wsdl:types>

This imports the WebSearchResponse schema defined above.

 <xs:import

 namespace="urn:yahoo:srch"

 schemaLocation=" WebSearchResponse.xsd"/>

 <xs:schema targetNamespace="http://wso2.org/ns/2007/yahoo/srch/types/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:tns="http://wso2.org/ns/2007/yahoo/srch/types/"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

Note that the SearchString element‟s child elements are mapped to URL Querystring
parameters by the HTTP Binding.

 <xs:element name="SearchString">

 <xs:complexType name="SearchString">

 <xs:sequence>

 <xs:element name="query" type="xs:string"/>

 <xs:element name="results" type="xs:integer"/>

 <xs:element name="start" type="xs:integer"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:schema>

 </wsdl:types>

21

 <wsdl:interface name="Search">

 <wsdl:operation name="YahooSearch"

 pattern="http://www.w3.org/ns/wsdl/in-out"

 wsdlx:safe="true">

 <wsdl:input element="ysearchtypes:SearchString"/>

 <wsdl:output element="yahoosrch:ResultSet"/>

 </wsdl:operation>

 </wsdl:interface>

This is the HTTP Binding which maps the Search interface to an HTTP GET operation.

 <wsdl:binding name="YahooHTTPBinding" interface="tns:Search"

 type="http://www.w3.org/ns/wsdl/http" whttp:version="1.1">

 <wsdl:operation ref="tns:YahooSearch" whttp:method="GET"

 http:inputSerialization="application/x-www-form-urlencoded"/>

 </wsdl:binding>

The service element declares a RESTful service endpoint with the base URL at the
http://search.yahooapis.com/WebSearchService/V1/webSearch

 <wsdl:service name="YahooSearch" interface="tns:Search">

 <wsdl:endpoint name="YahooREST" binding="tns:YahooHTTPBinding"

 address="http://search.yahooapis.com/WebSearchService/V1/webSearch"/>

 </wsdl:service>

</wsdl:description>

4.4.2 Web Application Description Language

WADL was proposed to the W3C as a submission by Marc Hadley at Sun Microsystems.
Unlike WSDL, which is a generalized description language for describing service interfaces,
WADL was specifically designed to describe RESTful services, which by definition, always
uses the HTTP protocol. By specifically addressing REST, WADL removes some of the
ambiguities that appear in WSDL and is argued to be a much more understandable and
succinct description of RESTful services vs. WSDL 2.0. Appendix B provides a WADL
description of the same Yahoo Web Search interface shown previously.

22

This Page Intentionally Blank

23

5 Service Management

Throughout its lifecycle, a service will inevitably evolve and undergo changes. To minimize
impacts and potential breakages with consumers, this change must be carefully managed for
both SOAP and RESTful services.

5.1 Simple Network Management Protocol

Application Management should conform to the Simple Network Management Protocol
(SNMP) Version 3.

5.2 Service Heartbeat

A compliant service should support Heartbeats as outlined in Section 7.2.5 of the Web
Services Management (WS-Management) Specification. Reference: “Web Services for
Management (WS-Management),” April 2006.

5.3 Versioning

SOAP-based services typically manage change by providing a new endpoint each time the
interface changes. SOAP enables this behavior by having clear, well-bounded service
interface definitions (i.e., WSDLs) and endpoint “identities” (service URLs). What this
means is that each time a SOAP interface changes, it gets delivered as a new service
endpoint with its own unique UR so service consumers can select the “version” of service
they require by simply accessing the endpoint URL. This enables multiple versions of a
service to coexist, and allows consumers to migrate to newer versions at their own pace.

A RESTful service, on the other hand, is not so clearly defined. REST URLs refer directly to
resources, not service endpoints. What this implies is that a RESTful service does not
support clear endpoint URLs identifying one revision from another. Also the exact boundary
of a RESTful service is often ambiguous to the consumer and may only be known to the
developers. The consumer is left with a set of URLs that reference known resources, with
little or no revision or version information. These URLs are also long lived as they get used
as hyperlinks in external documents or other systems. The exact revision of a RESTful
service is largely hidden from the consumer, whereas for SOAP services, the consumer is
directly aware of the particular revision they are utilizing.

To safely evolve a RESTful service, the developer must consider what is safe to change with
minimal disruption for their consumers. This is especially troublesome for large scale
RESTful service providers such as Amazon, Google, etc., in which a small change can lead
to tremendous, potentially disastrous, disruptions to a very large population. The Internet
itself is heavily reliant on these interfaces to be stable. To this end, changes in these changes
to these services must be assessed to determine potential impacts to the end consumers.

Low risk changes that have minimal chance of impacting end consumers are considered
“safe”. Examples of low risk changes include the following:

24

 Additional query parameters for filtering collections.
 New additional representations. These representations can be selected by the usual

“accept type” methods discussed previously.
 Additional HTTP Operations supported. In general, if a read-only RESTful service

that only supports “GET”, expands to support “PUT”, there should be no impact on
existing consumers.

Medium risk changes have a high chance of impacting at least some small group of
consumers. Examples of medium risk changes include the following:

 An existing representation change. This occurs if the default representation (if no
accept type is declared by the consumer) or if the representation of a known accept
type has changed. XML has methodologies for augmenting existing type, such as
namespaces, to retain backward compatibility. However there is no guarantee that
existing consumers will properly handle these changes.

 HTTP Operations change behavior. A developer can potentially break consumers by
changing the expected behavior of existing HTTP Operations. The HTTP POST
operation is especially vulnerable to shifts in behavior due to its ambiguous
definition.

 Changing Query Parameters. Removing or changing the behavior of a query
parameter, such as used in collection filters, may cause difficulties to a subset of
consumers.

High risk changes have broad impact over a potentially large number of users. Examples of
high risk changes include the following:

 URL Path Changes. Changing how the URL is structured is almost always going to
cause some broken links somewhere.

 Deprecated representations. Removing an existing, used representation will also
cause some consumer problems.

Versioning RESTful Services

In general, RESTful services are typically not versioned in a meaningful way to the
consumers (it is assumed the developers have some versioning on the code base). It is rare to
find version numbers in any RESTful interface and its corresponding documentation. This is
because RESTful service providers usually provide only one version of the interface, the
“current version”. This is why change management and backward compatibility are critical
to design and evolution of these services. It also means developers must be very careful with
the initial design of the RESTful interface, since once it is publically available and
successful, it is very difficult to fix interface issues without massive consumer disruptions.
Indeed, it is the stable and immutable nature of RESTful interfaces that have helped propel
and scale up their usage across the Internet. The existence of the World Wide Web itself
relies on very stable interfaces and URLs to facilitate the hyper-linking across web resources.

25

Despite the lack of a public versioning scheme for RESTful services, versioning does factor
heavily into the representations that a RESTful service can return. RESTful services are
fully capable of returning multiple representations of a resource using multiple versions of
some data standard (i.e., for example HTML v3.0, 4.0, 5.0). The service needs to clearly
indicate which representation data standard versions are used and how the consumer asks for
specific versions.

5.4 Service Identification

Services are uniquely identified based on the “Standard for Naming Active Entities on DoD
IT Networks.” The identifier is formatted as a DoD Public Key Infrastructure (PKI) Subject
Distinguished Name and an example of the format is:

CN=4 to 128 character service name provided by the service‟s owning organization

serialNumber=<UUID>

OU=<name of COCOM, Service, Agency, or DoD Affiliate>

OU=SERVICE

OU=DoD

O=U.S. Government

C=US

For the complete specification, refer to “Standard for Naming Active Entities on DoD IT
Networks”, Version 3.1, 1 December 2009 (in the DISR Registry).

26

This Page Intentionally Blank

27

6 Discovery

Discovery capabilities enable users to search the Internet for specific pieces of information
and content. There are two types of searches that commonly occur in regard to web services.
The first is to search for a web service that meets some potential need (a.k.a. Service
Discovery). The second is to search within a web service or set of services for some
specified needed information, data, or content (a.k.a. Content Discovery).

Service Discovery

Service Discovery involves searching for a web-based capability or service that provides
some needed operation, function, or information. After a candidate service has been
identified, the consumer will need to interface with the service to utilize it. This requires the
service provider to describe and detail how to leverage and utilize the provided service.
Often these details are of a technical nature and may require custom software to be
developed to interface with the service. Because of this, the primary consumer of service
discovery is often the software developer wanting to integrate some existing functionality or
service into new capability during its development.

Content Discovery

Content Discovery involves searching for relevant information provided through a service.
This type of discovery is performed after a service has been deployed, and is in use. The
primary consumer in this case, is the non-technical end user who is only interested in the
provided information, not the providing capability or service.

6.1 REST Discovery

Unlike SOAP-based services, REST does not prescribe a specific technology or standard for
either service or content discovery. REST relies on external discovery providers such as
Google or Yahoo to provide both service and content discovery.

RESTful Service Discovery

To enable a potential consumer to discover provided RESTful services (or any type of web
service for that matter), a service provider simply publishes a human-readable description of
the service on the web. The service provider can then ask the popular search engines
(i.e., Google) to incorporate this description into their indexes, just like any other piece of
web content. A consumer then discovers the service by simply performing a standard
keyword web search.

RESTful Content Discovery

RESTful content discovery works much like RESTful service discovery, except that instead
of submitting the service description to the search engine, the service provider directly
submits the URLs of the resources. Because the resources provided by RESTful services
appear exactly like web content, the same search engines can be used to index the contents of

28

a RESTful service and enable standard web searches to be performed against it. However
there are a few points and rules to consider when using this method of discovery:

 The information provided by the service must support a text-based representation.
Images, audio, video, and similar data do not work well with standard, automatic
keyword indexing technologies.

 The resource should have enough semantic content to enable itself to be discoverable.
For example a RESTful service that returns a single-number temperature for a city
(encoded in the URL, such as http://temperature.com/city/Boston/currentTemp) does
not provide enough content to be properly indexed.

 The resource may need to attach metadata to provide enough semantic content to be
indexed. If the previous example returned “The current temperature in Boston,
Massachusetts is 30”, it becomes a viable candidate to incorporate into an index.

 The resource should have an HTML based representation that is easily readable in the
browser.

 To facilitate indexing multiple resources, the service provider can provide a “page”
with links to new or updated resources.

For content that is not easy to index automatically—such as images, audio, and
video—several approaches exist. Some of these include the following:

 Metadata Catalogs – Metadata catalogs allow external information to be captured for
the resources. The DoD has mandated the DoD Discovery Metadata Specification
(DDMS) for discovery metadata, and the use of metadata catalogs for storing DDMS
records.

 Tagging – Tagging enables the provider of information to associate a set of keywords
or “tags” to content.

 Folksonomies or Collaborative Tagging – Folksonomies allow multiple users to
attach their own tags to content. Content that gets associated to the same tag by
multiple users gets ranked higher when that tag gets queried.

29

7 Service Security

Security for RESTful services is confronted with an architectural problem: in any RESTful
architecture, the server will not store any client context between requests. In this sense, there
cannot be any concept of a client session which makes multi-step authentication and
authorization protocols cumbersome.

DoD and IC have published a comprehensive Service Oriented Architecture (SOA) Security
Reference Architecture that is the underlying foundation for the Net-Centric Enterprise
Services (NCES). This SOAP service-based architecture includes a complex set of
authorization models that allow services to fine tune their requirements to their needs. On
the downside, the use of SOAP, WS-Security, Security Assertions Markup Language
(SAML), and other protocols in this area are very processing intensive and scale poorly to
large, complex systems. These overall issues and the general architectural style speak
strongly against current attempts to “port” the WS-* specification to the RESTful world,
e.g., through efforts such as REST-*.

7.1 General RESTful Security

The following recommendations are for services that are not for DoD-wide consumption, but
need authenticated and authorized access:

1. Transport-Level Security: In most use cases, transport security is sufficient and no
message-level security is needed since there is no intermediate. This is directly in
line with the general point-to-point approach of the RESTful architectural style.
Transport Layer Security (TLS)/Secure Sockets Layer (SSL) is sufficient for
providing mutual authentication, confidentiality, and integrity. Using the DoD PKI,
this approach is easy to support and known to scale to large systems. The DoD
regards services, including RESTful services, as Non-Person Entities (NPE) that
require unique identification. The DoD PKI will be employing an NPE Registry to
create Unique User Identifiers (UUIDs) for services. These UUIDs will be used
during authentication exchanges for accessing a service. See Section 5.2, “Service
Identification.”

2. Standards-Based Authorization: The protocols for RESTful authorizations are still
evolving, but the Internet Engineering Task Force (IETF) has already standardized
the Oauth protocol. There are a couple of interesting exchange schemes that are
building on top of Oauth, such as the Web Resource Access Protocol (WRAP) or the
Kantara User Managed Access (UMA). In addition to various open source libraries
used by Internet Service Providers (ISPs) such as Google, AOL, and Twitter, there is
emerging vendor support (e.g., Sun OpenSSO). Some of these protocols (such as
UMA) can be mapped more or less directly to the SOA Security Reference
Architecture by identifying the Policy Decision Point (PDP), Policy Enforcement
Point (PEP), etc., within this architecture.

30

More complex service implementation problems may be addressed as follows:

1. Service Chaining: Like SOAP-based services, RESTful services are expected to be
orchestratable. For this, the identity of the invoking service, the invocation path, and
the end-user should be available to the service provider, if required. There will be
many cases, however, where only a subset of this information can be made available.

2. Secure/Multipurpose Internet Mail Extension (S/MIME) Media Type Encoding:
Message-level security can be implemented by using S/MIME encoding, as described
in Section 3 of RFC 3851.

3. Cross Domain Systems (CDS): CDS implementing a RESTful architectural style
face issues similar to those of SOAP-based web services. In addition, the payload of
RESTful services is not guaranteed to be XML, so additional measures for non-XML
media type will need to be implemented.

The remainder of this section describes the technology components that are currently
available to create secure RESTful services

7.2 Data Transport Confidentiality and Integrity

For the purpose of this paper, we assume that RESTful services are implemented through
HTTP protocol exchanges. As such, SSL/TLS should be used to protect the transport
channel between two actors as long as the service has been issued a server certificate. To
avoid a recent security issue, SSL session parameter renegotiation shall not be used.

This approach does not address message-level security, and, as such, only allows point-to-
point protection and not end-to-end channel protection. For most practical applications this
is sufficient at this time. Applications that are interested in high-level cryptographic
protection schemes should use S/MIME as content type for protecting arbitrary media types
by following the S/MIME construction rules in Section 3 of RFC 3851. This results in
payloads of media type “multipart/signed” and “application/pkcs7-mime”. A detailed
description of this approach is outside the scope of this paper.

7.3 Authentication

In line with DoD guidelines, authentication should be performed through the DoD PKI
whenever possible. For an end-user facing applications away from the tactical edge, this
presents no major problem since most active personnel are issued a DoD Common Access
Card (CAC) with X.509v3 compliant certificates. When accessing RESTful services from a
standard browser (e.g., through the use of AJAX application accessing RESTful XML
services), users can be authenticated directly through their CAC certificates by requiring
HTTP client authentication through TLS.

The NCES Reliable Certificate Validation Service (RCVS) provides an enterprise-wide
certificate validation service suitable for verifying the certificates.

For all other situations the following approaches are available:

31

7.3.1 End-User Without DoD PKI Certificate

Situation: This situation is common in coalition or Government interoperability scenarios, as
well as when providing services to the tactical edge. Also, while the DISA and the AF PKI
SPO are still in the process of concluding the SIPRNet hardware token trial, the content of
this section applies to classified networks as well.

Solution: Servers hosting web services shall use server-side certificates for server
authentication through SSL/TLS. Session renegotiation shall not be used. User shall
authenticate through HTTP Basic Authentication, using centralized user account stores (such
as Lightweight Directory Access Protocol [LDAP]) where possible. Usernames and
passwords shall not be cached on the client-side in persistent caches.

7.3.2 Machine Clients With PKI Certificates

Situation: This situation applies to machine clients that have been issued client certificates.
While this is not yet deployed DoD-wide, programs may elect to provide machine clients
with local certificates as interim solution. Once device certificates become available to all
services, this approach will become the preferred way to authenticate machine clients.

Solution: Machine clients that have been issued X.509v3 certificates can authenticate to
servers through TLS similarly to end-users. The device client certificate is typically stored in
a secured portion of the operating environment and only accessible to the client itself.

Note: At this time, this approach only authenticates the identity of the device. The identity
of the end-user or even the entire invocation chain cannot be resolved through this approach.
This is a known limitation.

7.3.3 Machine Clients Without Certificates

Situation: When there is no device certificate available to the machine client, there are only
a number of relatively insecure means to authenticate the identity of the caller. If possible,
this situation should be avoided.

Solution: The machine client may authenticate with a static username/password token
through HTTP Basic Authentication. It is critical to manage such passwords in a consistent
way and ensure frequent updates to both the server and client. Additionally, the identity of
the machine client device may be authenticated through the IP address. Note that this is very
insecure without IPSec protection of the underlying IP traffic.

7.4 Authorization

While RESTful web services would be able to utilize a rich ABAC architecture using SAML
and Extensible Access Control Markup Language (XACML), these approaches are in many
cases too heavyweight and not feasible for a lightweight architecture. The following
approach may be used to create an authorization-architecture for lightweight services:

32

7.4.1 Resource Pattern Matching

Situation: Since RESTful web services operate on resources typically represented by HTTP
URLs, authorization to access a given resource may be achieved by specifying URL pattern
rules for users and groups of users.

Solution: Most modern web-access server products provide small agents for common
application and web servers that act as policy agents on the container. These agents protect
resources on the server through a variety of rules and policies. Some products allow policy
decision requests to be sent to a centralized PDP, either through proprietary protocols or
XACML protocol exchanges.

7.4.2 OAuth Authorization

Note: OAuth, OAuth WRAP, and Kantara UMA are emerging protocols that have been
created for authorizing access to RESTful resources. They are built around HTTP protocol
and make heavy use of headers to perform authorization.

Basic OAuth was created to facilitate user-authorized resource sharing between two web
resources. While this may be applicable to some situations, basic OAuth does not allow the
creation of a server- or enterprise-managed authorization model. Kantara UMA introduces
an Authorization Manager into the OAuth protocol flow, thus allowing more distributed as
well as centralized policy decision.

The entire OAuth protocol suite is currently still sedimenting, and there is only very limited
commercial support. At the same time, major vendors have started implementing OAuth and
are in the process of integrating this protocol into their web access products.

A-1

Appendix A

Glossary

AJAX Asynchronous JavaScript and XML

API Application Programs Interface

CRUD Create, Retrieve, Update, Delete

DNS Domain Name Service

DoD Department of Defense

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IANA Internet Assigned Numbers Authority

IDL Interface Definition Language

IETF Internet Engineering Task Force

IP Internet Protocol

ISP Internet Service Provider

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

MIME Multipurpose Internet Mail Extensions

MPEG Moving Picture Experts Group

NCES Net-Centric Enterprise Services

NPE Non-Person Entities

PDP Policy Decision Point

PEP Policy Enforcement Point

PKI Public Key Infrastructure

PNG Portable Network Graphics

RCVS Reliable Certificate Validation Service

REST Representative State Transfer

RIA Rich Internet Application

A-2

RPC Remote Procedure Call

RSS Real Simple Syndication

SAML Security Assertions Markup Language

SNMP Simple Network Management Protocol

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

TLS Transport Layer Security

UBL Universal Business Language

UMA User Managed Access

URI Uniform Resource Identifier

URL Uniform Resource Locator

UUIDs Unique User Identifier

WADL Web Application Description Language

WAV Windows Wave

WRAP Web Resource Access Protocol

WSDL Web Services Definition Language

WS-Management Web Services Management

XACML Extensible Access Control Markup Language

XML Extensible Markup Language

B-1

Appendix B

WADL example of the Yahoo Web Search Service

<?xml version="1.0"?>

<application xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:srch="urn:yahoo:srch"

 xmlns:ya="urn:yahoo:api"

 xmlns:html="http://www.w3.org/1999/xhtml"

 xmlns="http://research.sun.com/wadl/2006/10">

This reuses the same WebSearchResponse.xsd XML representation utilized by the
WSDL 2.0 above.

 <grammars>

 <include href="WebSearchResponse.xsd"/>

 <include href="Error.xsd"/>

 </grammars>

This declares the resource base path which is used in the base URL.

 <resources base="WebSearch">

 <resource path="webSearch">

 <doc xml:lang="en" title="Yahoo! Web Search Service">

 The <html:i>Yahoo Web Search</html:i> service allows you to search the

 Internet for web pages.

 </doc

 <method href="#search"/>

 </resource>

 </resources>

This declares an HTTP Get operation for the search. The request querystring parameters are
explicitly defined under the method.

 <method name="GET" id="search">

 <doc xml:lang="en" title="Search Internet for web pages by keyword"/>

Notice that the parameters of the querystring are explicitly listed instead of packaging within
a XML complex type as done with WSDL 2.0.

 <request>

 <param name="query" type="xsd:string" required="true" style="query">

 <doc xml:lang="en" title="Space separated keywords to search for"/>

 </param>

 <param name="results" type="xsd:int" default="10" style="query">

 <doc xml:lang="en" title="Number of results"/>

 </param>

B-2

 <param name="start" type="xsd:int" default="1" style="query">

 <doc xml:lang="en" title="Index of first result"/>

 </param>

 </request>

Potential responses to the request include an XML result set, a JSON encoded response (note
there is no JSON machine description available), and fault code of HTTP 400 which returns
an XML error from the error.xsd.

 <response>

 <representation mediaType="application/xml" element="srch:ResultSet">

 <doc xml:lang="en" title="A list of search results in XML format"/>

 </representation>

 <representation mediaType="application/json">

 <doc xml:lang="en" title="A list of search results in JSON format"/>

 </representation>

 <fault id="SearchError" status="400" mediaType="application/xml"

 element="ya:Error"/>

 </response>

 </method>

</application>

