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ABSTRACT 

This thesis presents research on the cold gas-dynamic spray process—a relatively new 

technology that may be utilized to create metal coatings in the solid state. While the 

thermodynamics and fluid mechanics of the cold gas-dynamic spray process are well 

understood, the effects of feedstock powder microstructure and composition on the 

deposition process remain largely unknown. In particular, this thesis aims to shed light on 

these effects as they pertain to common face-centered cubic metals and their alloys— 

notably copper and brass. Deposition efficiency, coating thickness per pass, hardness, 

porosity and compositional variance were all characterized as functions of spraying 

pressure, spraying temperature and feedstock particle composition in each of the 

materials. This thesis presents evidence that while brass can be deposited using cold gas-

dynamic spray, the resulting material does not possess a dense, uniform microstructure. 

In fact, deposits made with Cu-90/10 wt.% Zn brass have more than 400% more porosity 

than standard copper coatings, possess extensive microstructural cracking and wide 

compositional variance from grain to grain. 



 vi

THIS PAGE INTENTIONALLY LEFT BLANK 



 vii

TABLE OF CONTENTS 

I.  INTRODUCTION........................................................................................................1 
A.  MOTIVATION ................................................................................................1 
B.  LITERATURE REVIEW ...............................................................................5 

1.  The Cold Spray Deposition Process and Characteristics .................5 
2.  Utilizing Cu-Zn as a Model System for Understanding Cold 

Spray  Deposition of FCC Alloys ......................................................10 
3.  Cold Spray as a Method to Obtain Nanocrystalline Coatings .......14 

C.  HYPOTHESES ..............................................................................................17 
1.  Cold Spray of Microcrystalline Cu-Zn Alloys .................................17 
2.  Cold Spray of Nanocrystalline Cu-Zn Alloys ..................................17 

II.  EQUIPMENT INSTALLATION AND CALIBRATION ......................................19 
A.  INSTALLATION OF CENTERLINE (WINDSOR) SST MODEL 

SERIES C .......................................................................................................19 
B.  CALIBRATION OF CENTERLINE (WINDSOR) SST MODEL 

SERIES C .......................................................................................................20 
1.  THERMACH Powder Feeder ...........................................................21 
2.  Entraining Gas Flow ..........................................................................26 

C.  COLD SPRAY DEPOSITION TESTING WITH THE MODEL 
SERIES C  APPARATUS .............................................................................27 
1.  Powder Characterization, Experimental Setup, and 

Methodology .......................................................................................28 
2.  Reproduction of the Benchmark Data Provided by Centerline 

SST ......................................................................................................30 
3.  Pressure and Temperature Relationships for 

Alumina/Aluminum Powder Mix .....................................................32 
4.  The Effect of Pre-existing Substrate Roughness on Deposition 

Characteristics....................................................................................34 
5.  The Effect of Spray Nozzle Characteristics on Deposition ............37 

III.  COLD SPRAY OF MICROCRYSTALLINE COPPER AND BRASS ................43 
A.  FEEDSTOCK POWDER CHARACTERIZATION ..................................43 
B.  EXPERIMENTAL METHODS ...................................................................51 
C.  RESULTS .......................................................................................................55 

1.  Deposition Efficiency and Coating Thickness Per Pass..................55 
2.  Deposit Hardness and Modulus of Elasticity...................................62 
3.  Deposit Porosity .................................................................................63 

D.  DISCUSSION .................................................................................................67 
1.  The Relationship between Deposition Efficiency and Changes 

in Pressure and Temperature ...........................................................67 
2.  The Effect on Zinc Content on Deposition Efficiency and 

Coating Thickness ..............................................................................71 



 viii

3.  The Relationships between Powder Zinc Content and Deposit 
Hardness and Modulus ......................................................................73 

4.  The Relationship between Powder Zinc Content and Porosity .....74 
5.  Compositional Variability as a Side Effect of the Cold Spray 

Deposition Process .............................................................................76 

IV.  COLD SPRAY OF NANOCRYSTALLINE COPPER AND BRASS 
FEEDSTOCK POWDERS ........................................................................................81 
A.  FEEDSTOCK POWDER PREPARATION AND 

CHARACTERIZATION ..............................................................................81 
B.  EXPERIMENTAL METHOD ......................................................................83 
C.  RESULTS .......................................................................................................84 
D.  DISCUSSION .................................................................................................89 

V.  CONCLUSION ..........................................................................................................93 
A.  SUCCESSFUL INSTALLATION OF COLD SPRAY DEPOSITION  

SYSTEM AT NPS ..........................................................................................93 
B.  SUCCESSFUL DEPOSITION OF BRASS .................................................93 
C.  DEMONSTRATION OF COLD SPRAY OF CRYOMILLED 

COPPER  AND BRASS.................................................................................94 

LIST OF REFERENCES ......................................................................................................95 

INITIAL DISTRIBUTION LIST .........................................................................................99 

 
  



 ix

LIST OF FIGURES 

Figure 1.  Left: Damaged Ring Groove on Helicopter Mast Support, Right: 
Helicopter Mast Support Ring Groove after Repair with Cold Spray 
Deposition.      From [2]. ....................................................................................3 

Figure 2.  Schematic of Cold Spray Process. From [2]. .....................................................5 
Figure 3.  Individual Particle after Impact with a Steel Substrate. From [15]. ..................6 
Figure 4.  Cross Sectional View of Cold Spray Coating. From [16]. ................................7 
Figure 5.  Copper Particle Velocity Distributions and their Associated Deposition 

Efficiencies. From [24]. .....................................................................................8 
Figure 6.  Cu-Zn Phase Diagram. From [31]. ..................................................................13 
Figure 7.  Centerline SST Series C Cold Spray Apparatus at the Naval Postgraduate 

School. .............................................................................................................20 
Figure 8.  Powder Feeder Air Flow Meter by King Instrument Company. .....................21 
Figure 9.  THERMACH Powder Feeder Vibrational Impactor Speed [RPM] 

Example. ..........................................................................................................22 
Figure 10.  Centerline SST Model Series Control Panel Interface. ...................................23 
Figure 11.  Calibration Curves for Thermach Powder Feeder and SST Series C 

Control Panel [Pure Aluminum]. .....................................................................24 
Figure 12.  Calibration Curves for Thermach Powder Feeder and SST Series C 

Control Panel [Pure Copper]. ...........................................................................24 
Figure 13.  Calibration Curves for Thermach Powder Feeder and SST Series C 

Control Panel [90–10wt.% Cu-Zn]. .................................................................25 
Figure 14.  Calibration Curves for Thermach Powder Feeder and SST Series C 

Control Panel [80–20wt.% Cu-Zn]. .................................................................25 
Figure 15.  Calibration Curves for Thermach Powder Feeder and SST Series C 

Control Panel [70–30wt.% Cu-Zn]. .................................................................26 
Figure 16.  Flow Chart of Equipment Gas Flows During Operation. ................................27 
Figure 17.  SEM Photograph of SST-A0050 [50 wt.% Aluminum/50 wt.% Alumina] 

Powder. From Centerline SST. ........................................................................29 
Figure 18.  Cold Spray Deposition Pattern.........................................................................30 
Figure 19.  Deposition Efficiency and Coating Thickness Per Pass Vs. Spray Pressure 

for SST-A0050. ................................................................................................32 
Figure 20.  Deposition Efficiency Vs. Spray Temperature and Spray Pressure for SST-

A0050. ..............................................................................................................33 
Figure 21.  Photograph of the Process of Modifying the Nozzle Stand-Off Distance. ......37 
Figure 22.  Deposition Efficiency and Coating Thickness per Pass Vs. Nozzle Stand-

off Distance for SST-A0050. ...........................................................................38 
Figure 23.  Non-Dimensional Chart Showing the Effect of Stand-Off Distance on 

Deposition Efficiency. From Pattison et al. [41]. ............................................39 
Figure 24.  SEM Surface Photographs (1000x).Clockwise from Top Left: Pure 

Copper Powder, Cu-90/10 wt.% Zn, Cu-80/20 wt.% Zn and Cu-70/30 
wt.% Zn. ...........................................................................................................45 



 x

Figure 25.  Output X-Ray Spectra, Counts Vs. Energy, for Cu-90/10 wt.% Zn 
Deposit, Sprayed at 250 psi and 450 °C. .........................................................47 

Figure 26.  SEM Cross-Sectional Photographs (1000x) of the As Received Brass 
Powders, Clockwise from Top Left: Cu-90/10 wt.% Zn, Cu-80/20 wt.% 
Zn, Cu-70/30 wt.% Zn. ....................................................................................49 

Figure 27.  Left: Zinc X-Ray Counts / Copper X-Ray Counts vs. Distance, As 
Received Cu-70/30 wt.% Zn Powder. Right: Line Map from which Data 
on the Left was Retrieved. ...............................................................................49 

Figure 28.  Cross-Sectional Spectrograph Maps and SEM Image (1000x) for Cu-90/10 
wt.% Zn Powder, As Received. Top Center: SEM Image. Bottom Left: Cu 
X-Ray Elemental Map. Bottom Right: Zn X-Ray Elemental Map. .................50 

Figure 29.  Cross-Sectional Spectrograph Maps and SEM Image (1000x) for Cu-70/30 
wt.% Zn Powder, As Received. Top Center: SEM Image. Bottom Left: Cu 
X-ray Elemental Map. Bottom Right: Zn X-ray Elemental Map. ...................51 

Figure 30.  Left: Optical Image of Pure Copper Deposit (Sprayed at 250 psi, 450 °C ). 
Right: Sample of ImageJ Porosity Analysis on the Same Deposit. .................55 

Figure 31.  Deposition Efficiency and Coating Thickness Vs. Zinc Content by wt.%, 
with a Spray Pressure of 250 psi and a Spray Temperature of 450 °C. ...........58 

Figure 32.  Deposition Efficiency and Coating Thickness Vs. Zinc Content by wt.%, 
with a Spray Pressure of 250 psi and a Spray Temperature of 300 °C. ...........58 

Figure 33.  Three Dimensional Surface Plot of Deposition Efficiency Vs. Spray 
Pressure and Temperature for Pure Copper Powder. .......................................60 

Figure 34.  Three Dimensional Surface Plot of Deposition Efficiency Vs. Spray 
Pressure and Temperature for Cu-90/10 wt.% Zn Powder. .............................60 

Figure 35.  Three Dimensional Surface Plot of Deposition Efficiency Vs. Spray 
Pressure and Temperature for Cu-80/20 wt.% Zn Powder. .............................61 

Figure 36.  Three Dimensional Surface Plot of Deposition Efficiency Vs. Spray 
Pressure and Temperature for Cu-70/30 wt.% Zn Powder. .............................61 

Figure 37.  Average Hardness Vs. Zinc Content by wt.% for Deposits Sprayed at 250 
psi and 450 °C, and 250 psi and 300 °C. .........................................................63 

Figure 38.  Average Young’s Modulus Vs. Zinc Content by wt.% for Deposits 
Sprayed at 250 psi and 450 °C, and 250 psi and 300 °C. ................................63 

Figure 39.  Optical Microscopy Photos of Pure Copper Spray Deposits, Mag 25X. 
Left: 250 psi, 450 °C. Right: 250 psi, 300 °C. .................................................64 

Figure 40.  Optical Microscopy Photos of Cu-90/10 wt.% Zn Spray Deposits, Mag 
25X. Left: 250 psi, 450 °C. Right: 250 psi, 300 °C. ........................................64 

Figure 41.  Optical Microscopy Photos of Cu-80/20 wt.% Zn Spray Deposits, Mag 
25X. Left: 250 psi, 450 °C. Right: 250 psi, 300 °C. ........................................65 

Figure 42.  Optical Microscopy Photos of Cu-70/30 wt.% Zn Spray Deposits, Mag 
25X. Left: 250 psi, 450 °C. Right: 250 psi, 300 °C. ........................................65 

Figure 43.  SEM Photos of Cold Spray Deposits, sprayed at 250 psi, 450 °C, Mag 
200X. Clockwise from Top Left: Pure Copper, Cu-90/10 wt.% Zn, Cu-
80/20 wt.% Zn, Cu-70/30 wt.% Zn. .................................................................66 

Figure 44.  Coating Porosity Vs. Zinc Content by wt.%. ...................................................67 



 xi

Figure 45.  Optical Photographs of Deposit/Substrate Interface, Showing Cracking at 
Higher Spray Temperatures, (100x). Top Left: Cu-90/10 wt.% Zn (250 
psi, 450 °C). Top Right: Cu-90/10 wt.% Zn (250 psi, 300 °C). Bottom 
Left: Cu-80/20 wt.% Zn (250 psi, 450 °C). Bottom Right: Cu-80/20 wt.% 
Zn (250 psi, 300 °C). .......................................................................................69 

Figure 46.  Brittle-Type Microstructural Cracking in the Vicinity of Deposit/Deposit 
Interface Gaps, (100x). Left: Cu-80/20 wt.% Zn Sprayed at 250 psi [1.72 
MPa] and 300 °C. Right: Cu-70/30 wt.% Zn Sprayed at 250 psi [1.72 
MPa] and 450 °C. .............................................................................................71 

Figure 47.  Cu-90/10 wt.% Zn Deposit Sprayed at 250 psi [1.72 MPa] and 450 °C. 
Left: SEM Photograph, 500x. Right: Zinc Composition Map, 500x. ..............77 

Figure 48.  Cu-80/20 wt.% Zn Deposit Sprayed at 250 psi [1.72 MPa] and 450 °C. 
Left: SEM Photograph, 500x. Right: Zinc Composition Map, 500x. ..............78 

Figure 49.  Cu-70/30 wt.% Zn Deposit Sprayed at 250 psi [1.72 MPa] and 450 °C. 
Left: SEM Photograph, 500x. Right: Zinc Composition Map, 500x. ..............78 

Figure 50.  Microhardness vs. Cryomilling Time. From [40]. ...........................................82 
Figure 51.  Crystallite Size Vs. Cryomilling Time. From [40]. .........................................82 
Figure 52.  SEM Photographs of Cryomilled Deposits Sprayed at 250 psi [1.72 MPa] 

and 450 °C, 250x Magnification Left: Pure Copper. Right: Cu-90/10 wt.% 
Zn. ....................................................................................................................85 

Figure 53.  SEM Photographs of Cryomilled Deposits Sprayed at 250 psi [1.72 MPa] 
and 450 °C, 500x Magnification. Left: Pure Copper. Right: Cu-90/10 
wt.% Zn. ...........................................................................................................85 

Figure 54.  Nano-indentation Results for Cryomilled Copper Powder Deposit.  Top: 
Hardness. Bottom: Modulus of Elasticity. .......................................................87 

Figure 55.  Nano-indentation Results for Cryomilled Cu-90/10 wt.% Zn Powder 
Deposit. Top: Hardness. Bottom: Modulus of Elasticity. ................................88 



 xii

THIS PAGE INTENTIONALLY LEFT BLANK  

  



 xiii

LIST OF TABLES 

Table 1.  Reference Spray Data from Centerline SST for Series C with SST-A0050 
[50.wt% Aluminum/50 wt.% Alumina] Powder, April 2009. After 
Centerline SST. ................................................................................................31 

Table 2.  Obtained Spray Data for Series C with SST-A0050 [50.wt% Alumina/50 
wt.% Aluminum]..............................................................................................31 

Table 3.  Deposition Efficiency and Coating Thickness per Pass for a Sandblasted 
Substrate and a Smooth Substrate in Otherwise Common Spray Setups. .......35 

Table 4.  Deposition Efficiency and Coating Thickness vs. Nozzle Stand-Off 
Distance for SST-A0050 [50.wt% Alumina/50 wt.% Aluminum]. .................38 

Table 5.  Modification of Nozzle Type for Series C with SST-A0050 [50.wt% 
Alumina/50 wt.% Aluminum]. ........................................................................41 

Table 6.  Sieve and Batch Composition Analysis for Pure Copper, Cu-90/10 wt.%, 
Cu-80/20 wt.% and Cu-70/30 wt.% Zn Powders. From ACu Powder [44]. ....44 

Table 7.  Observed Mean Particle Size and Composition for Each Powder, As 
Received. ..........................................................................................................46 

Table 8.  The Melting Points of Copper, Cu-90/10 wt.% Zn, Cu-80/20 wt.% Zn and 
Cu-70/30 wt.% Zn. ...........................................................................................52 

Table 9.  Cold Spray Parameters Utilized During Copper and Brass Experiments. .......52 
Table 10.  Spray Data for Pure Copper Powder. ...............................................................56 
Table 11.  Spray Data for Cu-90/10 wt.% Zn Powder. .....................................................56 
Table 12.  Spray Data for Cu-80/20 wt.% Zn Powder. .....................................................57 
Table 13.  Spray Data for Cu-70/30 wt.% Zn Powder. .....................................................57 
Table 14.  Hardness and Young’s Modulus for Pure Copper, Cu-90/10 wt.% Zn, Cu-

80/20 wt.% Zn and Cu-70/30 wt.% Zn Deposits. ............................................62 
Table 15.  Spray Data for Porosity in Pure Copper, Cu-90/10 wt.% Zn, Cu-80/20 

wt.% Zn and Cu-70/30 wt.% Zn Cold Spray Deposits. ...................................66 
Table 16.  Multi-Point X-ray Data and Statistics for Cu-90/10 wt.% Zn and Cu-80/20 

wt.% Zn deposits. .............................................................................................77 
 

 

 

 

 



 xiv

THIS PAGE INTENTIONALLY LEFT BLANK  

  



 xv

ACKNOWLEDGMENTS 

 I would like to thank Professor Douglas Seivwright and Dr. Chanman Park of the 

Naval Postgraduate School faculty for their incalculable effort and help with respect to 

the installation of the Centerline Cold Spray Model Series C equipment. Without the 

steadfast generosity of their time and expertise, the machinery would likely have never 

worked.  

Additionally, I am indebted to Professor Joe Hooper and Prof. Sebastian Osswald, 

both of the Naval Postgraduate School, for their consistent guidance with my project and 

for their insightful wisdom into the proper planning and consideration of my thesis work. 

Likewise, I am grateful to Professor Luke N. Brewer, also of Naval Postgraduate 

School, for his never-ending support—both when I desired it and when I did not desire it. 

I could not have written a coherent thesis without his constant presence in my work and 

in my graduate education—assuredly, I am a better engineer and military officer because 

of him. 

I would also like to extend my gratitude to Dr. Dong Jin Woo of the Naval 

Postgraduate School. He was instrumental in helping me learn to operate the equipment 

used during the research presented in this thesis and dedicated multiple afternoons to 

provide support to my work. 

Still further, I am indebted to Ian Ward, the West Region sales manager of ACu 

Powder, for his and his team’s consistently superb customer service, as well as their 

steadfast attention to detail with respect to their documentation. Additionally, they 

demonstrated exceptional professionalism over a period of months by ensuring that we 

possessed all the tools necessary to our work—a rarity for a business that has already 

shipped their product out the door. 

And last, I would like to thank the Office of Naval Research and the Naval 

Postgraduate School itself for providing the funding for this research.  

 



 xvi

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1

I. INTRODUCTION 

A. MOTIVATION 

In the modern world of metallurgy as it portends to mechanical components in 

operation, there are only two constants—occasional mechanical failures and the ever-

steady threat from corrosion. These concerns are serious for the engineer and the 

operator—surface-based electrochemical corrosion, pitting and galvanic corrosion all can 

over time render mechanical components useless, or at the least impair their performance, 

and mechanical damage often will ruin the integrity of the component and prevent the 

part from performing its designed function. Over the years, a multitude of processes have 

been invented and optimized to allow for engineers and operators to prevent the 

occurrence of these constants in some cases, and to mitigate their effects in others. 

Regardless of these efforts however, components still corrode and they still exhibit 

structural failure at times—thus there exists an ever-pressing need for the ability to repair 

such structures to normal operating characteristics. 

In modern engineering, it reasonably can be argued that the most reliable way to 

limit the corrosion of components made of metal and avoid the corresponding negative 

side effects is to apply a relatively thin surface coating to the material for which 

protection is desired. The reason surface coatings are often the most economical or 

practical manner by which corrosion can be combated is rather simple: In many cases, 

passivation via metallurgical composition choice is impossible—considerations other 

than those regarding corrosion such as cost or weight may dominate the design process 

and prevent the use of such materials. Generally speaking, the surface coating will be 

made from a material that limits the potential for corrosion to occur, while additionally 

maintaining the required performance characteristics of the component.  

The potential uses for any such coatings that can be produced are quite large 

however, and are not limited strictly to corrosion protection. Surface coatings are 

employed equally well to increase mechanical durability and wear resistance—say, for 

instance, in bearings. They can also be used to create components that yield significantly 
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different thermal or electrical conductivities than the structural material underneath 

would yield. Such coatings could possibly be used, for instance, to create electrically 

conductive mechanical components, or could be used to create coatings that acted as a 

thermal insulator for the underlying component material, possibly inhibiting creep in a 

high temperature environment.  

In particular, cold spray deposition is a promising technique for applying 

corrosion and wear-resistant coatings. Cold spray deposition is a process by which 

micron-sized metal powder particles are entrained in a heated supersonic gas flow, and 

then deposited upon a desired surface by means of ballistic impingement. Via cold spray, 

a multitude of coating materials can successfully be deposited onto a similarly large 

number of substrate materials at arbitrary thicknesses—chosen by the design engineer 

according the requirements. In 2011 DeForce et al. explored the utilization of cold spray 

to deposit Al-5 wt.% Mg coatings for the protection of magnesium alloys from corrosion, 

ultimately demonstrating that the cold spray process was indeed viable for producing 

corrosion-resistant coatings on ZE41A-T5 magnesium alloys. Coatings were produced 

that were significantly harder than the underlying material, had sufficient adhesion 

strength to the underlying material, and, furthermore, were galvanically compatible with 

the magnesium underneath [1]. 

Going further than corrosion and addressing the problems of mechanical failure, 

our second concern when considering mechanical components, cold spray deposition can 

be used to repair damaged material by replacing material loss due to corrosion or 

mechanical cracks in parts which have already failed—restoring them to operation. 

Repairing components, vice scrapping them and purchasing new ones, can save an 

incredible amount of money—a huge consideration for the Department of Defense in the 

current budgetary environment. Beyond cost considerations though, repairing 

components can minimize downtime of the operational unit, sometimes a larger concern 

than even cost. And last, by repairing mechanical parts vice replacing them, it is possible 

to minimize the scope of and the strain experienced by the supply chain—all the way 

from industry to the maintenance facility—restraining the need for warehouse space, 

supply personnel and delivery services. 
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Several authors have recently demonstrated the utility of cold spray deposition for 

the repair of mechanical parts. For instance, P. F. Leyman and V. K. Champagne showed 

conclusively in 2009 that cold spray system could be used to repair damaged 7075-T73 

aluminum mast supports used in U. S. Army rotorcraft [2]. More than 50 mast supports 

had been rendered unusable by either pitting corrosion or by mechanical damage. 

Furthermore, the mast supports were completely unserviceable by any known method or 

process—essentially, the entire component was scrapped by the damage, requiring the 

purchase of new mast supports in order to keep the unit operational. Removing the 

damaged piece of the component, utilizing cold spray deposition to refill the damaged 

piece and then machining the support mast back to original specifications allowed for the 

reclamation of the component as a whole. A picture of the helicopter mast support before 

and after repair with cold spray deposition can be found in Figure 1. Likewise, in 2010, J. 

Villafuerte of CenterLine Windsor Ltd. and D. Wright of Accuwright Industries were 

able to practically demonstrate that in addition to aluminum alloys, aircraft components 

made from magnesium alloys could be repaired, re-machined and put back into service 

— meeting all FAA requirements [3]. A number of aluminum alloys were successfully 

used in this process, including AA6061 and AA7075, as well as other more exotic 

aluminum alloys. 

 

Figure 1.  Left: Damaged Ring Groove on Helicopter Mast Support, Right: Helicopter 
Mast Support Ring Groove after Repair with Cold Spray Deposition.      

From [2]. 
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Cold spray deposition has been a focus of recent research because in both the 

creation of surface coatings and in the repair of mechanical failures, it has generally been 

recognized that traditional thermal spray (TS) (which includes techniques such as High 

Velocity Oxygen Fuel [HVOF] Spray, Plasma Spray and Wire Arc Spray) and classic 

welding have potentially serious shortcomings, either from a mechanical or an 

economical standpoint. Situations where conventional TS or welding is unacceptable 

include when high temperatures cannot be tolerated by the substrate, specific 

microstructural and mechanical properties in the feedstock are required to be retained in 

the coating, oxidation protection is necessary, ultra-thick coatings are needed, residual 

stresses must be eliminated from the final product and extremely high-density coatings 

are necessary.  

Cold spray deposition offers a number of unique advantages over traditional 

techniques because during cold spray the material temperature is always at levels well 

below the melting point of the feedstock material. As a matter of fact, the term “cold 

spray” was originally given to the process due to the relatively low temperatures of the 

expanded gas stream that exits the nozzle in comparison to thermal spray. Due to the 

significantly lower temperature of the feedstock material during the deposition process, 

the adhesion of the feedstock material to the substrate as well as the cohesion of the 

deposited material is accomplished in the solid state [4]. As such, cold spray offers a 

unique advantage in that there is the possibility of retaining the microstructure and the 

mechanical properties of the particle feedstock. Furthermore, cold spray offers a number 

of additional advantages. First, thermal oxidation during spray deposition is mostly 

evaded; therefore, cold spray produces coatings that are more durable with better bond 

strength. Likewise, due to the low temperatures at which the coatings are deposited on the 

substrate, the formation of residual stress is largely avoided, especially at the interface 

between the substrate and the coating. Avoiding large residual stresses is critical because 

they often cause debonding of the deposited coating. This problem is compounded when 

the substrate material is different from the coating material. Still further, the shock-

dominated physics of particle impacts during cold spray, gives rise to “material mixing at 

the interface and providing mechanical interlocking between the two materials [5].” Last, 
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in comparison with other thermal spray coatings, “deposits produced by cold spray are 

characterized by being less porous, having higher hardness and lower oxide 

concentration, and the Young’s moduli of cold spray deposits can be greater than 80% of 

bulk feedstock values [6].” 

Given the distinct advantages that cold spray deposition offers as an industrial 

process, it can easily be inferred that such a process could greatly benefit the Navy and its 

associated contractors, given the scale and scope of high performance materials the naval 

environment demands—on and underneath the sea, as well as in the air. The Navy is 

constantly searching for new processes and techniques which can improve construction 

and repair capabilities while minimizing costs, complexity and time. 

B. LITERATURE REVIEW 

1. The Cold Spray Deposition Process and Characteristics 

Cold spray (CS) is a process whereby metal powder particles are entrained in a 

supersonic jet of heated gas and utilized to form a coating by means of ballistic 

impingement upon a suitable substrate [4, 7–9]. A schematic of this process can be found 

in Figure 2. 

   

Figure 2.  Schematic of Cold Spray Process. From [2]. 
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The metal powders range in particle size from 5 to 50 microns and are accelerated 

by injection into a high-velocity stream of gas. The high-velocity gas stream is generated 

through the expansion of a pressurized, preheated gas through a de-Laval type 

converging-diverging nozzle. During expansion the gas flow is accelerated to supersonic 

velocities, with an accompanying decrease in pressure and temperature [10–12].  

The powder particles, initially carried by a separate gas stream, are injected into 

the nozzle either prior to the throat or downstream of the throat. The particles are then 

accelerated by the main nozzle gas flow and are impacted upon a substrate after exiting 

the nozzle. Upon impact, the solid particles de-form and create a bond with the substrate. 

As the process continues, particles continue to impact the substrate and form bonds with 

the deposited material, resulting in a uniform coating with very little porosity and high 

bonding strength [13, 14]. A visual example of the de-formation and bonding experienced 

by a single powder particle can be seen in Figure 3 and a cross sectional view of a cold 

spray deposition coating can be found in Figure 4. 

 

Figure 3.  Individual Particle after Impact with a Steel Substrate. From [15]. 
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Figure 4.  Cross Sectional View of Cold Spray Coating. From [16]. 

Cold spray was introduced to North America at the laboratory scale in the 1990s, 

and a U.S. patent was issued in 1994 (U.S. Patent No. 5, 302,414 [1994]) [17–20]. Cold 

spray deposition was initially developed, however, in the mid 1980’s in the Soviet Union 

at the Institute for Theoretical and Applied Mechanics of the Siberian Division of the 

Russian Academy of Science in Novosibirsk. Interestingly enough, research of the 

process began as an offshoot of supersonic wind tunnel testing [21–23]. During 

experiments there in a supersonic wind tunnel with a particle-leaded flow, it was 

discovered that, from a particular particle velocity onwards, the abrasive effect of the 

particles reverses to an adhesion, and that this effect is in fact assisted by a rise in gas 

temperature.  

This finite velocity is known as the critical velocity, and is paramount to the 

discussion of cold spray deposition as a process. If a particle is traveling above this 

critical velocity, then it will deposit and if it is travelling slower, it will simply bounce 

off—thus, if larger numbers of particles are travelling at speeds above the critical 

velocity, deposition efficiency will be significantly improved. Further, knowing the 

critical velocity for a specific powder will enable the operator to possess foreknowledge 

of the approximate deposition efficiency to be expected prior to the act of creating the 

coating [24, 25]. A graph constructed via experimentation with the deposition of copper 

powder by Gilmore et al. can be found in Figure 5 which demonstrates quantitatively the 

importance of the particle velocity in reference to the critical velocity on deposition 
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efficiency.  This data shows that for copper deposition using helium gas at a temperature 

of 300C, the critical velocity is approximately 600m/s. 

 

Figure 5.  Copper Particle Velocity Distributions and their Associated Deposition 
Efficiencies. From [24]. 

There are a number of process parameters which can be controlled during the cold 

spray process, all of which have a direct effect on the efficiency of deposition and on the 

quality of the sprayed material. Generally speaking these cause and effect relationships 

hold true regardless of the feedstock material—the only exception is particle hardness, 

which is a direct attribute of the feedstock material. The parameters which may be 

manipulated can be grouped into three separate categories. First there is the 

thermodynamic conditions & characteristics of the spray including: molecular weight of 

the entraining gas, entraining gas flow pressure, entraining gas flow temperature, distance 
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from the nozzle apparatus to the substrate, and nozzle design. There are also key 

feedstock powder characteristics: particle size, particle morphology, and particle 

hardness. Lastly, there is the nature of the substrate which includes: substrate hardness 

and substrate temperature. Victor K. Champagne’s book “The Cold Spray Materials 

Deposition Process” provides an extensive review of this information and a full reference 

list for the discussion of these parameters and their effects on the cold spray process in 

general and on the characteristics of the final coating [26].  

 The relative importance of these key cold spray process parameters has been 

thoroughly explored and documented for pure aluminum and copper materials.  In 

addition, some work on aluminum alloys has also been performed. There are over one 

hundred papers thus far devoted to the study of cold spray with copper and aluminum 

used as the feedstock powders. Of these papers, it is particularly the ones that deal with 

copper that provide the background for this thesis.  

With respect to copper in the pure form, the literature is rather extensive [6, 16, 

27–30]. Cold spray deposition was demonstrated to be effective and to be perhaps more 

effective than thermal spray by Stoltenhoff et al. in 2006. During their experiments both 

helium and nitrogen were used as spraying gas, and relatively common spraying 

pressures, temperatures, and particle size and morphologies were used to allow for 

comparison with previous results in other materials. Basic parameters of copper cold 

spray coatings were obtained including hardness, bond strength, porosity, electrical 

conductivity, deposition efficiency and coating microstructure. Additionally the group 

presented discussion regarding annealing after the cold spray process and how such 

annealing affected the final microstructure and properties of the copper coating. In 

summary, this paper provides a solid benchmark for what to expect in cold spray 

deposited copper coatings based on common spray parameters. Ning et al. delved into the 

effects of powder properties on in-flight particle velocity and deposition effects in copper 

powders utilizing a low pressure cold spray process, with an entraining gas pressure of 

seven bars. In this paper a comprehensive estimation of the critical velocity of copper 

was made using the SprayWatch system and deposition efficiency was recorded for three 

different types of copper feedstock powder. These estimations of critical velocity allow 
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the operator to quantitatively adjust spray parameters before engaging in the cold spray 

process to best affect the final coating product as desired. Koivuluoto et al. presented 

work in 2007, which discussed the microstructure of copper cold sprayed coatings in 

depth. In their work, three different types of copper feedstock powders—in terms of 

microstructure—were used in order to provide comparison between different powder 

microstructures and their according effects on the final coating product—they found that 

copper produced dense coatings, but with occasional micro-voids in between splats. Heat 

treatment was also done on some of the samples to expand the value of the work. 

Additionally coating porosity and the corrosion characteristics of the coatings were 

studied as well—these characteristics were crucial for the authors to understand well 

because by their reasoning, ostensibly the reason why copper would be used in a coating 

would be to provide a material with excellent electrical conductivity and/or corrosion 

resistance. 

2. Utilizing Cu-Zn as a Model System for Understanding Cold Spray 
 Deposition of FCC Alloys 

A casual search of the literature and academic databases will yield a significant 

amount of knowledge pertaining to the spray of copper in its pure from, as mentioned 

previously. 

However, it should be noted that this knowledge is largely of engineering use. For 

example, the conclusions that can be found in the literature often read something like the 

following: if the user sprays at this temperature, these types of coating characteristics will 

emerge. Or with regard to material selection: the spray of highly alloyed steel does not 

lend itself to success when using the cold spray deposition method. The initial conditions 

and the end result are incredibly well understood, and the methods by which the process 

may be modified are also similarly well understood.  

Despite the progress in its application, there is still little fundamental 

understanding of the exact science behind the cold spray method, particularly 

surrounding how the microstructure of the starting powder material influences its ability 
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to be sprayed. Many questions surrounding the microstructure-processing-final 

microstructure relationships remain to be answered: 

 If a material has substitutional alloying agents added, but is sprayed at a 

higher temperature, which relationship will dominate the process in 

comparison to the controlled example, and more importantly, why?  

 How does substrate temperature vary as a control point if we vary the 

substrate material?  

 Is it more important for low melting point substances?  

This thesis uses the binary alloy Cu-Zn as a model system for beginning to answer 

some of these questions. Copper in the pure form has already had extensive research 

performed with respect to the spray and deposition of the material, lending a wonderful 

starting point for research—and provides extensive comparative points in the literature 

for the results. By contrast, there are no open-literature reports of the cold spray 

deposition of brass alloys.  Copper and zinc form a simple, substitutional solid solution 

with a single phase region for concentrations of less than thirty-five percent zinc by 

weight, as seen in Figure 6 below (obtained from ASM International, but original 

reference listed) [31]. In addition, the melting point of the alloy decreases with increasing 

zinc content, possibly lending insight into whether or not particle melting point has an 

impact on the deposition process. Lastly, the brass alloys are known for having low 

stacking fault energies which give rise to large strain hardening coefficients, a property 

that will give insight to the fundamental mechanics responsible for particle bonding. 

Stacking faults as defined in materials science are essentially interruptions in the 

naturally occurring stacking sequence that occurs in all crystal structures, including those 

of metals. Stacking faults are the direct and observable result of dislocations—

crystallographic defects or irregularities in a crystal structure. Because stacking faults 

decrease the amount of order within a crystal structure, they carry an associated energy 

penalty with them.  

In many occasions, a perfect dislocation—which would yield a single stacking 

fault—dissociates into two partial dislocations, which tend to repel each other. This 
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creates a stacking fault with a particular width, instead of the infinitesimally thin (a single 

plane of atoms thick) stacking fault associated with perfect dislocations. The width of the 

stacking fault in this case is directly attributed to the value of the stacking fault energy 

(SFE) of that particular material. There must be an energy balance between the repulsive 

force that exists between two separate partial dislocations, and the attractive force which 

exists as a consequence of the surface tension created by the stacking fault itself. The net 

quantity of energy which remains after the summation of these opposing forces is the 

quantitative value of the SFE of the material in study. More simply put, SFE is the energy 

penalty which is paid to create a stacking fault in a crystal structure—a material property 

which is unique in every material. 

When SFE is low, such as in Cu-Zn alloys, wider stacking faults occur because 

there is a smaller energy penalty to be paid for the associated defect in the crystal 

structure. These defects in the crystal structure prevent the movement of dislocations via 

the processes of cross-slip and climb—thus low SFE materials have the capacity to 

become very hard and brittle when cold worked. 

When SFE is high, such as in aluminum, it becomes exceedingly difficult for a 

perfect dislocation to dissociate into two partial dislocations, and as such the material 

tends to deform only via dislocation glide. If dissociation into two partial dislocations 

does occur, then the stacking fault tends to be very thin, and carries a significant amount 

of energy within the fault. Because these materials leave cross slip and climb relatively 

unhindered as manners to achieve dislocation motion, cold work does not impart as 

strong of an effect on the hardness and brittleness of the material as seen in low-SFE 

materials.  

Warren et al., Smallman et al., and Wagner effectively proved this concept and 

it’s applicability to Cu and Cu-Zn alloys over half a century ago [32–34]. Via analysis of 

the cold working process it was estimated that the SFE’s of Cu, Cu-10wt.%Zn, Cu-

20wt.%Zn and Cu-30wt.%Zn were 74 mJm-2, 60 mJm-2, 20 mJm-2 and 6 mJm-2, 

respectively. Essentially, as more Zn is added by wt.% in a Cu-Zn alloy, the SFE energy 

decreases—and further decreases to an extremely low level. 
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As such, we can reasonably and logically deduce that as more Zn is added by 

wt.% to Cu in brass, that a larger number of and wider stacking faults will be present 

given the same number of dislocations in the crystal, and this will inhibit movement of 

dislocations during the cold work process. Accordingly, it would be rational to assume 

that cold worked Cu-Zn alloys will be significantly harder and crystallite size will be 

significantly smaller than those values found in pure Cu cold worked samples, with the 

disparity between the two increasing with larger amounts of added Zn. Logically, from 

these statements we can conclude that cold spray, the process of which severely 

plastically deforms the material and creates a large amount of dislocations, will create 

very hard coatings from materials with low SFE’s—and it is possible that the particles 

will be so hard that either the deposition or the final coating is impacted negatively. 

 

Figure 6.  Cu-Zn Phase Diagram. From [31]. 
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3. Cold Spray as a Method to Obtain Nanocrystalline Coatings 

It is well known and understood that nanocrystalline materials possess increased 

hardness and strength compared with typical materials, and there is therefore much to be 

desired in very hard and strong cold sprayed coatings. Thus research into nanocrystalline 

cold sprayed coatings has been a relatively new but active area of interest. 

Nanocrystalline aluminum was utilized in the cold spray process by Ajdelsztajn et 

al. in 2005, and the coating produced with this enhanced microstructure was compared 

directly to the coatings produced by the conventional microstructure [35]. It was 

determined that coating hardness could indeed be substantially increased via the use of 

nanocrystalline powder feedstock, but the use of such material also resulted in a 

substantially higher porosity with decreased density—a product of the increased hardness 

of the feedstock powder which limited the ability of the powder to deform on impact with 

the substrate, thus creating a bond between the powder and substrate. 

Hall et al. in 2005 accomplished the same task of consolidating nanocrystalline 

aluminum via utilization of the cold spray deposition process, albeit with slightly 

different spray parameters and powder characteristics [36]. The same observations were 

made regarding porosity in nanocrystalline cold spray coatings, but during the course of 

their research, Hall et al. noticed significant grain refinement in their final coatings as a 

product of the cold spray process, in contrast to Ajdelsztajn et al. who noted a lack of 

grain refinement. The cause of this grain refinement in Hall et al.’s research was 

attributed to the significantly higher particle velocity—a product of their differing 

operating parameters. 

In 2011, Zhang et al. prepared aluminum coatings using a mixture of 

nanocrystalline aluminum powder and conventional atomized aluminum feedstock 

powder [37]. The goal of this research was to produce a coating which has substantially 

higher hardness and strength like those found in the previously mentioned papers, but 

with a smaller impact on the porosity of the coating. Zhang et al. used the same materials 

and process utilized by Ajdelsztajn et al. so that direct comparison could be made with 

the previous experiment. In conclusion, it was found that a mixture of conventional 
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atomized and nanocrystalline aluminum powders allowed for the creation of coatings 

with similar although slightly lower densities and higher porosities, but even further 

higher strength than that found in previous work which utilized strictly nanocrystalline 

feedstock. This was explained by Zhang et al. as the product of similar microstructure in 

aggregate between all nanocrystalline and the mixed powder coatings, but far lower 

amounts of porosity in the mixed powder coating. 

Recently research was conducted by Liu et al. at the University of Science and 

Technology in Beijing where instead of aluminum, nanocrystalline copper was studied as 

a feedstock material for the cold spray deposition process [38]. Similar results were found 

as those found in the aluminum studies mentioned previously.  The hardness and strength 

of the nanocrystalline copper coating deposit were nearly twice as high as that found in 

the conventional copper powder cold sprayed deposit. However, no discussion of coating 

density or porosity was conducted by Liu et al., so our understanding of the properties of 

nanocrystalline copper coatings is limited in contrast to Ajdelsztajn et al., Zhang et al. 

and their discussion into the feasibility and properties of nanocrystalline aluminum 

coatings. 

Although research into the use of nanocrystalline powders for cold spray 

applications remains in relative infant stages, it has been demonstrated that 

nanocrystalline feedstock powders can be used successfully in the cold spray process to 

dramatically increase the hardness and strength of cold sprayed coatings—at least in the 

two most commonly studied materials, copper and aluminum. This could possibly lead to 

coatings which could fill needs for specific applications requiring increased hardness, 

such as in armors or in bearing surfaces—both applications that the Navy has a stake and 

interest in. 

There is a desire to produce nanocrystalline powders from conventional gas-

atomized feedstock in order to produce nanocrystalline coatings through cold spray 

deposition. There are a number of different methods that can provide the necessary 

powder microstructure, but as with all industrial processes, there is a very real 

requirement to maximize the economic and performance impacts, as well as a general 

need for consistency of output product. A potential answer to this problem can be found 



 16

in the process known as cryomilling, which is generally accepted in the literature at large 

as being the best way of accomplishing the task of creating nanocrystalline powders in a 

research environment. Cryomilling is a process which is remarkably similar to ball or 

impact milling—except that the milling apparatus is submerged in a bath of liquid 

nitrogen for the duration of the milling process. By maintaining the temperature of the 

mill—and the feedstock powder accordingly—near cryogenic temperatures (77 K), the 

heat generated by the milling process is removed. In conventional ball milling, the 

amount of heat generated is not trivial and is substantial enough to cause recovery and 

recrystallization within the powder microstructure, limiting the amount of cold work it is 

possible to add—thus placing a lower limit on the size of the grains possible to achieve 

with this process. By removing the heat generation created by the action of milling, the 

ability of the powder to engage in recrystallization and recovery is reduced to an absolute 

minimum, ensuring that the milling process produces the minimum grain size possible. 

Powder evolution during cryomilling is similar to that documented for ball 

milling. A five step process has been outlined which includes particle flattening due to 

plastic deformation, particle welding, equiaxed particle formation, random welding of 

powder particles, and steady state deformation, during which a balance between fracture 

and cold welding is established as microstructural refinement progresses [39]. 

Bahmanpour et al. effectively demonstrated in 2011 that cryomilling would 

produce nanostructured powders with nano-scale crystallite sizes and homogenous 

microstructures in standard copper and copper/zinc alloys [40]. Hardened steel vials were 

loaded with powder under an argon atmosphere and milled for twelve hours to determine 

if there was a limit to crystallite size with respect to milling time, where it was 

recognized that nearly constant microhardness was obtained after approximately four 

hours of milling time, indicating that a near minimum crystallite size had been obtained. 

For pure Cu, Cu-10wt.%Zn, Cu-20wt.%Zn and Cu-30wt.%Zn these microhardness 

values were 2.4 GPa, 3.1 GPa, 2.9 GPa and 2.6 GPa, respectively—the reason why 

hardness decreased significantly from 10–30 wt.% Zn was unknown. Additionally, 

crystallite size as measured via X-ray diffraction (XRD) was determined to saturate after 

approximately four hours of milling time. For pure copper, Cu-10wt.%Zn, Cu-20wt.%Zn 
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and Cu-30wt.%Zn these crystallite sizes were approximately 15 [nm], 19 [nm], 18 [nm] 

and 9 [nm], respectively. A JEOL transmission electron microscope (TEM) at 200 kV 

was used to verify the homogeneity of the microstructure in the milled powder. 

C. HYPOTHESES 

1. Cold Spray of Microcrystalline Cu-Zn Alloys  

Copper (Cu) is one of the most commonly utilized cold spray materials and via 

utilization of gas-atomized Cu as the feedstock material, working coatings can be 

produced—this has been extensively proven under a number of processing and powder 

parameters. Given that brass (Cu-Zn) exhibits a number of similar material properties, 

gas-atomized Cu-Zn powder feedstock should produce similarly effective working 

coatings through utilization of the cold spray process. 

However, the stacking fault energy (SFE) of the 70/30 wt.% Cu-Zn alloy is 

extremely low at approximately 6 mJm-2, an order of magnitude lower than the SFE of 

Cu at approximately 74 mJm-2. Because of this, the strain hardening coefficient of Cu-Zn 

alloys will increase with increasing zinc content. Because of the increase in strain 

hardening during the spray and splat formation process, the feedstock particles will 

harden dramatically and this splat hardening will decrease the deposition efficiency. This 

relationship will hold true regardless of the fact that the melting point of Cu-Zn alloys 

decreases with increasing zinc content because the decrease in SFE is far more dramatic 

than the decrease in melting point, the deposit characteristics.  As such, we predict that 

reduction in melting point will be inconsequential, and the increase in strain hardening 

rate will constrain the deposition efficiency of brass alloys as the zinc content increases. 

2. Cold Spray of Nanocrystalline Cu-Zn Alloys  

It has already been proven that deposits can be created with the cold spray 

deposition process via the use of nanocrystalline copper as the feedstock powder, albeit 

with significantly increased hardness and porosity in comparison to the use of 

microcrystalline feedstock powder. Thus, given the similarities between Cu and Cu-Zn 
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alloys, it should stand that nanocrystalline Cu-Zn alloys can similarly be successfully 

produced by the cold spray deposition method. 

It has been shown that cryomilling of Cu-Zn alloys produces harder powders and 

smaller crystallite sizes than the cryomilling of pure copper by Bahmanpour et al., a 

function of the wt.% of added Zn—a logical outcome given an understanding of SFE’s 

impact on cold work and temperature’s effect on recovery and recrystallization. As such, 

the spray deposition efficiency of nanocrystalline Cu-Zn alloys will decrease with 

increasing zinc content due to the increased strain hardening coefficient. Furthermore, the 

deposits created by spraying nanocrystalline Cu-Zn alloys will be significantly harder, 

more porous and possess significantly more microstructural cracking—leaving a deposit 

with low bond strength. 
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II. EQUIPMENT INSTALLATION AND CALIBRATION 

 The research in this engineer’s thesis was the first at the Naval Postgraduate 

School (NPS) to use cold spray deposition. A large portion of the work in this thesis was 

comprised of the installation, calibration, and testing of NPS’ first cold spray deposition 

instrument.  This chapter will describe the key aspects of this instruments installation and 

testing as necessary to understand the cold spray deposition data described in chapters III 

and IV. 

A. INSTALLATION OF CENTERLINE (WINDSOR) SST MODEL SERIES C 

All of the cold spray deposition completed during the process of this thesis was 

accomplished using Centerline—Supersonic Spray Technology’s Series C apparatus, 

seen in Figure 7. The Series C model includes a glove box which houses both a manually 

operated and a robot controlled cold spray gun—allowing the operator the choice of 

creating deposits by hand or via pre-programmed instruction, respectively. Additionally, 

the system includes a wet particle filtration and scrubber system, used to filter the un-

deposited powder particulate from the exhaust gas, preventing the escape of large 

amounts of possibly hazardous or explosive powder into the atmosphere. Still further, the 

apparatus also includes an electrical panel complete with a transformer, and a control box 

which contains two separate vibrational hoppers for delivering feedstock powder, 

allowing for the operator to casually switch between two different types of spraying 

feedstock.  Finally, the Series C includes an additional and wholly separate THERMACH 

powder feeder that relies on computer timed rotational impact to deliver feedstock—

providing the operator with a far more controlled and uniform powder feed rate if 

necessary. 
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Figure 7.  Centerline SST Series C Cold Spray Apparatus at the Naval Postgraduate 
School. 

B. CALIBRATION OF CENTERLINE (WINDSOR) SST MODEL SERIES C 

In order to perform quantitative cold spray deposition experiments, several of the 

key pieces of equipment were carefully calibrated.  The argon gas flow was calibrated 

using a simple flow meter in order to ensure precise and consistent gas flow would be 

delivered to the THERMACH powder feeder in accordance with specifications. 

Additionally the THERMACH powder feeder was calibrated so that precise, measured 

amounts of powder were delivered to the gas stream. Additionally, the main pressure 

delivery system was modified and calibrated to minimize flow losses in the system 

during operation while maintaining the ability to provide the maximum operating 

pressure allowed by the rated safety specifications. 
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1. THERMACH Powder Feeder 

The first task undertaken during the calibration phase was the calibration of the 

THERMACH powder feeder and the associated gas flow required for its use. This 

calibration is important so that precise, measured amounts of powder were delivered to 

the gas stream.   

Argon gas is used to support the powder feed so as to limit oxidation of the 

powder while within the feeder. A pressure regulator and gas flow meter were required to 

allow consistent feed of argon at 40 psi and 25 SCFM [air]. Because the densities of 

argon and air are different, and because gas flow meters are usually calibrated for a 

specific gas, gas flow meter, Figure 8, manufactured by King Instrument Company was 

installed and calibrated to compensate for differences between argon and air flow. This 

gas flow meter was rigidly mounted to the wall to allow for the user of the cold spray 

apparatus to easily reference the gas flow by visual inspection, even when operating on 

the other side of the equipment. 

 

Figure 8.  Powder Feeder Air Flow Meter by King Instrument Company. 

The feed rate of the powder can be effectively monitored in two separate, yet 

mathematically relatable ways. First, the user can monitor the speed of the vibrational 
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impactor in the THERMACH feeder in RPM, depicted in Figure 9, or the user can 

similarly monitor the electronic feed rate from the control panel in percentage of 

maximum feed rate [%], as seen in Figure 10. Each setting on the control panel in [%] is 

directly correlated to some preset rotational speed [RPM] of the impactor. The table of 

control panel electronic feed rates [%] and their associated THERMACH [RPM] speeds 

were provided by Centerline technical support upon the author’s request. It is critically 

important to note; however, that neither of these observable measurements of feed rate 

allows the user to know the actual mass feed rate—critical information necessary to allow 

for the calculation of the deposition efficiency.  

 

Figure 9.  THERMACH Powder Feeder Vibrational Impactor Speed [RPM] Example. 



 23

 

Figure 10.  Centerline SST Model Series Control Panel Interface. 

In order to accurately determine feed rates in mass terms, the THERMACH 

feeder was operated for a specific period of time—monitored by stopwatch—whereby the 

powder feedstock was diverted via plastic tubing into a detached HEPA filter instead of 

the entraining gas flow. The mass of the HEPA filter was measured before and after these 

runs, and the difference was noted as the total mass of feed for that run. Each run was 

conducted twice to obtain slightly more accurate results via mass averaging and to 

compensate for minute amounts of powder that escaped the improvised seat on the HEPA 

filter. This process was conducted for a number of predetermined set speeds (in RPM)—

those known to coordinate with feed rate in % terms, the only parameter by which feed 

rate may be controlled by the user during operation. 

Mass feed rate calibration curves were constructed by obtaining powder mass 

feed rates for specific feeder RPM’s. These calibration curves showed that the powder 
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mass feed rate was quite linear with both rotational speed on the THERMACH feeder and 

with the electronic feed rate on the cold spray system control (Figures 11–15).  Because 

the mass of the individual powders changes based on which particular element or alloy is 

used, this process was repeated for each of the five powders discussed in this thesis.  

 

Figure 11.  Calibration Curves for Thermach Powder Feeder and SST Series C Control 
Panel [Pure Aluminum]. 

 

Figure 12.  Calibration Curves for Thermach Powder Feeder and SST Series C Control 
Panel [Pure Copper]. 
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Figure 13.  Calibration Curves for Thermach Powder Feeder and SST Series C Control 
Panel [90–10wt.% Cu-Zn]. 

 

 

Figure 14.  Calibration Curves for Thermach Powder Feeder and SST Series C Control 
Panel [80–20wt.% Cu-Zn]. 
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Figure 15.  Calibration Curves for Thermach Powder Feeder and SST Series C Control 
Panel [70–30wt.% Cu-Zn]. 

2. Entraining Gas Flow 

The exact pressures of the entraining gas flow are at the heart of the cold spray 

deposition experiment, and as such were carefully calibrated to allow for quantitative 

control of the deposition experiments. There exists within the control panel itself a 

pressure regulator that steps down the initial entraining gas pressure to its final value—

disregarding minor losses experienced in the final stretch of piping that lies between the 

regulator and the nozzle. The system however is not burst-proof, and is limited by 

solenoid valve control to pressures of 300 psi [2.07 MPa] and lower by the manufacturer 

to provide an adequate safety margin for the installed piping and joints. Because of the 

electronic limit on the allowable pressure within the Series C apparatus, an additional 

pressure regulator must be used prior to the control panel and after the source bottle, as 

the source bottle often supplies at pressures between 400–2,500 psi, exposure to which 

would cause irreparable damage to the equipment. It is important to note; however, that 

during operation the flow will be supersonic, and as such there exists the very real 

possibility of friction choking the flow, thus limiting the maximum pressure achievable 

and exacerbating the losses experienced in the gas lines—ultimately limiting operational 

parameters. To alleviate this concern, pressure regulators and piping were chosen and 

installed so as to maximize the flow coefficient ( VC ), while maintaining the required 

pressure performance characteristics to ensure losses were minimized and accordingly, 
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operational parameters could be maintained. In the end, the total losses throughout the 

system, from source bottle to nozzle, were measured to be approximately 50 psi [0.34 

MPa] during operation at maximum operating nozzle pressure (300 psi [2.07 MPa]). For 

clarification, a flow chart can be found in Figure 16, which delineates the gas pressures 

found at different points during operation. 

 

Figure 16.  Flow Chart of Equipment Gas Flows During Operation. 

C. COLD SPRAY DEPOSITION TESTING WITH THE MODEL SERIES C 
 APPARATUS 

 Once the system was installed and calibrated, we performed a comprehensive 

series of deposition tests to confirm that the system was operating properly and to better 

understand how key system parameters (e.g. temperature, pressure, nozzle stand-off 

distance, etc.) affect cold spray deposition. The resultant deposition performance was 

compared against similar data from Centerline SST and the open literature. Based on this 

testing, it was confirmed that the installation was successful and that this instrument 

could be confidently used for the brass deposition experiments described in chapters III 

and IV. 
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1. Powder Characterization, Experimental Setup, and Methodology 

A comprehensive series of deposition tests were undertaken with the Centerline 

SST Model Series C in order to confirm that the system was operating properly after 

installation and calibration. Additionally, it was pertinent to the setup of the brass 

experiments to quantify precisely how key system parameters (e.g. temperature, pressure, 

nozzle stand-off distance, etc.) would affect the final deposition characteristics. By 

maximizing deposition efficiency, the thickest deposits could be obtained—allowing for 

analysis techniques such as hardness indentation and coating thickness measurement to 

be easier to implement. 

The principal cold spray process controls of temperature, pressure, nozzle stand-

off distance and substrate roughness were investigated as they have been carefully 

examined in the literature for both copper and aluminum powders. For instance, J. 

Pattison et al. discussed in great detail the physics of the bow shock exiting the nozzle 

and the associated effects of such a shock by examining the consequences of shifting the 

nozzle stand-off distance [41]. It is important to note that the work of Pattison et al. 

utilized different nozzle designs, different entraining gases and different powders than 

used during the current calibration experiments.  We did not modify the nozzle design for 

the Centerline instrument, instead using the commercial nozzles supplied with the 

instrument. In addition, we performed all of the experiments with commercial purity, 

nitrogen gas.  We did not explore the effects of using helium as the entrainment gas due 

to its high cost. 

 The test depositions were made using a standard commercial 50 wt.% alumina/50 

wt.% aluminum proprietary powder (SST-A0050), provided by Centerline SST. This 

powder, shown in Figure 17, possessed a non-spherical morphology and was verified to 

have a mean particle size of 21.5 µm, measured using a Horiba Laser Scattering Particle 

Size Analyzer (LA-950V2). The bright particles seen in the figure are aluminum oxide. 

This powder was chosen because it was the powder utilized in Centerline SST’s 

calibration data, and the powder for which they had the most pertinent and extensive 

information. 
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Figure 17.  SEM Photograph of SST-A0050 [50 wt.% Aluminum/50 wt.% Alumina] 
Powder. From Centerline SST. 

Tungsten carbide nozzles were used with a length of 120 mm and a nozzle orifice 

of 2 mm. All spray deposits were made on ¼” thick, 6061 aluminum substrates supplied 

by McMaster Carr. The spray pattern characteristics are described visually in Figure 18. 

Ten total passes were completed in each of the runs to form a single complete spray 

pattern of approximately 24 mm in width. Spray temperature and pressure were recorded 

via the manufacturer-installed electronic pressure and temperature gauges and the spray 

deposit thickness at the thickest cross section was measured with a digital micrometer. 

The equations necessary for calculating deposition efficiency are:  

(1) 
Deposit

SprayedPowder

Mass
DE

Mass
  

(2) Deposit Substrate Deposit SubstrateMass Mass Mass   

(3) *SprayedPowder PowderMass FeedRate TotalSprayTime  
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To obtain the total mass of the deposited material the mass of the substrate prior 

to spray was subtracted from the mass of the substrate after deposition—masses were 

measured with a precise digital scale. The total spray time was measured with a digital 

stopwatch. Powder feed rate was previously determined. After calculating deposition 

efficiency, the data was then compiled into a series of spreadsheets with Microsoft Excel, 

the details of which are contained in Tables 2, 3, 4 and 5. Each of the data tables has been 

segregated into its pertinent and independent discussion section for clarity of 

presentation. 

 

Figure 18.  Cold Spray Deposition Pattern. 

2. Reproduction of the Benchmark Data Provided by Centerline SST 

The initial set of deposition tests were undertaken to attempt to reproduce the 

benchmark data for the Model Series C provided by Centerline SST, listed for reference 

in Table 1—as a way of ensuring our modification and calibration processes were indeed 

successful and our system operating as specified. Nine independent and separate test 

conditions were chosen—two of which were matched with the benchmark parameters, 

tests 3 & 4—in order to provide sufficient comparison with other parameters and to 
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provide sufficient data for obtaining pressure and temperature relationships with 

deposition efficiency. The spray parameters and associated deposition outputs obtained in 

the first round of testing can be found in Table 2—the parameters which were modified 

and the deposition outputs have been highlighted in the table in order to focus the reader 

on the important metrics. 

 

Table 1.   Reference Spray Data from Centerline SST for Series C with SST-A0050 
[50.wt% Aluminum/50 wt.% Alumina] Powder, April 2009. After 

Centerline SST. 

 

Table 2.   Obtained Spray Data for Series C with SST-A0050 [50.wt% Alumina/50 
wt.% Aluminum]. 

Powder Material SST‐A0050

Gas (Air, N₂ or He) N₂

Substrate Material 1018 Steel

Gun Type Automatic

Gas Temperature (⁰C) 350

Gas Pressure (psi) 250

Powder Feed Rate (g/min) 15

Gun Stand‐off Distance (mm) 12

Gun Traverse Speed (mm/s) 40

Gun Step Over per Pass (mm) 1.2

Deposition Efficiency (%) 39.5

Deposition Rate (g/min) 5.9

Hardness (HB) 46

Coating Thickness per Pass (µm) 889

Bond Strength (psi) 4426

Test No. 1 2 3 4 5 6 7 8 9

Powder Material SST‐A0050 SST‐A0050 SST‐A0050 SST‐A0050 SST‐A0050 SST‐A0050 SST‐A0050 SST‐A0050 SST‐A0050

Gas (Air, N₂ or He) N₂ N₂ N₂ N₂ N₂ N₂ N₂ N₂ N₂

Substrate Material 1018 Steel 1018 Steel 1018 Steel 1018 Steel 1018 Steel 1018 Steel 1018 Steel 1018 Steel 1018 Steel

Gun Type Automatic Automatic Automatic Automatic Automatic Automatic Automatic Automatic Automatic

Gas Temperature (⁰C) 350 350 350 350 350 350 400 350 400

Gas Pressure (psi) 150 200 250 250 285 200 200 250 250

Powder Feed Rate (g/min) 15 15 15 15 15 15 15 15 15

Gun Stand‐off Distance (mm) 12 12 12 12 12 12 12 12 12

Gun Traverse Speed (mm/s) 40 40 40 40 40 40 40 40 40

Gun Step Over per Pass (mm) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Deposition Efficiency (%) 5.7 9.2 14.7 13.5 16.9 9.2 11.4 14.7 17.8

Coating Thickness per Pass (µm) 210 320 450 420 530 320 360 450 610
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3. Pressure and Temperature Relationships for Alumina/Aluminum 
Powder Mix 

The effect of modifying pressure can be observed by re-evaluating tests 1–5 in the 

previous data, again, found in Table 2. A graphical representation of the data is presented 

in Figure 19. Gas temperature was held constant at 350 °C, while spray was conducted at 

a variety of pressures in 50 psi [0.35 MPa] increments. 285 psi [1.97 MPa] was chosen as 

the high pressure because of a high pressure safety trip-off which occurs at 300 psi [2.07 

MPa]—in order to prevent reaching this limit during spray a moderate margin of 

tolerance was chosen. Every other parameter was held constant. Clearly, increases in 

pressure increase both the deposition efficiency and the final coating thickness, which 

concurs with the general literature. This occurs largely due to an increase in entraining 

gas density prior to the nozzle throat, brought on by the increased pressure of the gas 

supply. 

 

Figure 19.  Deposition Efficiency and Coating Thickness Per Pass Vs. Spray Pressure for 
SST-A0050. 

A similar procedure was adopted to evaluate the effect of altering entraining gas 

temperature, outlined in tests 6–9, the data of which is again contained in Table 2. In this 

set of test runs, temperature was modified and the other parameters including pressure 
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were held constant. This was completed for two separate pressure settings: 200 psi [1.38 

MPa] and 250 psi [1.72 MPa].  

 

Figure 20.  Deposition Efficiency Vs. Spray Temperature and Spray Pressure for SST-
A0050. 

As with pressure, increasing the temperature of the entraining gas also increased 

both the deposition efficiency and coating thickness (Figure 20). Again, our results were 

in agreement with the general disseminated literature, asserting further confidence in the 

proper working condition of the cold spray apparatus. 

On a more interesting note, it would appear from the obtained data that pressure 

appears to be a bigger ‘lever’ than temperature. While increasing entraining gas 

temperature by 15% (50 °C) produced a 21% increase in deposition efficiency, increasing 

the entraining gas pressure by a similar 14% (35 psi) allows us to increase deposition 

efficiency by 26%. Thus, if limited operationally between having to choose between 

increasing either spray temperature or spray pressure, increasing the spray pressure will 

have the greater effect. 

350

400

0
5
10
15
20

200

250

D
e
p
o
si
ti
o
n
 E
ff
ic
ie
n
cy
 (
%
)

Deposition Efficiency Vs. Spray Pressure  and 
Spray Temperature for SST‐A0050

15‐20

10‐15

5‐10

0‐5



 34

4. The Effect of Pre-existing Substrate Roughness on Deposition 
Characteristics 

Beyond the effects of pressure and temperature, exploration of the effect of 

substrate surface roughness on the deposition efficiency and coating thickness was 

examined. Centerline SST engineers had notified Naval Postgraduate School that 

roughening the surface of the substrate via sandblasting or etching was critical to 

maximizing deposition efficiency, especially in those materials with relatively low bond 

strength—such as copper. Furthermore, they noted that deposit bond strength could be 

greatly increased by roughening the substrate surface prior to deposition, an effect which 

was not studied in depth. It is hypothesized however that improved deposit bonding 

occurs in samples that possess prior existing roughness of the substrate surface due to 

better interfacial mixing between the deposit and substrate material. To enhance the 

surface roughness of the substrate, 80 grit aluminum oxide particles purchased from 

Centerline SST (SST-G0002) were sprayed utilizing the manual configuration of the 

Model Series C cold spray apparatus at room temperature—with nitrogen gas at 150 psi 

[1.03 MPa] and a stand-off distance of approximately 20 mm. Table 3 displays the results 

during which the relationship between deposition efficiency and substrate surface 

roughness was considered. Test 10 involves the use of the sandblasted substrate and 

Test 11 involves the use of the standard smooth substrate. 
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Table 3.   Deposition Efficiency and Coating Thickness per Pass for a Sandblasted 
Substrate and a Smooth Substrate in Otherwise Common Spray Setups. 

With no other changes to our spray set up, it was discerned that sandblasting the 

substrate surface prior to cold spray deposition produced a 15% increase in deposition 

efficiency, and approximately a 10% increase in the coating thickness per pass while 

spraying SST-A0050.  

The exact values for deposition efficiency and thickness per pass are quite 

sensitive to the cold spray deposition system and the powders used. The rather extensive 

number of process parameters which may be modified can make direct comparison with 

data from the literature or taken on other cold spray systems quite difficult.  As shown in 

Table 1, the reference data from Centerline SST taken in 2009 using SST-A0050 powder 

was substantially different from the current study. In fact, the deposition efficiencies 

reported by Centerline were approximately three times larger than those observed in the 

current study.   

A number of sources for the discrepancies in deposition efficiency were 

identified.  First, the powder size of Centerline’s proprietary alumina/aluminum mix had 

changed substantially since the reference data was taken in 2009.  The mean powder size 

was increased by some un-specified amount to the current mean of 21.5 microns. An 

Test No. 10 11

Powder Material SST‐A0050 SST_A0050

Gas (Air, N₂ or He) N₂ N₂

Substrate Material 1018 Steel 1018 Steel

Substrate Surface (SB or Smooth) SB Smooth

Nozzle Type (WC or Polymer) WC WC

Gun Type Automatic Automatic

Gas Temperature (⁰C) 350 350

Gas Pressure (psi) 250 250

Powder Feed Rate (g/min) 15 15

Gun Stand‐off Distance (mm) 12 12

Gun Traverse Speed (mm/s) 40 40

Gun Step Over per Pass (mm) 1.2 1.2

Deposition Efficiency (%) 17.4 14.7

Coating Thickness per Pass (µm) 470 440
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increase in particle size will lower particle spray velocities and thus deposition 

efficiencies.  Additionally, Centerline SST intentionally used thin substrates during their 

benchmarking experiments so that the temperature of the substrate would be as high as 

possible during the run. Furthermore, the substrates were heated to relatively high 

temperatures immediately prior to spraying—again, higher substrate temperature making 

the material more malleable and thus increasing the deposition efficiency of the spray. 

These process choices were different from those used in the current testing, and as such, 

the deposition efficiencies here are reasonable, but lower than those reported by 

Centerline.  It should be noted that engineers from Centerline personally visited NPS and 

verified that the NPS system was working correctly.   

In contrast, the deposition efficiencies measured using the NPS system were as 

high, if not higher, than those observed in the work of Irrissou et al. from the National 

Research Council, Canada [42]. They reported in 2007 obtaining deposition efficiencies 

of 11.8% using a similar aluminum-alumina powder mixture—they also used a 

Centerline SST cold spray system, using a similar spray pattern. The operating 

parameters chosen by Irrisou et al. were somewhat different however, although 

reasonably similar. For their deposits, Irrisou et al. used a stand-off distance of 10 mm, a 

spray pressure of 90 psi [0.62 MPa], a spray temperature of 500 °C, nitrogen gas as the 

entraining medium and mild steel substrates that had been previously grit blasted. 

Additionally, their alumina particles had a different mean particle size than their 

aluminum particles, 25.5 µm and 36.2 µm, respectively, in contrast to a mean particle 

size of 21.5 µm in the SST-A0050 mixture which contained similarly sized alumina and 

aluminum particles. Taken in aggregate, Irrisou et al. used a 43% higher temperature, a 

64% lower pressure and a 65% larger mean particle size for their aluminum powder. 

Thus, it would be reasonable all else being more or less the same to expect an appreciably 

smaller deposition efficiency given the relationships between spray pressure, temperature 

and particle size. That is precisely what was observed by Irrisou et al.—their deposition 

efficiencies were approximately 47% lower than what we observed. Ultimately, 

comparison with the work of Irrisou et al. provides further confirmation for the operating 
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parameters/deposit output relationships previously determined in this thesis, as well as 

confidence that the cold spray apparatus was indeed working properly. 

5. The Effect of Spray Nozzle Characteristics on Deposition 

The nozzle stand off distance was examined to determine whether the standard, 

20mm, distance would provide optimal deposition efficiency. The nozzle stand-off 

distance was altered by simply changing the vertical position of the cold spray gun/nozzle 

apparatus in 10 mm increments—from 5 mm to 45 mm. Pressure and temperature were 

held constant at 250 psi [1.72 MPa] and 350 °C, respectively (Table 4). Figure 21 

provides a visual depiction of how the nozzle stand-off distance was altered and how 

calipers were used to verify and measure the stand-off distance. 

 

Figure 21.  Photograph of the Process of Modifying the Nozzle Stand-Off Distance. 

From the data set in Table 4, visually depicted in Figure 22, it can easily be seen 

that increasing stand-off distance will decrease deposition efficiency and coating 

thickness per pass. Furthermore, this relationship seems to be more or less linear, at least 
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in the range of observation. However, this graph does not depict the entire relationship—

to more accurately describe the relationship between nozzle stand-off distance and 

deposition efficiency, we must turn to the literature. 

 

Table 4.   Deposition Efficiency and Coating Thickness vs. Nozzle Stand-Off 
Distance for SST-A0050 [50.wt% Alumina/50 wt.% Aluminum]. 

 

Figure 22.  Deposition Efficiency and Coating Thickness per Pass Vs. Nozzle Stand-off 
Distance for SST-A0050. 

Test No. 12 13 14 15 16

Powder Material SST‐A0050 SST‐A0050 SST‐A0050 SST‐A0050 SST‐A0050

Gas (Air, N₂ or He) N₂ N₂ N₂ N₂ N₂

Substrate Material 1018 Steel 1018 Steel 1018 Steel 1018 Steel 1018 Steel

Gun Type Automatic Automatic Automatic Automatic Automatic

Gas Temperature (⁰C) 350 350 350 350 350

Gas Pressure (psi) 250 250 250 250 250

Powder Feed Rate (g/min) 15 15 15 15 15

Gun Stand‐off Distance (mm) 5 15 25 35 45

Gun Traverse Speed (mm/s) 40 40 40 40 40

Gun Step Over per Pass (mm) 1.2 1.2 1.2 1.2 1.2

Deposition Efficiency (%) 17.4 14.9 14 11.6 9

Coating Thickness per Pass (µm) 470 420 400 360 290
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In particular, J Pattison et al. describes, in detail, the effect of stand-off distance 

on particle velocity, and thus deposition efficiency [41]. Figure 23 provides an excellent 

visual summary of their work, and sets the background for the relationship we are trying 

to elicit. At very close distances between the nozzle and the substrate (Region 1), they 

demonstrate that increasing stand-off distance at first actually increases the velocity of 

the particles. This regime is dominated by the effects of the bow shock at the exit of the 

nozzle. The bow shock and stagnation bubble created by the incident flow out of the 

nozzle adversely impact the flow properties of the particles in transit, and expose the 

incident particles to massive changes in drag force—as the particles slow due to these 

forces, many will have their velocity fall below critical velocity, with an according 

reduction in deposition efficiency. Thus, as stand-off distance increases, the effects of the 

bow shock are attenuated and particle velocity increases along with deposition efficiency. 

In Region 2, particle velocity continues to increase, and reaches an optimum—where 

gradual particle acceleration due to increasing entraining gas velocity finds a balance 

with the drag experienced by the particles. And finally, in Region 3, as gas velocity 

begins to decrease and the cumulative drag force on the particles begins to dominate the 

fluids model, particle velocity begins to decrease—and with it deposition efficiency. 

 

Figure 23.  Non-Dimensional Chart Showing the Effect of Stand-Off Distance on 
Deposition Efficiency. From Pattison et al. [41]. 
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It is critical to note that these stand-off distances reference the exit of the 

diverging section of the de-Laval type nozzle. However the nozzles produced by 

Centerline SST and used in our relationship testing are 120 mm in length—although the 

precise nozzle geometries are unknown, it would be reasonable to expect that a 

significant portion of the length of the UltiLife and UltiFlow nozzles are simply in place 

to minimize spread of the spray pattern, and are not part of the diverging section of the 

nozzle. Because of this, the use of Centerline SST’s nozzles places us in the tail-end area 

of Region 3 in the above curve—which explains the relationship dynamics seen in 

testing, notably the more or less linear decrease in deposition efficiency with increasing 

stand-off distance. A future point of research may be to alter the length of the nozzle by 

mechanical means in order to find the optimal region in the curve above. 

Lastly, the choice of material type for the cold spray nozzle was explored.  

Centerline SST provides two different types of nozzles. First they offer the UltiLife 

nozzle, which is made from tungsten carbide, and is meant to enhance its durability.  This 

type of nozzle is particularly important if hard or abrasive materials are being sprayed. 

They additionally offer the UltiFlow series of nozzle, which is manufactured using “a 

clog-resistant material that makes it ideal for applications that require spraying pure 

materials” [43]. Pure, soft metals, such as aluminum and zinc, are known to have 

problems with nozzle clogging during cold spray in the Centerline system.  However, 

because the UltiFlow series of nozzle is made from polymer, the maximum rated 

temperature that can be used during spray operation with the nozzle is 350 °C, which 

may limit the operator depending on the application. Both nozzles were exactly the same 

with respect to geometrical design—each had a length of 120 mm and an orifice size of 2 

mm. Test deposits were sprayed at a pressure of 250 psi [1.72 MPa] and a temperature of 

350 °C, at a constant stand-off distance of 12 mm (Table 5).  
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Table 5.   Modification of Nozzle Type for Series C with SST-A0050 [50.wt% 
Alumina/50 wt.% Aluminum]. 

The tungsten carbide nozzle (UltiLife) showed a small, but measurable, increase 

in deposition efficiency compared with the spray characteristics of the polymer 

(UltiFlow) nozzle.  When using the UltiFlow polymer nozzle, deposition efficiency 

degraded by about 25%, in the case of the sandblasted substrates as well as the 

unmodified substrates. This degradation in deposition efficiency was both unexpected 

and is not fully understood. It is hypothesized that the UltiFlow polymer nozzle could 

have a large coefficient of thermal expansion in comparison to the UltiLife tungsten 

carbide nozzle—when the hot gas flow passes through the UltiFlow nozzle, this could 

cause the dimensions of the internal nozzle design including the throat diameter to 

change, thus altering the fluid mechanics of the nozzle and limiting the exit velocity from 

the nozzle.  

  

Test No. 17 18

Powder Material SST‐A0050 SST_A0050

Gas (Air, N₂ or He) N₂ N₂

Substrate Material 1018 Steel 1018 Steel

Nozzle Type (WC or Polymer) WC Polymer

Gun Type Automatic Automatic

Gas Temperature (⁰C) 350 350

Gas Pressure (psi) 250 250

Powder Feed Rate (g/min) 15 15

Gun Stand‐off Distance (mm) 12 12

Gun Traverse Speed (mm/s) 40 40

Gun Step Over per Pass (mm) 1.2 1.2

Deposition Efficiency (%) 17.4 14

Coating Thickness per Pass (µm) 470 400
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III. COLD SPRAY OF MICROCRYSTALLINE COPPER AND 
BRASS 

While the thermodynamics and fluid mechanics of the cold gas-dynamic spray 

process are relatively well understood, the effects of feedstock powder microstructure and 

composition on the deposition process remain largely unknown except in limited special 

cases. This chapter will attempt begin to explore the effects of alloying on powder spray 

characteristics using the Cu-Zn alloy system in an attempt to comprehend the effects of 

cold spray deposition as it pertains to common face-centered cubic metals and their 

alloys. The evaluation and characterization of the feedstock powders is discussed in depth 

in Section A, while the experimental setup can is delineated in Section B. During the 

experiment, deposition efficiency, coating thickness per pass, hardness, porosity and 

compositional variance were all characterized as functions of spraying pressure, spraying 

temperature and feedstock particle composition in each of the materials. The experiment 

results and discussions are contained in Sections C and D, respectively.  

A. FEEDSTOCK POWDER CHARACTERIZATION 

To properly characterize the entire Cu-Zn single phase alloy model in our 

experiments (found at concentrations of less than approximately 40 wt.% Zn), four 

powders were purchased from ACu Powder in Union, New Jersey—620 Series pure 

copper powder (>99.5% purity), the 900 Series 90/10 wt.% Cu-Zn powder, the 800 Series 

80/20 wt.% Cu-Zn powder and the 700 Series 70/30 wt.% Cu-Zn powder. Hereafter, 

these powders will be referred to by their nominal compositions to avoid any confusion. 

Table 6 contains the pertinent particle size and composition data as kindly provided by 

ACu Powder upon request—this information includes a sieve analysis for each of the 

powders and a batch compositional analysis [44]. The sieve analysis for the pure copper 

powder simply contained the particle size under which 10%, 50% or 90% of the particles 

were classified and not a full mesh analysis like the brass powders—for instance, Table 6 

delineates that 90% of the pure copper powder particles were less than 45.01 microns in 

size. Each of the brass powders was verified via batch spectroscopy to be within +/- 2 

wt.% of the nominal composition. The brass powders are manufactured using a diffusion-
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alloying process, where fine copper powder is coated with zinc and then run through a 

furnace to allow diffusion of the zinc throughout the particle. 

 

Table 6.   Sieve and Batch Composition Analysis for Pure Copper, Cu-90/10 wt.%, 
Cu-80/20 wt.% and Cu-70/30 wt.% Zn Powders. From ACu Powder [44]. 

These powders were chosen so as to minimize the spread of particle size and 

shape, mitigating the risk that experimental results could be modified by different particle 

sizes and morphologies. Each of the powders possessed a spheroid particle shape, with 

aspect ratios less than 1.2, as visually determined by scanning electron microscope 

(SEM) evaluation; however, it should be noted that the pure copper powder was more 

consistently spherical in shape in comparison to the more spheroid shaped brass powders. 

Scanning electron microscope photos of each of the powders can be found below in 

Figure 24, each taken at 1000x magnification.  

Powder Material Greater Than (µm) Less Than (µm) % of Total Composition Zn (wt.%)

Cu‐90/10 wt.% Zn 149 177 0.2 9.94

99 149 3.6

74 99 3

44 74 4.1

44 89.1

Cu‐80/20 wt.% Zn 149 177 0.5 18.84

99 149 5.7

74 99 5.5

44 74 8.7

44 79.6

Cu‐70/30 wt.% Zn 99 149 1.6 31.8

74 99 2.5

44 74 4.1

44 91.8

Pure Copper 45.01 10 >99.5% Pure

26.31 45.01 40

15.85 26.31 40

15.85 10
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Figure 24.  SEM Surface Photographs (1000x).Clockwise from Top Left: Pure Copper 
Powder, Cu-90/10 wt.% Zn, Cu-80/20 wt.% Zn and Cu-70/30 wt.% Zn. 

A Horiba Laser Scattering Particle Size Analyzer (model no. LA-950V2) was 

utilized to verify the particle size distribution of each of the powders—the observed mean 

particle sizes of each of the powders are listed in Table 7, along with the powder 

compositions by weight percentage.  This analysis provided greater detail than the sieve 

analysis acquired from ACu Powder, especially with respect to the distribution of particle 

size at magnitudes of less than 325 mesh (44 µm), but it should be noted that our particle 

size analysis was in strong agreement with ACu Powder’s sieve analysis. Additionally, it 

is important to observe that the Cu-70/30 wt.% Zn powder had a mean particle size of 

anywhere between 40–60% smaller than the other powders which were procured. 
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Table 7.   Observed Mean Particle Size and Composition for Each Powder, As 
Received. 

The composition of each of the powders was determined via the use of the EDAX 

Spectroscopy system, manufactured by Ametek®, in conjunction with the Naval 

Postgraduate School’s Zeiss Neon 40 model of scanning electron microscope. The EDAX 

Genesis software utilizes the ZAF matrix correction equation to quantify composition—

by comparing the observed X-ray intensities versus expected X-ray intensities, both 

measured in counts, one can identify both the element being observed and the 

composition magnitude in comparison to other elements present. The equations below 

delineates the general equations the EDAX software uses in execution of this concept 

[45]: 

(4) 
 

 
 

 i i
ii i

i i

C I
ZAF ZAF k

C I
   

 Ci = weight fraction of the element i of interest in the sample 
 C(i) = weight fraction of the element i in the standard 

(5) 
 

i

i

I

I
 ratio of the unknown-to-standard intensities, also known as the “k-value” 

 iZAF  matrix effects correction factor due to atomic number (Z), X-ray absorption (A), 

and X-ray fluorescence (F), which varies by element. 
 

When performing the quantification of composition at a minimum twenty 

thousand counts were obtained, to minimize the error. Additionally, the Peak ID function 

was used to ensure that the software was identifying the correct elements (only Cu and 

Zn should be present, ignoring minute amounts of O). An example of the output spectra 

can be found in Figure 25. When considering only the surface of the particles, our 

analysis revealed that the composition of each of the powders was reasonably uniform. 

Five quantifications were performed for each of the feedstock powders, and all of the 

results were within +/- 1.40% of the average composition, again, listed in Table 6. 

Powder Material Copper Cu‐90/10 wt.% Zn Cu‐80/20 wt.% Zn Cu‐70/30 wt.% Zn

Mean Particle Size (µm) 18.82 22.16 26.35 11.24

Composition, Cu / Zn (wt.%) >99.5 (Pure) 90.61 / 9.39 78.93 / 21.07 68.34 / 31.66
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Figure 25.  Output X-Ray Spectra, Counts Vs. Energy, for Cu-90/10 wt.% Zn Deposit, 
Sprayed at 250 psi and 450 °C. 

In addition to characterizing the surface of the powders, the internal morphology 

and compositions of powder particles were also characterized. Cross sectional samples of 

the powders were produced by mixing the powders in epoxy molds with approximately 

equal amounts with cold mounting epoxy, poured into 1 ¼” mounting molds and left for 

fifteen minutes to cure. After curing, each of the sample mounts were sanded flat with a 

Buehler Ecomet 3 variable speed grinder-polisher using a sequence of 400, 600 1200, and 

2000 grit grinding paper—each individual step being performed with water flow at a 

machine speed of 240 RPM, a sample pressure of 10 lbf and a total sanding time of 6 

minutes. After ensuring the sample mounts were completely flat, each sample was 

polished on the same machine with 5 µm, 3 µm and 1 µm diamond grit, with the final 

polish being completed on the Buehler VibroMet 2 vibratory polisher in conjunction with 

0.05 µm colloidal silica as the polishing media, which doubled as a very mild etching 

agent. After polishing, each sample was cleaned in a bath of methanol using a Buehler 

Ultramet 2005 ultrasonic cleaner for a duration 20 minutes, dried with a heat gun, and left 

overnight in a Pelco 2251 model vacuum desiccator which was kept at vacuum. 
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Quite interestingly, the internal morphologies of the Cu-Zn Series powders were 

markedly different than what was observed when considering only the surface of the 

powders. First, by viewing the cross sections of the individual powder particles, it was 

discovered that the all of the Cu-Zn series powders possessed substantial amounts of 

internal micro-porosity within the particles themselves (Figure 26). Even further, it was 

found that the composition of the powders was more variable than what the batch 

analysis conducted by ACu Powder, or the general surface analysis. Spot X-ray 

spectroscopy of ten independent locations within each of the images contained in Figure 

26 revealed that composition of the Cu-90/10 wt.% Zn powder deviated in some places 

by as much 4.86 wt.% Zn from the nominal composition (48%), the Cu-80/20 wt.% Zn 

powder by as much as 6.26 wt.% (31%), and the Cu-70/30 wt.% Zn powder by as much 

7.23% (24%). Each spectroscopy analysis was conducted with a minimum of ten 

thousand counts in order to minimize signal errors. Additionally, a line analysis was 

conducted on a number of particles in each series of powder. By plotting the number of 

zinc counts divided by the number of copper counts in evenly spaced points along the 

line gave a rough estimate of the uniformity of composition over a distance (Figure 27).  

The results showed that while there were some clear statistical outliers, the large majority 

of the composition was relatively constant within, fluctuating approximately within the 

range previously obtained by independent X-ray microanalysis. Clearly, the addition of 

further zinc aids the diffusion process during ACu Powder’s production process, and 

allows for a more uniform powder. However, it should be noted that averages of the ten 

random spot compositions were all less than 2% off the previously obtained surface 

composition analysis—thus the powder was indeed reasonably uniform with respect to 

zinc distribution from particle to particle, but rather exhibited compositional non-

uniformity within each particle itself. Spectroscopy maps for the Cu-90/10 wt.% Zn and 

Cu-70/30 wt.% Zn powder cross sections are exhibited in Figures 28–29, respectively, to 

provide a visual reinforcement of this finding—zinc concentrations are displayed in the 

green tint, while copper concentrations are displayed in the purple tint.  
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Figure 26.  SEM Cross-Sectional Photographs (1000x) of the As Received Brass 
Powders, Clockwise from Top Left: Cu-90/10 wt.% Zn, Cu-80/20 wt.% Zn, 

Cu-70/30 wt.% Zn. 

 

Figure 27.  Left: Zinc X-Ray Counts / Copper X-Ray Counts vs. Distance, As Received 
Cu-70/30 wt.% Zn Powder. Right: Line Map from which Data on the Left 

was Retrieved. 
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Figure 28.  Cross-Sectional Spectrograph Maps and SEM Image (1000x) for Cu-90/10 
wt.% Zn Powder, As Received. Top Center: SEM Image. Bottom Left: Cu X-

Ray Elemental Map. Bottom Right: Zn X-Ray Elemental Map. 
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Figure 29.  Cross-Sectional Spectrograph Maps and SEM Image (1000x) for Cu-70/30 
wt.% Zn Powder, As Received. Top Center: SEM Image. Bottom Left: Cu X-

ray Elemental Map. Bottom Right: Zn X-ray Elemental Map. 

B. EXPERIMENTAL METHODS 

Using the powders described in III.A, cold spray deposition was performed 

varying temperature and pressure.  These cold spray experiments were performed with 

the system described in detail in chapter II. Other parameters, such as nozzle stand-off 

distance, nozzle material and substrate roughness, were kept constant and are listed in 

Table 9; The same spray pattern as delineated in the calibration experiments was chosen, 

with a gun step over per pass of 1.2 mm, a gun traverse speed of 40 mm/s and ten total 

passes. Two spray pressures (250 psi and 175 psi [1.72 MPa and 1.21 MPa]) were chosen 

along with two spray temperatures (450 °C and 300 °C). These temperatures represent a 

significant fraction of the melting point of each alloy as is shown in Table 8. For each 
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test, two identical spray patterns were conducted, the latter directly over the top of the 

previous. The spray pattern passes were conducted immediately right after each other, 

leaving very little time for the material to cool in between the deposition action of the 

individual spray patterns. 

  

Table 8.   The Melting Points of Copper, Cu-90/10 wt.% Zn, Cu-80/20 wt.% Zn and 
Cu-70/30 wt.% Zn. 

 

Table 9.   Cold Spray Parameters Utilized During Copper and Brass Experiments. 

Deposition efficiency was recorded by measuring the mass of the total deposit 

plus substrate after spray, and dividing this quantity by the total amount of powder fed 

into the system throughout the spray—a quantity obtained by multiplying the known 

powder feed rate by the total spray time, which was measured by handheld stopwatch. 

Deposit thickness was measured via the use of a digital micrometer, and all 

measurements were taken from the side of the deposit which possessed the thickest 

section of coating (the area of the final spray pass). Because two spray passes were done 

 

Powder Material Copper Cu‐90/10 wt.% Zn Cu‐80/20 wt.% Zn Cu‐70/30 wt.% Zn

Melting Point (°C) 1085 1030 980 930

Melting Point (% of Cu) 100.00 94.93 90.32 85.71

350 °C (% of Melting Point) 32.26 33.98 35.71 37.63

450 °C (% of Melting Point) 41.47 43.69 45.92 48.39

Gas (Air, N₂ or He) N₂

Substrate Material T‐6061 Al

Substrate Surface (SB or Smooth) SB

Nozzle Type (WC or Polymer) WC

Gun Type Automatic

Gas Temperature (⁰C) 450, 300

Gas Pressure (psi) 250, 175

Powder Feed Rate (g/min) 21.94

Gun Stand‐off Distance (mm) 15

Gun Traverse Speed (mm/s) 40

Gun Step Over per Pass (mm) 1.2

Gun Total Passes 10
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per each test, the deposition efficiency is an average of the two passes. Additionally, the 

coating thickness measured was divided in half to determine the coating thickness per 

pass. 

After conducting the measurements for coating thickness and deposition 

efficiency, each sample was cut into 20 mm long samples with a Struers Secotom-10 

diamond saw. The cross section of each sample was then hot-mounted into 1 ¼” diameter 

non-conducting epoxy pucks with a Buehler Simplimet 2 mounting press. Each sample 

mount was sanded flat with a Buehler Ecomet 3 variable speed grinder-polisher using a 

sequence of 400, 600 1,200, and 2,000 grit grinding paper—each individual step being 

performed with water flow at a machine speed of 240 RPM, a sample pressure of 10 lbf 

and a total sanding time of 6 minutes. After ensuring the sample mounts were completely 

flat, each sample was polished on the same machine with 5 µm, 3 µm and 1 µm diamond 

grit, with the final polish being completed on the Buehler VibroMet 2 vibratory polisher 

in conjunction with 0.05 µm colloidal silica as the polishing media, which doubled as a 

very mild etching agent. All polishing was conducted on Buehler Microcloths (P/N 40–

7218). After polishing, each sample was cleaned in a bath of methanol using a Buehler 

Ultramet 2005 ultrasonic cleaner for a duration 20 minutes, dried with a heat gun, and left 

overnight in a Pelco 2251 model vacuum desiccator which was kept at vacuum. 

Optical microscopy was conducted for each of the samples using a Nikon 

POTIPHOT 200 Series microscope and digital camera. Images were taken at the 25x, 

100x, 200x and 500x magnification levels, largely detailing the microstructure of the 

deposits. 

Hardness was measured via the utilization of a G200 Series nano-indenter, with a 

Berkovich diamond indenter tip, manufactured by Agilent Technologies Inc. Agilent 

Nanosuite software was used for indentation data analysis and compilation. In each 

hardness measurement sample, fifty data points were taken to ensure faulty data points 

could be removed while maintaining the ability to give a measurement of material 

hardness with a high confidence level. The parameters for the indents were as follows:  
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0.05 nm/s allowable drift rate, 3.0 hr maximum thermal drift time, 2000 nm surface 

approach distance, 200 nm/s surface approach velocity, 1000 nm indentation depth and 

0.08 strain rate. 

Porosity was measured using the software ImageJ, developed by the National 

Institutes of Health and available as freeware. Both optical and scanning electron images 

were uploaded into the software, where they were modified to binary format (black and 

white) after modifying the image boundaries to contain the area of interest. After 

completing that task, the installed software was used to evaluate the ratio of porosity 

(black) to deposit material (greyscale). A 25x magnification was used during every 

evaluation to limit any pronounced user-manufactured error. An example of how this 

software analyzes porosity can be found in Figure 30. 

Lastly, SEM photographs of the deposit at the substrate/deposit interface were 

taken at 500x magnification, and composition analysis was performed utilizing the 

EDAX spectroscopy software in conjunction with Zeiss Neon-40 scanning electron 

microscope. For qualitative analysis, composition maps were generated by way of a 

512x400 pixel resolution map, where the X-ray counts from each pixel were tallied for 

400 µs—the procedure creating a single frame. Multiple frames were taken, 256 in total, 

and then overlapped over each other to provide a high fidelity and high contrast map—

the process took approximately six hours for each map. To compliment these results and 

establish a quantitative perspective, twenty points in each area of concern were chosen 

for a more specific evaluation, where the number of total X-ray counts was increased to 

ten thousand, in order to minimize error. Ten of these points were in the general bulk 

material, and ten lay in close proximity (2 µm or less) to deposit porosity, the specifics of 

which are discussed in the following sections. Theses twenty points were utilized to 

generate the numeric statistics used for discussion. 
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Figure 30.  Left: Optical Image of Pure Copper Deposit (Sprayed at 250 psi, 450 °C ). 
Right: Sample of ImageJ Porosity Analysis on the Same Deposit. 

C. RESULTS 

1. Deposition Efficiency and Coating Thickness Per Pass 

All of the brass alloys were successfully deposited via the cold spray method. The 

resultant data for the spray experiments is listed for the pure copper, Cu-90/10 wt.% Zn, 

Cu-80–20 wt.% Zn and Cu-70/30 wt.% Zn powders in Tables 10, 11, 12 and 13, 

respectively. The deposition efficiency was found to be a strong function of zinc content 

(Figures 31 and 32). Deposition efficiency and coating thickness per pass increased by 

67.6% and 57.4%, respectively, as zinc content was increased from 0–10 wt.%, but then 

decreased as zinc content was increased further. As zinc content was enlarged from 10–

20 wt.% deposition efficiency and coating thickness per pass decreased by 29.8% and 

22.4%, respectively, and from 20–30 wt.% the quantities decreased by a further 36.5% 

and 18.1%, respectively. 
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Table 10.   Spray Data for Pure Copper Powder. 

 

Table 11.   Spray Data for Cu-90/10 wt.% Zn Powder. 

 
 
 
 
 
 
 
 

Test No. 1 2 3 4

Powder Material Pure Copper Pure Copper Pure Copper Pure Copper

Gas (Air, N₂ or He) N₂ N₂ N₂ N₂

Substrate Material SB T‐6061 Al SB T‐6061 Al SB T‐6061 Al SB T‐6061 Al

Gun Type Automatic Automatic Automatic Automatic

Gas Temperature (⁰C) 300 450 300 450

Gas Pressure (psi) 175 175 250 250

Powder Feed Rate (g/min) 21.94 21.94 21.94 21.94

Gun Stand‐off Distance (mm) 15 15 15 15

Gun Traverse Speed (mm/s) 40 40 40 40

Gun Step Over per Pass (mm) 1.2 1.2 1.2 1.2

Deposition Efficiency (%) 5.9 23.1 18.1 33.6

Coating Thickness per Pass (µm) 95 370 320 610

Test No. 1 2 3 4

Powder Material Cu‐90/10 wt.% Zn Cu‐90/10 wt.% Zn Cu‐90/10 wt.% Zn Cu‐90/10 wt.% Zn

Gas (Air, N₂ or He) N₂ N₂ N₂ N₂

Substrate Material SB T‐6061 Al SB T‐6061 Al SB T‐6061 Al SB T‐6061 Al

Gun Type Automatic Automatic Automatic Automatic

Gas Temperature (⁰C) 300 450 300 450

Gas Pressure (psi) 175 175 250 250

Powder Feed Rate (g/min) 21.94 21.94 21.94 21.94

Gun Stand‐off Distance (mm) 15 15 15 15

Gun Traverse Speed (mm/s) 40 40 40 40

Gun Step Over per Pass (mm) 1.2 1.2 1.2 1.2

Deposition Efficiency (%) 15.7 34.3 34.2 56.3

Coating Thickness per Pass (µm) 255 575 575 960
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Table 12.   Spray Data for Cu-80/20 wt.% Zn Powder. 

 

Table 13.   Spray Data for Cu-70/30 wt.% Zn Powder. 

Test No. 1 2 3 4

Powder Material Cu‐80/20 wt.% Zn Cu‐80/20 wt.% Zn Cu‐80/20 wt.% Zn Cu‐80/20 wt.% Zn

Gas (Air, N₂ or He) N₂ N₂ N₂ N₂

Substrate Material SB T‐6061 Al SB T‐6061 Al SB T‐6061 Al SB T‐6061 Al

Gun Type Automatic Automatic Automatic Automatic

Gas Temperature (⁰C) 300 450 300 450

Gas Pressure (psi) 175 175 250 250

Powder Feed Rate (g/min) 21.94 21.94 21.94 21.94

Gun Stand‐off Distance (mm) 15 15 15 15

Gun Traverse Speed (mm/s) 40 40 40 40

Gun Step Over per Pass (mm) 1.2 1.2 1.2 1.2

Deposition Efficiency (%) 1.6 24.7 25.7 39.5

Coating Thickness per Pass (µm) 30 450 470 745

Test No. 1 2 3 4

Powder Material Cu‐70/30 wt.% Zn Cu‐70/30 wt.% Zn Cu‐70/30 wt.% Zn Cu‐70/30 wt.% Zn

Gas (Air, N₂ or He) N₂ N₂ N₂ N₂

Substrate Material SB T‐6061 Al SB T‐6061 Al SB T‐6061 Al SB T‐6061 Al

Gun Type Automatic Automatic Automatic Automatic

Gas Temperature (⁰C) 300 450 300 450

Gas Pressure (psi) 175 175 250 250

Powder Feed Rate (g/min) 21.94 21.94 21.94 21.94

Gun Stand‐off Distance (mm) 15 15 15 15

Gun Traverse Speed (mm/s) 40 40 40 40

Gun Step Over per Pass (mm) 1.2 1.2 1.2 1.2

Deposition Efficiency (%) < 1.0 12.9 7.9 25.1

Coating Thickness per Pass (µm) < 30 360 290 610
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Figure 31.  Deposition Efficiency and Coating Thickness Vs. Zinc Content by wt.%, with 
a Spray Pressure of 250 psi and a Spray Temperature of 450 °C. 

 

Figure 32.  Deposition Efficiency and Coating Thickness Vs. Zinc Content by wt.%, with 
a Spray Pressure of 250 psi and a Spray Temperature of 300 °C. 
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 For all of the feedstock powders used, regardless of zinc content and for all other 

parameters assumed constant, there is a clear and definitive increase in deposition 

efficiency and coating thickness when either gas pressure and/or gas temperature is 

increased. Figures 33–36 provide visual representation of the relationships between 

deposition output and spray pressure and temperature in 3-D surface plots.  For a constant 

pressure of 250 psi [1.72 MPa], as gas temperature is raised from 300 °C to 450 °C, a 

50% increase, deposition efficiency increases on average by 68.0% with a standard 

deviation of 13.3%, while coating thickness increases on average by 72% with a standard 

deviation of 13.6%. For a constant temperature of 450 °C, as gas pressure is raised from 

175 psi [1.21 MPa] to 250 psi [1.72 MPa], a 43% increase, deposition efficiency 

increases on average by 56.5% with a standard deviation of 8.7% while coating thickness 

increases on average by 65.8% with a standard deviation of only 0.9%. Of special note 

however is that none of these calculations include the data points from the Cu-70/30 

wt.% Zn deposits; this is because the Cu-70/30 wt.% Zn deposits were erratic and brittle 

while being sprayed, with small pieces and in some cases entire chunks of the deposit 

breaking off in mid-spray in the two middle-range spray conditions. This deposit 

behavior was not observed during the sprays of the other feedstock materials, although 

there were some instances of very slight, yet perceptible upon inspection, debonding of 

the deposit from the substrate in the Cu-80/20 wt.% Zn deposits, most notably at the 

lower pressure sprays conducted at 175 psi [1.21 MPa]. 
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Figure 33.  Three Dimensional Surface Plot of Deposition Efficiency Vs. Spray Pressure 
and Temperature for Pure Copper Powder. 

 

Figure 34.  Three Dimensional Surface Plot of Deposition Efficiency Vs. Spray Pressure 
and Temperature for Cu-90/10 wt.% Zn Powder. 
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Figure 35.  Three Dimensional Surface Plot of Deposition Efficiency Vs. Spray Pressure 
and Temperature for Cu-80/20 wt.% Zn Powder. 

 

Figure 36.  Three Dimensional Surface Plot of Deposition Efficiency Vs. Spray Pressure 
and Temperature for Cu-70/30 wt.% Zn Powder. 
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2. Deposit Hardness and Modulus of Elasticity 

The deposit hardness increased systematically with increasing zinc content of the 

feedstock powder for the 450 °C case, while the 300 °C case presented a similar but less 

clear trend (Figure 37). The modulus of elasticity behaved in a similar manner as 

hardness, yet in the opposite direction, systematically decreasing with increasing zinc 

content in the 250 psi [1.72 MPa] and 450 °C spray conditions case (Figure 38). As zinc 

content increased, it became increasingly more difficult to obtain accurate data and there 

was increasingly larger material compliance issues when measuring hardness and 

modulus of elasticity.  Table 14 contains the average hardness and young’s modulus data 

obtained via nano-indentation for each of the deposits sprayed at 250 psi [1.72 MPa], 

both at 450 °C and 300 °C. 

 

 

Table 14.   Hardness and Young’s Modulus for Pure Copper, Cu-90/10 wt.% Zn, Cu-
80/20 wt.% Zn and Cu-70/30 wt.% Zn Deposits. 

Test No. 1 2 3 4

Powder Material Pure Copper Pure Copper Cu‐90/10 wt.% Zn Cu‐90/10 wt.% Zn

Gas Temperature (⁰C) 450 300 450 300

Gas Pressure (psi) 250 250 250 250

Average Hardness (GPa) 2.75 2.43 3.01 2.61

Average Young's Modulus (GPa) 132.0 126.3 130.7 114.1

Test No. 5 6 7 8

Powder Material Cu‐80/20 wt.% Zn Cu‐80/20 wt.% Zn Cu‐70/30 wt.% Zn Cu‐70/30 wt.% Zn

Gas Temperature (⁰C) 450 300 450 300

Gas Pressure (psi) 250 250 250 250

Average Hardness (GPa) 3.21 3.11 3.31 2.67

Average Young's Modulus (GPa) 120.1 118.4 106.2 90.0
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Figure 37.  Average Hardness Vs. Zinc Content by wt.% for Deposits Sprayed at 250 psi 
and 450 °C, and 250 psi and 300 °C. 

 

Figure 38.  Average Young’s Modulus Vs. Zinc Content by wt.% for Deposits Sprayed at 
250 psi and 450 °C, and 250 psi and 300 °C. 

3. Deposit Porosity 

Deposit porosity was characterized by both optical and scanning electron 

microscopy (Table 15). Figures 39–42 provide optical microscope photos of the cross 

sections of the 250 psi [1.72 MPa] / 450 °C and 300 °C deposits, and Figure 43 provides 
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the scanning electron microscope photos of the 250 psi [1.72MPa] / 450 °C variants of 

the same. In every observable sample, the porosity as noted by the optical microscope far 

exceeded the porosity noted by the scanning electron microscope. Of particular note is 

the relationship between deposit porosity and zinc content by wt.%, illustrated by Figure 

44, which does not present a linearly defined and clear trend. Notable is the result that in 

the 300 °C case, the trend line for deposit porosity mimics strongly the trend line 

previously seen in the hardness measurements of the same. 

 

 

Figure 39.  Optical Microscopy Photos of Pure Copper Spray Deposits, Mag 25X. Left: 
250 psi, 450 °C. Right: 250 psi, 300 °C. 

 

Figure 40.  Optical Microscopy Photos of Cu-90/10 wt.% Zn Spray Deposits, Mag 25X. 
Left: 250 psi, 450 °C. Right: 250 psi, 300 °C. 



 65

 

Figure 41.  Optical Microscopy Photos of Cu-80/20 wt.% Zn Spray Deposits, Mag 25X. 
Left: 250 psi, 450 °C. Right: 250 psi, 300 °C. 

 

Figure 42.  Optical Microscopy Photos of Cu-70/30 wt.% Zn Spray Deposits, Mag 25X. 
Left: 250 psi, 450 °C. Right: 250 psi, 300 °C. 
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Figure 43.  SEM Photos of Cold Spray Deposits, sprayed at 250 psi, 450 °C, Mag 200X. 
Clockwise from Top Left: Pure Copper, Cu-90/10 wt.% Zn, Cu-80/20 wt.% 

Zn, Cu-70/30 wt.% Zn. 

 

Table 15.   Spray Data for Porosity in Pure Copper, Cu-90/10 wt.% Zn, Cu-80/20 wt.% 
Zn and Cu-70/30 wt.% Zn Cold Spray Deposits. 

Test No. 1 2 3 4

Powder Material Pure Copper Pure Copper Cu‐90/10 wt.% Zn Cu‐90/10 wt.% Zn

Gas Temperature (⁰C) 450 300 450 300

Gas Pressure (psi) 250 250 250 250

Porosity (% of Total Area) 4.94 3.65 25.63 11.9

Test No. 5 6 7 8

Powder Material Cu‐80/20 wt.% Zn Cu‐80/20 wt.% Zn Cu‐70/30 wt.% Zn Cu‐70/30 wt.%

Gas Temperature (⁰C) 450 300 450 300

Gas Pressure (psi) 250 250 250 250

Porosity (% of Total Area) 29.5 26.6 22.96 17.69
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Figure 44.  Coating Porosity Vs. Zinc Content by wt.%. 

D. DISCUSSION 

1. The Relationship between Deposition Efficiency and Changes in 
Pressure and Temperature 

When considering the spray of pure copper or brass alloys, the relationships 

between deposition efficiency, coating thickness per pass, spray temperature and spray 

pressure are all consistent with the previously disseminated results obtained via the spray 

of Centerline SST’s A-0050 powder mixture, as well as the general literature. Of special 

note, we see that temperature is slightly more of a “lever” than pressure is, providing a 

ratio of temperature increase to deposition efficiency increase of [1 : 1.36], while the 

similar ratio as defined with temperature increase provides a slightly smaller ratio of [1 : 

1.31]. This is different from our pervious findings while conducting tests utilizing the A-

0050 (aluminum-alumina) powder mixture, which found that pressure was the larger 

‘lever’. In either case, the difference between the two is likely within the statistical range 

for error in measurement—as such, our experiment concludes that each of the parameters, 

with all else held constant, is likely to be just as large of an impact on the output product 

as the other. However, because excess temperature may  play a role in causing excessive 

residual stress as the deposit cools—degrading bond strength or causing full debonding of 
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the deposit from the substrate—the recommendation to prefer pressure increases over 

temperature increases if additional coating thickness or deposition efficiency is 

necessary, remains firm. Still further, upon reviewing the 3-D surface plots of deposition 

efficiency vs. spray pressure and spray temperature (Figures 33–36), that the change in 

deposition efficiencies in the feedstock powders all possess approximately the same 

slope, regardless of the operating parameter which was changed (pressure or 

temperature). This concurs strongly with the statistical evidence previously stated—that 

pressure and temperature in fact do act as similarly powerful ‘levers’ to increase 

deposition efficiency, and that the power of these parameters to change deposition 

efficiency is relatively constant regardless of the zinc content of the feedstock powder. 

Microstructural cracking was observed at the deposit/substrate interface in all of 

the deposits sprayed at the higher temperatures of 450 °C. The left side of Figure 46 

visually depicts this cracking in the Cu-90/10 wt.% Zn and Cu-80/20 wt.% Zn sample 

deposits, each sprayed at 250 psi [1.72 MPa]. This observation is in contrast to the 

deposit samples sprayed at 250 psi [1.72 MPa] and 300 °C, shown on the right side of 

Figure 45, which either did not exhibit such cracking at the deposit/substrate interface, or 

displayed such behavior at a greatly diminished qualitative magnitude. Because this 

microstructural cracking is temperature dependent, it is hypothesized that the interface 

cracking is occurring due to residual stress build-up upon deposit cooling—since 

aluminum has a very high thermal conductivity and a different thermal expansion 

coefficient than copper or brass, it is possible that the deposits are put under significant 

tensile stress while they cool back to room temperature. If this hypothesis is true, then the 

use of similar material substrates would diminish the magnitude of this problem, if not 

eliminate it completely. The following equation can be utilized to estimate the thermal 

residual mismatch, where A
P  is the residual stress of the coating material, T  is the 

thermal mismatch strain between the two materials, AE  is the modulus of elasticity of the 

coating material, BE  is the modulus of elasticity of the substrate material, A  is the 

Poisson’s ratio of the coating material and At  is the thickness of the deposit 

material [46]. In the case of Cu 90/10 wt.% Zn sprayed on 6061 Aluminum at 450 °C, 

this thermal mismatch residual stress is estimated to be 177.45 MPa. 
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Figure 45.  Optical Photographs of Deposit/Substrate Interface, Showing Cracking at 
Higher Spray Temperatures, (100x). Top Left: Cu-90/10 wt.% Zn (250 psi, 
450 °C). Top Right: Cu-90/10 wt.% Zn (250 psi, 300 °C). Bottom Left: Cu-

80/20 wt.% Zn (250 psi, 450 °C). Bottom Right: Cu-80/20 wt.% Zn (250 psi, 
300 °C). 

There is severe cracking at the deposit/deposit interface in the Cu-80/20 Zn which 

was sprayed at 250 psi [1.72 MPa] and the temperature of 300 °C and in both of the Cu-

70/30 wt.% Zn deposits which were sprayed at 250 psi [1.72 MPa]—the cause of this 

cracking is unknown, but is hypothesized to be a combination of brittle fracture and 
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residual stresses. The deposit/deposit interface is defined as the plane where the second 

spray iteration was conducted on top of the other. All deposits were made using two, 

identical, sequential passes. For Cu-80/20 wt.% Zn and Cu-70/30 wt.% Zn deposits, 

almost complete separation of the two deposit layers occurs in a number of sections in the 

deposit coating, both of which are visible in Figure 46. Since this occurs in the Cu-80/20 

wt.% Zn deposit sprayed at 300 °C and not in the sample sprayed at 450 °C (both 

utilizing a 250 psi spray pressure), then residual stresses cannot be the only culprit. 

Rather, it is hypothesized that the phenomenon is exhibiting itself because the powder 

and/or the coating is so hard that the powder particles are simply bouncing off the 

substrate and not depositing in large amounts, leaving behind large internal gaps or pores. 

This hypothesis is supported by the deposition efficiency results, which are very low for 

these materials—implying a significant amount of the powder is bouncing off the deposit 

instead of bonding. The observation of extensive brittle-type microstructural cracking in 

the vicinity of these large gaps that exist at the deposit/deposit interface further support 

this hypothesis. Lastly, the measured hardness of the Cu-80/20 wt.% Zn and the Cu-70/30 

wt.% Zn deposits were approximately 16.7% and 20.4% greater, respectively, than the 

baseline pure copper deposit sprayed at the same pressure and temperature. Harder 

materials require much greater particle velocities to obtain the sufficient plastic 

deformation required to produce a coating. In agreement with our original hypothesis 

outlined in Chapter I, if the brass particles are indeed inhibiting dislocation motion and 

thus plastic deformation because of the very low stacking fault energy of brass, then it 

would be reasonable to assume that they require higher particle velocities to create 

deposits, and what deposit is created should be much harder than in standard copper.  
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Figure 46.  Brittle-Type Microstructural Cracking in the Vicinity of Deposit/Deposit 
Interface Gaps, (100x). Left: Cu-80/20 wt.% Zn Sprayed at 250 psi [1.72 

MPa] and 300 °C. Right: Cu-70/30 wt.% Zn Sprayed at 250 psi [1.72 MPa] 
and 450 °C. 

2. The Effect on Zinc Content on Deposition Efficiency and Coating 
Thickness 

The zinc content has a large effect on the deposition efficiency of the spray 

medium, in addition to the coating thickness obtained per passing. As a matter of fact, 

modifying the zinc content simply from 0–10 wt.% had almost as strong of an effect on 

these two quantities as compared to raising the gas pressure by 43%, or the gas 

temperature by 50%. Increasing the zinc content of the material greater than 10 wt.% 

however decreases the deposition efficiency to levels equal to those seen in the pure 

copper powder in the case of the higher temperature spray (450 °C), and further degraded 

in the case of the low temperature control (300 °C). It was hypothesized originally in 

Chapter I that by raising the zinc content of the feedstock powder that the associated 

decreases in stacking fault energy (SFE), and thus increases in strain hardening 

coefficients, would dominate the process despite the fact that the melting point of the 

material was also lowering—allowing the material to be more malleable upon ballistic 

impact. It is well known that harder materials are more difficult to spray, and have 

degraded deposition efficiencies in comparison to softer materials [47]. Because 

significant dislocation motion is occurring during the spray, ballistic impingement and 

splat formation processes—due to the extreme forces being exerted on the individual 

particles—it would make sense that a material with a significantly higher strain hardening 



 72

coefficient would undergo a large amount of strain hardening. This would limit the 

movement of dislocations in the impingement and splat formation processes and 

ultimately lead to lowered deposition efficiencies by route of particle hardening. Our data 

suggests that this relationship is partially true. At zinc contents above 10 wt.%, the 

evidence would seem to suggest that the hypothesis is indeed correct, due to the dramatic 

erosion of deposition efficiency as zinc content increases above that level. However, the 

relationship does not hold true in the range between 0 and 10 wt.% of total zinc within 

the alloy. Thus, the evidence would seem to suggest that at zinc levels lower than 

approximately 10 wt.% in a Cu-Zn alloy, the increase in malleability due to the lowering 

of the alloy melting point does indeed dominate the process despite the decrease in 

stacking fault energy and associated increase in the strain hardening coefficient. At zinc 

contents above this level however, the evidence would suggest that the reverse is true, 

and that strain hardening via plastic deformation tends to dominate the spray 

characteristics of the process. This is evidenced quantitatively by noting that the decrease 

in melting point from 0–10 wt.% Zn is approximately 5%, while the decrease in stacking 

fault energy is approximately 20%. However, from 10–20 wt.% Zn the decrease in 

melting point remains approximately 5% while the decrease in stacking fault energy is a 

much greater 66%. 

Even further, this relationship overshadows other spray parameters as well—a 

notion most clearly observed when considering the deposition of Cu-70/30 wt.% Zn. The 

mean particle size of the Cu-70/30 wt.% Zn powder was 11.24 µm vs. 26.35 µm for the 

Cu-80/20 wt.% Zn powder. As such, all else being same, the Cu-70/30 wt.% Zn should 

have been far easier to spray, and should have exhibited much higher deposition 

efficiencies than the Cu-80/20 wt.% Zn. This cause-effect relationship was investigated 

and proven by Jodoin et al. in 2006, who found that particles velocities increased by 

approximately 15% when mean particle size was reduced by approximately 20% [48]. 

Because the only thing that changed between the two spray conditions was the zinc 

content of the powder and the mean particle size, it can be readily inferred that the effects 

of decreasing stacking fault energy, and thus increasing the strain hardening coefficient in 

the Cu-70/30 wt.% Zn case not only negated any benefit that should have been 
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recognized by the decrease in mean particle size, but still yet was so influential that 

deposition efficiency and coating thickness per pass decreased by a further 36.5% from 

the Cu-80/20 wt.% Zn case (250 psi and 450 °C). 

3. The Relationships between Powder Zinc Content and Deposit 
Hardness and Modulus 

If stacking fault energy is indeed dominating the spray process as outlined 

previously, then deposit hardness should increase with increasing zinc content of the 

feedstock powder, the observation of which would tend to confirm the hypothesis 

outlined in Chapter I. In addition, the deposits should be harder regardless of the role of 

stacking fault energy, due to solid solution strengthening—the most well-known effect of 

adding zinc in solution with copper. That is precisely what is observed (Table 14 and 

Figure 37). With respect to the 250 psi [1.72 MPa] and 450 °C spraying condition, as the 

nominal zinc content of the feed powder rises from 0–10 wt.%, 10–20 wt.% and 20–30 

wt.% Zn, average hardness increases by 9.45%, 6.64% and 3.12%, respectively, with a 

total surge in deposit hardness of 20.36% from 0–30 wt.% Zn. More or less the same 

relationship is observed in the 250 psi [1.72 MPa] and 300 °C as well—however notably 

the trend line observed in Figure 44 loses much of its definition from 10 -30 wt.% Zn. In 

the 250 psi [1.72 MPa] and 300 °C case, the percentage of total indents which were errant 

in the 20 wt.% Zn case was 58%, and in the 30 wt.% case, 88%. 

Conversely, a steady attenuation in the magnitude of the modulus of elasticity of 

the material is observed when increasing the nominal zinc content of the feedstock 

powder. With respect to the 250 psi [1.72 MPa] and 450 °C spraying condition, as the 

nominal zinc content of the feed powder rises from 0–10 wt.%, 10–20 wt.% and 20–30 

wt.% Zn, average Young’s modulus reduces by 1.01%, 8.21% and 11.63%, respectively, 

with a total reduction in deposit modulus of 19.54% from 0–30 wt.% Zn. The same 

variability of the trend line is seen in the 20 wt.% Zn and 30 wt.% Zn samples created 

under the 250 psi and 300 °C spraying conditions.  

The increase in hardness conforms to the mechanisms outlined in the 

hypothesis—if stacking fault energy decreases, leading to a surge in strain hardening as 



 74

the splat deforms and bonds during deposition, then general hardness of the deposit 

should increase with an enlargement of the nominal zinc content of the alloy. 

Furthermore, although changes in modulus are often concurrent with changes in 

hardness, it is not unexpected to see the modulus of elasticity reduced as the nominal zinc 

content of the alloy increases. The ASM Handbook notes that the modulus of pure copper 

is 115 GPa, while the modulus of Cu-70/30 wt.% Zn is 110 GPa [49]. What is important 

to mention however is that the observed moduli of the deposits are all appreciably greater 

than the moduli of their unaltered counterparts, by approximately 10%. Also, the 

hardness values of the deposits are all substantially greater than those of the standard bulk 

material. 

4. The Relationship between Powder Zinc Content and Porosity 

The manner by which porosity is quantified is very important to note when 

considering the observations on porosity, as the utilization of a different method can 

produce quantified porosity results that vary significantly from the peer-reviewed 

literature. As an example, when considering the pure copper powder used in the 

experiments, deposits were produced with limited porosity—4.94% and 3.65% in the 450 

°C and 300 °C (both at 250 psi [1.72 MPa]) samples, respectively. However, Stoltenhoff 

et al. reported spraying copper deposits with “negligible porosity” in 2006, and 

Koivuluoto et al. in 2007 reported spraying copper deposits that “were found to be dense 

showing no signs of porosity or voids [16, 28].” However, it is critical to note that these 

studies undertaken by Stoltenhoff et al. and Koivuluoto et al. both used a scanning 

electron microscope to analyze the porosity of the deposits, while optical microscopy, in 

conjunction with the ImageJ software from the National Institutes of Health, was utilized 

to produce the porosity measurements previously stated. Optical microscopy, vice 

scanning electron microscopy, was chosen to evaluate deposit porosity because the 

inherent contrast provided by the optical microscopy method for reliably displays 

porosity on a polished surface when used in bright field mode.  When done with a SEM, 

the porosity of the current samples was evaluated at 2.27% and 1.38%, which were 

decidedly lower and more in line with previous reports, although still quantifiable and 

noticeable.  
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The difference in these reported porosities is attributed to the utilization of much 

higher pressures—435.1 psi [3.0 MPa] and 406.1 psi [2.8 MPa] by Stoltenhoff et al. and 

Koivuluoto et al., respectively, as they otherwise used reasonably similar conditions 

when spraying copper powder. These pressures correspond to increases of 74% and 62% 

greater spraying pressures, respectively. It has been well noted in the literature that the 

use of higher pressure entraining gas or an entraining gas with a lower molecular weight, 

such as helium, leads to significantly higher particle velocities and thus more dense 

deposit characteristics. 

The zinc content of the feedstock material had the large impact on the porosity of 

the output deposit. As seen in Table 10, the initial increase in zinc content from 0–10 

wt.% leads to a notable increase in porosity from 4.94% to 25.63%, and 3.65% to 11.90% 

in the high and low temperature cases (450 °C and 300°C), respectively, representing 

419% and 226% increases. The addition of further zinc from 10–20 wt.% increases the 

porosity further, but the rate of which is at a diminished magnitude, 25.63% to 29.50% 

and 11.90% to 26.60%, again for the high and low temperature cases, respectively. The 

rate of increase for each is this case was a much lower 15% and 123%, respectively—but 

by this point over a full quarter of the total area of each deposit was constructed entirely 

of voids. Finally, when zinc content is enlarged from 20–30 wt.%, the porosity actually 

decreases in magnitude, 29.50% to 22.96% and 26.60% to 17.69% for the high and low 

temperature cases, a 22% and 33% decrease, respectively. 

The most likely source of the large scale porosity in the deposited brass coatings 

is the fact that the brass powder particles are large and strangely shaped.   Although the 

brass powder particles appear on the surface to be detached, spheroid particles (Figure 

24), closer inspection of the cross section images (Figure 26) shows that many particles 

are physically interconnected.  This interconnected nature is particularly observed for the 

larger brass particles.  The result is that instead of spraying individual particles of 

uniform size, we are spraying a larger distribution of particle sizes and shapes, many of 

which have a large central particle with semi-spherical “nodules” appended to it.  When a 

particle with this shape impacts the substrate, it may adhere, but it will likely have large 

pores that are not fully collapsed by the impact.  It should be noted that the particle size 
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of Cu-70/30 wt.% Zn was substantially smaller than the other brass compositions.  It also 

had fewer inter-particle connections (Figure 26), and subsequently had much less 

porosity when sprayed (Figure 43). 

The interconnected and complex particle shapes of the brass powders are mostly 

likely due to the current ACU process for making brass powders.  In this process, the 

copper particles are formed using gas atomization, a common metal powder process that 

results in individual, spherical powder particles with a range of sizes.  While, there is a 

strong correlation between the zinc content and the porosity in the cold spray deposits, 

but it is likely not causal.  To create brass, the ACU process coats the particles with zinc 

and then anneals them to diffuse the zinc through the particles.  It seems that during this 

process, many of the smaller particles fuse to the larger particles, thus creating the large, 

complex particles observed in Figure 26.  We hypothesize that a light milling of these 

powders, to break the interconnections, or the use of brass powders formed directly 

through gas atomization would greatly reduce the observed porosity.   

5. Compositional Variability as a Side Effect of the Cold Spray 
Deposition Process 

The micro-scale variation in composition of the brass deposits was seemingly 

increased during or after cold spray deposition as observed by X-ray maps of the copper 

and zinc distributions (Figures 47–49). In addition, semi-quantitative X-ray analysis 

displayed a marked increase in the zinc content variation compared with the starting 

powders (Table 16). The SEM photographs of the deposit at the substrate/deposit 

interface (the large dark areas at the bottom of each photograph is the substrate in each 

case), as well as the composition maps are presented at 500x magnification. Immediately, 

one will notice from the zinc composition maps of the Cu-90/10 wt.% Zn and Cu-80/20 

wt.% Zn deposits that the concentrations of zinc within the deposit are definitively non-

uniform of a magnitude greater than that exhibited in the feedstock powder, qualitatively 

speaking. Quantitatively, we see that the standard deviation of zinc content jumped 

almost 100% in contrast to the as-received feedstock powder. From Table 16, in each 

case we observed that zinc in fact was present in far lower concentrations near pores than 

that seen in the feedstock powder, or in the general bulk deposit. Additionally we 
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observed that much higher concentrations of zinc were found in the general deposit than 

seen in the feedstock powder.  

 

 

Table 16.   Multi-Point X-ray Data and Statistics for Cu-90/10 wt.% Zn and Cu-80/20 
wt.% Zn deposits. 

 

 

Figure 47.  Cu-90/10 wt.% Zn Deposit Sprayed at 250 psi [1.72 MPa] and 450 °C. Left: 
SEM Photograph, 500x. Right: Zinc Composition Map, 500x. 

 

Powder Material Cu‐90/10 wt.% Zn Cu‐80/20 wt.% Zn

Overall

Minimum wt.% of Zn 1.90 1.31

Maximum wt.% of Zn 22.37 38.10

Average wt.% of Zn 8.67 21.15

Standard Deviation 5.69 8.99

Bulk Deposit

Average wt.% of Zn 11.88 26.50

Near Pores

Average wt.% of Zn 5.72 15.73
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Figure 48.  Cu-80/20 wt.% Zn Deposit Sprayed at 250 psi [1.72 MPa] and 450 °C. Left: 
SEM Photograph, 500x. Right: Zinc Composition Map, 500x.  

 

Figure 49.  Cu-70/30 wt.% Zn Deposit Sprayed at 250 psi [1.72 MPa] and 450 °C. Left: 
SEM Photograph, 500x. Right: Zinc Composition Map, 500x.  

The variation in zinc content is most likely due to zinc migration after cold spray 

deposition. There is not time during the deposition process itself (less than one 

millisecond) for diffusion-based zinc migration.  There may be sufficient thermal energy 

and kinetics after deposition to hypothesize diffusion-based zinc transport.  Zinc has an 

exceptionally high vapor pressure (14,000 mm-Hg at 350C [50]) and dezincification of 

brass is a well-known problem at temperature similar to those used during these cold 

spray experiments.  Zinc could migrate to the surfaces of pores in the deposit and leave 

the deposited metal into the vapor phase.  If the temperature of the deposit is able to 
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support a zinc diffusivity of 10–10cm2/s for 10 minutes (600 seconds) after deposition, 

then the zinc could migrate more than seven microns, enough to explain the observed 

change in micro-scale composition for the brass deposits.  The large amount of strain 

during deposition will likely produce a high dislocation density which will enhance this 

effect.  Deposition at lower temperatures and reduction in deposit porosity would reduce 

the migration of zinc in the deposited microstructure.  
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IV. COLD SPRAY OF NANOCRYSTALLINE COPPER AND 
BRASS FEEDSTOCK POWDERS 

A. FEEDSTOCK POWDER PREPARATION AND CHARACTERIZATION 

Cryomilling was chosen as the appropriate method to prepare the nanocrystalline 

powder from the as-received powder largely because of the extensive previous research 

in the literature. In particular, Bahmanpour et al. produced results in 2011 by which pure 

copper, Cu-90/10 wt.% Zn, Cu-80/20 wt.% Zn and Cu-70/30 wt.% Zn were all 

cryomilled for a duration of twelve hours, and then microhardness and crystallite size 

were evaluated to determine at what total milling time one could conclude that each of 

the materials had reached the maximum hardness and minimum crystallite size pursuable 

by the cryomill method [40]. Graphs of the results can be found in Figures 50 and 51. 

Bahmanpour et al. determined via this research that crystallite size and microhardness 

became more or less constant in the range of four to six hours of cryomilling time, after 

which point minimal change was noted. The powders at that point were determined to 

have crystallite sizes of 20 nm or less, making them indeed nanocrystalline. Based on 

these results, powder was prepared using approximately 100 grams of both the pure 

copper and Cu-90/10 wt.% Zn powders, which was cryomilled for five hours to obtain 

assumed nanocrystalline powder, to be used in a cold spray deposition experiment. It was 

not verified by independent means that this powder was actually nanocrystalline, and as 

such the powder is will be referred to as “cryomilled” in this chapter. 
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Figure 50.  Microhardness vs. Cryomilling Time. From [40]. 

 

Figure 51.  Crystallite Size Vs. Cryomilling Time. From [40]. 

The characterization of the as received powder prior to cryomilling can be found 

in Chapter III, Section A. 
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B. EXPERIMENTAL METHOD 

A SPEX SamplePrep Freezer/Mill model series 6870 was utilized for the 

cryomilling process. 50 grams of the 620 Series copper powder was inserted into a SPEX 

SamplePrep series 6801 large grinding vial set—the vial itself is constructed of a 

polycarbonate shell with stainless steel end plugs with a stainless steel impactor 

contained within the vial. The vial loading process was accomplished in a glove box 

filled with argon gas at atmospheric pressure in order to prevent oxidation or corrosion 

contamination of the powder. The mill was then filled with liquid nitrogen to bring it to a 

temperature of 77 K, after which the mill was topped off at thirty minute intervals to 

ensure a consistent temperature of 77 K during the milling process. 

Before starting the milling process, the vial and powder contained within was pre-

cooled via submersion in the liquid nitrogen for a period of 15 minutes to confirm that the 

powder had reached the temperature of the mill (77 K). The 6870 Freezer/Mill was then 

operated at a rate of fifteen cycles per second for ten minutes, followed by a two minute 

cooling period during which the milling process was paused. This cycle was repeated 

until the total milling time reached five hours, after which the vial was removed from the 

mill and allowed to warm to ambient temperature. After ambient temperature was 

reached, the vial was placed again in the inert environment of the glove box and the 

powder was removed. 

This process was done twice for both the pure copper and Cu-90/10 wt.% Zn 

powders, yielding a total of 100 g of usable powder of each type for cold spray 

deposition. 

Cold spray deposition was carried out using the exact same spray pattern as 

discussed in Chapter III Section B. Only a single spray pressure and temperature 

combination was used, 250 psi [1.72 MPa] and 450 °C. The deposits were sprayed onto 

T-6061 aluminum substrates that had been subjected to the sandblasting procedure 

previously outlined. 

Deposition efficiency was measured in the same manner as formerly noted, 

however coating thickness per pass was not possible to measure accurately with a digital 
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micrometer—due to the thin coatings produced. Thus, coating thickness per pass was 

estimated by visual inspection during optical microscopy. 

The samples were cut, hot-mounted, sanded, polished, cleaned and desiccated as 

outlined beforehand in Chapter III Section B.  

Optical microscopy was again performed on each of the samples by utilizing the 

Nikon POTIPHOT 200 light microscope in conjunction with a digital camera. 

Photographs were taken at the 100x and 200x magnification levels. 

Hardness of the deposit samples was measured using the G200 nano-indenter 

manufactured by Agilent Technologies Inc. in conjunction with a Berkovich diamond tip. 

Fifteen sample points were chosen to average out the resulting hardness to prevent 

obfuscation of the resulting data by a statistical outlier. The parameters for the indents 

were as follows: 0.05 nm/s allowable drift rate, 3.0 hr maximum thermal drift time, 2000 

nm surface approach distance, 200 nm/s surface approach velocity, 1000 nm indentation 

depth and 0.08 strain rate. 

C. RESULTS 

Both the copper and 90/10 cryomilled powders were successfully deposited using 

cold spray, albeit with low deposition efficiencies. The deposition efficiency for the 

cryomilled copper and Cu-90/10 wt.% Zn powders was 2.30% and 1.10% for each of the 

samples, respectively — notably minute. Coating thickness was unable to be measured 

with the micrometer used in the microcrystalline analysis—instead coating thickness was 

estimated via the use of the Zeiss Neon-40 scanning electron microscope. The cryomilled 

copper produced coatings thicknesses per pass of approximately 55 µm while the 

cryomilled Cu-90/10 wt.% Zn thickness per pass was measured to be approximately 35 

µm. It should be stated that the coatings were highly irregular with respect to coating 

thickness from one part of the substrate to another. In some places the deposit was half of 

the thickness stated, and in some other positions it was twice as thick—the stated results 

was observed to be approximately the average over the area of viewing. 
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SEM photos of the cross section of each sample can be found in Figures 52 and 

53 in 250x and 500x magnifications. In both figures the cryomilled copper deposit is on 

the left hand side, and the cryomilled brass the right hand side. 

 

Figure 52.  SEM Photographs of Cryomilled Deposits Sprayed at 250 psi [1.72 MPa] and 
450 °C, 250x Magnification Left: Pure Copper. Right: Cu-90/10 wt.% Zn. 

 

Figure 53.  SEM Photographs of Cryomilled Deposits Sprayed at 250 psi [1.72 MPa] and 
450 °C, 500x Magnification. Left: Pure Copper. Right: Cu-90/10 wt.% Zn. 

Average hardness was measured to be 3.80 GPa in the cryomilled copper sample, 

and 3.31 GPa in the cryomilled brass sample. The standard deviations were 0.89 GPa and 

0.29 GPa for each sample, respectively; however, only three measurements were possible 

to be obtained for each sample. Additionally the modulus of elasticity was measured to 

be 134.6 GPa and 100.8 GPa for each sample, respectively. In both cases, a limited 
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number of measurements could be obtained owing to compliance issues from the porosity 

in the coatings, which can be observed below in the graphs of hardness and modulus for 

both the cryomilled copper deposit as well as the cryomilled Cu-90/10 wt.% Zn deposit 

(Figures 54 and 55, respectively). The hardness and modulus values reported are 

averaged from depths between 150–250nm below the polished, cross-sectional surface. 



 87

 

Figure 54.  Nano-indentation Results for Cryomilled Copper Powder Deposit. 
 Top: Hardness. Bottom: Modulus of Elasticity. 
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Figure 55.  Nano-indentation Results for Cryomilled Cu-90/10 wt.% Zn Powder Deposit. 
Top: Hardness. Bottom: Modulus of Elasticity. 
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D. DISCUSSION 

Ultimately, the most important result is strictly qualitative—it is in fact possible 

to utilize the cold spray deposition method to create coatings of nanocrystalline copper 

based alloys. Still yet, with such small deposition efficiencies, it should be noted that the 

use of helium as the entraining medium will likely be required to produce coatings of any 

appreciable thickness.  

The results obtained with respect to coating thickness agree with those of Liu et 

al. who conducted experiments in 2012 with the deposition of cryomilled copper powder, 

although further information such as deposition efficiency and the utilized spray pattern 

would be required to confirm agreement with their work [51]. Liu et al. produced 

nanocrystalline copper coatings on polished T-6061 aluminum substrates from 

cryomilled powder via utilization of cold spray with a spray temperature of 300 °C, 

2.0MPa [290 psi] of spray pressure, nitrogen as the entraining gas, a stand-off distance of 

10 mm and a gun velocity of 5 mm/s—their coatings were reported as being dense, like 

the current results, but with a thickness of approximately 100–150 µm. At first sight, our 

results would tend to indicate a much lower deposition efficiency than that seen by Liu et 

al. given that we observed coatings of approximately 50 µm in thickness, after two 

complete spray passes, in contrast to Liu et al.’s single pass. However, Liu et al. utilized a 

16% higher spray pressure, a closer stand-off distance and most importantly, a gun 

velocity of only 12.5% of ours—allowing for significantly more time for the deposit to 

build up as the gun sprayed onto the substrate. Still yet, Liu et al. did use a 33% lower 

spraying temperature and did not sandblast their T-6061 aluminum substrates prior to 

spray, both of which would tend to degrade performance, and the mean particle size of 

their powder is unknown. The cross sectional photographs of the deposits created by Liu 

et al. however look similar to ours in microstructure, which provides circumstantial 

evidence that we would obtain the same results provided we followed the same spraying 

procedures. 

In contrast with the microcrystalline deposits, there is not a significantly large gap 

in the deposition efficiencies as additional amounts of zinc are alloyed with the copper in 

the cryomilled case. While this apparent difference in deposition behavior seems to 
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conflict the results report in Chapter III, it should be noted that the deposition efficiencies 

of both cryomilled powders are so small that it is somewhat difficult to measure precisely 

how much powder actually was deposited, or how thick the coating was in aggregate. It is 

suggested that deposition efficiency and coating thickness per pass be re-tested with the 

use of helium as the entraining gas, or with a much slower gun-raster velocity. The 

hypothesis stands that the trends identified previously between zinc content and stacking 

fault energy will hold true for cryomilled powders as well as the as-received. 

Hardness was measured to be quite high in both the cryomilled copper and 

cryomilled Cu-90/10 wt.% Zn samples. Interestingly enough, the cryomilled copper 

deposit was a full 14.8% greater in magnitude than the cryomilled brass deposit. This 

finding directly contradicts the results found in the microcrystalline analysis, but does 

resemble the previously microhardness results of Bahmanpour et al. in. 2011, who 

observed decreasing microhardness in brass alloys that had been cryomilled as further 

zinc was added to the alloy from 0–30 wt.% [40]. It is still possible, given the small data 

sampling size, that the data presented is somewhat inaccurate—further hardness testing 

would be required to repudiate such an idea. The small sample size was due to difficulty 

in obtaining useful nanoindentation data, a product of poor material compliance while 

taking hardness measurements. In each of the hardness measurements, illustrated in 

Figures 54 and 55, the curve should be more or less flat as a function of depth. However, 

each measurement exhibits a downward slope after reaching a global maximum. This 

slope indicates that the material has a reasonably large compliance, which could be the 

function of internal cracking, brittle behavior or both. It is possible that this behavior 

could be avoided with thicker samples, which may be less prone to such behavior. Also 

important to note is that the hardness of each of the deposits were much greater in 

magnitude than the microcrystalline deposits—to be expected. In fact, the hardness of the 

nanocrystalline copper deposit was 38.1% greater than the microcrystalline deposit, and 

the nanocrystalline Cu-90/10 wt.% Zn was found to be 10% greater than its 

microcrystalline counterpart—despite the fact that both were sprayed in otherwise the 

exact same conditions. Interestingly enough, the measured hardness result obtained in the 

deposit made of cryomilled copper, 3.80 GPa, was much higher than that observed by Liu 
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et al. during their research, 3.02 GPa [51]. This hardness could have been caused by 

differing cryomilling parameters. Such excessive hardness exhibited in our cryomilled 

copper deposit may indeed explain some of the earlier stated discrepancy between Liu et 

al.’s and our own coating thickness observation—as harder powders are more difficult to 

deposit and harder surfaces more difficult to deposit on (after the initial copper/aluminum 

interface is made, the remaining splats must deposit on the existing copper layer).  

Unlike in the microcrystalline deposits, there was no noticeable porosity within 

either of the cryomilled deposits. This may be due to the relatively small thickness of the 

coating—obscuring what would be present in a thicker coating. However, it is 

hypothesized that the cryomilled powders are so hard that they cause plastic deformation 

of the deposit as they strike the already bonded coating and in doing so are filling the 

voids in a peening type of phenomenon. Liu et al. found a large number of deformation 

bands in their nanocrystalline copper deposits, and attributed such behavior to the same 

peening process [51].   

Further evidence for our original hypothesis with respect to stacking fault energy 

can be found in the observation of the coating microstructure however. From Figures 52 

and 53, it is quite clear that while the cryomilled copper coating is relatively dense and 

largely intact, the cryomilled brass coating contains numerous large cracks throughout its 

microstructure—this cracking would tend to be evidence of a harder, more brittle 

material. This result would align with our previous statements with respect to zinc 

content, stacking fault energy and the associated strain hardening upon deposition of the 

material. However, we also must note that the hardness of the cryomilled brass deposit 

was found to be significantly less than the cryomilled copper deposit (12.9% less). As 

such, we would normally expect the cracking to at least show itself in the cryomilled 

copper deposit, if not be more severe in nature given the higher hardness and modulus of 

elasticity.  

In order to more precisely answer these questions, it is suggested that X-ray 

diffraction and back-scatter diffraction be performed on the coatings after spraying 

thicker deposits with helium. Instead of using helium, slower gun travel speeds could be 

utilized in conjunction with nitrogen to build up a coating of sufficient thickness. This 
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will provide more information as to the exact crystallite size encountered in the deposits 

and hopefully provide the ability to better delineate the physical hardness of the material 

with a better confidence interval. 
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V. CONCLUSION 

A. SUCCESSFUL INSTALLATION OF COLD SPRAY DEPOSITION 
 SYSTEM AT NPS 

In the course of this thesis, successful installation of Naval Postgraduate School’s 

first ever cold gas-dynamic spray system was completed. The equipment was modified 

slightly to enable safe and reliable operation and was then calibrated for the use of a 

number of different powder materials, such as aluminum, copper and brass. Initial 

relationships between the thermodynamics and fluid mechanics of the spraying action 

and the resultant deposits were made using an aluminum/alumina powder mixture, 

providing a wealth of knowledge by which further experiments can be designed 

intelligently. The results of this testing were compared with similar literature and found 

to be in general agreement. 

B. SUCCESSFUL DEPOSITION OF BRASS 

Brass alloys were successfully cold spray deposited from a number of differing 

compositions of brass feedstock powder, including Cu-90/10 wt.% Zn, Cu-80/20 wt.% 

Zn and Cu-70/30 wt.% Zn. This is the first report for brass alloys using the cold gas-

dynamic spray system. 

Deposition efficiency initially increases by as much as 67% as zinc content 

increases from 0–10wt.%, but then decreases just as rapidly as zinc content continues to 

rise. The initial increase in deposition efficiency is attributed to the lowering of the 

melting point by approximately 5%, but the rapid decrease is attributed to the decrease in 

stacking fault energy and associated increase in the strain hardening coefficient. This 

mechanism suggests that materials with high strain hardening coefficients in general will 

produce thinner coatings for the same amount of powder, and in extremely high cases 

may prove unsuitable for use in the process. 

Hardness was observed to increase with increasing zinc content. Hardness in the 

Cu-70/30 wt.% Zn deposit was measured to be 3.31 GPa, which is far greater than found 

in the bulk powder or in copper deposits. The relationship between hardness and zinc 
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content confirms the strong role played by the stacking fault energy of the material in 

producing the deposit characteristics. 

The microstructure of the cold spray deposited brasses was quite complex.  

Importantly, the porosity observed in all of the brass deposits is far greater than that 

which was observed in copper deposits sprayed at the same conditions.  In the case of 

Cu-90/10 wt.% Zn the observed porosity was over 400% greater in magnitude, with voids 

making up no less than 25% of the total cross sectional area. There was a strong 

correlation with higher spraying temperatures and higher porosity. It is hypothesized that 

this occurs due to zinc leaching out of solid solution, possibly in the vapor phase.  In 

addition, composition was found to vary widely in the brass deposits, far greater than 

seen in the feedstock powder itself, which supports the idea of zinc migration.  

C. DEMONSTRATION OF COLD SPRAY OF CRYOMILLED COPPER 
 AND BRASS 

Nanocrystalline deposits which were dense with no appreciable porosity were 

successfully created from cryomilled copper and Cu-90/10 wt.% Zn powders. The 

deposition efficiency of these powders is much smaller than their in their standard, 

microcrystalline forms, and the hardness of the cryomilled copper deposit approaches 4.0 

GPa, 40% harder than its standard counterpart. While the nanocrystalline structure of the 

deposited material was not directly observed, this initial result is consistent with the 

successful deposition of nanocrystalline material, the first report of such a result for a 

copper alloy. 
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