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1.0. Introduction 

A problem common to many disciplines is that of adequately approximating a function of sev- 
eral to many variables, given only the value of the function (often perturbed by noise) at various 
points in the dependent variable space. Research on this problem occurs in applied mathematics 
(multivariate function approximation); statistics (nonparametric multiple regression), and in com- 
puter science and engineering (statistical learning “neural” networks). The goal is to model the 
dependence of a response variable y on one or more predictor variables x1, . . . , 2, given realizations 

(data) {s, w, - - - , zni}y. The system that generated the data is presumed to be described by 

Y = f(w~*,Gz) + 6 (1) 

over some domain (~1, . . . , s,) E D c R” containing the data. The single valued deterministic func- 
tion f, of its n-dimensional argument, captures the joint predictive relationship of y on ~1,. . . ,x,. 
The additive stochastic component E, whose expected value is defined to be zero, usually reflects 
the dependence of y on quantities other than ~1,. . . , 2, that are neither controlled nor observed. 
The aim of regression analysis is to use the data to construct a function f^(xl,. . . , 2,) that can 
serve as a reasonable approximation to f (21, . . . , 2,) over the domain I> of interest. 

The notion of reasonableness depends on the purpose for which the approximation is to be 
used. In nearly all applications however accuracy is important. Lack of accuracy is often defined 
by the integral error 

I= 
J 

+>A[ftx), f (Wx (2) 
D 

or the expected error 

(3) 

Here x = (Al,..., x,), A is some measure of distance, and w(x) is a possible weight function. 
The integral error (2) characterizes the average accuracy of the approximation over the entire 
domain of interest whereas the expected error (3) reflects average accuracy only on the design 
points x1, . . . , XN. In high dimensional settings especially, low integral error is generally much 
more difficult to achieve than low expected error. 

If the sole purpose of the regression analysis is to obtain a rule for predicting future values of the 
response y, given values for the covariates (~1, . . . , x,), then accuracy is the only important virtue 
of the model. If future joint covariate values x can only be realized at the design points xl,. . . r XN 

(with probabilities w(x;)) then the expected error (3) is the appropriate measure; otherwise the 
integral error (2) is more relevant. Often, however, one wants to use f^ to try to understand the 
properties of the true underlying function f (1) and thereby the system that generated the data. In 
this case the interpretability of the representation of the model is also very important. Depending on 
the-application, other desirable properties of the approximation might include rapid computability 
and smoothness; that is f^ be a smooth function of its n-dimensional argument and at least its low 
order derivatives exist everywhere in D. 
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This paper presents a new method of flexible nonparametric regression modeling that attempts 
to meet the objectives outlined above. It appears to have the potential to be a substantial improve- 
ment over existing methodology in settings involving moderate sample sizes, 50 5 N 5 1000, and 

_ moderate to high dimension, 3 5 n 5 20. It can be viewed as either a generalization of the recur- 
sive partitioning regression strategy (Morgan and Sonquist, 1963, and Breiman, Friedman, Olshen, 
and Stone, 1984), or as a generalization of the additive modeling approach of Friedman and Sil- 
verman (1989). Its immediate ancestor is discussed in Friedman (1988). Although the procedure 
described here is somewhat different from that in Friedman (1988), the two procedures have a lot 
in common and much of the associated discussion of that earlier procedure is directly relevant to 
the one described here. Some of this common discussion material is therefore repeated in this pa- 
per for completeness. 

2.0. Existing Methodology 

This section provides a brief overview of some existing methodology for multivariate regression 
modeling. The intent here is to highlight some of the difficulties associated with each of the methods 
when applied in high dimensional settings in order to motivate the new procedure described later. It 
should be borne in mind however that many of these methods have met with considerable success 
in a variety of applications. 

2.1. Global Parametric Modeling. 

Function approximation in high dimensional settings has (in the past) been pursued mainly in 
statistics. The principal approach has been to fit (usually a simple) parametric function g(x 1 {aj}:) 

to the training data most often by least-squares. That is 

where the parameter estimates are given by 

The most commonly used parametrization is the linear function 

9(x I {aj)oP> = a0 + 5 w;, p I n. 
i=l 

(4) 

Sometimes additional terms, that are preselected functions of the original variables (such as poly- 
nomials) are also included in the model. This parametric approach has limited flexibility and is 
likely to produce accurate approximations only when the form of the true underlying function f(x) 

(1) is close to the prespecified parametric one (4). On the other hand, simple parametric models 
have the virtue of requiring relatively few data points, they are easy to interpret, and rapidly com- 
putable. If the stochastic component E (1) is large compared to f(x), then the systematic error 
associated with model misspecification may not be the most serious problem. 
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2.2. Nonparametric Modeling. 

In low dimensional settings (n 5 2) global parametric modeling has been successfully general- 

ized using three (related) paradigms - piecewise and local parametric fitting and roughness penalty 
_ methods. The basic idea of piecewise parametric fitting is to approximate f by several simple 

parametric functions (usually low order polynomials) each defined over a different subregion of the 
domain D. The approximation is constrained to be everywhere continuous, and sometimes have 
continuous low order derivatives as well. The tradeoff between smoothness and flexibility of the 
approximation p is controlled by the number of subregions (knots) and the lowest order derivative 
allowed to be discontinuous at subregion boundaries. The most popular piecewise polynomial fit- 

_ ting procedures are based on splines, where the parametric functions are taken to be polynomials 
of degree q and derivatives to order q - 1 are required to be continuous (q = 3 is the most popular 
choice). The procedure is implemented by constructing a set of (globally defined) basis functions 
that span the space of qth order spline approximations, and fitting the coefficients of the basis func- 
tion expansion to the data by ordinary least-squares. For example, in the univariate case (n = 1) 
with K + 1 regions delineated by K points on the real line (“knots”), one such basis is represented 
by the functions 

1, WI;, {(x - a:> (6) 

where {tk}I( are the knot locations. (Here the subscript “+” indicates a value of zero for negative 
values of the argument.) This is known as the “truncated power” basis and is one of many that span 
the space of q-degree spline functions of dimension K +q+ 1. [See deBoor (1978) for a general review 
of splines and Shumacker (1976), (1984) for reviews of some two-dimensional (n = 2) extensions.] 

The direct extension of piecewise parametric modeling to higher dimensions (n > 2) is straight- 
forward in principle but difficult in practice. These difficulties are related to the so called “curse- 
of-dimensionality,” a phrase coined by Bellman (1961) to express the fact that exponentially in- 
creasing numbers of (data) points are needed to densely populate Euclidean spaces of increasing 
dimension. In the case of spline approximations the subregions are usually constructed as tensor 
products of K + 1 intervals (defined by K knots) over the n variables. The corresponding global 
basis is the tensor product over the K + q + 1 basis functions associated with each variable (6). 
This gives rise to (K + q + 1)” coefficients to be estimated from the data. Even with a very coarse 
grid (small A’), a very large data sample is required. 

Local parametric approximations (“smoothers”) take the form 

where g is a simple parameric function (4). Unlike global parametric approximations, here the 
parameter values are generally different at each evaluation point x and are obtained by locally 
weighted least-squares fitting 



The weight function w(x,x’) (of 2n variables) is chosen to place the dominant mass on points x’ 
“close” to x. The properties of the approximation are mostly determined by the choice of w and 
to a lesser extent by the particular parametric function g used. The most commonly studied g is 
the simple constant g(x ] u) = a [P arzen (1962), Shepard (1964), Bonzzini and Lenarduzzi (1985)]. 
Cleveland (1979) suggested that local linear fitting (5) produces superior results, especially near 
the edges, and Cleveland and Devlin (1988) suggest local fitting of quadratic functions. Stone 
(1977) shows that, asymptotically, higher order polynomials can have superior convergence rates 
when used with simple weight functions (see below), depending on the continuity of properties of 

f .w 
The difficulty with applying local parametric methods in higher dimensions lies with the choice 

of an appropriate weight function w (7) for the problem at hand. This strongly depends on f (1) 
and thus is generally unknown. Asymptotically any weight function that places dominant mass in 
a (shrinking) convex region centered at x will work. This motivates the most common choice 

w(x, x’) = K( 1x - x’I/s(x)) (8) 

with Ix - x’] being a (possibly) weighted distance between x and x’, s(x) is a scale factor (“band- 
width”), and K is a (“kernel”) function of a single argument.The kernel is usually chosen so that 
its absolute value decreases with increasing value of its argument. Commonly used scale functions 
are a constant s(x) = SO (“kernel” smoothing) or s(x) = so/j(x) (“near neighbor” smoothing), 
where j?(x) is some estimate of the local density of the design points. In low dimensional (n 5 2) 
settings, this approximation of the weight function w of 2n variables by a function K of a single 
variable (8), controlled by a single parameter (SO), is generally not too serious since asymptotic 
conditions can be realized without requiring gargantuan sample sizes. This is not the case in higher 
dimensions. The problem with a kernel based on interpoint distance (8) is that the volume of the 
corresponding sphere in n-space grows as its radius to the nth power. Therefore to ensure that 
w (8) places adequate mass on enough data points to control the variance of f(x), the bandwidth 
s(x) will necessarily have to be very large, incurring high bias. 

Roughness penalty approximations are defined by 

I(x) = arggmin e[yi - g(xi>]” + M(g) . 1 i=l I 
Here R(g) is a functional that increases with increasing “roughness” of the function g(x). The 
minimization is performed over all g for which R(g) is defined. The parameter X regulates the 
tradeoff between the roughness of g and its fidelity to the data. The most studied roughness 
penalty is the integrated squared Laplacian 

leading to Laplacian smoothing (“thin-plate”) spline approximations for n 5 3. For n > 3 the 
general thin-plate spline penalty has a more complex form involving derivatives of higher order than 
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two. [See Wahba (1990), Section 2.4).] The properties of roughness penalty methods are similar to 
those of kernel methods (7) (8), using an appropriate kernel function K (8) with X regulating the 
bandwidth s(x). They therefore encounter the same basic limitations in high dimensional settings. 

- 2.3. Low Dimensional Expansion!. 

The ability of the nonparametric methods to often adequately approximate functions of a 
low dimensional argument, coupled with their corresponding inability in higher dimensions, has 
motivated approximations that take the form of expansions in low dimensional functions 

Here each Zj is comprised of a small (different) preselected subset of (~1, - . . , 2,). Thus, a function 
of an n-dimensional argument is approximated by J functions, each of a low (5 2) dimensional 

argument. [Note that any (original) variable may appear in more than one subset zj. Extra 
conditions (such as orthogonality) can be imposed to resolve any identifiability problems.] After 
selecting the variable subsets {zj}{, the corresponding functions estimates {jj(zj)}{ are obtained 
by nonparametric methods, for example, using least-squares 

with smoothness constraints imposed on the jj through the particular nonparametric method used 
to estimate them. 

In the case of piecewise polynomials (splines) a corresponding basis is constructed for each 
individual zj and the solution is obtained as a global least-squares fit of the response y on the 
union of all such basis functions [Stone and Koo (1985)]. With roughness penalty methods the 
formulation becomes 

(12) 

These are referred to as “interaction splines” [Barry (1986), Wahba (1986), Gu, Bates, Chen and 
Wahba (1990), Gu and Wahba (1988), and Chen, Gu and Wahba (1989)]. 

Any low dimensional nonparametric function estimator can be used in conjunction with the 
“backfitting” algorithm to solve (11) [F rie d man and Stuetzle (1981), Breiman and Friedman (1985), 
and Buja, Hastie and Tibshirani (1989)]. The procedure iteratively reestimates ij(zj) by 

ij(Zj) +- argmin Yi - C9kCzik) - 9j(Zij) 
Si k#j ) 1 

2 
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until convergence. Smoothness is imposed on the ij by the particular estimator employed. For 
example, if each iterated function estimate is obtained using Laplacian smoothing splines (9) with 
parameter Xj (12), then the backfitting algorithm produces the solutions to (12). [See Buja, Hastie 

_ and Tibshirani (1989)]. Hastie and Tibshirani (1986) g eneralize the backfitting algorithm to obtain 
solutions for criteria other than squared-error loss. 

The most extensively studied low dimensional expansion has been the additive model 

f(x) = 2 ijCzi> (13) 
j=l 

. since nonadaptive smoothers work best for one dimensional functions and there are only n of them 
(at most) that can enter. Also, in many applications the true underlying function f (1) can be 
approximated fairly well by an additive function. 

Nonparametric function estimation based on low dimensional expansions is an important step 
forward and (especially for additive modeling) has met with considerable practical success (see 
references above). As a general method for estimating functions of many variables, this approach 
has some limitations. The abilities of nonadaptive nonparametric smoothers generally limit the 
expansion functions to low dimensionality. Performance (and computational) considerations limit 
the number of low dimensional functions to a small subset of all those that could potentially 
be entered. For example, there are n(n + 1)/2 possible univariate and bivariate functions. A 
good subset will depend on the true underlying function f (1) and is often unknown. Also, each 
expansion function has a corresponding smoothing parameter causing the entire procedure to be 
defined by many such parameters. A good set of values for all these parameters is seldom known 
for any particular application since they depend on f (1). Automatic selection based on minimizing 
a model selection criterion generally requires a multiparameter numerical optimization which is 
inherently difficult and computationally consuming. Also the properties of estimates based on the 
simultaneous estimation of a large number of smoothing parameters are largely unknown, although 
progress is being made [see Gu and Wahba (1988)]. 

2.4. Adaptive Computation. 

Strategies that attempt to approximate general functions in high dimensionality are based on 
adaptive computation. An adaptive computation is one that dynamically adjusts its strategy to take 
into account the behavior of the particular problem to be solved, e.g. the behavior of the function to 
be approximated. Adaptive algorithms have been in long use in numerical quadrature [see Lyness 
(1970); Friedman and Wright (1981).] In statistics, adaptive algorithms for function approximation 
have been developed based on two paradigms, recursive partitioning [Morgan and Sonquist (1963), 
Breiman, et al. (1984)], and projection pursuit [Friedman and Stuetzle (1981), Friedman, Grosse, 
and Stuetzle (1983), and Friedman, (1985)]. 
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2.4.1. Projection Pursuit Regression. 

Projection pursuit uses an approximation of the form 

f(x) = 5 fm &mZi , 
m=l ( ) i=l 

(14) 

that is, additive functions of linear combinations of the variables. The univariate functions, fm, 
are required to be smooth but are otherwise arbitrary. These functions, and the corresponding co- 
efficients of the linear combinations appearing in their arguments, are jointly optimized to produce 
a good fit to the data based on some distance (between functions) criterion - usually squared-error 

. loss. Projection pursuit regression can be viewed as a low dimensional expansion method where 
the (one dimensional) arguments are not prespecified, but instead are adjusted to best fit the data. 
It can be shown [see Diaconis and Shahshahani (1984)] that any smooth function of n variables 
can be represented by (14) for large enough M. The effectiveness of the approach lies in the fact 
that even for small to moderate M, many classes of functions can be closely fit by approxima- 
tions of this form [see Donoho and Johnstone (1989).] Another advantage of projection pursuit 
approximations is affine equivariance. That is, the solution is invariant under any nonsingular 
affine transformation (rotation and scaling) of the original explanatory variables. It is the only 
general method suggested for practical use that seems to possess this property. Projection pursuit 
solutions have some interpretive value (for small M) in that one can inspect the solution functions 
f,,, and the corresponding loadings in the linear combination vectors. Evaluation of the resulting 
approximation is computationally fast. Disadvantages of the projection pursuit approach are that 
there exist some simple functions that require large M for good approximation [see Huber (1985)], 
it is difficult to separate the additive from the interaction effects associated with the variable de- 
pendencies, interpretation is difficult for large M, and the approximation is computationally time 
consuming to construct. 

2.4.2 Recursive Partitioning Regression 

The recursive partitioning regression model takes the form 

if x E R,, then f(x) = gm(x]{aj}y). (15) 

Here {R,}? are disjoint subregions representing a partition of D. The functions gm are generally 
taken to be of quite simple parametric form. The most common is a constant function 

[Morgan and Sunquist (1963) and Breiman, et al. (1984)]. L’ mear functions (5) have also been 
proposed [Breiman and Meisel (1976) and Friedman (1979)], but they have not seen much use 
(see below). The goal is to use the data to simultaneously estimate a good set of subregions and 
the parameters associated with the separate functions in each subregion. Continuity at subregion 
boundaries is not enforced. 
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The partitioning is accomplished through the recursive splitting of previous subregions. The 
starting region is the entire domain D. At each stage of the partitioning all existing subregions 
are each optimally split into two (daughter) subregions. The eligible splits of a region R into two 
daughter regions Re and R, take the form 

if x E R then 

if x, < t then x E Re 

else x E R,. 

end if. 

Here 2, labels one of the covariates and t is a value on that variable. The split is jointly optimized over 
1 2 TJ 5 n and -oo 5 t 2 oo using a goodness-of-fit criterion on the resulting approximation (15). 
This procedure generates hyperrectangular axis oriented subregions. The recursive subdivision is 
continued until a large number of subregions are generated. The subregions are then recombined 
in a reverse manner until an optimal set is reached, based on a criterion that penalizes both for 
lack-of-fit and increasing number of regions (see Breiman et al., 1984). 

Recursive partitioning is a powerful paradigm, especially if the simple piecewise constant ap- 
proximation (16) is used. It has the ability to exploit low “local” dimensionality of functions. That 
is, even though the function f (1) may strongly depend on a large number of variables globally, 
in any local region the dependence is strong on only a few of them. These few variables may be 
different in different regions. This ability comes from the recursive nature of the partitioning which 
causes it to become more and more local as the splitting proceeds. Variables that locally have less 
influence on the response are less likely to be used for splitting. This gives rise to a local variable 
subset selection. Global variable subset selection emerges as a natural consequence. Recursive 
partitioning (15) based on linear functions (5) b asically lacks this (local) variable subset selec- 
tion feature. This tends to limit its power (and interpretability) and is probably the main reason 
contributing to its lack of popularity. 

Another property that recursive partitioning regression exploits is the marginal consequences 
of interaction effects. That is, a local intrinsic dependence on several variables, when best approx- 
imated by an additive function (13), does not lead to a constant model. This is nearly always the 

-case. 
Recursive partitioning models using piecewise constant approximations (15) (16) are fairly 

interpretable owing to the fact that they are very simple and can be represented by a binary 
tree. [See Breiman et al. (1984) and Section 3.1 below.] They are also fairly rapid to construct and 
especially rapid to evaluate. 

Although recursive partitioning is the most adaptive of the methods for multivariate function 
approximation it suffers from some fairly severe restrictions that limit its effectiveness. Foremost 
among these is that the approximating function is discontinuous at the subregion boundaries. This 
is more than a cosmetic problem. It severely limits the accuracy of the approximation, especially 
when the true underlying function is continuous. Even imposing continuity only of the function 
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(as opposed to derivatives of low order) is usually enough to dramatically increase approximation 
accuracy. 

Another problem with recursive partitioning is that certain types of simple functions are diffi- 
cult to approximate. These include linear functions with more than a few nonzero coefficients [with 
the piecewise constant approximation (16)] and additive functions (13) in more than a few vari- 
ables (piecewise constant or piecewise linear approximation). More generally, it has difficulty when 
the dominant interactions involve a smalI fraction of the total number of variables. In addition, one 
cannot discern from the representation of the model whether the approximating function is close 
to a simple one, such as linear or additive, or whether it involves complex interactions among the 
variables. 

3.0. Adaptive Regression Splines 

This section describes the multivariate adaptive regression spline (MARS) approach to multi- 
variate nonparametric regression. The goal of this procedure is to overcome some of the limitations 
associated with existing methodology outlined above. It is most easily understood through its con- 
nections with recursive partitioning regression. It will therefore be developed here as a series of 
generalizations to that procedure. 

3.1. Recursive Partitioning Regression Revisited. 

Recursive partitioning regression is generally viewed as a geometrical procedure. This frame- 
work provides the best intuitive insight into its properties, and was the point of view adopted in 
Section 2.4.2. It can however also be viewed in a more conventional light as a stepwise regression 
procedure. The idea is to produce an equivalent model to (15) (16) by replacing the geometrical 
concepts of regions and splitting with the arithmetic notions of adding and multiplying. 

The starting point is to cast the approximation (15) (16) in the form of an expansion in a set 
of basis functions 

M f(x) = c amBm(x). (17) 

The basis functions B, take the form 
m=l 

Bm(x) = I[X E Rm] (18) 

where I is an indicator function having the value one if its argument is true and zero otherwise. 
The {am}p are the coefficients of the expansion whose values are jointly adjusted to give the best 
fit to the data. The {Rm}~v are the same subregions of the covariate space as in (15) (16). Since 
these regions are disjoint only one basis function is nonzero for any point x so that (17) (18) is 
equivalent to (15) (16). 

The aim of recursive partitioning is not only to adjust the coefficient values to best fit the 
data, but also to derive a good set of basis functions (subregions) based on the data at hand. Let 
H[q] be a step function indicating a positive argument 

HM = 
1 if720 
0 otherwise, (19) 
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and let LOP(g) b e a procedure that computes the lack-of-fit of a function g(x) to the data. Then 
the forward stepwise regression procedure presented in Algorithm 1 is equivalent to the recursive 
partitioning strategy outlined in Section 2.4.2. 

h(x)+ 1 

Algorithm 1: (recursive partitioning) 

For M = 2 to Mm,, do: lof* + CO 
For m = 1 to M - 1 do: 

For D = 1 to 7~ do: 

For t E {Xvj(Bm(xj) > 0) 
9 + Cizrn @i(x) + amBm(x)H[+(xv - t)] f aMBm(x)H[-(xv - t)I 

lof t min czl,“‘,ctM LW9) 
if lof < lof* then lof* t lof; m* c m; v* + v; t* + t end if 

end for 
end for 

end for 
B&f(x) + Bm*(x)H[-(xv* - t*)] 

Bm*(X) + Bm* (x)H[+(zv* - t*)] 

end for 
end algorithm 

The first line in Algorithm 1 is equivalent to setting the initial region to the entire domain. 
The first For-loop iterates the “splitting” procedure with Mm,, being the final number of regions 
(basis functions). The next three (nested) loops perform an optimization to select a basis function 
II,* (already in the model), a predictor variable x,- and a “split point” t*. The quantity being 
minimized is the lack-of-fit of a model with B,. being replaced by its product with the step function 

H[+(w - t*>l, and with the addition of a new basis function which is the product of B,* and 
the reflected step function H[-(cc,- - t”)]. This is equivalent to splitting the corresponding region 
Rm* on variable v* at split point t*. Note that the minimization of LOF(g) with respect to the 
expansion coefficients (line 7) is a linear regression of the response on the current basis function 
set. 

The basis functions produced by Algorithm 1 have the form 

Bm(x) = n H[Skm * (xv(k,m) - tkm)]. 

k=l 
(20) 

The quantity Km is the number of “splits” that gave rise to B,, whereas the arguments of the step 
functions contain the parameters associated with each of these splits. The quantities skm in (20) 
take on values fl, and indicate the (right/left) sense of the associated step function. The v(lc, m) 
label the predictor variables and the t km represent values on the corresponding variables. Owing to 
the forward stepwise (recursive) nature of the procedure the parameters for all the basis functions 
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can be represented on a binary tree that reflects the partitioning history (see Breiman et al., 1984). 
Figure 1 shows a possible result of running Algorithm 1 in this binary tree representation, along 
with the corresponding basis functions. The internal nodes of the binary tree represent the step 

_ functions and the terminal nodes represent the final basis functions. Below each internal node are 
listed the variable v and location t associated with the step function represented by that node. The 
sense of the step function s is indicated by descending either left or right from the node. Each basis 
function (20) is the product of the step functions encountered in a traversal of the tree starting at 
the root and ending at its corresponding terminal node. 

With most forward stepwise regression procedures it makes sense to follow them by a backwards 
stepwise procedure to remove basis functions that no longer contribute sufficiently to the accuracy 
of the fit. This is especially true in the case of recursive partitioning. In fact the strategy here is 
to deliberately overfit the data with an excessively large model, and then to trim it back to proper 
size with a backwards stepwise strategy (see Breiman, et al., 1984). 

In the case of recursive partitioning the usual straightforward “one at a time” stepwise term 
(basis function) deletion strategy does not work. Each basis function represents a disjoint subregion 
and removing it leaves a hole in the predictor variable space within which the model will predict 
a zero response value. Therefore it is unlikely that any term (basis function) can be removed 
without seriously degrading the quality of the fit. To overcome this a backward stepwise strategy 
for recursive partitioning models must delete (sibling) regions in adjacent pairs by merging them 
into a single (parent) region in roughly the inverse splitting order. One must delete splits rather 
than regions (basis functions) in the backwards stepwise strategy. One method for doing this is the 
optimal complexity tree pruning algorithm described in Breiman et al. (1984). 

3.2. Continuity. 

As noted in Section 2.4.2, a fundamental limitation of recursive partitioning models is lack of 
continuity. The models produced by (15) (16) are piecewise constant and sharply discontinuous at 
subregion boundaries. This lack of continuity severely limits the accuracy of the approximation. It 
is possible, however, to make a minor modification to Algorithm 1 which will cause it to produce 
continuous models with continuous derivatives. 

The only aspect of Algorithm 1 that introduces discontinuity into the model is the use of the 
step function (19) as its central ingredient. If the step function were replaced by a continuous 
function of the same argument everywhere it appears (lines 6, 12, and 13), algorithm 1 would 
produce continuous models. The choice for a continuous function to replace the step function (19) 
is guided by the fact that the step function as used in Algorithm 1 is a special case of a spline basis 
function (6). 

The one-sided truncated power basis functions for representing qth order splines are 

6,(x - t) = (x - t>; 

where t is the knot location, q is the order of the spline, and the subscript indicates the positive 
part of the argument. For q > 0 the spline approximation is continuous and has q - 1 continuous 
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derivatives. A two-sided truncated power basis is a mixture of functions of the form 

b$(x - t) = [zt(x - t)]!. (21) 

The step functions appearing in Algorithm 1 are seen to be two-sided truncated power basis func- 
tions for q = 0 splines. 

The usual method for generalizing spline fitting to higher dimensions is to employ basis func- 
tions that are tensor products of univariate spline functions (see Section 2.2). Using the two-sided 
truncated power basis for the univariate functions, these multivariate spline basis functions take 
the form 

Bk)(x) = fi[ Skm ’ (xv(k,m) - tkm>]t, (22) 
k=l 

along with products involving the truncated power functions with polynomials of lower order than 
q. (Note that .Y?km = 411.) Comparing (20) with (22) we see that the basis functions (20) produced 
by recursive partitioning are a subset of a complete tensor product (q = 0) spline basis with knots 
at every (distinct) marginal data point value. Thus, recursive partitioning can be viewed as a 
forward/backward stepwise regression procedure for selecting a (relatively very small) subset of 
regressor functions from this (very large) complete basis. 

Although replacing the step function (19) by a q > 0 truncated power spline basis function (21) 
in Algorithm 1 will produce continuous models (with q - 1 continuous derivatives), the resulting 
basis will not reduce to a set of tensor product spline basis functions (as was the case for q = 0). 

Algorithm 1 permits multiple splitting on the same variable along a single path of the binary 
tree (see Fig. 1). Therefore the final basis functions can each have several factors involving the 
same variable in their product. For q > 0 this gives rise to dependencies of higher power than q 

on individual variables. Products of univariate spline functions on the same variable do not give 
rise to a (univariate) spline function of the same order, except for the special case of q = 0 (21). 
Each factor in a tensor product spline basis function must involve a different variable and thereby 
cannot produce dependencies on individual variables of power greater than q. Owing to the many 
desirable properties of splines for function approximation (de Boor, 1978) it would be nice for 
a continuous analog of recursive partitioning to also produce them. Since permitting repeated 

-(nested) splits on the same variable is an essential aspect contributing to the power of recursive 
partitioning, we cannot simply prohibit it in a continuous generalization. A natural resolution to 
this dilemma emerges from the considerations in Section 3.3. 

3.3. A Further Generalization. 

Besides lack of continuity, another problem that plagues recursive partitioning regression mod- 
els is their inability to provide good approximations to certain classes of simple often occurring 
functions. These are functions that ei,ther have no strong interaction effects, or strong interactions 
each involving at most a few of the predictor variables. Linear (5) and additive (13) functions are 
among those in this class. From the geometric point of view, this can be regarded as a limitation 
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of the axis-oriented hyperrectangular shape of the generated regions. These difficult functions (for 
recursive partitioning) have isopleths that tend to be oriented at oblique angles to the coordinate 
axes, thereby requiring a great many axis oriented hyperrectangular regions to capture the func- 
tional dependence. 

One can also understand this phenomenon by viewing recursive partitioning as a stepwise 
regression procedure (Algorithm 1). It is in this framework that a natural solution to this problem 
emerges. The goal, in this context, is to find a good set of basis functions for the approximation. 
The final model is then obtained by projecting the data onto this basis. The bias associated with 
this procedure is just the average distrance of the true underlying function f (1) from its projection 

_ onto the space spanned by the derived basis functions. The variance of the model estimate is 
directly proportional to the dimensionality of this space, namely the number of basis functions 
used. In order to achieve good accuracy (small bias and variance) one must derive a small set of 
basis functions that are close to the true underlying function in the above sense (small bias). 

The problem with the basis derived through recursive partitioning (20), or the continuous 
analog (22), is that it tends to mostly involve functions of more than a few variables (higher order 
interactions). Each execution of the outer loop in Algorithm 1 (split) removes a basis function of 
lower interaction order, and replaces it by two functions, each with interaction order one level higher, 
unless it happens to split on a variable already in the product. Thus, as the partitioning proceeds 
the average interaction level of the basis function set steadily increases. One simple consequence 
is that recursive partitioning cannot produce an additive model in more than one variable. The 
overriding effect is that such a basis involving high order interactions among the variables cannot 
provide a good approximation to functions with at most low order interactions, unless a large 
number of basis functions are used. This is the regression analog of trying to approximate with 
rectangular regions, functions that have isopleths oblique to the axes. 

As noted in Section 3.2, recursive partitioning (q = 0) can be regarded as a stepwise procedure 
for selecting a small subset of basis functions from a very large complete tensor product spline 
basis. The problem is that all members of this complete basis are not eligible for selection, namely 
many of those that involve only a few of the variables. The problem can be remedied by enlarging 
the eligible set to include all members of the complete tensor product basis. This in turn can be 

-accomplished by a simple modification to Algorithm 1, or its continuous analog (Section 3.2). 

The central operation in Algorithm 1 (lines 6, 12, 13) is to delete an existing (parent) basis 
function and replace it by both its product with a univariate truncated power spline basis function 
and the corresponding reflected truncated power function. The modification proposed here involves 
simply not removing the parent basis function. That is, the number of basis functions increases 
by two as a result of each iteration of the outer loop (split). All basis functions (parent and 
daughters) are eligible for further splitting. Note that this includes Br(x) = 1 (line 1). Basis 
functions involving only one variable,(additive terms) can be produced by choosing Bl(x) as the 
parent. Two-variable basis functions are produced by choosing a single variable basis function as 
the parent, and so on. Since no restrictions are placed on the choice of a parent term, the modified 
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procedure is able to produce models involving either high or low order interactions or both. It can 
produce purely additive models (13) by always choosing Bl(x) as the parent. 

This strategy of not removing a parent basis function, after it has been selected for splitting, 
_ also resolves the dilemma presented in the last paragraph of Section 3.2. A prohibition against more 

than one split on the same variable along the path leading to a single basis function can now be 
enforced without limiting the power of the procedure. Repeated splitting on the same variable is 
used by (q = 0) recursive partitioning to attempt to approximate local additive dependencies. This 
can now be directly accomplished by repeated selection of the same parent for splitting (on the 
same variable) thereby introducing additional terms but not increasing the depth of the splitting. 
There is no longer a need for repeated factors associated with the same variable in a single basis 
function. 

Combining the considerations of this and the preceding section leads to a generalization of 
recursive partitioning regression involving the following modifications to Algorithm 1: 
(a) replacing the step function H[zt(z - t)] by a truncated power spline function [*(x - t)]:. 

(b) not removing the parent basis function B,* (x) after it is split, thereby making it and both its 
daughters eligible for further splitting. 

(c) restricting the product associated with each basis function to factors involving distinct predic- 
tor variables. 
An important consideration in this generalization of recursive partitioning is the degree-of- 

continuity to impose on the solution; that is, the choice of q (21) (22). There are both statistical and 
computational trade-offs. These are discussed in Sections 3.7 and 3.9, where it is argued that only 
continuity of the approximating function and its first derivative should be imposed. Furthermore, 
the proposed implementing strategy is to employ q = 1 splines in the analog of Algorithm 1, and 
then to use the resulting solution (with discontinuous derivatives) to derive a continuous derivative 
solution. The detailed discussion of this is deferred to Section 3.7. 

3.4. MARS Algorithm. 

Algorithm 2 implements the forward stepwise part of the MARS strategy by incorporating 
the modificatons to recursive partitioning (Algorithm 1) outlined above. Truncated power basis 
functions (q = 1) are substituted for step functions in lines 6, 12, and 13. The parent basis function 
is included in the modified model in line 6, and remains in the updated model through the logic of 
lines 12-14. Basis function products are constrained to contain factors involving distinct variables 
by the control loop over the variables in line 4 [see (20), (22)]. This algorithm produces Mm,, q = 1 
tensor product (truncated power) spline basis functions that are a subset of the complete tensor 
product basis with knots located at all distinct marginal data values. As with recursive partitioning, 
this basis set is then subjected to a backwards stepwise deletion strategy to produce a final set of 
basis functions. The knot locations associated with this approximation are then used to derive a 
piecewise cubic basis, with continuous first derivatives (Section 3.7), thereby producing the final 
(continuous derivative) model. 
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Algorithm 2 (MARS - forward stepwise) 

BI(x) t 1; M +2 

Loop until M > Mm,, : lof * + cx) 

For m = 1 to M - 1 do: 
For v $! {v(lc,m)l 1 5 k 5 Ii,} 

For t E {xvjIBm(xj) > O} 

9 + Cz;’ uiBi(x) + uMBm(x)[+(xv - t)]+ + uM+lBm(X)[-(Xv - t)]+ 
lof tmin al,"',aM+l LW9) 
if lof < lof* then lof* t lof; m* t m; v* t v; t+ t t end if 

end for 
end for 

end for 

BM(x) + Bm* (X>[+(xv* - t*)]+ 

BM+I(x) t Bm*(X)[-(xv* - t*)I+ 

MtM+2 

end loop 
end algorithm 
Unlike recursive partitioning, the basis functions produced by Algorithm 2 do not have zero 

pairwise product expectations; that is, the corresponding “regions” are not disjoint but overlap. 
Removing a basis function does not produce a “hole” in the predictor space (so long as the constant 
basis function B1 is never removed). As a consequence, it is not necessary to employ a special “two 
at a time” backward stepwise deletion strategy based on sibling pairs. A usual “one at a time” 
backward stepwise procedure of the kind ordinarily employed with regression subset selection can 
be used. Algorithm 3 presents such a procedure for use in the MARS context. 

Algorithm 3 (MARS - backwards stepwise) 

J* = {1,2,--,M,,,}; A-* t J’ 

lof* + hn(ajIjEJ*) LOJ’(CjEJ* ujBj(x)) 
For M = M,,, to 2 do: b t 00; L t K* 

For m = 2 to M do: K t L - {m} 

/of t min{akIkEIC} L°F(Ck,, akBk(X)) 

if lof < b then b t lof; K* t K end if 
if lof < lof * then lof* + lof; J’ t K end if 

end for 
end for 
end Algorithm 
Initially (line 1) the model is comprised of the entire basis function set J’ derived from Al- 

gorithm 2. Each iteration of the outer For-loop of Algorithm 3 causes one basis function to be 
deleted. The inner For-loop chooses which one. It is the one whose removal either improves the fit 
the most or degrades it the least. Note that the constant basis function BI(x) = 1 is never eligible 
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for removal. Algorithm 3 constructs a sequence of M,,, - 1 models, each one having one less basis 
function than the previous one in the sequence. The best model in this sequence is returned (in 
J”) upon termination. 

- 3.5. ANOVA Decomposition. 

The result of applying Algorithms 2 and 3 is a model of the form 

f<x> = UO + 2 urn ‘fi[skrn ’ (xv(k,m) - tkm)]+. 
m=l k=l 

(23) 

Here au is the coefficient of the constant basis function B1, and the sum is over the basis functions 
. B, (22) produced by Algorithm 2 that survive the backwards deletion strategy of Algorithm 3 and 

Skm = fl. This (constructive) representation of the model does not provide very much insight 
into the nature of the approximation. By simply rearranging the terms, however, one can cast the 
model into a form that reveals considerable information about the predictive relationship between 
the response y and the covariates x. The idea is to collect together all basis functions that involve 
identical predictor variable sets. 

The iMARS model (23) can be recast into the form 

ftx) = uO + C fi(zi) + C fij(Zi,Zj) 
K,=l K,=2 

K,=3 

The first sum is over all basis functions that involve only a single variable. The second sum is 
over all basis functions that involve exactly two variables, representing (if present) two-variable 
interactions. Similarly, the third sum represents (if present) the contributions from three-variable 
interactions, and so on. 

Let V(m) = {v(k, m)}fcm be the variable set associated with the mth basis function B, (23). 
Then each function in the first sum of (24) can be expressed as 

fi(xi) = C amBm(si). (25) 
Jr,=1 

iEV(m) 

This is a sum over all single variable basis functions involving only x;, and is a q = 1 spline 
representation of a univariate function. Each bivariate function in the second sum of (24) can be 
expressed as 

fij(zi, zj) = C UmBm(zi, zj), (26) 
K,=2 

(i,i)EV(m) 

which is a sum over all two-variable basis functions involving the particular pair of variables xi and 
xj.- Adding this to the corresponding univariate contributions (25) (if present) 

fij.(xiv “j) = fi(X:i> + fj(Xj) + fij(Xi,Xj) (27) 
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gives a Q = 1 bivariate tensor product spline approximation representing the joint bivariate con- 
tribution of pi and xj to the model. Similarly, each trivariate function in the third sum can be 
obtained by collecting together all basis functions involving the particular variable triples 

fijk(xi,Xj, X/c) = UmB,(Xi, Xj, Xk). (28) 
K,=3 

(i,i,kEV(m) 

Adding this to the corresponding univariate and bivariate functions (25) (26) involving xi, zj and 
xk, provides the joint contribution of these three variables to the model. Terms involving more 
variables (if present) can be collected together and represented similarly. Owing to its similarity to 

. decompositions provided by the analysis of variance for contingency tables, we refer to (24) as the 
ANOVA decomposition of the MARS model. 

Interpretation of the MARS model is greatly facilitated through its ANOVA decomposition 
(24). This representation identifies the particular variables that enter into the model, whether 
they enter purely additively or are involved in interactions with other variables, the level of the 
interactions, and the other variables that participate in them. Interpretation is further enhanced 
by representing the ANOVA decomposition graphically. The additive terms (25) can be viewed by 
plotting f;(xi) against I; as one does in additive modeling. The two-variable contributions can be 
visualized by plotting fG(~i,zj) (27) against x; and zj using either contour or perspective mesh 
plots. Models involving higher level interactions can be (roughly) visualized by viewing plots on 
variable pairs for several (fixed) al v ues of the other (complementary) variables (see Section 4.7). 

3.6. Model Selection 

Several aspects of the MARS procedure (Algorithms 2 and 3) have yet to be addressed. Among 
these are the lack-of-fit criterion LOF (Algorithm 2, line 7, and Algorithm 3, lines 2 and 5), and the 
maximum number of basis functions M,,, (Algorithm 2, line 2, and Algorithm 3, lines 1 and 3). 
The lack-of-fit criterion used with the algorithm depends on the distance (loss) function A specified 
with the integral (2) or expected (3) error. The most often specified distance is squared-error loss 

A[i(x>, f(x)1 = r&> - fW12 (29) 

-because its minimization leads to algorithms with attractive computational properties. -4s will be 
seen in Section 3.9, this aspect is very impotant in the context of Algorithm 2, and so squared-error 
loss is adopted here as well. The goal of a lack-of-fit criterion is to provide a data based estimate 
of future prediction error (2) (3) which is then minimized with respect to the parameters of the 
procedure. 

As in Friedman and Silverman (1989) and Friedman (1988) we use a modified form of the 
generalized cross-validation criterion originally proposed by Craven and Wahba (1979) 

LOF(fd = GCV(M) = + & - fLw(xi)12/ [1 
z=l 

“(/)I 2 . 
(30) 
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Here the dependencies of f (23), and the criterion, on the number of (nonconstant) basis functions 
M is explicitly indicated. The GCV criterion is the average-squared residual of the fit to the data 
(numerator) times a penalty (inverse denominator) to account for the increased variance associated 

_ with increasing model complexity (number of basis functions 44). 
If the values of the basis function’ parameters (number of factors K,, variables v(k, m), knot 

locations tkm and signs skn) associated with the MARS model were determined independently of 
the data response values ( yr , . . . ,YN), then only the coefficients (a~, .. ., UM) are being fit to the 
data. Consequently the complexity cost function is 

C(M) = trace(B(B*B)-‘BT) + 1 (31) 

where B is the M x N “data”matrix of the M (nonconstant) basis functions (Bij = Bi(xj)). This 
is equal to the number of linearly independent basis functions in (23) and therefore C(M) here (31) 
is just the number of parameters being fit. Using (31) in (30) leads to the GCV criterion proposed 
by Craven and Wahba (1979). 

The MARS procedure (like recursive partitioning) makes heavy use of the response values to 
construct a basis function set. This is how it achieves its power and flexibility. This (usually 
dramatically) reduces the bias of model estimates, but at the same time increases the variance 
since additional parameters (of the basis functions) are being adjusted to help better fit the data 
at hand. The reduction in bias is directly reflected in reduced (expected) average squared residual 
(numerator (30)). Th e ( inverse) denominator (30) (31) is, however, no longer reflective of the 
(increased) variance owing to the additional number of (basis function) parameters as well as their 
nonlinear nature. 

Friedman and Silverman (1989) suggested using (30) as a lack-of-fit criterion in these circum- 
stances, but with an increased cost complexity function C(M) to reflect the additional (basis func- 
tion) parameters that, along with the expansion coefficients (au,. . . , a~), are being fit to the data. 
Such a cost complexity function can be expressed as 

C(M) = C(M) + d * M. (32) 

-Here C(M) is given by (31) and M is the number of nonconstant basis functions in the MARS 
model, being proportional to the number of (nonlinear) basis function parameters. The quantity d 
in (32) represents a cost for each basis function optimization and is a (smoothing) parameter of the 
procedure. Larger values for d will lead to fewer knots being placed and thereby smoother function 
estimates. 

In the case of additive modeling, Friedman and Silverman (1989) gave an argument for choosing 
the value d = 2, based on the expected decrease in the average-squared residual by adding a single 
knot to make a piecewise-linear model. The MARS procedure can be forced to produce an additive 
model by simply modifying the upper limit of the outer For-loop in Algorithm 2 (line 3) to always 
have the value one. With this modification only the constant basis function Br is eligible for 
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“splitting” and the resulting model is a sum of functions each of a single variable (K, = 1) which, 
after the corresponding ANOVA decomposition (24)) assumes the form of an additive model (13). 
Restricting MARS in this manner leads to a palindromically invariant version of the Friedman and 

_ Silverman (1989) procedure. This type of additive modeling is a restricted version of general MARS 
modeling. A higher degree of optimization (over m) is being performed by the latter causing the 
data at hand to be fit more closely, thereby increasing variance. In order for the GCV criterion 

(30) (31) (32) t o reflect this, an even larger value for d is appropriate. 
One method for choosing a value for d in any given situation would be to simply regard it as 

a parameter of the procedure that can be used to control the degree of smoothness imposed on the 
solution. Alternatively it could be estimated through a standard sample reuse technique such as 
bootstrapping (Efron, 1983) or cross-validation (Stone, 1974). In a fairly wide variety of simulation 
studies (a subset of which are presented in Section 4) the resulting model and its accuracy (2) (3) 
are seen to be fairly independent of the value chosen for the parameter d (32). These simulation 
studies indicate: 
(1) The optimal cost complexity function C?(M) to be used in the GCV criterion (30) (in the 

context of MARS modeling) is a monotonically increasing function with decreasing slope as 
M increases. 

(2) The approximation (32)) with d = 3, is fairly effective, if somewhat crude. 
(3) The best value for d in any given situation depends (weakly) on M, N, n and the distribution 

of the covariate values in the predictor space. 
(4) Over all situations studied, the best value for d is in the range 2 < d 5 4. 
(5) The actual accuracy in terms of either integral (2) (29) or expected (3) (29) squared error is 

fairly insensitive to the value of d in this range. 
(6) The value of the GCV criterion for the final MARS model does exhibit a moderate dependence 

on the value chosen for d. 
A consequence of (5) and (6) is that while how well one is doing with the MARS approach is 

fairly independent of d, how well one thinks one is doing (based on the optimized GCV score) does 
depend somewhat on its value. Therefore, a sample reuse technique might be used to obtain an 
additional estimate of the goodness-of-fit of the final model if it needs to be known fairly precisely. 

The strategy in recursive partitioning regression (Breiman et al., 1984) is to let the forward 
stepwise procedure produce a fairly large number of regions (basis functions) and then have the 
backwards stepwise procedure trim the model back to an appropriate size. The arguments in 
favor of this apply equally well to the MARS approach. Therefore, the value chosen for M,,, in 
Algorithms 2 and 3 should be considerably larger than the optimal (minimal GCV) model size M*. 
Typically choosing M,,, = 2M’ is sufficient. 

3.7. Degree-of-Continuity. 

One of the central ideas leading to the MARS generalization of recursive partitioning is to 
replace the step function implicit in the latter with a truncated power spline basis function (21). 
This leads to an approximation in the form of an expansion in tensor product spline basis functions. 
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The continuity properties of this approximation are governed by the order q (21) chosen for the 
univariate spline functions comprising the tensor products; derivatives exist to order q. 

If the intent is accurate estimation of the function (as opposed to its derivatives of various 
- orders) then there is little to be gained by imposing continuity beyond that of the function itself. If 

the true underlying function nowhere has a very large local second derivative then a small additional 
increase in accuracy can be achieved by imposing continuous first derivatives. Also, continuous 
(first) derivative approximations have considerably more cosmetic appeal. There is, however, little 
to be gained and in fact much to lose, by imposing continuity beyond that of the first derivative, 
especially in high dimensional settings. 

The difficulty with higher order regression splines centers on so called “end effects.” The 
largest contribution to the average approximation error (2) (3) emanates from locations x near the 
boundaries of the domain. This phenomenon is well known even in univariate smoothing (n = 1)) 
and is especially severe in higher dimensions. As the dimension of the covariate space increases, 
the fraction of the data points near a boundary increases rapidly. Fitting high degree polynomials 
(associated with high degree regression splines) in these regions leads to very high variance of the 
function estimate there. This is mainly due to the lack of constraints on the fit at the boundaries. 

One approach that has been suggested (Stone and Koo, 1985) is to modify the spline basis 
functions so that near the ends of the data interval (on each variable) they smoothly join a linear 
function. This can substantially help moderate the bad end effects of (unmodified) regression 
splines in the case of smoothing (n = 1) and additive modeling (13)) although the approximating 
basis functions can still have very large slope near the boundaries. A computationally simpler way 
to ensure a linear approximation near the boundaries is to make a piecewise-linear approximation 
everywhere by using q = 1 tensor product splines. This is accomplished in the MARS approach by 
using q = 1 truncated power (univariate) spline basis functions (21) in Algorithm 2 (lines 6, 12, 
and 13). 

A piecewise-linear approximation, of course, does not possess continuous derivatives. The 
lowest order spline approximation with continuous derivatives involves q = 2 univariate spline basis 
functions. Their use, however, leads to the problems cited above. Motivated by the approach of 

Stone and Koo (1985) we fit with a modified basis set. These functions resemble q = 1 splines, but 
have continuous derivatives. 

The model (23) produced by Algorithms 2 and 3 involves a sum of products of functions of 
the form 

b(zls, t) = [s(2 - t)]+. (33) 

Our strategy for producing a model with continuous derivatives is to replace each such function by 
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a corresponding truncated cubic function of the form 

{ 

0 x 5 t- 
C(xls = +1, t-,t, t+) = p+(z - q2 + ‘+(X - q3 t- < x < t+ 

x-t x L t, 
-(x - t) 2 2 t- 

C(xls = -1, t-, t, t+) = 
‘I 

p-(x - t+)2 + f-(X - t+)3 t- < 2 < t+ 
0 x 2 t+ 

with t- < t < t+. Setting 
p+ = (2t+ + t- - 3t)/(t+ - tq2 

T+ = (2t - t+ - t-)/(t+ - t-)3 

p- = (3t - 2t- - t+ Mt- - t+ I2 
T- = (t- + t+ - 2t)/(t- - t+)3 

(35) 

causes C(zls, t -, t, t+) to be continuous and have continuous first derivatives. There are second 
derivative discontinuities at z = tk. Each truncated linear function (33) is characterized by a single 
knot location t, whereas each corresponding truncated cubic function (34) (35) is characterized by 
three knots; these are a central knot t and upper/lower side knots t*. Figure 2a compares the two 
functions. 

Each factor (33) in every basis function in the approximation produced by Algorithms 2 and 
3 (23) is replaced by a corresponding truncated cubic factor (34) (35). The central knot t, (34) is 
placed at the same location as the (single) knot for its associated truncated linear function (33). 
The side knots t*, t- < t < t+, are located so as to reduce the number of second derivative 
discontinuities. This is accomplished through the ANOVA decomposition of the MARS model (24) 

(25) (26) (28). 
Each basis function m in (23) has a knot set {tkm}rm. The ANOVA decomposition collects 

together all basis functions corresponding to exactly the same variable set {v(k, m)}{‘m. Thus, the 
knot sets associated with each ANOVA function (25) (26) (28) can be viewed as a set of points 
(multivariate knots) in the same Km-dimensional space. The projections of these points onto each 
of the respective K, axes, v(k) m), gives the knot locations of the factors that correspond to that 
variable. These are the central knot locations for the piecewise cubic factors. The side knots tk for 

-each cubic factor are placed at the midpoints between its central knot and the two adjacent central 
knots in the same projection. The lower/upper side knots for the corresponding smallest/largest 
projected central knot value are placed midway between the central knot and the smallest/largest 
data value on that variable. Figure 2b illustrates this process for one and two dimensional ANOVA 
functions. 

The final model is obtained by fitting the resulting piecewise cubic basis function set to the 
data. It will have continuous first (but not second) derivatives. The contribution to the fitted 
model of each basis function far from its central knot location will be the same as its corresponding 
piecewise linear basis function. Therefore this continuous derivative model will tend to have the 
same highly desirable boundary properties as the piecewise linear model produced by Algorithms 
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2 and 3. The important ingredient is that the slope of each univariate basis factor never exceeds a 
value of one. 

3.8. Knot Optimization. 

The MARS procedure (Algorithm 2)) as well as recursive partitioning (Algorithm l), can be 
viewed as a technique for developing a multivariate model, based on sums of products of univariate 
functions (17) (20) (23), through the use of a univariate smoother. This can be seen by casting the 
(MARS) model in the form 

f(x) = &v(x) + K&+Pmv(~v), (36) 

with 

&?&) = c UjBj(X). (37) 
V(i)#V(m) V(i)#V(m)+tv) 

The function qmv(x,,) has the form 

(Pm&4 = co + 2 Cj[Sj(X, - tj)]+ (38) 
j=l 

which is just a (q = 1) piecewise linear spline representation of a univariate function. (In the case 
of recursive partitioning it would be a q = 0 piecewise constant representation.) The second 
term in (36) isolates the contributions to the model of the variable set V(m) of the mt,h basis 
function, and the set including the variable v with V(m). The first term (37) represents the 
contributions of the variables from the other basis functions. Minimization of the lack-of-fit criterion 
(30) in Algorithm 2 (1 ine 7) performs a joint optimization of the current model with respect to the 
coefficients (co,. . . , CJ) of the univariate function pm,, (38) and those of the other basis functions 

(4 (37). 
Expressing the current model n the form given by (36) and letting 

this optimization can be written ir the form 

W\m - B,$9mv(xV)]2 = min. (40) 

Here the dependence of the respective quantities on the multivariate argument x has been sur- 
pressed. If one fixes the values of the coefficients {ui} (37) then (40) has the general solution 

e&v) = E [BL (2) lxv] /E[Bhlx,l, (41) 

which can be estimated by a weighted smooth of R\,,/B, on x,, with weights given by Bk. 

Letting this smooth take the form of a piecewise linear spline approximation (38) gives rise (in an 
indirect way) to the MARS approach. 
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This framework provides the connection between MARS and the smoothing (and additive mod- 
eling) method (TURBO) suggested by Friedman an Silverman (1989). They presented a forward 
stepwise strategy for knot placement in a simple piecewise linear smoother. The inner For-loop of 

_ Algorithm 2 can be viewed as an application of this strategy for choosing the best location for the 
next knot tJ in (Pan (38) (41) in the more general context of MARS modeling. In fact, in the 
univariate case (n = 1) the MARS algorithm simply represents a (palindromically invariant) ver- 
sion of TURBO. As noted above, restricting the upper limit of the outer For-loop to always have 
the value one (Algorithm 2) gives rise (for n > 1) to the TURBO method of additive modeling. 

Both recursive partitioning (Algorithm 1, line 5) and MARS (Algorithm 2, line 5) make every 
. distinct (nonzero weighted) marginal data value eligible for knot placement. As pointed out by 

Friedman and Silverman (1989), this has the effect of permitting the corresponding piecewise linear 
smoother (38) (41) t o achieve a local minimum span of one observation. In noisy settings this can 
lead to locally high variance of the function estimate. There is no way that a smoother, along with 
its lack-of-fit criterion, can distinguish between sharp structure in the true underlying function f 
(1)) and a run of either positive or negative error values E (1). If one assumes (as one must) that the 
underlying function is smooth compared to the noise, then it is reasonable to impose a minimum 
span on the smoother that makes it resistant to runs in the noise of length likely to be encountered 
in the errors. In the context of piecewise linear smoothing this translates into a minimal number L 

of (nonzero weighted) observations between each knot. Assuming a symmetric error distribution, 
Friedman and Silverman (1989) use a coin tossing argument to propose choosing L = L*/2.5 with 
L* being the solution to 

Pr(L*) = cr. (42) 

Here Pr(L*) is the probability of observing a (positive or negative) run of length L’ or longer in 
nN, tosses of a fair coin, and o is a small number (say Q = 0.05 or 0.01). The quantity N, is 
the number of observations for which B, > 0 (Algorithm 2, line 5). The relevant number of tosses 
is nN, since there are that many potential locations for each new knot (inner two For-loops in 
Algorithm 2) for each basis function B, (outer For-loop). 

For nN, 2 10 and a < 0.1 a good approximation to L* (42) is 

L’ = -log, 
[ 

-&n(l - a) ) 
m 1 

so that a reasonable number of counts between knots is given by 

L(a) = - log, ---+(l - a) /2.5. 
m 1 (43) 

The denominator in (43) arises from the fact that a piecewise linear smoother must place between 
two and three knots in the interval of the run to respond to it, and not degrade the fit anywhere 
else. Using (43) g ives the procedure resistance, with probability 1 - o, to a run of positive or 
negative error values in the interior of the interval. 
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The arguments that lead to (43) d o not apply to the ends of the interval; that is, L(a) refers 
to the number of counts between knots but not to the number of counts between the extreme knot 
locations and the corresponding ends of the interval defined by the data. As discussed in Section 

_ 3.7, it is essential that end effects be handled well for the procedure to be successful. An argument 
analogous to the one that leads to L(a) (43) for th e interior, can be advanced for the ends. The 
probability of a run of length L* or longer of positive or negative error values at the beginning or 
end of the data interval is 2- L’+3. There are n such intervals, corresponding to the n predictor 
variables, so that the total probability of encountering an end run is 

Pr(L*) = n2-L’+3. (44 

Therefore requiring at least 

Le(a) = 3 - log,(cr/n) (45) 

observations between the extreme knots and the corresponding ends of the interval provides resis- 
tance (with probability 1 - o) to runs at the ends of the data intervals. 

The quantity Q in (43) (45) can be regarded as another smoothing parameter of the procedure. 
Both L(a) (43) and Le(a) (45) are, however, fairly insensitive to the value of o. The differences 
L( .Ol)-L( .05) and Le( .Ol)-Le( .05) are both approximately equal to 2.3 observations. In any case 
both expressions can only be regarded as approximate since they only consider the signs and ignore 
the magnitudes of the errors in the run. 

It can be noted that (36)) (37)) (39)) and (41) could be used to develop a generalized backfitting 
algorithm based on a (univariate) local averaging smoother, in direct analogy to the backfitting 
algorithm for additive modeling (Friedman and Stuetzle, 1981, Breiman and Friedman, 1985, and 
Buja, Hastie and Tibshirani, 1989). Like MARS, this generalized backfitting algorithm could be 
used to fit models involving sums of products of univariate curve estimates. It would, however, lack 
the flexibility of the MARS procedure (especially in high dimensions) owing mainly to the latter’s 
close relation to the recursive partitioning approach (local variable subset selection - see Sections 
2.4.2 and 6). It would also tend to be computationally far more expensive. 

-3.9. Computational Considerations 

In Sections 3.2 and 3.3 the MARS procedure was motivated as a series of conceptually simple 
extensions to recursive partitioning regression. In terms of implementation, however, these ex- 
tensions produce a dramatic change in the algorithm. The usual implementations of recursive 
partitioning regression [AID (Morgan and Sonquist, 1963) and CART (Breiman, et al., 1984)] 
take strong advantage of the special nature of step functions, along with the fact that the result- 
ing basis functions have disjoint support, to dramatically reduce the computation associated with 
the middle and inner For-loops of Algorithm 1 (lines 4 and 5). In the case of least-squares fitting, 
very simple updating formulae can be employed to reduce the computation for the associated lin- 
ear (least-squares) fit (line 7) from O(NM2 + M3) to O(1). The total computation can therefore 
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be made proportional to nN M,,,, after sorting. Unfortunately, these same tricks cannot be ap- 
plied to the implementation of the MARS procedure. In order to make it computationally feasible, 
different updating formulae must be derived for the MARS algorithm. 

The minimization of the lack-of-fit criterion (30) in Algorithm 2 (line 7) is a linear least-squares 
fit of the response y on the current basis function set (line 6). There are a variety of techniques for 
numerically performing this fit. The most popular, owing to its superior numerical properties, is 
based on the QR decomposition (see Golub and Van Loan, 1983) of the basis “data” matrix B, 

Bmi = B,(xi). (46) 

. As noted above, however, computational speed is of paramount importance since this fit must be 
repeated many times in the course of running the algorithm. A particular concern is keeping the 
computation linear in the number of observations N, since this is the largest parameter of the 
problem. This rules out the QR decomposition technique in favor of an approach based on using 
the Cholesky decomposition to solve the normal equations 

BTBa = BTy (47) 

for the vector of basis coefficients a (line 6). Here y is the (length N) vector of response values. This 
approach is known to be less numerically stable than the QR decomposition technique. Also, the 
truncated power basis (21) is the least numerically stable representation of a spline approximation. 
Therefore, a great deal of care is required in the numerical aspects of an implementation of this 
approach. This is discussed below. 

If the basis functions are centered to have zero mean then the matrix product BTB is propor- 
tional to the covariance matrix of the current basis function set. The normal equations (47) can be 
written 

Va = c (48) 

with 

k=l 
N 

c; = C( ?/k - @i(Xk), 

(49) 

k=l 

and Bi and ?j the corresponding averages over the data. These equations (48) (49) must be resolved 
for every eligible knot location t, for every variable v, for all current basis functions m, and for all 
iterations M of Algorithm 2 (lines 2, 3, 4, and 5). If carried out in a straightforward manner this 
would require computation proportional to 

C N nNM&,,(aN + PMmax)/L (50) 

with (II and ,f? constants of proportionality and L given by (43). This computational burden would 
be prohibitive except for very small problems or very large computers. Although it is not possible 
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to achieve the dramatic reduction in computation for MARS as can be done for recursive parti- 
tioning regression, one can reduce the computation enough, so that moderate sized problems can 
be conveniently run on small computers. Following Friedman and Silverman (1989), the idea is to 

_ make use of the special properties of the q = 1 truncated power spline basis functions to develop 
rapid updating formulae for the quantities that enter into the normal equations (48) (49), as well 
as to take advantage of the rapid updating properties of the Cholesky decomposition (see Golub 
and Van Loan, 1983). 

The most important special property of the truncated power basis used here is that each 
(t&variate) basis function is characterized by a single knot. Changing a knot location changes 
only one basis function, leaving the rest of the basis unchanged. Other bases for representing 
spline approximations, such as the minimal support B-splines, have superior numerical properties 
but lack this important computational aspect. Updating formulae for B-splines are therefore more 
complex giving rise to slower computation. 

The current model (Algorithm 2, line 6) can be reexpressed as 

M-l 

g’ + c d&(x) + UM&&+, + a~+d%n(x)tXv - t>+- 

i=l 
(51) 

The inner For-loop (line 5) minimizes the GCV criterion (30) jointly with respect to the knot 
location t and the coefficients at, . . . , UM+l. Using g’ (51) in place of g (line 6) yields an equivalent 
solution with the same optimizing GCV criterion lof’ (line 8) and knot location t* (line 8). (The 
solution coefficient values will be different.) The advantage of using g’ (51) is that only one basis 
function is changing as the knot location t changes. 

Friedman and Silverman (1989) d eveloped updating formulae for least-squares fitting of q = 1 
splines by visiting the eligible knot locations in decreasing order and taking advantage of that fact 
for t 5 u 

i 

0 x<t 
(x-t)+-(x-u)+= x-t t<x<u 

u-t XLU. 

The Friedman and Silverman (1989) updating formulae can be extended in a straightforward man- 
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ner to the more general MARS setting, giving (t 5 u) 

‘%+1(t) = CM+l(U) + c (Yk - ~)&k(Gk - t> 

t<X,k <U 

+ t” -‘t> c (Yk - @%nk, 

V %,J,f+l(t) = V;:,M+l(‘IL) + c (Bik - %&nk(Gk - t> 

t<x,k <U 

-I- (U - t) c (Bik - Bi)Bnk, (1 I i I Ml, 

xvk ?u 

VM+l,M+l(t) = VM+l,M+l@) + c B%k(x,k - t>2 

t<X,,k <Ii 

+ @- t, c Bizk(2 Xvk - t - u) + (s2(u) - s2(t))lK 

(52) 

with SW = CGvk>t &k(z,k - t). In (52) &k and &k are elements of the basis function “data” 
matrix (46)) the xVk are elements of the original data matrix, and yk are the data response values. 

These updating formulae (52) can be used to obtain the last (M + 1)st row (and column) 
of the basis covariance matrix V and last element of the vector c at all eligible knot locations t 
with computation proportional to (M + 2)N,. Here N, is the number of observations for which 
B,(x) > 0 (line 5). Note that all the other elements of V and c do not change as the knot location 
t changes. This permits the use of updating formulae for the Cholesky decomposition to reduce its 
computation from O(M3) to O(M2) (’ m solving the normal equations (48)) at each eligible knot 
location. Therefore the computation required for the inner For-loop (lines 5-9) is proportional to 
CXMN, + ,f3M2Nm/L. This gives an upper bound on total computation for Algorithm 2 as being 
proportional to 

C* N nNM,f,,,(a + PM,,,/L). (53) 

Thus, comparing with (50) the use of updating formulae is seen to reduce the computation roughly 
by a factor of NM,,, /L. For typical values of N = 200, M,,, = 30, and L = 5 this reduces the 
required computation by roughly a factor of 1000. 

Table 1 shows the total computation time (sec.) of the MARS procedure as a function of M,,,,, 

for one of the examples (AC circuit impedance, Section 4.4.1) discussed below. These times were 
obtained on a SUN Microsystems Model 3/260 (with floating point accelerator). For this example 
n = 4 and N = 200. The computation scales linearly in both n and N with the MARS algorithm. 

Three timing sequences are shown in Table 1, corresponding to different constraints being 
placed on the final MARS model. The first row (mi = 1) corresponds to an additive model 
where interactions among the variables are prohibited. As mentioned above, this is accomplished 
by suppressing the outer For-loop in Algorithm 2 (line 3) and only allowing the constant basis 
function Bl(x) = 1 to appear in the products with the univariate spline basis functions. This, of 
course, reduces the total computation roughly by a factor proportional to Mm,,. The second row 
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(mi = 2) only allows two-variable interactions to appear in the model. This reduces computation 
a little since only previous basis functions involving one variable are permitted to appear in the 
products. The last row in Table 1 (mi = n) shows the times for the fully unconstrained MARS 

_ model. 
It should be noted that in all the examples discussed in this paper (some of which, like this one, 

involve fairly complex functions) the optimal number of basis functions was between 10 and 15, so 
that Mm,, values around 20 to 30 were appropriate. Setting 2M,,, = 50 permits the procedure 
to use from 125 to 200 degrees of freedom to fit the final model, if required, thereby allowing it 
to approximate very complex functions. Clearly though, for very large problems (say n > 20 and 
N > 1900) either long execution times or fast computers (compared to the one used here) would 
be required. It can also be noted that the MARS algorithm admits a high degree of parallelization 
so that it could run very fast on computers with parallel architectures. 

Updating formulae for higher order (q > 1) truncated power spline basis functions (21) can 
be developed in analogy to (52). They would, however, be far more complex than those for q = 1 
leading to much slower execution of the algorithm. Also, their corresponding numerical properties 
would be very much worse. 

At any point during the execution of Algorithm 2 the current basis function set need not be 
linearly independent. (The basis functions set comprising the final model is, however, always 
linearly independent.) Therefore, the covariance matrix V appearing in the normal equations 
(48) may be singular. This presents no fundamental problem since they can be solved by applying 
pivoting in the Cholesky decomposition (see Dongarra, Moler, Bunch and Stewart, 1979). A better 
strategy from the point of view of MARS modeling is, however, to slightly modify the normal 
equations via 

(V+ED)a=c (54) 

where D is a diagonal (M + 1) x (M + 1) matrix comprised of the diagonal elements of V. The 
coefficients for the basis function set a are then taken to be the solution derived from (54). The 
average-squared-residual 

ASRta) = $ F(yk - g)2 - ‘vc Uj(Cj + GDijUi) 

kc1 i=l 1 (55) 

is still used as the numerator of the GCV criterion (30). The value for 6 is taken to be a small 
number just large enough to maintain numerical stability. 

The principal advantage of this “ridge regression” approach (54) is that it eliminates the need 
for pivoting in the Cholesky decomposition update, thereby increasing execution speed. Additional 
advantages are that it increases numerical stability to help compensate for the bad numerical 
properties of the truncated power spline basis representation, and it applies a small overall shrinkage 
to the solution coefficients to help compensate for the selection bias inherent in stepwise regression 
procedures (see Copas, 1983). 
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The updating formulae (52) are not necessarily numerically stable. Widely different locations 
and scales for the predictor variables can cause instabilities that adversely effect the quality of the 
final model. The MARS procedure is (except for numerics) invariant to the locations and scales 
of the predictor variables. It is therefore reasonable to perform a transformation that causes the 
resulting locations and scales to be most favorable from the point of view of numerical stability. 
Standardizing them to each have zero location and unit scale provides good numerical properties. 

4.0. Simulation Studies and Examples 

In the following sections we present the results of applying the MARS procedure to a series 
of simulated and real data sets. The goal is to try to gain some understanding of its properties 
and to learn in what situations one might expect it to provide better performance than existing 
methodology. In all the examples the smoothing parameter d (32) was taken to be d = 3. The 
software automatically reduces it to 2d/3 (= 2) f or additive modeling. The minimum number of 
observations between knots was determined by (43) and the number between the extreme knots 
and the edges was determined by (45)) both with Q = 0.05. In all examples the explanatory 
variables were standardized to aid in numerical stability (see Section 3.9). In all simulation studies 
the covariate vectors were independently drawn (from the same sampling distribution) for each 
replication of the experiment. Therefore, nonidentical (random) designs were realized for each of 
the 100 replications. All results reported are for the continuous derivative (piecewise cubic) model 
(see Section 3.7) unless otherwise noted. 

4.1. Modeling Pure Noise 

With a modeling procedure as flexible as MARS, a reasonable concern is that it might find 
considerable spurious structure in data for which the signal to noise ratio is small. This false 
structure would reflect the sampling fluctuations in the noise E (1) and would provide a misleading 
indication of the association between the response and predictor variables. One would expect this 
effect to be especially severe for small samples in high dimensions. Our first simulation study 
indicates that this tends not to be the case for the MARS procedure. 

Tables 2a and 2b summarize the results of applying MARS to pure noise f(x) = 0 (1). Results 
are presented for two dimensionalities (n = 5,10) and three sample sizes (N = 50,100,200). The 
-summary consists of the percent points of the lower half of the distribution of the optimizing GCV 

score (30) for the MARS model, scaled by that for the corresponding constant model f^(x) = g. 
These distributions were obtained by applying MARS to 100 data sets for which the response values 
were randomly generated from a normal distribution and the covariate vectors were randomly 
generated from a uniform distribution in R”. As in Table 1, Tables 2a and 2b show the results 
for three types of constraints being placed on the model. These constraints are controlled by the 
parameter mi, which is the maximum number of variables allowed to appear in any basis function, 
K, 2 mi (23)) thereby controlling the number of variables that can participate in interaction 
effects. For mi = 1 the model is restricted to be additive in the variables, whereas for mi = 2, 

interactions are limited to those involving (at most) two variables. Setting mi = n places no 
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constraint on the number of variables that can enter into interactions. 
This simulation study represents one test of the lack-of-fit criterion based on the GCV score 

(30) using the cost complexity criterion C(M) (31) (32). Tables 2a and 2b show that the MARS 
procedure in this situation seldom claims to produce a model that fits the data markedly better 
than the response mean. Over half of‘the time (as reflected by the median) it claims to provide no 
better fit than the constant model at all dimensionalities and sample sizes shown. Even the best 
MARS fit over the 100 trials (1% point) does not produce a distinctly superior GCV value to the 
constant (no structure) fit on the same data. This is especially noteworthy given the small sample 
sizes for these dimensionalities. 

. 4.2. MARS Modeling on Additive Data. 

A related concern to that of the previous section concerns what happens when MARS is applied 
in situations where the true underlying function f (1) is additive (13) in the predictor variables. 
It might be expected that given the ability of MARS to introduce a large number of complex 
interactions into its models, that it might be somewhat at a disadvantage in these situations when 
compared to procedures that restrict the model to be additive. This section presents a simulation 
study that indicates that this is not the case. 

We use for this study an example presented in Friedman and Silverman (1989) 

f(X) = 0.1e4”l + 4/[1 + e-2o(22-1/2)] + 3x3 + 2x4 + x5 + 0 - 2 Xj. 

i=6 
(56) 

This function has a nonlinear additive dependence on the first two variables, a linear dependence 
on the next three, and is independent of the last five (pure noise) variables. A simulation study was 
performed consisting of 100 replications of the following experiment. First N(= 50,100,200) ten 
dimensional (n = 10) covariate vectors were generated in the unit hypercube. Then corresponding 
response values were assigned according to 

Yi = f(Xi) + Ei, l<i<N (57) 

with the ci randomly generated from a standard normal and f(x) given by (56). Here the signal 
-to noise ratio is 3.28 so that the true underlying function (56) accounts for 91% of the variance of 
the response (57). 

A reasonable strategy to be used with MARS modeling is to fit both an additive model (mi = 1) 

and one that permits interactions (mi = 2 or mi = n). The respective GCV scores of both models 
can then be compared and the one corresponding to the lowest score chosen. With this strategy a 
model involving interactions is only used if it claims (through its GCV score) to do better than an 
additive model on the same data. 

For each of the 100 replications (at each sample size N) the MARS procedure was applied 
with mi = 1,2, and n. The first value (mi = 1) corresponds to additive modeling, the second 
(mi = 2) permits interactions in at most two variables, whereas the last (mi = n = 10) fits an 
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unconstrained MARS model. For the last two mi values the corresponding interaction fit was only 
used if it produced a smaller GCV score than the additive model on the same data. 

Table 3 compares the average accuracy of using this strategy to that of additive modeling 
_ on the purely additive data (56) (57). The principal measure of accuracy is the (scaled) integral- 

squared-error ISE (2) (29) 

ISE = 
J 

[f(x) - f (x)12d”4Varx~~f (4, 
D 

(58) 

where here n = 10 and D is the ten-dimensional unit hypercube. For each replication of the simu- 
lation study, the ISE (58) was estimated by Monte Carlo integration using 5000 points randomly 
generated from a uniform distribution over D. 

A closely related quantity of interest is the (scaled) predictive-squared-error 

PSE = E[y - f(x)12/Var y (59) 

which is related to the ISE (58) by 

PSE = (ISE - Var&Df(x) + Var E)/Var y (60) 

with E being the error component (1). If the response values ~1,. . . , yN are standardized to have 
unit variance then the GCV criterion (30) (31) (32) is intended as an estimate of the PSE (59) 
(60)) and the ratio GCV/PSE provides an estimate of how well the optimized GCV criterion for 
the model is estimating the true PSE. 

Shown in Table 3 are the average ISE (58)) PSE (59) and GCVIPSE, along with the cor- 
responding standard deviations (in parentheses) over the 100 replications at each sample size N 
(= 50,100,200). (Note that the standard deviations of the averages shown in the table are one 
tenth the corresponding standard deviations shown.) Comparing the first row (mi = 1) to the next 
two (mi = 2, n) shows that there is little sacrifice in accuracy using interaction models in the con- 
text of the above strategy, even though the true underlying function (56) involves no interactions. 
Table 3 also shows that the optimized GCV score produced by the MARS fit slightly overestimates 
(on average) the actual predictive-squared-error for this problem at all sample sizes studied. This 

-effect is most pronounced for the smallest sample size (N = 50). (Note that the variability of this 
ratio as reflected by its standard deviation over the 100 replications if fairly high.) 

The above strategy chooses the additive model over that involving interactions only if the 
former produces a GCV score no worse than the latter. The first column of Table 4 shows the 
number of times the additive model was chosen in the 100 replications of this simulation experiment. 
As can be seen, the additive model was being chosen most of the time. This is why the loss in 
accuracy was so slight. A more conservative strategy would be to accept the additive model if its 
GCV score is only slightly (say 5 or 10 percent) worse. The second and third columns of Table 4 
show the number of times the additive model is chosen under these two slightly more conservative 
scenarios. In these cases the fit involving interactions is seen to be almost never chosen. 
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The results of this simulation study indicate that on data for which the true underlying function 
f (1) is additive, the MARS procedure does not produce fits involving interactions that appear 
distinctly superior to an additive model. This basically is another test of the lack-of-fit criterion 

_ (30) (31) (32), and especially the choice of d = 3 (32) f or g eneral MARS modeling and d = 2 for 
additive modeling with MARS (Friedman and Silverman, 1989). 

4.3. A Simple Function of Ten Variables. 

The previous examples (Sections 4.1 and 4.2) tested the ability of MARS to avoid finding 
structure when it is not present. It is at least equally important that it find structure when it does 
exist. The next several examples examine the ability of MARS to uncover interaction effects that 

. are present in data. The first test example is taken from Friedman, Grosse and Stuetzle (1983). 
They considered trying to model the function 

f(x) = lOsin(nzr22) + 20 
1 = ( > z3 - 2 + 1024 + 525 (61) 

in the n = 6 dimensional unit hypercube using N = 200 points. The covariates were randomly 
generated from a uniform distribution and the responses were assigned using (57) with f(x) given 
by (61) and with E being a standard normal deviate. 

We consider here this same function (61) but in a more difficult setting. First we reduce the 
sample size to N = 100. In addition we increase the dimensionality of the covariate space to n = 10, 
so that instead of one noise variable, there are now five such variables that are independent of 
f(x). For this study however the MARS procedure has no prior knowledge of the nature of the 
dependence of f(x) on any of the variables. The signal to noise ratio for this example is high 
(4.8/l); the true underlying function accounts for 96% of the variance of the response. On the 
other hand, the dimension of the covariate space is high (n = lo), the sample is small (N = 100) 
and the function (61) is fairly highly structured. 

Table 5a summarizes the MARS model derived from a data set generated from the above 
prescription. The data response values were standardized so that the resulting GCV scores are 
an estimate of the PSE (59). The first two lines in Table 5a give the optimizing GCV scores 
for the corresponding piecewise linear (23) and piecewise cubic (Section 3.7) fits. The third line 

-gives the total number of (nonconstant) basis functions M in the final model, whereas the fourth 
line gives C?(M) (31) (32), th e estimated number of linear degrees-of-freedom used in the fit. The 
ANOVA decomposition is summarized by one row for each ANOVA function. The columns represent 
summary quantities for each one. The first column lists the function number. The second gives 
the standard deviation of the function. This gives one indication of its (relative) importance to the 
overall model and can be interpreted in a manner similar to a standardized regression coefficient in a 
linear model. The third column provides another indication of the importance of the corresponding 
ANOVA function, by listing the GCV, score for a model with all of the basis functions corresponding 
to that particular ANOVA function removed. This can be used to judge whether this ANOVA 
function is making an important contribution to the model, or whether it just slightly helps to 
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improve the global GCV score. The fourth column gives the number of basis functions comprising 
the ANOVA function while the fifth column provides an estimate of the additional number of linear 
degrees-of-freedom used by including it. The last column gives the particular predictor variables 
associated with the ANOVA function. 

The MARS fit is seen in Table 5a to have produced seven ANOVA functions, the first five 
involving only one variable (K, = l), and two comprised of two variables (K, = 2). Judging from 
the second and (especially) the third columns, the last ANOVA function (involving an interaction 
between variables 2 and 6) is not very important to the fit. Its standard deviation is much smaller 
than that of the other ANOVA functions and removing it from the fit degrades the GCV score for 
the entire fit imperceptibly ( see line 1). All other ANOVA functions seem important to the model 
in that the removal of any of them substantially degrades the quality of the fit. 

After removing the unneeded (seventh) ANOVA function, the resulting MARS model is seen 
to be additive in variables 3, 4, and 5, and involves a two- variable interaction effect between 
variables 1 and 2. Note that this model shows no indication of a dependence of the response 
on the last five (pure noise) variables. Figure 3 shows a graphical representation of these ANOVA 
functions. The three additive contributions fd(zd), fs(zs) and fs(rs) (25) are plotted in the first 
three frames. The joint contribution of the first two variables fT,,(rr, 22) (27) is presented in three 
different views of a perspective mesh plot of this function (last three frames). Low values of the 
corresponding variables are indicated by the position of the “O”, whereas higher values are in the 
direction of the axis label. Note that the plotting routine does not show the bivariate function 
outside the convex hull of the projected data points. As discussed in Section 3.7, the MARS 
procedure basically extrapolates linearly beyond the boundaries of the data. It is important to 
note that this surface does not represent a smooth of y on x1 and 22, but rather it shows the 
contribution of ~1 and 22 to a smooth of y on the ten variables 21,. . e, ~10. 

Comparing the results of the MARS fit to these data (Table 5a and Figure 3) with the true 
underlying function f(x) (61), h s ows that the resulting model provides a fairly accurate and inter- 
pretable description. This is especially noteworthy given the high dimensionality (n = 10) and the 
small sample size (N = 100). 

Table 5a (and Figure 3) show results for one realization of a data set with N = 100. In order 
-to assess the general ability of MARS to model data of this kind, it must be applied to a large 
number of realizations of this situation. Table 5b summarizes the results of running MARS on 100 
replications of this example at three sample sizes (N = 50, 100, and 200), in the same format as 
Table 3. (Here the strategy of choosing the additive fit if it produced a better GCV score was 
not used for the mi = 2,10 models.) For the very smallest sample size (N = 50) the additive 
model (mi = 1) is seen to actually produce more accurate fits than those involving interactions 
(mi = 2, lo), even though there are strong interaction effects (involving zr and x2) in the generated 
data. This is due to the bias-variance tradeoff. Even though the additive model is highly biased, 
its lower variance leads to lower estimation errors. When the sample size is increased, however? 
this is no longer the case and the models involving interactions produce vastly superior accuracy. 
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As in the additive case (Table 3) the optimized GCV criterion is seen to overestimate the actual 
PSE on average (again with fairly high sample to sample variability). It is interesting to note that 
even though the true underlying function (61) exhibits interactions involving only two variables, 

_ the totally unconstrained MARS fit ( mi = 10) produces models nearly as accurate as when the fit 
is constrained to have at most two-variable interactions (mi = 2). 

4.4. Alternating Current Series Circuit. 

Figure 4a shows a schematic diagram of a simple alternating current series circuit involving a 
resistor R, inductor L, and capacitor C. Also in the circuit is a generator that places a voltage 

Vab = V, sin wt (624 

across the terminals a and b. Here w is the angular frequency which is related to the cyclic frequency 

f by 
w = 2lrf. WY 

The electric current I& that flows through the circuit is also sinusoidal with the same frequency, 

lab = (v,/z) sin(wt - 4). (624 

Its amplitude is governed by the impedance 2 of the circuit and there is a phase shift 4, both 
depending on the components in the circuit: 

2 = Z(R, w, L, C), 

4 = @+4 L7 Cl. 

From elementary physics one knows that 

Z(R,w, L, C) = [R2 + (WL - l/wC)2]1/2, 

$(R, w, L, C) = tan-r LwL -:‘wcl * 
F-4 

(63b) 

The purpose of this exercise is to see to what extent the MARS procedure can approximate these 
-functions and perhaps yield some insight into the variable relationships, in the range 

0 < R 2 100 ohms 

20 5 f 5 280 hertz 

0 5 L 2 1 henries 

1 5 C 5 11 micro farads. 

(64) 

Two hundred four-dimensional uniform covariate vectors were generated in the ranges (64). For 
each one, two responses were generated by adding normal noise to (63a) and (63b). The variance 
of the noise was chosen to give a 3 to 1 signal to noise ratio for both 2 (63a) and 4 (63b), thereby 
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causing the true underlying function to account for 90% of the variance in both cases. As with the 
previous example, the data response values were standardized. 

4.4.1. Impedance 2 

Applying MARS to the impedance data (63a) (64) (with 3/l signal to noise) gave an optimizing 
GCV score of 0.19. The corresponding GCV Scores for an additive model (mi = 1) was 0.56, 
whereas that for mi = 2 was 0.19. The additive model is seen (not surprisingly from the known 
truth) to be inadequate. Perhaps more surprising is the fact that even though the true underlying 
function (63a) has interactions to all orders, an approximation involving at most two-variable 
interactions gives just as good a fit to these data. Owing to its increased interpretability we select 

. the mi = 2 model. 

Table 6a summarizes the (mi = 2) MARS fit. There are five ANOVA functions all of which, 
except for the last, seem important to the model. There is an additive contribution from R, and in- 
teractions between WC and wL. Figure 4b displays a graphical representation of the ANOVA decom- 
position. The upper left frame shows the additive contribution OR (25), the upper right shows 
the joint contribution of w and C, &(w, C) (27), while the bottom two frames show &(w, L) 

(27) from two different perspectives. 

The dependence of the impedance 2 (62) on the resistance R of the circuit is seen to be 
roughly linear. Its joint dependence on w and C is seen to be fairly mild except when they both 
achieve simultaneously very low values, in which case the impedance increases very sharply. For 
low frequencies w, the impedance 2 is seen to be high and independent of the inductance L. For 
high w, 2 has a monotonically increasing dependence on L. For low L, 2 monotonically decreases 
with increasing w, whereas for high L values, the impedance is seen to achieve a minimum for 
moderate w. These interpretations are based on visual examination of the graphical representation 
of the ANOVA decomposition of the MARS model, based on a sample of size N = 200. Since the 
data are in this case generated from known truth, one can examine the generating equation (63a) 
to verify their general correctness. 

Table 6b summarizes the results of a simulation study based on 100 replications of AC circuit 
impedance data (63a) (64) (3/l signal to noise) at three sample sizes (N = 100, 200, and 400). 
Additive modeling (mi = 1) is seen to perform badly at all sample sizes. The accuracy of the 
-models involving interactions improves sharply with increasing sample size. The mi = 2 models 
offer slightly higher accuracy in most situations. Unlike the previous examples t,he GCV score is 
seen to underestimate the true predictive squared error PSE (59) a little on average. 

4.4.2. Phase Angle cp 

The MARS procedure applied to the phase angle data (63b) (64) (3/l signal to noise) with 
mi = 1,2,4 gave optimizing GCV scores of 0.30, 0.22, and 0.22, respectively. Here the additive 
model, while still being less accurate, is more competitive with those involving interactions. The 
model limited to two-variable interactions (mi = 2) is again seen to fit the data as well as the 
general (mi = 4) MARS model. Table 7a summarizes the mi = 2 model. It involves nine ANOVA 
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functions, two of which are clearly unimportant (6 and 7), and three more that are of marginal 
importance (5, 8, and 9). Figure 4c shows perspective mesh plots of all six bivariate functions f* 
(27) associated with the four variables. The dependence of the phase angle cp on all of the variables 
is seen to be more gentle and more nearly additive than the impedance 2 (Figure 4b). 

Table 7b gives the results of applying MARS to 100 replications of the phase angle data at 
N = 100, 200, and 400. At the smallest sample size additive fitting is seen to be almost as accurate 
as with interactions. This is, however, no longer true at the larger sample sizes. The optimizing 
GCV score is seen to slightly underestimate the true PSE (on average) for most of the situations, 
but as with the previous examples, the variance of the ratio (GCV/PSE) dominates this small bias. 

. 4.5. Portuguese Olive Oil. 

For this example MARS is applied to data from analytical chemistry. The observations consist 
of 417 samples of olive oil from Portugal (Forina, et al., 1983). On each sample, measurements 
were made on the concentrations of 10 acids and three sterols (see Table 8). Also recorded was 
the location where the sample originated. The purpose was to see if there is a relation between 
the chemical composition and geographical origin. Of particular interest was the extent to which 
olive oil from northeastern Portugal (Dour0 Valley - 90 samples) differed from that of the rest of 
Portugal (327 samples). One way to address this question is to examine the results of trying to 
model the probability that a sample originates from the Douro Valley given its measured chemical 
composition (Table 8). The response variable y in this case takes on only two values: 1 = Duoro 
Valley, 0 = rest of Portugal. Since Pr(y = 1 1 x) = E(y 1 x one can estimate this probability ) 
through regression techniques. 

Linear logistic regression (Cox, 1970) is often used when the response variable assumes only 
two values. The model takes the form 

hdP/(l - P)l = PO + -&%G 
i=l 

where p is the probability that y assumes its larger value. The coefficients {pi}; are estimated by 
(numerically) maximizing the likelihood of the data. Hastie and Tibshirani (1986) extended this 
approach to additive logistic regression 

The smooth covariate functions are estimated through their “local scoring” algorithm. The model 
can be further generalized to involve potential interaction effects by 

log[p/(l - P)l = .f(x) (65) 

with f(x) taking the form of the MARS approximation. This can be implemented in the MARS 
algorithm by simply replacing the internal linear least-squares routine (LOF - Algorithm 2, line 7, 
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and Algorithm 3, lines 2 and 5) by one that does linear logistic regression (given the current set of 
multivariate spline basis functions). Unless rapid updating formulae can be derived this is likely 
to be quite computationally intensive. A compromise strategy, however, is likely to provide a good 

_ approximation; the multivariate spline basis functions are selected using the MARS squared-error 
based loss criterion, and the coefficients {u,}f for the final m ode1 are fit using a linear logistic 
regression on this basis set. In this mode one takes advantage of the local variable subset selection 
aspect of MARS as well as its ability to produce continuous models. The detailed knot placement 
on the selected variables will, however, be optimally placed for the untransformed response rather 
than for the logistic fit. 

Table 9 gives the results of six different analyses (rows) on the Portuguese olive oil data set. The 
first column describes the method. The first two rows are for MARS runs on the untransformed O/l 
response using its least-squares criterion. The next two rows give results when a post (linear) logistic 
regression is applied to the final basis function set as described above. The parameter mi is (as 
before) the maximum number of variables permitted in any basis function (mi = 1 gives an additive 
model; mi = 2 allows two variable interactions). The last two rows are (respectively) ordinary 
stepwise linear logistic regression and recursive partitioning [CART: Breiman, et al. (1984)]. The 
second column gives the number of variables that entered each final model; the third column gives 
the GCV estimate of the PSE (59); the fourth column gives another estimate of this quantity 
(CV) based on tenfold cross-validation; and the last column gives the cross-validated error rate of 
a prediction rule that assigns $ = 1 if the estimated conditional probability &(y ] x) is greater than 
0.5 and assigns 3 = 0 otherwise. In the case of logistic regression the GCV and CV scores were 
computed using as a (squared-error) loss function 

[y - 1/(1+ ‘dq2, 

with f(x) the corresponding MARS estimate of the log-odds (65). 
Table 9 indicates that the (post) logistic transformation improves the fit substantially. The 

GCV and CV estimates are seen to be fairly close, especially for the (untransformed) least-squares 
fits. The introduction of interaction effects (mi = 2) seems to improve the quality of the fit, 
especially for the logistic models. (Increasing the value for mi beyond two did not result in further 
improvement.) CART and stepwise linear logistic regression do not perform as well as the logistic 

- MARS model involving two variable interactions on these data, although (like MARS) they do 
indicate a strong association between geographical origin (Dour0 Valley versus rest of Portugal) 
and the chemical composition (Table 8) of the olive oil samples. This (strong) association can 
be expressed with a small fraction of the 13 original predictor variables. (When using GCV or 
CV scores for comparisons it should be remembered that they not only estimate the accuracy of 
the approximation (2) (3) but also include the irreducible (binomial) error. Therefore their ratios 
understate the actual accuracy ratios of the methods being compared.) 

Table 10 provides a summary of the logistic (mi = 2j MARS model. There are four ANOVA 
functions involving three (of the 13) predictor variables. All four ANOVA functions appear impor- 
tant to the fit, including the last two that involve interactions. Figure 5 shows the joint contribution 
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(to the log-odds) of the second and twelfth variables f.&(z2,zr2) (27) in the upper left frame, and 
f6+.12(x6, 212) in the upper right frame. The two lower frames show the same two plots respectively 
from a different perspective. The MARS model for the log-odds is (in this case) the sum of these 

_ two bivariate functions. 

4.6. Low Dimensional Modeling 

The main advantage of MARS modeling over existing methodology is clearly realized in high 
dimensional settings. It is, however, (unlike recursive partitioning) competitive in low dimensions 
(n 5 2) as well. Friedman and Silverman (1989) studied its properties for the nonparametric 
smoothing problem (n = 1) and showed that it can produce superior performance especially in 

. situations involving small samples and low signal to noise. (They also showed that for additive 
modeling (13) (n > 1, mi = 1) it is quite competitive with procedures based on the “backfitting” 
algorithm using local averaging smoothers.) In the univariate case (n = 1) the MARS method can 
be viewed as a modification of an approach first suggested by Smith (1982). In a massive simulation 
study Breiman and Peters (1988) showed that this was one of the best all around smoothers of 
those they tested. 

In this section we illustrate the use of MARS for two-dimensional nonparametric smoothing 
(n = 2). Th e rs example is taken from Andrews and Herzberg (1985). The data comes from an fi t 
experiment on the recoiling of guns (Brouncker, 1734). A total of 109 shots were fired at different 
distances D between the muzzle and the target, and with varying grains of powder in the charge 
C. The upper left frame of Figure 6 shows the experimental design. Note that there are 40 distinct 
points in the design so that some points represent more than one firing. The response variable is 
the (standardized) distance by which the resulting shot missed the target. 

The MARS procedure applied to these data resulted in a model with three basis functions and 
an optimized GCV score of 0.39. The upper right and lower left frames of Figure 6 show two views 
of the MARS surface smooth. The average shooting error is seen to increase linearly with shooting 
distance for all powder charges. As might be expected, at the shortest distance the error is very 
small and independent of the size of the powder charge. As the distance increases, the dependence of 
the shooting error on charge becomes nonmonotonic with the degree of nonmonotonicity increasing 
with shooting distance. The optimal (lowest shooting error) charge is seen to increase somewhat as 

-the distance increases. This error is seen to be asymmetric about the minimum with the degree of 
asymmetry increasing with distance. For moderate to large distances it appears to be much more 
costly (in terms of average accuracy) to shoot with too small a powder charge than with one that 
is too large. 

Our second example is an artificial one used by Gu, Bates, Chen, and Wahba (1990) to illustrate 
interaction spline smoothing (see Section 2.3) They generated 300 points (more or less) randomly 
from a uniform distribution in the unit square and set the response to 

yi = 40exp{8[(xri - .5)2 + (xzi - .5)2]}/ exp{8[(xii - .2)2 + (x2i - .7)2]} 

+ exp{8((qi - .7)2 + (x2i - .2)2]) + G, 1 5 i 5 300. (66) 
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The errors ci were drawn from a standard normal distribution. Here the signal to noise is 
3.15/l so that the true underlying function accounts for about 91% of the variance of the response. 
Figure 7a shows a mesh plot of the true underlying function y - c (66) over the unit square. 

The optimized MARS model on these data consisted of 18 basis functions using an estimated 
45 linear degrees-of-freedom for the fit. The corresponding surface estimate is shown in Figure 7b. 
Although this estimate is a bit smoother than the one produced by interaction splines (see Gu et 
al., 1990, Fig. 4) they both have nearly the same accuracy in terms of expected squared error (3) 
(29). Since this is a relatively well behaved function and the sample size is quite large (N = 300) it 
is.likely that methods based on kernel smoothing (Cleveland and Devlin, 1988) and (nonadaptive) 
tensor product splines (de Boor, 1978) would also do well in this case. 

Although MARS is competitive with other methodologies in low dimensions, what sets it 
apart is its ability to handle problems involving many variables. Suppose the variables (XI, x2) in 
(66) were two out of ten variables, all of which (jointly) effect the response y in an unknown way, 
and the goal is to estimate the dependence of the response on x1, x2, accounting for the effect of 
the other eight (nuisance) variables ~3,. e . ,210. To get an idea of how well MARS might do in 
such a problem, N = 300 points were generated in the n = 10 dimensional unit hypercube. The 
dependence of this response 9 was taken to be 

!A = yi + f(Xi) (67) 

with yi given by (66) and f(x) given by (61) (shifted by two arguments). Thus, the dependence 
of 5 on the first two variables is the same as in the previous two-dimensional example, whereas 
its dependence on the last eight is the same as the first eight variables of the problem studied 
in Section 4.3. The sample size (N = 300) and the pure noise level are the same as in the two- 
dimensional problem. The apparent noise in the zrxz-plane is now however many times greater 
owing to the variability induced in the response by the many nuisance variables. It is hoped that 
one can account for the variance associated with the nuisance variables by fitting a (nonparametric) 
model jointly with respect to them and the variables of interest, thereby obtaining a better estimate 
of the dependence of the response on x1, x2. 

Applying MARS to this ten dimensional data resulted in a model with 27 basis functions using 
an estimated 68.5 linear degrees-of-freedom. Eleven of the basis functions were associated with the 
dependence on variables x1 and x2, accounting for 27.5 linear degrees-of-freedom. Figure 8a shows 
the resulting surface estimate. Although it is not quite as a.ccurate as the smooth (Figure 7b) 
produced in the absence of the eight nuisance variables, it still gives a good indication of the nature 
of the joint dependence of the response on x1 and x2. The estimate (Figure Sa) is smoother than 
that of Figure 7b owing to the fact that it is based on 11 rather than 18 basis functions. Figure 
8b shows plots of all of the ANOVA functions produced by the MARS fit to the lo-dimensional 
data. The estimates corresponding to the (nuisance) variables associated with f(x) (61) (67) are 
actually better than those obtained in the example of Section 4.3. This is the result of having 300 
observations here, whereas only 100 were used in Section 4.3. 
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4.7. Slicing a Mars Model 

In the examples so far presented the dominant interactions involved at most two variables. 
The resulting MARS models could then be visualized through plots of the contributing ANOVA 

functions (25) (27). When substantial interaction effects involving more than two variables are 
present the model becomes more difhcult to interpret. This section describes an interpretational 
tool called “slicing” that can aid in the visualization of such models. 

The MARS model (23) (34) is a sum of products of univariate functions 

f(x) = a0 + 5 urn E hm(xv(k,m)). (68) 
m=l kc1 

Here bkm is either a q = 1 spline basis function (33) or its cubic analog (34). If the number of 
factors Km in any product is greater than two then f(x) is more difficult to interpret since the 

ANOVA decomposition (24) contains functions of more than two variables which are difficult to 
plot or visualize. It is possible, however, to get a rough idea of the behavior of f^(x) by reducing the 
dimensionality of the predictor variable space by repeatedly conditioning on subsets of the variables. 

Let Z represent a (selected) subset of the predictor variables {xr *. ex,}, with dimension d 
(< n), and 2 the complement subset of dimension n - d. Define a d-dimensional slice of the 
predictor variable space by simultaneously assigning specific values to the selected variables 

(69) 

The MARS model along the slice will be a function of the variables 2 complement to those defining 
the slice 

f(X ( Z = Z) = f^(g 1 Z) = a0 + 5 a, 3 bkm(Xv(k,m) 1 Z = zj. (70) 
m=l k=l 

The particular form of the MARS model (68) makes the sliced model (70) especially straightforward 
to compute by decomposing its products into those factors involving variables defining the slice, 
and those involving the complement variables, 

f(x) = a0 + 5 urn n bem(Xv(t,m) > n bkm(x:,(k,m) >* 
m=l Z”(f,rn)EZ %(k,m)Ei 

For a given slice (Z = z) the first product in (71) evaluates to a constant (multiplying the coefficient 
a,) and the second product gives the dependence on the complement variables. The MARS model 
along the slice can therefore be represented as 

with 

VW 

co(z) = a0 + c am I-J btrn(zv(t,rn)>, ww 
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cm(z) = c am JJ btm( zv(t,m) >* (72~) 
t”“(k.m)K~ ~v(f.m)EZ 

The sum in (72b) is over all basis functions in (68) (71) that involve only variables defining 
- the slice. The sum in (72~) is over all basis functions that involve exactly the same complement 

variables { &,(k+)}. 
For a given slice (69) the MARS model along the slice (72a) has the same (constructive) form 

as any ordinary MARS model (68), and thus has a corresponding ANOVA decomposition that 
can be interpreted graphically as illustrated in the previous sections. This suggests the following 
strategy for trying to visualize models that contain interactions involving more than two variables: 

. (1) Use the ANOVA d ecomposition of the full MARS model p(x) (24) to identify those variables 
that participate in interactions with more than one other variable. 

(2) Choose a variable subset Z for slicing, such that the MARS model along the slice f^(g 1 z) 
involves (at most) two-variable interactions. 

(3) Examine graphically the ANOVA decomposition (25) (27) of f^(k 1 z) for various values of the 
slice (Z = z). 
This slicing strategy is illustrated on testing data taken from a semiconductor component. The 

predictor variables VI . . . Vd are the simultaneous voltages applied to the terminals of a four terminal 
semiconductor resistor in the ranges -6 I VI 2 6, -.75 5 V2 5 10.75, and -.5 5 (V3,Vi) 2 5.5. 

The response is the current I into one of the terminals. There were 599 observations taken. Table 
11 provides a summary of the results of four MARS runs on these data. The first column gives 
the maximum number of variables mi allowed to participate in interactions. The second column 
gives the GCV estimate (30) (32) of the &??? (59) and the third gives another estimate of this 
quantity based on lo-fold cross-validation. The last three columns give respectively the median, 
75th percentile, and maximum values of the distribuiton of the absolute cross-validated residuals 
divided by the absolute deviation of the response from its mean value. Table 11 shows results only 
for piecewise-linear fits; in all cases the corresponding piecewise-cubic models gave rise to much 
larger values and thus worse fits. 

Increasing the permissible interaction level is seen to improve the general quality of the fit. 
The GCV score appears to rather dramatically underestimate the PSE as estimated from cross- 

-validation. Inspection of the (cross-validated) residual distributions reveals that they are highly 
skewed toward large values. The GCV score is seen to reflect the size of the typical residuals 
(median - 75% point) but not the few extremely large ones. Increasing the interaction level beyond 
two seems to preferentially reduce the larger residuals. 

Figure 9a shows a graphical representation of the ANOVA decomposition for the MARS model 
involving ony two-variable interactions (mi = 2). The resistor is seen to be a very nonlinear device. 
The current appears to be roughly independent of the terminal voltages except when one or more 
of them take on extreme values where the current changes rapidly. 

As seen in Table 11 the MARS model involving four-variable interactions provides a subtan- 
tially better fit to these data. Figures 9b and 9c explore this function of four variables using the 
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slicing strategy described above. Figure 9b shows the current as a function of VI and V, along four 
slices defined by V, and Vi. In this figure the functions are not plotted on the same vertical scale. 
In order to relate the scales, the maximum value of each function relative to that of the first (upper 

_ left frame) is shown above each plot. Since the relative locations of the plots are arbitrary they are 
each plotted to have a minimum value of zero, so that the maximum value is equal to the range. 
The (V3, Vi) slices are taken at the four extreme corners of the V, - Vd design. Both the magnitude 
and shape of the dependence of the current on VI and V2 are seen to depend rather strongly on 
the values of V3 and VT. For simultaneously low values of V, and Vi (upper left) the dependence is 
seen to be roughly linear, whereas when Vi takes on its highest value, with V3 at its lowest value 

_ (lower left) the current is seen to vary much less as a function of VI and V2. For high values of V3 

the dependence is similar to that of the lower left frame except for the existence of the dramatic 
peak for low values of V2. 

Figure 9c shows the dependence of the current (as reflected by the MARS fit) on V, and V4 for 
four slices on (VI, V2). Here the slices do not include the two extreme corners on VI for low values 
of V2 since they are outside the support of the design. (This can be seen on the VI - I5 plots; the 
functions are plotted only within the convex hull of the bivariate distributions.) In Figure 9c the 
functions are all plotted on the same scale. As would be expected from the previous results, the 
dependence of the current on V3 and Vi changes substantially with differing values of VI and V2. 

Exploring the resulting MARS model in this manner provides some insight into the nature of 
the cross-validated residual distributions observed in Table 11. The function has very high (and 
increasing) first and second derivatives very near some of the (joint) boundaries. When extreme 
observations on these boundaries are deleted during the cross-validation, the resulting slopes are 
underestimated and the extrapolation to the left out observation gives rise to a large error. This 
phenomenon also explains why the piecewise-linear models give rise to much better fits. There are 
clearly small local regions where the second derivatives are very large. By approximating these by 
infinite second derivatives the piecewise-linear model is able to come closer than the piecewise-cubic 
fit which tries to moderate these locally very high second derivatives. 

Figures 9b and 9c represent a small subset of all possible revealing slices of this four-variable 
function. In general, slicing is likely to be most effective when performed in an interactive manner. 
Functional dependencies revealed by inspecting the results of a particular slice will likely suggest 
further slices to try. The straightforward and rapid calculation of sliced models (72) from the 
complete MARS model (68) (71) might make feasible the computation of sliced functions in real 
time on modern workstations. In this case the values defining the slice could be defined (and 
changed) in a continuous manner through a graphical input device (such as by moving a mouse) 
and the continuously changing functions along the slice can be viewed in real time. 

5.0. Remarks. 

This section covers various aspects (extensions, limitations, etc.) of the MARS procedure not 
discussed in the previous sections. 
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5.1. Constraints. 

The MARS procedure is nonparametric in that it attempts to model arbitrary functions. It is 
often appropriate, however, to place constraints on the final model, dictated by knowledge of the 

_ system under study, outside the specific data at hand. Such constraints will reduce the variance 
of the model estimates, and if the outside knowledge is fairly accurate, not substantially increase 
the bias. One type of constraint has already been discussed in Section 4, namely limiting the 
maximum interaction order (mi) of the model. Setting this maximum to a small value (mi 5 2) 

causes the resulting (restricted) model to be more interpretable since its ANOVA components 
(Section 3.5) can be directly visualized graphically. With this restriction the MARS model has the 

. same form as a low dimensional expansion (additive model, interaction splines - see Section 2.3). 
Unlike those methods however, which require the variable subsets to be preselected (in advance), 
MARS automatically selects them separately for each problem at hand based on the data. It 
also automatically (and adaptively) selects the (different) degree of smoothing to be applied in 
estimating the separate functions of each of the variable subsets it produces. In situations where 
this adaptability is not important one might apply MARS to obtain the low dimensional variable 
subsets (ANOVA decomposition) and then apply a less adaptive smoothing method (kernel with 
the backfitting algorithm, or interaction splines (12)) on these subsets to obtain the final function 
estimates. 

One might in addition (or instead) limit the specific variables that can participate in inter- 
actions. If it is known a priori that certain variables are not likely to interact with others, then 
restricting their contributions to be at most additive can improve accuracy. If one further suspects 
that specific variables can only enter linearly, then placing such a restriction can improve accuracy. 
The incremental charge d (32) for knots placed under these constraints should be less than that for 
the unrestricted knot optimization. (The implementing software charges 2d/3 and d/3 respectively, 
for the additive and linear constraints where d is the charge for unrestricted knot optimization.) 

These constraints, as well as far more sophisticated ones, are easily incorporated in the MARS 
strategy. Before each prospective knot is considered (Algorithm 2, lines S-S), the parameters of the 
corresponding two new potential multivariate spline basis functions (w, t, and B,) can be examined 
for consistency with the constraints. If they are inconsistent, they can be made ineligible for 

_ inclusion in the model by simply skipping lines 6-8 in Algorithm 2. 

5.2. Semiparametric Modeling 

Another kind of a priori knowledge that is sometimes available has to do with the nature of 
the dependence of the response on some (or all) the predictor variables. The user may be able to 
provide a function g(x) that is thought to capture some aspects of the true underlying function 
f(x). More generally, one may have a set of such functions {gj(x)}{, each one of which might 
capture some special aspect of the functional relationship. A semiparametric model of the form 

f&4 = 2 CjSj(X) + f(x), (73) 
j=l 
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where f(x) takes the form of the MARS approximation, could then be fit to the data. The 
coefficients cj in (73) are jointly fit along with the parameters of the MARS model in Algorithms 
2 and 3. To the extent that one or more of the gj successfully describe attributes of the true 

_ underlying function, they will be included with relatively large (absolute) coefficients, and the 
accuracy of the resulting (combined) model will be improved. 

Semiparametric models of this type (73) are easily fit using the MARS strategy. One simply 
includes {gj(x)}{ as J additional predictor variables (x,+1,. . . , x,+5) and constrains their con- 
tributions to be linear. One could also, of course, not place this constraint, thereby fitting more 
complex semiparametric models than (73). 

Another strategy that is often employed in this context is to first fit only the parametric com- 
ponent to the data and then apply a nonparametric method (such as MARS) to the residuals of 
the parametric fit. In general, this strategy is likely to be less successful because the residual func- 
tion may be more highly structured than the original one (and thus more difficult to approximate) 
especially if the parametric approximation is not close to the true underlying function. The more 
general approach (73) allows the fitting procedure to automatically adjust the strength of the para- 
metric components as part of the fitting process. 

5.3. Collinearity 

Extreme collinearity of the predictor variables is a fundamental problem in the modeling of 
observational data. Solely in terms of predictive modeling it represents an advantage in that it 
effectively reduces the dimensionality of the predictor variable space. This is only true provided 
that the observed collinearity is a property of the population distribution and not an artifact of 
the sample at hand. Collinearity presents, on the other hand, severe problems for interpreting the 
resulting model. 

This problem is even more serious for (interactive) MARS modeling than for additive or linear 
modeling. Not only is it difficult to isolate the separate contributions of highly collinear predictor 
variables to the functional dependence, it is also difficult to separate the additive and interactive 
contributions among them. A highly nonlinear dependence on one such (highly correlated) variable 
can be well approximated by a combination of functions of several of them, and/or by interactions 
among them. 

In the context of MARS modeling one strategy to cope with this (added) problem is to fit a 
sequence of models with increasing maximum interaction order (mi). One first fits an additive 
model (mi = l), then one that permits at most two variable interactions (mi = 2), and so on. 
The models in this sequence can then be compared by means of their respective optimizing GCV 

scores. The one with the lowest mi value that gives a (relatively) acceptable fit can then be chosen. 
Another (complementary) strategy is to directly resolve the ambiguity by enforcing parsimony 

on the number of variables that enter the model (Friedman and Silverman, 1989). This will dis- 
courage spurious interaction effects caused by collinearity (or concurvity) and, in addition, partially 
stabilize the function estimates. It will also aid in interpretation in that the resulting approximation 
will involve fewer variables. 
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Variable parsimony can be accomplished by introducing a small incremental penalty to the lack- 
of-fit criterion for choosing factors (knots) that involve introducing a new variable (not already in 
the model) as part of the forward stepwise procedure (Algorithm 2, line 7): 

LOF(g) t LOF(g) )I . (74) 
At the Mth iteration there are h4 - 1 basis functions currently in the model and the indicator 
function in (74) will be zero if the uth variable appears in a least one of them; otherwise it will 
be equal to one. The parameter 7 (> 0) regulates the strength of the penalty for entering new 

. variables and can be used to control the lack-of-fit/variable parsimony tradeoff. Note that this 
penalty (74) is only introduced as part of the (forward stepwise) knot selection process and it is 
not used to reflect the overall lack-of-fit of the model. 

In highly collinear settings the (unmodified) lack-of-fit criterion (LOF(g)) has very little pref- 
erence on which particular variable to enter from a highly correlated set, and a small value for 7 
will cause the modified criterion (74) to repeatedly enter the same one from that set, without se- 
riously degrading the quality of the approximation. A good value for 7 depends on the particular 
situation (degree of collinearity) and how much goodness-of-fit the user is willing to sacrifice for 
variable parsimony. This can be judged by examining the resulting fit quality for several (increas- 
ing) values of 7 as reflected by either the final GCV score (30) or a sample reuse method. 

We illustrate these two approaches on data taken from the Places Rated Almanac (Boyer 
and Savageau, 1986). They rated 329 American cities on the nine criteria listed in Table 12. 
For this exercise we attempt to model housing cost (y = x2) on the other eight criteria. Table 
13 shows the resulting number of variables and GCV estimate (30) of the PSE (59) for running 
MARS with different values of 7 (74). The first three rows are for additive modeling (mi = 1) 
and the second three for models with two variable interactions permitted (mi = 2). The models 
involving interactions are seen to not be distinctly superior to the additive ones, so that using the 
first strategy (above) one would be inclined to choose the latter. As the value of 7 (74) is steadily 
increased, MARS produces models with progressively fewer variables, as one would expect. For 
these particular data, however, one is able to reduce the number of variables from (nearly) the 

-full set (at 7 = 0) to only three (.05 5 7 < .15) without seriously degrading the quality of the 
fit as estimated by the solution GCV score. Note that this GCV score (30) does not reflect the 
additional penalty imposed by setting 7 > 0, so that differences between scores involving larger and 
smaller values of 7 underestimate (on average) their actual differences. Ordinary cross-validation 
(CV) does account for this increased penalty. For example, the CV estimate (10 replications) for 
the 7 = 0 (mi = 1) model is 0.56 whereas the corresonding score for 7 = 0.1 is 0.52. 

Figure 10 shows the graphical ANOVA decomposition for the three variable additive model 
produced for 0.05 5 7 < .15. From this analysis it appears that average (increasing) housing 
costs are most strongly affected by increasingly good climate (especially for the highest values) 
and are associated to a somewhat lesser degree with economic conditions and access to the arts. 
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The dependence on climate might be somewhat surprising since in these data housing costs reflect 
utility bills, which are likely to decrease with good climate, as well as taxes and mortgage payments. 
Any interpretations, however, must be tempered by the existence of the collinearities present in 
the design and the fact that the model is estimated to account for only 50% of the variance of the 
response. 

5.4. Robustness 

Since the MARS method as described here uses a model selection criterion based on squared- 
error loss it is not robust against outlying response values. There is nothing fundamental about 
squared-error loss in the MARS approach. Any criterion can be used to select the multivariate 
spline basis functions, and construct the final fit, by simply replacing the internal linear least 
squares fitting routine (LOF - Algorithm 2, line 7, and Algorithm 3, lines 2 and 5) by one that 
minimizes another loss criterion (given the current set of multivariate spline basis functions). Using 
robust/resistant linear regression methods would provide resistance to outliers. The only advantage 
to squared-error loss in the MARS context is computational. It is difficult to see how rapid updating 
formulae (Section 3.9) could be developed for other types of linear regression. 

. 

Gross outliers (in both the response and covariates) that can be detected through a preliminary 
(exploratory) analysis of the data, should be considered for removal before applying MARS. The 
MARS procedure is less sensitive than linear regression to covariate outliers owing to the local 
nature of the fit; sample covariate vectors far from an evaluation point tend to have less rather 
than more influence on the model estimate. Covariate outliers can have a strong influence on the 
fit near the corresponding data boundaries. This can be quite helpful if the corresponding response 
values for the outliers are correctly measured. If not, these outliers will contribute to end effect 
errors. 

Recursive partitioning responds to outlying response values by trying to isolate them. It 
produces a series of splits so as to place each such outlier in its own region. This localizes the 
effect of the outlier(s) so that they only distort the fit for covariate values close to that of the 
outlier(s). The MARS procedure operates similarly. It will also try to isolate outliers through a 
series of corresponding “splits” producing basis functions that attempt to capture the (apparent) 
high curvature of the function near each outlier. The outliers will tend to heavily influence the 

- values of the coefficients of their corresponding basis functions, but have much less influence on 
the rest of the fit. The particular basis functions introduced in this manner by outlying response 
values, may tend to involve interactions of high order depending on their location in the covariate 
space. Thus, interpreting the presence of interaction effects can be highly distorted by the existence 
of outlying response values. 

Computationally feasible methods of robustifying the MARS procedure are currently under 
investigation. 

6.0. Conclusion 

The aim of the MARS procedure is to combine recursive partitioning and spline fitting in a 
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way that best retains the positive aspects of both, while being less vulnerable to their unfavorable 
properties. This has been accomplished, at least to some extent. The greatest strength of recursive 
partitioning is its adaptability, through its local variable subset selection strategy. This makes it a 

_ highly dynamic computation (Section 2.4) capable of tracking the dependencies associated with a 
wide variety of complex functional forms. The two weaknesses of recursive partioning are the lack 
of continuity of its models, and its inability to capture simple relationships such as linear, additive, 
or interactions of low order compared to n. Nonadaptive (tensor product) spline fitting produces 
continuous models with continuous derivatives. It strongly suffers, however, from the “curse-of- 
dimensionality” in that very large basis function sets are usually required in high dimensions to 

_ capture relatively simple functional relationships. 
The MARS procedure completely retains the adaptability of recursive partitioning by its close 

adherence to the recursive splitting paradigm (compare Algorithms 1 and 2). It is in fact much 
more adaptive because it permits the recursive “splitting” of all basis functions (nodes) in the 
model and not just those that are currently terminal. This causes it to overcome the second 
problem (mentioned in the previous paragraph) associated with recursive partitioning. It produces 
continuous models by replacing the step functions (19) (20) by Q = 1 truncated power spline 
basis functions (21) (22). Continuous derivatives are obtained through the strategy outlined in 
Section 3.7. From the point of view of tensor product spline methods, MARS can be viewed 
as a hierarchical forward/backward stepwise subset selection procedure for choosing a subbasis 
appropriate for the problem at hand, from the complete (q = 1) truncated power tensor product 
basis with knots at every (distinct) marginal data value. MARS models have a fair degree of 
interpretability through the ANOVA decomposition (Section 3.5) that breaks up the approximation 
into an additive component and into interaction contributions of various orders. Slicing (Section 
4.7) can be used to explore the higher dimensional aspects of the models 

The implementation of the adaptive regression spline strategy presented here represents a 
“first attempt” in that particular choices have been made concerning many of the “engineering 
details” in the absence of a great deal of experience with the procedure. Although incidental to the 
fundamental ideas, these details can have a strong bearing on performance. As experience is gained 
it is likely that many of the choices taken here will be seen to be less than optimal and suitable 
modifications will emerge that improve the performance of the procedure. The attempt here has 

-been to demonstrate that the adaptive regression spline strategy, first introduced by Smith (1952) 
(in the univariate setting), holds substantial promise as a tool for multivariate function estimation. 

A FORTRAN program implementing the MARS procedure is available from the author. 

Acknowledgements 

Helpful discussions with Terry Therneau are gratefully acknowledged. The author is grateful 
to Kishore Singhal for providing the semiconductor test data used in Section 4.7. 

48 



Bibliography 

Andrews. D. F. and Herzberg, A. M. (1985). Data. A Collection of Problems from lvany Fields 

for the Student and Research Worker. Springer-Verlag, New York. 

_ Barry, D. (1986). Nonparametric Bayesian regression. Ann. Statist., 14, 934-953. 
Bellman, R. E. (1961). Adaptive Control Processes. Princeton University Press, Princeton, New 

Jersey. 
Boyer, R. and Savageau, D. (1986). Places Rated Almanac. Rand McNally (order number 0-528- 

88008-x). 

Bozzini, M. and Lenarduzzi, L. (1985). Local smoothing for scattered noisy data. International 
Series of Numerical Mathematics 75, Birkhauser Verlag, Basel, 51-60. 

Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multiple regression 
and correlation (with discussion). J. Amer. Statist. Assoc. 80, 580-619. 

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression 
Trees. Wadsworth, Belmont, CA. 

Breiman, L. and Meisel, W. S. (1976). General estimates of the intrinsic variability of data in 
nonlinear regression models. J. Amer. Statist. Assoc. 71, 301-307. 

Breiman, L. and Peters, S. (1988). Comparing automatic bivariate smoothers (A public service 
enterprise). Department of Statistics, University of California, Berkeley, Technical Report No. 
161, June. 

Brouncker, Lord (1734). Experiments of the recoiling of guns. In the History of the Royal Society 

of London (fourth edition). MDCCXXXIV by Thomas Sprat, 233-239. 

Buja, A., Hastie, T. and Tibshirani, R. (1989). Linear smoothers and additive models (with 
discussion). Ann. Statist., 17, 453-555. 

Chen, Z., Gu, C., and Wahba, G. (1989). Comment: “Linear smoothers and additive models,” by 
Buja, Hastie and Tibshirani, Ann. Statist., 17, 515-521. 

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatter plots. J. Amer. 
Statist. Assoc., 74, 828-836. 

Cleveland, W. S. and Devlin, S. J. (1988). L ocally weighted regression: an approach to regression 
analysis by local fitting. J. Amer. Statist. Assoc. 83, 596-610. 

Copas, J. B. (1983). Regression prediction and shrinkage (with discussion), J. Roy. Statist. Sot. B, 
45, 311-354. 

Cox, D. R. (1970). Analysis of Binary Data, London: Chapman and Hall. 

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Estimating the 
correct degree of smoothing by the method of generalized cross-validation. Numerische Mathe- 
matik 31, 317-403. 

deBoor, C. (1978). A Practical Guide to Splines. Springer-Verlag, New York, NY. 

Diaconis, P. and Shahshahani, M. (1984). On non-linear functions of linear combinations. SIAM 
J. Sci. Stat. Comput. 5, 175-191. 

49 



Dongarra, J. J., Moler, C. B., Bunch, J. R., and Stewart, G. W. (1979). Linpack Users’ Guide. 
SIAM, Philadelphia, PA. 

Donoho, D. L. and Johnstone, I. (1989). Projection-based approximation, and a duality with kernel 
methods. Ann. Statist. 17, 58-106. 

Efron, B. (1983). Estimating the error rate of a prediction rule: Improvement on cross-validation. 
J. Amer. Statist. Assoc. 78, 316-331. 

Forina, M., Armanino, C., Lanteri, S., Calcagno, C., and Tiscornia, E. (1983). Evaluation of the 
chemical characteristics of olive oils as a function of production year by multivariate methods. 
La Revista Italiana delle Sostanze Grasse, 60, Oct. 

. Friedman, J. H. (1979). A tree-structured approach to nonparametric multiple regression. In 
Smoothing Techniques for Curve Estimation, T. H. Gasser and M. Rosenblatt (eds.), Springer- 
Verlag, New York, 5-22. 

Friedman, J. H. (1985). Classification and multiple response regression through projection pursuit. 
Department of Statistics, Stanford University, Technical Report LCS012. 

Friedman, J. H. (1988). Fitting functions to noisy data in high dimensions. In Computer Science 
and Statistics: Proceedings of the 20th Symposium (E. Wegman, D. Gantz, and J. Miller, eds.). 
Amer. Statist. Assoc., Washington, D.C., 13-43. 

Friedman, J. H., Grosse, E., and Stuetzle, W. (1983). Multidimensional additive spline approxi- 
mation. SIAM J. Sci. Stat. Comput., 4, 291-301. 

Friedman, J. H. and Silverman, B. W. (1989). Flexible par 
modeling. Technometrics, 31, 3-39. 

Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit 
76, 817-823. 

Friedman, J. H. and Wright, M. J. (1981). A nested partitioni: 
integration. ACM Trans. Math. Software, March. 

simonious smoothing and additive 

regression, J. Amer. Statist. Assoc. 

ng algorithm for numerical multiple 

Golub, G. H. and Van Loan, C. F. (1983). Matrix Computations. The Johns Hopkins University 
Press, Baltimore, MD. 

Gu, C., Bates, D. M., Chen, Z., and Wahba, G. (1990). The computation of GCV function through 
Householder tridiagonalization with application to the fitting of interaction spline models. SIAM 
J. Matrix Analysis 10, 457-480. 

Gu, C., and Wahba, G. (1988). M inimizing GCV/GML scores with multiple smoothing parameters 
via the Newton method. Univ. of Wisconsin, Dept. of Statistics, Tech. Report 847. SIAM J. 
Sci. Statist. Comput. 1990 (to appear). 

Hastie, T. and Tibshirani, R. (1986). Generalized additive models (with discussion), Statist. Science 
1, 297-318. 

Haber, P. J. (1985). Projection Pursuit (with discussion), Ann. Statist. 13, 435-475. 

Lyness, J. N. (1970). Algorithm 379-SQUANK (S imson Quadrature Used Adaptively - Noise 
Killed), Comm. Assoc. Comp. Mach. 13, 260-263. 

50 



Morgan, J. N., and Sonquist, J. A. (1963). Problems in the analysis of survey data, and a proposal. 
J. Amer. Statist. Assoc. 58, 415-434. 

Parzen, E. (1962). On estimation of a probability density function and mode. Ann. Math. Statist. 
33, 1065-1076. 

Shepard, D. (1964). A two-dimensional interpolation function for irregularly spaced data. Proc. 
1964 ACM Nat. Conf., 517-524. 

Shumaker, L. L. (1976). Fitting surfaces to scattered data. In Approximation Theory III, G. G. 

Lorentz, C. K. Chui, and L. L. Shumaker, eds. Academic Press, New York, 203-268. 
Shumaker, L. L. (1984). On spaces of piecewise polynomials in two variables. In Approximation 

Theory and Spline Functions, S. P. Singh et al. (eds.). D. Reidel Publishing Co., 151-197. 
Silverman, B. W. (1985). Some aspects of the spline smoothing approach to non-parametric re- 

gression curve fitting. J. Roy. Statist. Sot. B 47, l-52. 
Smith, P. L. (1982). C urve fitting and modeling with splines using statistical variable selection 

techniques. NASA, Langley Research Center, Hampton, VA, Report NASA 166034. 
Stone, C. J. (1977). Nonparametric regression and its applications (with discussion). Ann. Statist. 

5, 595-645. 
Stone, C. J. and Koo, Cha-Yong (1985). Additive splines in statistics. Proceedings, Annual Meeting 

of Amer. Statist. Assoc., Statist. Comp. Section, August, 45-48. 
Stone, M. (1974). Cross-validatory choice and assessment of statistical predictors (with discussion). 

J. R. Statist. Sot., B36, 111-147. 
Wahba, G. (1986). Partial and interaction splines for the semiparametric estimation of functions 

of several variables. In Computer Science and Statistics: Proceedings of the 18th Symposium 
(T. Boardman, ed.) Amer. Statist. ASSOC., Washington, DC, 75-80. 

Wahba, G. (1990). Spl ine Models for Observational Data. Monograph: SIAM, CBMS-NSF Re- 
gional Conference Series in Applied Mathematics, Vol. 59. 

51 



Table 1 

Computation time in seconds for executing the MARS procedure on the alternating current 
impedance example of Section 4.4.1, as a function of the maximum size, IIJ~,,, of the basis function 

_ set. Computations were performed on a SUN 3/260 with FPA. For this example n = 4 and 
N = 200. Execution times scale linearly with both these parameters. The quantity mi is the 
maximum number of variables that are allowed to interact. 

M Inax 5 10 15 20 30 40 50 
mi 

1 1.5 3.0 4.4 8.4 17.2 32.1 54.2 
2 2.3 7.2 14.1 24.6 88.1 227.8 536.9 
n 2.4 8.1 15.4 33.7 119.1 271.3 546.2 

Table 2a 

Results of applying MARS to pure noise in five dimensions (n = 5). Shown are the lower 
quantiles for the ratio of the MARS GCV score to that of a constant model P(X) = 9. 

mi 

N = 50 
1 
2 
n 

N = 100 
1 
2 
n 

N = 200 
1 
2 
n 

1% 5% 

.79 .88 

.79 .88 

.81 .86 

.88 .94 

.89 .94 

.89 .94 

.97 .98 

.94 .97 

.94 .96 

10% 25% 50% 

.93 .98 1.02 

.91 .99 1.04 

.91 .99 1.04 

.96 .99 1.00 

.96 .98 1.01 

.95 .98 1.00 

.99 1.00 1.01 

.98 1.00 1.01 

.98 1.00 1.01 
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Table 2b 

Results of applying ,MARS to pure noise in ten dimensions (n = 10). Shown are the lower 
quantiles of the ratio of the MARS GCV score to that of a constant model f^(x) = ?j. 

mi 

N = 50 
1 
2 
n 

N = 100 
1 
2 
n 

N = 200 
1 
2 
n 

1% 5% 10% 25% 50% 

.77 .82 .87 .97 1.00 

.71 .75 .86 .98 1.01 

.64 .75 .86 .96 1.02 

.93 .94 .96 .98 1.00 

.84 .91 .92 .97 1.00 

.84 .89 .92 .96 1.00 

.94 .96 .98 1.00 1.00 

.94 .95 .97 .99 1.01 

.92 .94 .95 .98 1.00 

Table 3 

Comparison of the accuracy of MARS modeling, with interactions permitted (mi = 2, lo), to 
that of purely additive modeling (mi = 1) on additive data (Section 4.2). 

mi 

N = 50 
1 
2 
10 

N = 100 
1 
2 
10 

N = 200 
1 
2 
10 

ISE PSE 

.14 (.07) .26 (.06) 1.16 (.32) 

.15 (.08) .27 (.07) 1.12 (.32) 

.15 (.08) .27 (.07) 1.10 (.32) 

.053 (.027) .18 (.02) 1.06 (.19) 

.060 (.034) .19 (.03) 1.02 (.20) 

.063 (.043) .19 (.04) 1.02 (.21) 

.026 (.Oll) .16 (.Ol) 1.08 (.16) 

.033 (.021) .17 (.02) 1.04 (.16) 

.037 (.017) .17 (.03) 1.02 (.16) 

GCVIPSE 
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Table 4 

Number of replications (out of 100) for which the optimizing GCV score for the additive model 
(mi = 1) is less than (or equal to) THR times that for models with interactions allowed (m; = 2, lo), 

_ on additive data (Section 4.2). 

mi THR = 1.0 THR = 1.05 THR = 1.1 

N = 50 
2 86 93 97 
10 84 91 95 

N = 100 
2 83 95 98 
10 81 94 99 

N = 200 
2 70 94 100 
10 72 94 100 

Table 5a 

Summary of the MARS model for the data of Section 4.3. 
GCV (piecewise-linear) = .059 
GCV (piecewise-cubic) = .055 
total number of basis functions = 11 
total effective number of parameters = 32.3 

ANOVA decomposition: 

Fun. cr \GCV # basis # parms variable(s) 

1 .56 .67 1 2.8 4 
2 .29 .087 1 2.8 2 
3 .50 .26 1 2.8 1 
4 .28 .21 1 2.8 5 
5 .30 .22 2 5.7 3 
6 .46 .37 4 11.3 1 2 
7 .064 .059 1 2.8 2 6 
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Table 5b 

Results of applying MARS to 100 data sets, at three sample sizes N, for the situation described 
in Section 4.3. 

mi ISE PSE GCVIPSE 

N = 50 
1 .16 (.08) .20 (.08) 1.17 (.40) 
2 .20 (.12) .24 (.ll) 1.23 (.63) 
10 .20 (.12) .23 (.ll) 1.23 (.63) 

N = 100 
1 .11 (.02) .15 (.02) 1.07 (.27) 
2 .035 (.025) .074 (.024) 1.19 (.33) 
10 .038 (.025) .077 (.024) 1.16 (.30) 

N = 200 
1 .097 (.009) .13 (.009) 1.01 (.16) 
2 .017 (.007) .056 (.007) 1.09 (.21) 
10 .018 (.008) .058 (.008) 1.05 (.20) 

Table 6a 

Summary of the MARS model for the alternating current series circuit impedance 2. 

GCV (piecewise - linear) = 0.21 
GCV (piecewise - cubic) = 0.19 
total number of basis functions = 9 
total effective number of parameters = 31.0 

ANOVA decomposition: 

Fun. u \GCV # basis # parms variable(s) 

1 .35 .25 2 6.7 W 
2 .62 .44 1 3.3 R 

3 .53 .52 3 10.0 w c 
4 .53 .40 2 6.7 w L 

5 .17 .22 1 3.3 R L 
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Table 6b 

Results of applying MARS to 100 data sets, at each of three sample sizes N, for the alternating 
current impedance 2 example. 

mi 

N = 100 
1 
2 
4 

N = 200 
1 
2 
4 

N = 400 
1 
2 
4 

ISE PSE 

.68 (.ll) .71 (.lO) .86 (.19) 

.28 (.17) .35 (.15) .88 (.28) 

.31 (.18) .38 (.16) .81 (.28) 

.59 (.05) .63 (.05) .96 (.14) 

.12 (.06) .21 (.06) 1.01 (.21) 

.12 (.07) .21 (.06) .96 (.20) 

.56 (.04) .60 (.04) .98 (.ll) 
.067 (.015) .16 (.Ol) 1.01 (.15) 
.069 (.028) .16 (.03) .97 (.15) 

GCV/PSE 

Table 7a 

Summary of the MARS model for the alternating current series circuit phase angle cp. 

GCV (piecewise - linear) = .19 
GCV (piecewise - cubic) = .22 
total number of basis functions = 14 
total effective number of parameters = 40.2 

ANOVA decomoosition: 

Fun. o \GCV # basis # parms variable(s) 

1 .45 .32 2 5.6 W 
2 .86 .34 2 5.6 C 

3 .62 .38 2 5.6 L 

4 .42 .26 3 8.4 R C 

5 .23 .21 1 2.8 w L 

6 .12 .19 1 2.8 L c 

7 .14 .19 1 2.8 w c 

8 .28 .22 1 2.8 R L 

9 .24 .23 1 2.8 R w 
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Table 7b 

Results of applying MARS to 100 data sets, at each of three sample sizes N, for the alternating 
current phase angle cp example. 

mi ISE PSE GCV/PSE 

N = 100 
1 .27 (.04) .34 (.04) .98 (.18) 
2 .24 (.lO) .32 (.09) .92 (.24) 
4 .24 (.07) .32 (.06) .92 (.23) 

N = 200 
1 .24 (.02) .31 (.02) 1.01 (.ll) 
2 .16 (.03) .25 (.02) .95 (.15) 
4 .16 (.03) .25 (.03) .90 (.16) 

N = 400 
1 .22 (.Ol) .30 (.Ol) 1.04 (.09) 
2 .12 (.Ol) .21 (.Ol) 1.00 (.13) 
4 .12 (.02) .21 (.02) .94 (.13) 

Table 8 

Measured variables for the Portuguese olive oil data 

1 C16:O palmitic acid 
2 C16:l palmitoleic acid 
3 C17:O heptadecanoic acid 
4 C17:l heptadecenoic acid 
5 C18:O stearic acid 
6 C18:l oleic acid 
7 C18:2 linoleic acid 
8 C18:3 linolenic acid 
9 C2O:O eicosanoic acid 

10 C24:O lignoceric acid 
11 Beta-sitosterol 
12 Campesterol 
13 S tigmasterol 
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Table 9 

Portuguese Olive Oil 

method # vars GCV CV error (CV) 

MARS (mi = 1). 3 .23 .21 .050 
(least-squares) 

MARS (mi = 2) 3 .19 .20 .038 
(least-squares) 

MARS (mi = 1) 3 .16 .19 .036 
(logistic) 

MARS (mi = 2) 3 .13 .16 .026 
(logistic) 

linear logistic 4 .25 .26 .070 
(stepwise) 

CART 2 - .22 .058 

Table 10 

Summary of the (mi = 2) logistic MARS model for the Portuguese olive oil example. 

piecewise-linear: GCV = .lO cv = .15 
piecewise-cubic: GCV = .13 cv = .15 

total number of basis functions = 9 

total effective number of parameters = 29.5 

ANOVA decomposition: 

Fun \ GCV # basis # parms variable(s) 

1 .60 3 9.5 2 
2 .26 1 3.2 6 
3 .27 2 6.3 2 12 
4 .20 3 9.5 6 12 
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Table 11 

MARS on semiconductor data, piecewise-linear fits - see Section 4.7. 

mi 

1 
2 
3 
4 

GCV cross-validation (lo-reps) 
residual distribution 

@ &? med. .75 max. 

.458 .508 .159 .316 18.9 

.041 .211 .012 .032 7.6 

.016 .118 .OlO .025 4.6 
.0096 .090 .0078 .017 2.9 

Table 12 

The nine criteria used to rate U.S. cities by the Places Rated Almanac. 

1 climate 
2 housing costs 
3 health care and environment 
4 crime rate 
5 transportation 
6 education 
7 access to the arts 
8 recreational opportunities 
9 economics 
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Table 13 

The number of variables and corresponding GCV score for a sequence of MARS models on the 
PIaces Rated data, produced by increasing the penalty y (74) for adding variables. 

mi = 1 

# irs 
GCV 

mi = 2 

# zars 
GCV 

0 .Ol .02 
7 7 7 

.49 .49 .49 

0 .Ol .02 
8 6 5 

.48 .50 .48 

.03 
4 

.50 

.05 
5 

.47 

.05 .lO .15 
3 3 2 

.51 .51 .58 

.07 .lO .15 
4 3 2 

.51 .51 .58 
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Figure Captions 

1. A binary tree representing a recursive partitioning regression model with the associated basis 
functions. 

2a. Comparison of q = 1 truncated power spline functions and the corresponding continuous 
derivative truncated cubits, with central knot t = 0.5 and side knots at t- = 0.2 and t+ = 0.7. 

2b. Illustration of side knot placement for a one-dimensional ANOVA function comprised of three 
basis functions (upper frame), and a two-dimensional ANOVA function with two basis functions 
(lower frame). 

3. ANOVA functions for the MARS model of Example 4.3. 
4a. Schematic diagram of the alternating current series circuit for Examples 4.4. 
4b. ANOVA functions of the MARS model for the alternating current series circuit impedance 2, 

Section 4.4.1. 
4c. ANOVA functions of the MARS model for the alternating current series circuit phase angle cp, 

Section 4.4.2. 
5. ANOVA functions for the log-odds MARS model on the Portuguese olive oil data, Section 4.5. 
6. Experimental design (upper left) and MARS surface smooth for the gun recoil data, first 

example, Section 4.6. 

7a. True underlying function (eqn. 66) for the second example, Section 4.6. 

7b. MARS surface smooth for second example, Section 4.6. 
8a. MARS surface smooth for the second example, Section 4.6, in the presence of eight’highly 

structured nuisance variables. 
8b. ANOVA functions for the ten variable version of the second example in Section 4.6. 
9a. MARS model for semiconductor component data restricted to two-variable interactions (mi = 

2). 
9b. Full (mi = 4) MARS model for semiconductor component data. Functions of VI and V2 along 

various slices defined by V, and V,. 

9c. Full (mi = 4) MARS model for semiconductor component data. Functions of V, and V, along 
several slices defined by VI and V,. 

10. Graphical ANOVA decmposition of the three variable additive MARS model on the Places 
Rated data, Section 5.3. 
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Figure 1 

Bl = ~[-(~tl, - L>lq-khb - Ql 
B2 = H[+,, - t,)]H[+(%, - tb)]H[-(xv, - tc)] 

B3 = H[+:VG - hz)]~[+(.-b, - tb)]H[+@uc - tc)] 

B4 = H[+(xva - L)] 

62 



T 
0 

m 
d 

CN’ 
.d 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Lo 
0 

-3 
0 

c? 
0 

c\! 
0 

0 
d 

Figure 2a 

63 



I I * , 
I A I w I * I r I 

ta- 
t a+ tb+ t ’ xi 

c+ 
tb- %- 

U a+ 

U a- 'bt 

'b- 

t a- t at tbt 
'i 

tb- 

Figure 2b 

64 



Figure 3 
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Figure 7a 
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Figure 7b 
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Figure 8a 
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Discussion by Larry L. Schumaker of 
Multivariate Adaptive Regression Splines by J. H. Friedman 

Clearly the fitting of functions of more than two variables is an important problem, 
and it is nice to see that statisticians are willing to tackle it. vathematicians have tended 
to concentrate on the bivariate case (perhaps because even there, much remains to be 
done). The recently published bibliography [l] provides a fairly uptodate list of what ap- 
proximation theorists have been doing. Some of this work does deal with the many variable 
case. In particular, the papers [2-61 deal with adaptive fitting of piecewise polynomials, 
much in the spirit of the paper under discussion. These papers also deal with the problem 
of giving error bounds. 

Approximation theorists have also recently been interested in the problem of approx- 
. imating multivariate functions by sums of univariate functions. In this connection I would 

like to cite [7,8], ( see also the bibliography [l] mentioned above). Other references can be 
found the the book [8]. 

Next, a few comments to the paper under discussion. I am a bit puzzled by the 
assertion in Section 2.4.2 and later in Section 3.2 that lack of smoothness of the approxi- 
mating functions limits the accuracy of the approximation. Generally it is true that lack 
of smoothness of the function to be approximated limits accuracy, while for the approxi- 
mating functions it is the degree of the polynomials used which is critical. Similarly, I do 
not understand the discussion of end effects in Section 3.7. The classical natural splines 
perform badly near the boundaries precisely because they smoothly match linear functions 
there; i.e., they are constrained at the endpoints in the wrong way. The author uses a basis 
of piecewise linear functions which are smoothed out to be Cl. If one does not need C’ 
functions, it seems it would be better to simply use linear splines to begin with. As far as 
I know, the approximation properties of the modified basis function are not understood. 
Do they approximate with the same power as linear splines? Surely they not do as well 
as quadratic ones. My next remark relates to the basis functions being used. As noted 
in Section 3.9, the one-sided truncated power basis is well-known to be very badly condi- 
t,ioned whereas the classical B-splines are very well-conditioned. Why not use the latter? 
Updating might even be easier. 

The idea of simplifying the model by removing knots (recombining pieces) strikes me 
as very important. This idea has recently been discovered by approximation theorists in 
connection with general spline fitting. The papers [g-11] are representative. 

1. R. Franke and L. L. Schumaker, A bibliography of multivariate approximation, in 
Topics in Multivariate Approximation, C. I<. Chui, L. L. Schumaker. and F. Utreras 
(eds.), Academic Press, New York, 1987, 275-335. 

2. M. S. Birman and M. E. Solomiak, Approximation of the functions of the classes IV; 
by piecewise polynomial functions, Soviet Math. Dokl. 7 (1%X), 1573-1577. 

3. Ju. A. Brudnyi, Piecewise polynomial approximation and local approximations, Soviet 
Math. Dokl. 12 (1971), 1591-1594. 

4. C. de Boor and J. R. Rice, An adaptive algorithm for multivariate approximation 
giving optimal convergence rates, J. Approximation Theory 25 (1979), 337-359. 
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5. R. A. DeVore and V. A. Popov, Free multivariate splines, Constructive Approximation 
3 (1987), 239-248. 

6. V. Popov, Nonlinear Multivariate Approximation, in Approximation Theory VI, C. 
Chui, L. Schumaker and J. Ward (eds.), Academic Press, New York, 1989, 519-560. 

7. W. A. Light and E. W. Cheney, On the approximation of a bivariate function by the 
sum of univariate functions, J. Approximation Th. 29 (1980), 305-322. 

8. W. A. Light and E. W. Cheney, Approximation Theory in Tensor Product Spaces, 
Springer-Verlag Lecture Notes 1169, New York, 1985. 

9. T. Lyche and K. Mgrken, Knot removal for parametric B-spline curves and surfaces, 
Computer-Aided Geometric Design 4 (1987), 217-230. 

10. T. Lyche, T. and K. Merken, A data reduction strategy for splines, IMA J. Numer. 
Anal. 8 (1988), 185-208. 

11. T. Lyche, T. and K. Morken, A discrete approach to knot removal and degree reduction 
algorithms for splines, in Algorithms for the Approximation of finctions and Data, 
M. G. Cox and J. C. Mason (eds.), Oxford Univ. Press, 1987. 



Discussion of: Multivariate Adaptive Regression Splines 

Stanford University 

I like IMARS. It looks like a good tool for pulling out the most useful parts of large interaction 

spaces. Sfost of my comments are directed at accounting issues: How many degrees of freedom are 

used in knot selection? How can the cost be lowered? At the end. there are some comments on 

how one might apply MARS to models for which fast updating is not available. 

My main interest in X4RS stems from work in computer experiments. In these applications 

smooth functions, of fairly high comple,xity, are evaluated over high dimensional domains with no 

sampling error. I plan to use MARS on such functions evaluated over Latin hypercube designs 

(XIcKay. Conover and Beckman, 1979). Some theory for linear modeling of nonrandom responses 

over such designs is given in Owen (1990). 

When there is no noise, one expects that a larger number of knots might be warranted. It then 

becomes worthwhile to lower the price of a knot somehow. 

Degrees of Freedom in Broken Line Regression. Consider the broken line regression 

model 

~=bo+bltj+P(tj-e)++Ei i=l,“‘,n (1) 

where tl 5 t2 5 . . . 2 t, are nonrandom with c ti = 0 and C t: = no:, ci are independent N(0, 1) 

and be, bl, p and 8 are parameters. Taking ,f3 = 0 in (1) yields a one segment model. Taking ,f3 # 0 

and tl < 0 < t, yields a two segment model. This model has been studied by Feder (1967), Hinkley 

(1969). Davies (1977,1957) and Knowles and Siegmund (1989). All these authors point out that 

nonstandard asymptotics apply when p = 0. In particular estimation of 0 and 8 “uses up” more 

than 2 degrees of freedom in that case. Hinkley (1969) reports that approximately 3 degrees of 

freedom are used, based on a simulation in which the potential knots were uniformly spaced. When 

-3 # 0 the standard asymptotics. that is 2 degrees of freedom, are relevant (Feder 1967, Part 2). 

This suggests that when the evidence that D # 0 is extremely strong, that fewer degrees of 

freedom should be “charged” than when the evidence is borderline. Of course for small /3 # 0 and 

finite n the nonstandard asymptote might be the more accurate one. 

Following Davies (1987) we consider testing whether the line breaks at B via 

Z(8) = V-li2(B) 2 ij(tj - O)+ 
i=l 

(2) 

where 

ij = Yi - P - titu/Uf 



VW) = Ro2 - n o1 LR2 - AR;, 
7x7; 

and 

Rjk = Rjk( O) = 2 tj(i!i - 8):. 
i=l 

(3) 

The null distribution of Z(e) is X(0,1) for t2 < 8 < t,-1. To test whether the regression line 

breaks at all we consider the supremum of Z(B) or of [Z(e)/ over an interval. The null covariance 

of Z(e) and Z(4) is 

p(e, 4) = v-l/2(e)v-1/2(4) Rol,olu4 4) - +ol(e)Rol(d) - --$~lluwll~44 
t I 

where 

Rol,ol(4 4) = j& - e)+(ti - 4)+- 
i=l 

Bounds for 

P 
( 

sup z(e) > c 
eoce<el -- > 

may be derived from the expected number of upcrossings of c  by 2. For example 

P 
( 

sup z(e) > c 
eo991 > 

5 q-c)+ & exp ( -$c2) 1: pi{2(e)de 

where @  is the standard normal distribution function and 

Davies (1977) gives (6) as his (3.7), except that he uses 

Pllw = -$hb.8) I~=~ . 

(4 

(5) 

(6) 

(7) 

(7’) 

Definitions (7) and (7’) are equivalent when both derivatives e,xist (since the process has constant 

variance). For broken line regression neither e?cists but the problem is easily handled: replace 

(ii - e)+ by q,(ti - 0) where 

1 

0, x 2 --E 
ad4 = f+$+$ IXI<E 

2, 226 

for small positive E in (1). (2), (3), (5). The function qE is Friedman’s piecewise cubic approximation 

to x+ Lvhich in this case is piecewise quadratic. Sow a2p(0, ~)/&I@ exists and is continuous so 

(6) follows from (3.3) of Leadbetter (1972). The right side of (6) is continuous in E > 0 when this 

substitution is made. If we take the limit as E 1 0 we get 

pll(e) = -a (Z)? + v-l(e) [Roe - ARao - iRi,] 
n na; 

2 



where 

v’ = -$v) = 2& + +ooRol + 
2 

-RIORII 7x7; 

with 

Rjo = Rjo(B) = C tf. 
t, >e 

(8) 

One could also take the sum in (8) over ti > 0; it makes no difference in (6) because the 

integrand is only affected at finitely many places. 

Since both positive and negative p are of interest we write 

P sup lZ( > c 
> ( 

= P 
eogsel 

,,;p,, 2 > c 2-P 
- 1 >[ ( 

inf 2 < -c 1 80q81Z > c 
eo95el >I 

5 2P sup 2 > c 
eoswl > 

= P(Xtl, > 2) + i exp (+) 1: p:1/2(e)de 

= P(x&, > 2) + 1 
e1 

K J (9) e d!2(wep(x~2~ > 2). 
0 

For a given set of t;, ~11 can be computed and the integral in (9) can then be numerically 

evaluated. Updating formulae are easy to derive for the Rjk. Assume that c ti = 0 and c tf = n, 

that is aB=l. The integral of p:i2 is invariant when a nonsingular location scale transformation is 

applied to the ti and to the limits of integration. Suppose we want pll(Oi) for t:! < 81 5 82 5 . . .I 

em < t,-l. Let sl 5 s2 5 . . . 2 s,+, be obtained by pooling and sorting the data points ti and 

the evaluation points 0;. Let Di be 1 if si arose as a data point and 0 if s; arose as an evaluation 

point. With this set up. Roo(sl) = n - 1, Rol(sl) = -ntl, Rlo(sl) = -tl and Rrr(sr) = n. 

For 2 5 i 2 n + m, Roo(si) = Roo(si-1) - Di, Rol(si) = Rol(si-1) - (si - si-~)Roo(si-~), 

Rlo(s;) = R~o(s~-1) - Disi, and Rll(s;) = Rll(si-1) - (si - si-l)Rlo(si-l). NOW ~11 can be 

computed on noting that R02(0) = Rll(B) - eRol(8) and the values corresponding to evaluation 

points can be extracted. At an evaluation point 0i that coincides with a data point tj, prr(6;) will 

- depend on the order in which the two points appear in the list of si. 

For uniformly distributed ti we can find a simple approximation to (9). Let ti = (i - .5)/n - .5 

so f-7: = ( n2 - 1)/(12n’) G l/12. and approximate Rjk by 

J 

112 
iijk(e) = n u’(u - B)“du 

e 

and similarly for &r,sr. Use v and p to denote the corresponding changes to V and p. Some 

calculus gives 

P(e) = G i - e2 ( > 
3 
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and 

and so 

3 1 -2 

Pll = 
5 

( 
4 

- 02 > 

P 
( 

sup 121 > c 
eo9wl > 

d? e1 
I P(X&) > c2) + z 

J 

de 
e. (a _ e2)1/2 p(x?2) > c2) 

A 
= P(X&) > c2) + z 

( 

+ +h 
log 7 - log 1 > c2). 

-- 
2 el 

+ + ;I P(x(?2, -- 
2 > 

Therefore for 0 < c < i 

Knowles and Siegmund (1989, Section 4) obtain (10) for uniformly spaced ti and large n using 

the Hotelling-Naiman “volume of tubes” approach. For large n the c above corresponds to n1i2m 

in their notation. One substitutes their equation (10) in their (6) and letting n + cc one gets the 

one tailed (i.e. sup 2) version of (10) above. 
Figure 1 compares the bound in (10) to tail probabilities from chi-squared distributions on 

degrees of freedom ranging from 1 through 4 by steps of 0.5. (X-squared tail probabilities are 

plotted by lines, probabilities based on (10) are plotted as asterisks. For Figure 1, E = .2, .05, .Ol 

and .OOOl are used. 

The points for c = .Ol fall close to the curve for $s,. So searching the central 98% of the 

range for 13 uses roughly 3 degrees of freedom under the null hypothesis. Hinkley (1969) notes from 

simulations that roughly 3 degrees of freedom are used. The relative error in these probabilities is 

less than 0.1 when the value of the bound (10) is between .05 and .005. 1Vhile the tail probability 

in (10) is not in the chi-squared family it would appear that if one were to approximate it in the 

chi-squared family for purposes of model selection, that 3 degrees of freedom would be a reasonable 

-choice. Using 3 degrees of freedom might even be a little conservative since it would be common 

to search over less than the central 98% of the range. 

The choice E = .2 corresponds to searching the central 60% of the range and uses approximately 

2 degrees of freedom under the null hypothesis. It also uses (asymptotically) 2 degrees of freedom 

under the alternative /3 # 0, (01 < 0.3. So it might be reasonable to make all splits in the central 

GO% of whatever range is being searched, and charge 2 degrees of freedom. 

Figure 2 shows 10 realizations of the Gaussian process Z(B) on (-f, i) with covariance given 

by p. The mean is 0 and the variance is 1 over the whole range. The process “turns more rapidly” 

(correlations are smaller) for large lel, so more upcrossings occur near the edges. 

4 



Figure 3 compares B:{’ and pii where the latter is computed for n = 25. The steep parts 

of the jagged curve are meant to be vertical. Since (10) only uses integrals of pii’ the continuous 

approximation using p should be reasonably accurate, especially if each limit of integration is near 

the midpoint of two consecutive ti. 

Now suppose that ti is the (i - .5)/n quantile of the distribution with density 

f(x) = e-y x >_ -1. (11) 

.This is the unit exponential distribution shifted left one unit so as to have mean zero. For this 

_ distribution &,o = &r = eslOe, fit0 = (6’ + l)e-‘-‘, fiez = 2e-lme and krr = (2 + 6)e-lse, 

for e 2 -1. The function p tends to l/4 as 8 - cc and p is asymptotic to (3/4)(1 + 0)-” as 

8 + -1. So searching for a breakpoint in an interval of given length should “cost” more if that 

interval is near the left edge of the predictor space than if it is near the right edge. Perhaps this 

is to be expected because there tend to be more points ti per unit length at the left end. Figure 4 

plots p:1/2(F-‘(U))/f(F-‘(U)) versus ‘1~ where f is the density in (11) and F is the corresponding 

distribution function. Asterisks are used for $i{’ taken from the exponentially distributed t; and 

the smooth curve is for pll -1’2 taken from the uniform distribution. If one decides to search over the 

range between two sample quantiles then the null probability of an upcrossing is very close under 

an exponential design to what it is under a uniform design. Bounds like those in (10) based on the 

uniform design would be conservative for an exponential design, since the asterisks lie below the 

curve in Figure 4. 

Equation (1) is a model for the problem of deciding if and where to bend a line. If a variable 

has not yet entered one might consider 

yi = bO + P(ti - e)+ + Ei (124 

or 

yi = hl + p(O - ti)+ + Ei. VW 

?u’ote that (12a) at 0 = tl and (12b) at 19 = t, are the same (affine) model and that (12a) at 0 = t, 

and (12b) at B = tl are both the constant model. 

For the model in (12a) we take 

z(e) = V-‘/2(B) 2 ii(ti - e)t 
i=l 

Lvhere ii = Yi - I’ = pi - c and V(0) = R02 - R&/n. The correlation is 

P(e,4) = v-1V)v-1/2(4) ~Ol*OlV~d> - $ode)Ro&$) 
I 
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with 

pll(e) = v-ye)[Roo - :R;,] - &qqiwV. 

For a uniform spacing of ti one finds 

where X = x(e) = 112 - 8. 

If p = 0 then 

-1’2 
Pll UJ) = 

121’2(1 - X)l’2 
X(4 - 3X) 

P 
( 

SUP I-w)l > c -$sw, ) 
< P(Xfq > c2)+ 1 J 

e1 
7r -1’2 

p:!2(e)deP(Xq2) > c2). 

Since the process 2 can be “glued onto” another one for testing p # 0 in (12b) the null probability 

of “splitting the constant model” is bounded by 

P(x&, > c2> + f J 
e1 

-1’2 
p:!2(e)dep(X&) > c2). (13) 

For searching the central 98% of the range the coefficient of P(x?,, > c2) in (10) is approxi- 

mately 2.53. If one considers model (12a) over all but the rightmost 1% of the range and (12b) over 

all but the leftmost 1% of the range the corresponding coefficient is approximately 2.64. So the 

degrees of freedom used up in deciding whether to split a constant regression are much the same 

as those used in splitting a linear regression. 

In the backward stepwise part (Algorithm 3), how many degrees of freedom should be charged 

when a knot caused two regressors to be added to the model. and one of them gets dropped? I 

would guess from the analysis of (12ab) that the full charge for the knot should be assessed, but 

from Friedman’s talk at Interface ‘90 it seems that half the charge for the knot is assessed. 

An alternative to restricting the search to a central subinterval, such as the central SO%, is to 

search the whole interval. but apply a penalty that increases as the potential knot location nears the 

end of the range. Davies (1977, equation 3.3) quotes an upcrossing bound for P(supe Z(e) - c(8) > 

0) for continously differentiable c(0). For the process described by the continuous approximation 

to the uniform design case. the upcrossing bound is especially simple when c(0) = .-I+ B log((0.5 + 

Iwo.5 - 14)) h w ere A. B > 0. (This c has a cusp, but the bound should still be applicable.) One 

finds that 

P(sup Z(0) - c(B) > 0) 5 2 (@(B’) - l/2 + @‘)/B’) P(& > A’) (14) 
e 

where B’ = 2B/3’i2 and p is the standard normal density. 

Conclusions. It appears that Hinkley’s (1969) heuristic of charging 3 degrees of freedom for 

adding a line segment is reasonably accurate in a variety of settings. 
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By restricting the search to a subinterval it may be possible to reduce the cost of breaking a 

line to 2 degrees of freedom. A smoothly varying preference for central splits based on (14) could 

also be used to lower the cost of knot selection. 

The calculations in the preceding section are most relevant to splitting the constant function 

Bo. When splitting another basis function B, along variable T, perhaps 

I< = Bm(Xi)(bo + bit; + ,O(ti - O)+) + Ei i = 1, * * *, n 

should replace (l), or a similar change should be made to (12ab) depending on context. 

Finally I would like to pick up on Friedman’s comments on updating formulae in Section 5.4. 

When searching a variable for a split point, it may not be necessary to consider every value. The 

test statistic Z(0) should tend to have very smooth sample paths. In the smoothly approximated 

uniform design case 

min 
IsI<. 4~{oTY*.35) 

p(e, 4) 2 0.94. 

That is the central 80% of the range can be effectively scanned by considering only 5 points. Note 

that the realizations in Figure 2 tend to be quite smooth in the middle. I would expect the true 

underlying function would also make a smooth contribution to Z(0), perhaps smoother than that 

of the noise, though I also expect pathological cases are possible. So after 5 evaluations one should 

have a good idea where the maximum is and whether it is worth including in the model. Then one 

could spend a few more evaluations on a more local search, or wait until the backward stepwise 

algorithm has finished to refine the search. When a knot is put at 0.2, the next step would involve 

looking at five places between -.5 and .2 and at five places between .2 and .5. If this works it should 

be possible to extend LIARS to robust regressions. generalized linear models and the proportonal 

hazards model. Davies (1977, Section 5) has some suggestions on how to perform various tasks on 

representative points 0. and on picking those representative points. 

Acknowledgements. I would like to thank Iain Johnstone and David Siegmund for helpful 

discussions. In particular Professor Johnstone showed me some unpublished work of his applying 

the Hotelling-Naiman volume of tubes methodology to broken line regression and including a plot 

similar to Figure 1. 
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Captions for Figures 

Figure 1: Tail Probabilities. 

The solid lines give (right) tail probabilities from chi-squared distributions on degrees of free- 

dom 1 through 4 in steps of l/2. The asterisks plot tail probabilities from formula (10) using 

.c = .2, .05, .Ol, .OOOl. 

Figure 2: Realizations of Z(8). 

Shown are 10 realizations of the Gaussian process with mean 0, constant unit variance and 

correlation fi, a continuous approximation to p of formula (4). 

Figure 3: Comparison of &1/” and p:i2. 

The jagged curve is pii from formula (4) with n = 25. The smooth curve is the continuous 
. . -l/2 approxrmation pI1 . 

Figure 4: Comparison of uniform and exponential designs. 

The smooth curve is the continuous approximation ijii2(0) assuming a uniform distribution 

of design points. The asterisks are prr -1’2(0)/f(0) where fi is the continuous approximation to p for 

design points from the exponential distribution f given by equation (11). The 2 axis is F-‘(8) 

where p is the appropriate distribution (uniform or exponential). 
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DISCUSSION OF “MULTIVARIATE ADAPTIVE REGRESSION SPLINES” 

CHARLES J. STONE 

University of California at Berkeley 

This pioneering paper successfully combines creative breakthroughs (especially, not 

removing the parent basis function) with numerous techniques developed over the years 

by the author and his collaborators and others (especially, Patricia Smith). The tactics of 

MARS are specific to least-squares estimation of a regression function, but the general 

strategy is much more widely applicable. 

In Algorithm 2, the residual sum of squares could be used for LOF. This would 

allow the entering of new basis functions to be broken up into two steps: decide which 

basis function next to enter into the model; enter the selected basis function. Using the “t 

to enter” algorithm from stepwise regression would then eliminate the need to fit the 

various candidate models in the course of determining the next basis function to enter. 

Algorithm 3 could be divided into three tasks: decide which basis function next to 

remove from the model; remove the selected basis function; determine the final model. 

In the first two of these steps, the residual sum of squares could be used for LOF. Using 

the “t to remove” algorithm would then eliminate the need to fit the various candidate 

models in the course of determining the next basis function to remove. 

With these changes, MARS could be extended to handle logistic regression in a 

more natural manner. The “t to enter” step in Algorithm 2 could be replaced by an algo- 

rithm based on Rao’s score test and the “t to remove” step in Algorithm 3 could be 

replaced by an algorithm based on Wald’s test. The actual maximum-likelihood fitting 

(based, say, on the Newton-Raphson algorithm and taking advantage of the concavity of 

the log-likelihood function) would be applied Mmax times in Algorithm 2, once after 

each application of the score test, and Mmax times in Algorithm 3. The final model selec- 

tion could be based on a variant of AIC, modified along the lines of (32). 

Consider now the estimation of an unknown density or profability functionfon a set 

$!. In order to guarantee positivity, we can model log(f) as a member of some adaptively 

selected space & that does not contain the constant functions. Letting B1, . . . ,BK be a 



2 Charles J. Stone 

basis of &‘, we can write the estimate of f as j = exp(C k6kHk-c(6)), where 

&(fj,, . . . ,bK)’ and c(8) is the normalizing constant. This has the form of an exponen- 

tial family. If &! = R and the functions in & have linear tails, then f has exponential tails. 

The selection of & could be done by applying the general strategy of MARS. Ignoring 

the model selection, we can choose 6 by maximum-likelihood. The asymptotic theory of 

such estimates, with $ a compact interval in lR and B 1, + . . , BK consisting of B-splines 

and without model selection, has been treated in Stone (1990). The numerical behavior 

of such estimates, modified to incorporate stepwise knot deletion based on Wald’s test 

and a variant of AIC, is studied in Kooperberg and Stone (1990). 

Consider next a random pair (X, Y), where X is an ndimensional random vector and 

Y is a g-valued random variable. Let& 1 x) denote the conditional density or probability 

function of Y given that X = x. Consider an estimate f(y 1 x) of the form f(y 1 x) = 
6 

exp(Ckek(x)Bk(r>-c(e(x))>, where B1, - * . ,BK are suitable basis functions of a possibly 

adaptively selected space & of functions on 9. (The functions in & should be piecewise 

linear for c( .) to be computed rapidly.) We could model 8 l( a), . . . , eK( + ) in turn as 

members of possibly adaptively selected spaces al, . . . ,8&K respectively. Letting H. /k’ 
lIj~Jk,beabasisof~k we can write 6,(x) = hk(x; 6,) = Cp. H. 

Jk Jk 
(x). This leads to 

an estimate off(y / x) having the form 

(1) iCY 1 X> = exP(C,&j6jkHjk(x)BkCv)-L.(h(x; S))), Y E gy 

where B is the JK-tuple consisting of fijk 1 I k I K and 1 I j I Jk, in some order. This 

estimate has the form of a multiparameter exponential family, so the corresponding log- 

likelihood function is again concave. The asymptotic theory of such estimates, with $2 a 

compact interval in [R, GV1 = . . . = GVK and bases consisting consisting of B-splines and 

without model selection, has been treated in Stone (1989). It remains to investigate the 

numerical behavior of such estimates, especially as modified to incorporate the strategy 

of MARS. Perhaps the resulting technology should be referred to as “multivariate 

adaptive response splines (MARES).” 



Discussion of MARS 3 

Suppose, in particular, that g = { 0, 1). Then we can let & be the one-dimensional 

space having basis B 1(y) = y. In this context, (1) reduces to logistic regression. Similarly, 

by letting $4 be a finite set of size 3 or more, we can apply the strategy of MARS to the 

polytomous extension of logistic regression. 

The more general setup given by (1) allows for the estimation of the conditional 

variance and conditional quantiles of an arbitrary random variable Y given X as well as 

estimation of the conditional mean of Y given X, which is treated in the present paper. 

The general strategy of MARS is also applicable to time series. 
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I’his art.i(.l(l tx~~.iows 21 bet of key developments in non-parametric functiolr estilllation. 

111any of theIn 0 III' i tI part or in large to Professor Friedman, which have radica.lly chil.nged 
c 

the scope of modern Statistics. MARS is an impressive addition to this set. There is 

a growing pra.ctica.1 interest in innovative adaptive function estimation techuiques. IJOl. 

csa.mple, I a.~ awa.re of the need for sophisticated covariate adjustment in connection with 

survival a.nalysis of a. large clinical trail where N = 27,000 and n 2 200; The l.hought of 

sending these da,ta. to MARS for analysis will have undoubted appeal! 

1 General Comments 

1 

\Vit 11 aI1 V iltlil I)t.i\'C' rc~,qrc-~ssioli feclltlique it, is of interest to know lhe ki11d5 01’ f’uuctions 

\vIiich ('illlh(' gw;1lc3t ciiHiclilty. M:lR.S is coordinate sensitive. A rotit.tiOll of' t i10 cwJrdilli~.t.e 

axes in the (~sa.~npI~s iI1 xections 4.2 and 4.3 will destroy the simple additive iill(l low ortle~ 

interactive strllcturc. Will this substantially degrade the performance (BE) of \I.-\H.S? Per- 

haps the effect could be ameliorated by allowing linear combination splits in the algorithm. 

:I natural set of split coordinates would be those obtained by successive ort,hogottally re- 

51 rict.etl regrr>ssioIl ol’ residuals, T, at the n/l’th order lnodel on the cova.riat.clh: ‘l‘he lillea.1 

~~~Jlllhillil~i~Jll ('1 clot.c~rtilitliti# the first split coordinate solves the least squxes rcy’eshioh of 

I’ OIL cova,ria,tes, the 1iuea.r combination cz determining the second split coOl'(li ~rxt.e solves 

I.IIC least squa.res regression of T on covariates but subject to the orthogonali1>- con~itl~aint~ 

C>C, = 0 ~IICI so on. .l’he rckvant formulas are available in Seber [5, pa.ges &l-8.5]. .\lgorithm 

'L (Jlilv t‘Cqiiil'~'s il llli1l~Jr (:liange 10 illcorpOra& cOliSideratiOll of li1iea.r colllhillill i(Jli 5plits. 



Obviously it would no longer make sense to Iia.ve a constraint on the order of interaction 

k: _< h’, but it woiild perhaps be nat,uraI t,o put a. constraint on the number of split co- 

ordinates to be esamiiied. The rapid updating formulae in equation (52) don’t apply but 

for split coordina.te and knot optimization it should be adequate to compute the lack of 

fit in the innermost loop of Algorithm 2 by leaving al, (12 . . . a~-1 provisionally fixed and 

minimizing only over n.~j and cz~+i. Optimal coefficients can be evaluated after completing 

the inner loop. 

With a modificat,ion of t.his typo and \v.itIi more ela.borate function estimation algorithms, 

the problem arises of how to int.erl)rcl/visualize the non-parametric regression surface, f. 

The output will not be a. simple sum of first, second and higher order interaction terms, 
,’ 

so the attractive decomposition in equa.tion (24) will not be available. However, numerical 

iiitegra.tion can of course be used t.o ol)tain ii. decomposition in terms of variables of interest. 

For example, if the .x-variables a.re split a.s .c = (x~,zz) then 

f(z) = ./l(~l) + fZ(N2) -I- f ( -12 217x2) 

where fr(~r) = JN,, /(.X)&Z. f2[2z) = ,J”, /(.L) - fr(~r)dz and fr2(~1.~2) - fr(:~.i) - jz(.rz). 

The percent varia.nce explained by t,hcse orthogonal coinponents would be of interest. 

.A further visualization tool, foclising OII isola.ting 1oca.I collinearity type effects, could be 

obtained by a.pply ~~rultivariate st.ati>I.ical dctisit,v esplora.t,ion procedures, such as clustering 

and principal component. projectioiis. to the .I:-distribution associa.ted with specified levels 

of f. For example. the analysis of the dist,riblition of m-values for which a 5 f(r) 5 6 would 

be of interest. F\inct,ion visualiza.t.ion is ail area. where there is a. growing need for better 



statistical tools. 

The MARS algorithm offers considera.ble power pa.rticularly in situations where there 
c 

a.re additive low order nonlinear interactions. One of the motivations for MARS given in the 

paper is dissatisfaction with the la.ck of continuity in CART. I’ll finish by briefly describing 

an alternative cont*inuous modifica,tion to CART which retains some of its algorithmic and 

interpretative simplicity. 

2 Smoothed CART by Finite Elements 

The CAR,T model in ( 17) is the represented a.s 

where B, = Irn, t,he indicator function for an n-dimensional rectangular region. R,. Re- 

place the indicator function by a smooth element I,(cL’,s) > 0 whose support is allowed to 

extend beyond R,,, alid define a smoothed CART model by 

(1) 

Here Bm(z;s) is forced to satisfy a local partition of unity by setting 

so Cf=, B,,(n:;.s) = I. I require that J,,(.x,s) > 0 for n: E R,,. I’ve introduced a parameter 

s which gives control over smoothness. ,Llodels of the above form connect with mixture 

nlodels used in the interpretation of multicha.nncl iina.ge data, see Adamsjl], C’hoi et al [2] 

aiid 0’Sulliva.n [3] for esa.mple. 

3 



Laplacian finite elements based on triangular grids have been extensively analyzed in the 

approximation theory literature, see the references in Schumaker[4]. With the rectangular 
c 

grids of CART, a reasonable choice for I,(t; s) is defined by tensor products of coordinate 

functions. 

Im(Z;S) = fi W,j(Zj; S) 

j=l 

. where UJ,,~( j, *) : : z * 3 i\ a zmooth non-negative function whose support for s > 0 will extend 

beyond the project,ion of R,, onto the j’th coordina.te. Specifically, suppose the set of 

split points on the j’th va.riable a.re 2, (k) for k = l,‘L,. . . h’, and the projection of R, 

is [tlkm) t!“““)) then 3 ’ I w ,j( .; s) can be a B-spline basis element. of any specified order, 

supported 011 [i, (k,,l-Isl). /j~,,,+i+lsl); n[r;,“, ,;%)I. R ere s is the closest integer t,o s. If we I 1 

use cubic order elements then f will have continuous second order mixed partial derivatives. 

The smoothed version of CART, call it SCART ( ‘scairt’ is the Irish word for a bush 

or bushy place!), is easily computed. Let 0 5 p 5 1 be given. The algorithm applies 

partitioning a,nd pruning a.s in CART with a couple of minor modifications: (i) For h4 

fised, the tree predictions are f( 9;s) with s = pA4 and the coefficients u, in ( I) optimized 

b,v lca.st squares (Iikclii~oocl can also be used). (ii) At sta.ge M, the selection of the potential 

split. point for R 1,2 is done to improve the local fit. Thus if r are the residuals from the 

- M’th order model t,hen the algorithm just applies the CART splitting rule to components 

of these residuals lyitlg iI1 H,,,. ‘l’he local hiIj)port of I,,,(x;b) must be esploilc~d 1.01, rapid 

computation of ,f. Cross-validation is used to compare trees for different va.iue~ of’ 1~. .4 

preliminary least squares version of SCAR’I’ with piecewise linear elements \vit:, developed 

4 



a?.nd applied to some of the examples in the paper - those used to compute Tables 3, 5b,6b 

and 7h. The ISE was eva.luated and compared to that achieved by MARS. MARS is a clear 
c 

winner for t,lic atltlitive illode in equation (56) and the additive model with t.he single low 

order intera.ctiori in equation (61). F’or example with iv = 200 the ISE obtain4 by S(‘ART 

wa.s on the order of .17 so MARS is 90% better here. SCART wins on the alternating 

current impedance example in equation (63a.) with a 50% or better improvement in the ISE 

at all sample sizes. A smaller improvement between 10 - 30% is achieved by S(IART on 

phase angle dat,a. in equation (63b). 

I suppose the message here is that no single adaptive regression technique can perform 

uniformly best on all examples, which echoes the point made by Professor Friedman in 
.’ 

section 2.0. 
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DISCUSSION 

This is an exciting piece of methodology. The highest compliment I can pay is to 
express my feeling that “I wish I had thought of it”. The basic idea is simple and pow- 

- erful. The examples are interesting and illuminating. My sense of it is that this is a 
methodology that will become widely used in applications. Naturally, I have a few res- 
ervations and questions. But first, I want express my sense of wonderment that this ar- 
ticle is published in the Annals of Statistics. 

There is not a single theorem, lemma, or proposition in the whole paper. Have my 
senses taken leave of me? What, no asymptotics or results concerning the rate at which 

. MARS approaches the ‘True Model” as the sample size goes to infinity? For one of the 
few times in its history, the Annals of Statistics has published an article based only on 
the fact that this may be a useful methodology. All is ad hoc; there is no maximum 
likelihood, no minimax, no rates of convergence, no distributional or function theory. 
Is nothing sacred ? What kind of statistical science is this? My thanks go to the editor 
and the others involved in this sacrilegious departure. 

Now on to issues concerning Friedman’s article: 

If one fits a linear regression to data, then one is projecting the data onto a fairly small 
space--the set of all linear combinations of the x-variables. But now, suppose that one 
has 100 x-variables and perhaps 200 data cases, and we are trying to find the best linear 
predictor of y based on a subset of the x-variables. 

There are billions of different subsets of the x-variables. There are a few standard 
methods for choosing between these subsets. Forward variable addition can be used, 
and so can backwards variable deletion, and with enough computing power, the 
minimum RSS least squares regression equation using a specified number of variables 
can be found. 

The procedure Friedman proposes is analogous to forward variable selection. There are 
a very large number of variables, consisting of all tensor products of spline functions. 
Forward stepwise addition is used up to a point, followed by stepwise deletion. The 
dimensionality of the final model is governed by what Friedman calls “generalized 
cross-validation”, but what is actually an adjusted residual-sum-of-squares, with only a 
distant connection to true cross-validation. 

MARS defines a very large class of candidate models by the specification of a large set 
of basis elements. Model selection is equivalent to selection of a subset of basis ele- 
ments, since the coefficients are then defined by least squares regression. For data with 
10 variables and a sample size of 100, there are 1000 univariate splines and 450,000 
bivariate spline products, where I am counting only splines zero to the left assuming 
that to each data value of each variable, there is a spline with knot at that point. The 
number of different candidate models using, say, 10 of these basis elements is stagger- 
ing. 



In principle, the way Friedman would get the “best” of all candidate models is to com- 
pute the PSE for all all such models and select the one having the lowest PSE. Since this 
is not possible, the GCV is used as an estimate for the PSE, and basis elements are found 

- by a stepwise forward addition method. This procedure raises problems which are im- 
portant not only to MARS, but to ‘the entire venture of fitting more general multivari- 
ate models. 

I. The set of candidate models in MARS mav be too larpe. 

A) The Packinp Problem 

The predecessor to MARS is TURBO. This is the program for fitting additive models re- 
ported on in the Friedman-Silverman 1989 paper. In the discussion of this paper, 
Trevor Hastie criticized TURBO for having high variability. He generated 50 data sets 
of sample size 100 from the model: 

y = .667sin(1.3x$ - .465xZ2 + E 

where E, x1, x2 are N(O,l) and 5, x2 have correlation .4. He ran TURBO on this data, and 
plotted the resulting transformations. These graphs are given below in Figure 1. Later. 
as I began working with additive models using different construction methods, I 
understood better what Hastie was driving at. 

Figure 1. 

Consider the following simple method for constructing additive models--put K knots 
down on each predictor variable, and using the power basis for splines, do stepwise 
backward spline deletion. Decide how many splines to leave in the model by finding 
the minimum value of the cross-validation estimate of PSE. 

Initially, I had thought that the value of K would not be critical as long as it was large. 
For instance, I might typically begin with 15-20 knots per variable and then do the 
deletion. The reasoning for taking K large was to have plenty of knots around to fit the 
functions. I thought that having too many would not be a problem since all but a few 
would be deleted. 

Much experimentation later, I realized that I was wrong. If the process was started with 
K too large, then the resulting models were noisy and could contain odd artifacts due to 
local quirks in the data. One way to think of this is that the deletion process forms a 
path through the space of all candidate models. The larger the space of candidate mod- 
els, the more tightly they are packed together and the path will be forced to select be- 
tween nearby models on the basis of small local properties. The result was that not 
only were noisy transformations produced, but also that prediction error increased as K 
got too large. 



The procedure finally selected was this: for each value of K from one on up, set K initial 
knots on each variable, go through the deletion process and let PECK) be the minimum 
cross-validated PSE estimate encountered in the deletion. Now select K to minimize 

- PE(K). This process was carried out using Hasties data, and resulted in the graphs 
given below. For more details see Breiman [1989a]. 

Figure 2 

The lesson is that relative to some measure of the efficacy of the data the class of candi- 
date models should not be packed too tightly together. Otherwise the results will be 

. noisy, possibly containing local artifacts, and with a loss in prediction accuracy. My 
concern is that the candidate models in MARS are very tightly packed together. There 
are many more candidate models than in TURBO. The examples do not seem to show 
any signs of the packing problem, but we comment further on this below. 

The above is really not a criticism particular to MARS . It could apply also to CART and 
to ACE. It appears to me as a fundamental issue in model fitting. The larger the class 
one selects from, the more sensitive the procedure is to noise. This issue cries for some 
theoretical investigation, and deserves at least as much energy and attention as one-di- 
mensional density estimation. 

B. The Rashumon Effect 

Suppose that we assume that we actually know or can compute the PSE for each model 
and can go along with the idea that the best model is the one with minimum PSE. From 
a predictive point of view, this is a perfectly defensible procedure. However, very often 
predictive procedures are carried out for the purposes of interpretation. Then the ques- 
tion posed is “how well does the estimated function mimic the TRUE function?“, or im- 
plicitly, “how well can we recover the mechanism used for generating the data?“. 

Usually, this question is dealt with by setting up simulated data where the true function 
is known and seeing how well the estimation reproduces the known function. This is 
the strategy followed in Friedman’s examples of sections 4.2 and 4.3. That this works is 
almost always due to the simple structure of the simulated data. In most cases of com- 
plex real data we are up against the “Rashumon Effect”. 

For instance, consider the “best subsets” procedure in regression for choosing the best 
regression equation depending, say, on 5 variables, out of 30. If one prints out the resid- 
ual-sum-of-squares for the, say 10 lowest RSS equations depending on 5 variables, then 
most often the first few of these will have RSS values within a small smidge of each 
other. Yet the variables used may be quite different. The analogous effect would take 
place if we could compute the 10 lowest PSE equations. 



The major causes of this lack of uniqueness lies in the sheer size of the class of candi- 
date models and in the dependence between the basis elements. Now, if we assume 
that a model with low PSE gives a “good” picture of the data generating mechanism, 
then what we are getting is a multiplicity of equally “good”, but different, pictures of 

- what goes on within the black box. 

Thus, for complex data, there can be many different and equally valid (or equally in- 
valid) pictures of the mechanism generating the data. Unfortunately, most procedures 
will produce only one picture: i.e. running MARS on a data set will give only one 
picture. Yet there may other models based on much different sets of basis elements 
that give either as low as or lower PSE. 

Unfortunately, much of classical statistics is predicated on there being one unique and 
best answer. The data emanates from a black box, so the idea is to assume a stochastic 
model for the mechanism in the inside of the black box, estimate a few parameters and 
bingo, we know what truth is. But for creative data analysis, the desideratum is to get 
as many different views as possible of what may be going on. Given this, if I were run- 
ning MARS, then my predilection would be to run it on a number of bootstrap or leave- 
some-out samples, and see what different results emerged. 

II RSS or GCV is not PSE 

Another implicit assumption made in many model fitting procedures is that all o.ther 
things being equal (for instance, in comparing two models both of which use the same 
number of parameters) that the model with lower RSS will have lower PSE. This is as- 
sumed in MARS, since for the same M, the lower RSS model will have lower GCV. 

Unfortunately, this assumption is not valid. For the same dimensionality, the minimum 
RSS model may be quite different than the minimum PSE model, and the PSE corre- 
sponding to the minimum RSS model may be considerably higher than the PSE of the 
minimum PSE model. Is this an inherent and unsurmountable difficulty, or is there 
some way around it? 

MARS uses the GCV values to select dimensionality of the final model. No matter what 
you call it, the GCV criterion is not cross-validation. The reason for GCV is computa- 
tional efficiency. Ten-fold cross-validation would take about ten time as long, and 
MARS is not all that fast to begin with. Friedman has a number of examples showing 
that his version of GCV does a pretty good job. But I still have some reservations. 

For instance, in the example modeling pure noise, about half of the time MARS produc- 
es a model that has a better GCV score than estimating the noise by its average. Would 
using cross-validation improve on this ? Again, the problem is interpretation. Fitting 
noise with some structure can lead to embarrassing conclusions. 

Near the end of section 3.6, Friedman puts up a fight for GCV based on simulation re- 
sults, and claims that “the resulting model and its accuracy are seen to be fairly inde- 



pendent of the value chosen for the parameter d”. He concludes that the best value for 
d is between 2 and 4, that 3 is fairly effective, and that the accuracy of the result is not 
sensitive to the value of d in the 2 to 4 range. This is contrary to my experience in other 
contexts. 

Selecting the dimensionality of the ‘model used is critical. Selecting too large a model 
leads to inflated variance and too small to lack-of-fit bias. But simulations have shown 
that GCV in linear regression usually selects too large a model, whereas cross- 
validation or bootstrap do a good job in selecting the right-sized model (Breiman and 
Spector[l989]) Therefore, even at increased computational cost, I would suggest that the 
author include a CV or bootstrap facility in the MARS program. 

III Data is not alwavs high signal/noise. 

With the exception of the pure noise example, all of the examples given by Friedman 
had high signal to noise rations. For instance, the example of (56) had s/n=3.28 (91% of 
variance explained). The example of (61) had s/n=4.8 (96% of variance explained). The 
circuit examples of Section 4.4 had s/n=3 (90% of variance explained). The olive oil ex- 
ample of section (4.5) had a 3-5% misclassification rate. Finally, the example of equation 
(66) has s/n=3.15 with 91% of the variance explained. For the other simulated example 
(67), the s/n ratio was not specified. 

Any propensity of MARS to produce artifacts due to the noisy behavior referred to 
above will be most apparent in moderate-to-low signal/noise ratios. To the extent that 
Friedman has stayed away from such data, the impression given by the examples in the 
paper may be misleading. 

Even so, there are some disturbing results in the examples. For instance, for the addi- 
tive data of section (4.2) the number of times that a non-additive model is preferred by 
GCV increases as the sample size increases. For the data of Section (4.3) with one bi- 
variate interaction, allowing an unlimited number of interactions is about as good as al- 
lowing only bivariate interactions. Can the author give explanations for these results? 

IV Is stepwise forward the onlv way to go? 

Stepwise forward procedures make me a bit apprehensive. There is always the risk that 
with a poor step in the initial phases, it will produce a decidedly suboptimal fit. There 
is a similar problem in CART. While with tree-structured procedures we have been un- 
able to come up with computationally effective alternatives to stepwise forward split- 
ting, in fitting continuous functions to multivariate data there are other methods that 
have appeared in the literature. 

For fitting additive equations, there is the backfitting method used in ACE, with contin- 
ued research in the Buja,Hastie .and Tibshirani[l989] article. Another interesting 
method using backfitting was proposed by Hastie in his discussion of the Friedman-Sil- 
verman [1989] work. There is also the work mentioned above doing backward knot de- 



letion (Breiman [1989a]). 

There has been less work on fitting interaction surfaces. This is where MARS breaks 
new ground in being the first published method that has an effective approach to the 

- problem. However, as Friedman points out, the group at Wisconsin is making progress 
in the computation of interaction @lines. There is also another method which depends 
on the decomposition of the of the function to be estimated into a sum of products of 
univariate functions (Breiman[l989b]). 

This II-method has given promising results. 
given in section 4.6, equation(661, which 

. etal. [1988]paper. Figure 3 shows the origina 
MARS fit and the fit of the II-method. 

To illustrate we ran it on the example 
originally appeared in the Chong, 

1 function, the interaction spline fit, the 

Figure 3 

None of the alternative methods are as fully developed as MARS. The MARS 
algorithm, with the setting of a few parameters, produces a fit up to whatever degree of 
interaction is wanted. Whether other methods can provide improved accuracy and 
comparable automation remains to be seen. 

V Quo Vadis? The development and use of effective multivariate methods for fitting 
complex data is an endeavor largely carried on outside of statistics by diverse and ac- 
tive groups interested in results, rather than theorems. For instance, most of the CART 
applications that we know about have been done by non-statisticians. The rapidly 
growing field of neural networks is built around a new class of algorithms for multi- 
variate regression and classification with the principle protagonists being engineers and 
computer scientists. It was gratifying to find that at a recent neural network conference 
there was widespread knowlege of CART. I think that MARS will similarly become 

’ widely known and used in application areas. 

Brieman, L. [1989a] Fitting additive models to data. Technical Report no. 210, 
Statiostics Department, University of California at Berkeley 

Breiman, L. and Spector, I’.[19891 Submodel selection and evaluation in regression X- 
Random case. Technical Report no. 191, Statistics Department, University of Califor- 
nia at Berkeley 

Breiman, L. [1989b] The II-method for estimating multivariate functions from noisy 
data, Technical Report No. 231, Statistics Department, University of California at 
Berkeley 
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Discussion of “Multivariate adaptive regression splines” 

Andreas Buja, Diane Duffy, Trevor Hastie, and Robert Tibshirani 

We would like to congratulate Prof. Friedman on this characteristically ingenious advancement 
in non-parametric multivariate regression modelling. MARS is a triumph of statistical computing 
and heuristics: the clever algorithmic and heuristic ideas make extensive searching computationally 
feasible. The resulting modeling technology offers the data analyst a remarkably flexible tool which 
we found very useful on a difficult real-world problem. We will address a few issues that arose in 
ou.r reading of this excellent paper and our experience using the MARS program. 

1. Some experience with MARS 

Two of us (Buja and Duffy) acquired some experience with MARS in an extensive analysis of 
data concerning memory usage in electronic switches. The data comprised 241 observations on 27 
variables. It was known from the onset that the available variables gave an incomplete description 
of the response. Careful and creative regression modeling yielded fits with good global properties 
CR2 x 0.995), but there were still unacceptably large residuals and poor performance on cross- 
validation tests. The fits which we obtained from MARS, on the other hand, excelled in prediction 
and cross-validation. In addition, the robustness to influential points which MARS inherits from 
the local adaptivity of the selected basis functions was very advantageous in our context. Our set 
of observations was (purposely) chosen to include a subset consisting of notoriously difficult cases. 
These cases, as expected, wreaked havoc on regression models but MARS was able to adapt to them 
without degrading the fits to the rest of the cases. In addition, highly accurate MARS models could 
be built with fewer variables (13 as opposed to 18) which happens to be a true benefit in this situation. 
The MARS models involved several second and third order interactions which, while impossible to 
anticipate by subject matter experts, seemed reasonable in the sense that they involved variables 
which are expected to have large effects on the way memory is used. 

An interesting aspect of this analysis is that the data exhibit genuine noise despite the fact that 
switches are basically deterministic systems. This is because the 27 predictors were selected from 
a complete set of about 300 predictors based on what information is available to engineers who 
operate these systems. The success of the MARS fits can only be explained as a result of strong 
interdependence within the large set of predictors, rendering most of them redundant. Thus, we 
are profiting from what we call ‘concurvity’ which in most contexts is a cause for concern. Further, 
models based on the theory of the switching systems would necessarily involve many of the 300 
predictors and would therefore be useless to the engineers. One danger in this, or any, data-driven 
as opposed to theory-driven approach is that the model may be misleading if future predictions occur 
in areas of the predictor space where data are sparse. It would be useful if MARS were accompanied 
by diagnostics tools which indicated when a future set of covariate values is stepping dangerously 
outside the range of the training data. A first naive attempt at deriving such a tool would be to 
compute the Mahalanobis distance of test covariate vectors in the linear predictor space spanned 
by the basis functions of a given MARS model. However, such an approach may have problems 
since the constant zero stretches of the spline basis functions lead to clumps of data in the extended 
predictor space. 

We found it quite useful that the first order truncated basis splines are of an exceedingly simple 
form. A fitted model is easily communicated to practitioners and it is trivial to implement on 
arbitrarily small machines. By comparison, we do not see a use for the enhanced cubic models in 
this (prediction) context. For graphical display and qualitative data analysis, they may have their 
advantages. 
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In using MARS to analyze our data the following questions and comments arose. 
1. Friedman recommends running MARS with Me max (the maximum number of basis functions 

added in the forwards stepwise procedure) approximately equal to 2M* where M” is the GCV- 
minimizing choice for the number of basis functions in the model. In our context M* is in the 
neighborhood of 35-40. Based on our experience with honest cross-validation, this is too large for 
the sample size and it may indicate that, at least for these data, the default cost being charged 
for basis function optimization is probably too low. 

2. It appears that no complete description of the heuristic choice of the cost parameter d is given. 
If there is no restriction on the degree of interaction (mi = n), we understand that the default 
value is d = 3. The question for which we were unable to find an answer was: how does d depend 
on mi, the maximal degree of interaction, if it is specified to be less than n? When the degree of 

. interaction is limited (mi < n) d is, quite logically, decreased. We chose in one instance mi = 5, 
which seemed to result in a value of d closer to 2 than 3. 

3. As mentioned in 2., the cost d is set to 3.0 when unlimited interactions are permitted. Based 
on our calculations, it appears that the value of d is also being adjusted based on M,,,. How 
exactly does it affect d? On one occasion, we observed an apparent oddity in the behavior of d 
which seems counterintuitive: d can decrease as M ,,,== increases with mi (the maximum permitted 
degree of interaction) held fixed. 

4. One of the startling features of our MARS runs is the fact that the piecewise cubic GCV values 
are often an order of magnitude larger than the corresponding piecewise linear GCV values. 
In addition, there is little correspondence between the piecewise linear and the piecewise cubic 
GCVs for these data. For example, the model which minimizes the piecewise linear GCV 
has an associated piecewise cubic GCV which is over three times larger than the piecewise 
cubic GCV of another model; this other model, however, has a piecewise linear GCV which 
is almost twice the minimal value. Further, the two models are very different; the first has 35 
basis functions and interactions up to the third degree whereas the second has only 21 basis 
functions and all are restricted to be main effects only. Hence, if a smooth (piecewise cubic) 
model had been our ultimate objective, we would have been led very far astray by basing 
the model choice on minimizing the piecewise linear GCV. We can see at least three reasons 
for the unpredictable behavior of the piecewise cubic modifications: First, the residual sum of 
squares is very nonrobust and responds dramatically to a few bad residuals. Second, in high- 
dimensional predictor spaces and in the presence of higher order interactions, the seemingly 
inoccuous piecewise cubic modification is far from minor because of compounding effects in the 
products. And third: our data may very well be better described by piecewise linear functions 
due to threshold effects which we observed while performing graphical exploration of the data. 

5. In fitting a series of models with increasing values of M,,.,,,, the number of basis functions in the 
final model grew quite unevenly. While this might be expected for choices of M,,,,, which produce 
poorer fitting models, it was surprising to us for a choice of M mor yielding near optimal models 

- (i.e., models with piece-wise linear GCV values near the minimum). We are unsure whether to 
interpret the widely varying numbers of basis functions as an artifact of our data or as a property 
of the MARS methodology. 
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2. Generalized Mars models 

Friedman proposes using MARS for logistic models. This can, of course, be easily extended to include 
- all generalized linear models. The standard method for fitting such models is to maximize the 

likelihood or, equivalently, to minimize the deviance. While it would be natural to use the penalized 
deviance as the criterion for knot inclusion or deletion in direct analogy to the penalized RSS or 
LOF used in the present paper, this is computationally impractical because iteration is required to 
estimate the parameters and the crucially important ability to rely on the updating formulae is lost. 
Consequently Friedman offers an approximation and here we offer another. 

Suppose the basis set has k members, and we wish to find the (k + 1)st. The exact inclusion of a 
candidate bk+l can be achieved by using an iteratively reweighted least squares algorithm, with the 

_ initial values and working response provided by the fit to the set of size k. Instead of iterating to 
convergence, we propose using one iteration, and instead of using the deviance to evaluate the fit, 
we propose using the weighted residual sum of squares or Chi-squared approximation to the deviance. 
Since the fits for all candidates for bk+l use the same use the same working response and the 
same weights, Friedman’s entire updating approach carries over. Once the approximately optimal 
bk+l has been selected, the corresponding iterations can be completed to estimate the associated 
coefficients. 

This approximation for evaluating a candidate bk+l is exactly that used in Rae’s score test (Preg- 
ibon, 1980) with the additional advantage that we exploit the updating facility to simultaneously 
perform multiple score tests. 

3. ANOVA decomposition 

The ANOVA decomposition is achieved in MARS by grouping together all terms involving the 
same variables. Thus all the functions involving only X1 comprise the main effect for X1, all 
terms involving only X1 or X2 the interaction for X1 and X2, and so on. The usual ANOVA 
decomposition for categorical designs ensures that interactions are free of lower order effects by 
imposing suitable summation constraints. Note that the tendency for these surfaces to include 
lower order effects in MARS is exacerbated because MARS can destroy the hierarchical structure 
of its basis during knot deletion. It would be useful if MARS could produce an interaction surface 
which was free of lower order effects. One could then use this surface to asess the way in which the 
variables interact, without being distracted by the lower order effects. 

Hastie and Tibshirani (1990, page 266) propose a strategy for this which can be adapted to 
MARS. As in standard ANOVA, one needs only to uncouple the components in the fitted model, 
not during the fitting (unless one requires an a priori hierarchy in the terms). Let us focus first 
on a bivariate interaction term, say f(Xl, X2) = Ck crkblk(Xl)b2k(X2). We first identify all the 
univariate basis functions in each of the tensor products pairs. In this case they are the blk and 
b2k. We then project the interaction surface onto the joint space defined by them and the other 
main-effect basis functions involving those two variables. This additive main effect component of the 
interaction is then removed. and lumped together with the original main effects, leaving a residual 
component which can be interpreted as a pure interaction and which is orthogonal to these (new) 
main effects. It is important to stress that the fit of the model has not been changed during this 
operation, simply its ANOVA decomposition. 

Of course, if higher order interactions are present, this procedure would have to be used in a top 
down fashion. It is not entirely obvious how this would proceed. For example, if the term in question 
is a 3rd order interaction, then we should isolate all bivariate interaction basis pairs. These would 
be grouped with similar and lower order terms involving the same variables, and the entire set used 
to remove the second order effects from the 3rd order interaction. 

Incidently, in the simple linear regression model, Y = (Y + ,&Xl + ,&X2 + -yX1X2, we would 
not need to do all of this to understand the interaction effect. Decomposing such a fit amounts to 
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looking at the coefficients (their sign and magnitude). Although these are fitted jointly, we know 
from the Gram-Schmidt process that y is also the coefficient of XiXz adjusted for Xi and X2. This 
would not be the case if the model were Y = (Y + /31X1 + 7x1 X2. 

4. Shrinking versus knot deletion 

In a discussion of the additive predecessor to MARS, called TURBO, Hastie (1989) outlined in 
some detail a method for “shrinking” a TURBO model. The idea is that the forward stepwise 
algorithm results in a rich set of knots/basis functions for each additive term. In particular, the 
knots will be denser on some variables, and locally, within a variable, there may be clusters of knots 

. in regions of high signal to noise ratio. At this point the model is (purposefully) overparametrized, 
and some regularization is needed. As an alternative to backward knot deletion, Hastie suggested 
regularizing by shrinking according to an appropriate smoothness penalty. He suggested the penalty 
Cj Xj J(fj”(xj)12dxj, and pointed out that the resulting procedure is a generalized ridge regression. 
Furthermore, since the second derivatives of the piecewise-cubic approximations to the piecewise- 
linear basis functions have local support, the ridge penalty matrix is diagonal. 

With an appropriate set of penalty functionals, a similar approach can be taken with MARS. 
Wahba (1990, chapter 10) outlines in some detail an approach using tensor-product splines, which 
are exactly what MARS uses to build up its bases. In Wahba’s setting, models are fit in subspaces 
of the tensor product space of all the univariate reproducing-kernel Hilbert spaces, and the penalty 
functionais (norms) of these subspaces are inherited from the univariate spaces. For example, 
functions involving only Xi and Xz would be penalized using s J(a4f(zl, +2)/dz~8z~)2dzldz2. 
In practice then, the terms are grouped according to their components (much like the ANOVA 
grouping in MARS), each group gets assigned an appropriate penalty (and potentially its own 
smoothing parameter), and then the fit is computed by penalized least squares. Thus suppose the 
MARS model after the stepwise inclusion stage can be written 

f(Zl, x2, . . . ,xP)=a+ Cfk(xk)+ c f(im)(xl,x,)+... 
kEIl (I,m)EIo 

where Ij denotes the sets of j-tuples corresponding to interactions of order j. Each of the f* has 
a linear representation in terms of an appropriate set of tensor-product bases. Then the shrunken 
model is the minimizer of the penalized criterion 

k(?Ji - f(xi>)2 + c xkpkfk) + c hmfim(f,m) -I-. . . 
i=l keIl (Lm)EIa 

-where the P, are the penalty functionals. 
Without going into all the details, it is worth pointing out that each of the P,(f*) evaluates to a 

quadratic form arM,a, in the coefficients for the basis functions in f+; if the cubic approximations 
to the piecewise-linear functions are used, then each of the M, is diagonal, and once again the 
problem is a generalized ridge regression. We have used a different regularization parameter A, for 
each of the components above. In practice one could simply use a single global X, and trust that the 
forward knot selection will give some terms more importance than others. Alternatively, one could 
lump all terms of the same interaction order together with the same penalty, and shrink them all at 
the same rate. 

This is a current research project (Friedman and Hastie), and we are experimenting with other 
strategies and penalty functionals. 



5. MARS for classification 

One of us (Tibshirani) has made sqme progress in the development of a methodology for 
classification that tries to combine some of the features of MARS and CART. Consider a two class 
problem with Y = 0 or 1.. The working model is 

log WY = 1 Ix) 
1-Pr(Y= 1 Ix) =a+ Cfk@k)+ c fim(2/,2,)+... 

keIl (l,m)Ez2 

where the Ijs are as defined in the previous section, but where the fs are tensor products of order 
. 0, that is, products of indicator functions of the form (Zj - t)+ and (Zj - t)-. The motivation for 

0 order splines is, as in CART, the ease with which models can be substantively interpreted when 
terms are of this form. 

The model estimation is carried out as follows: 

1. The model is constructed in a forward stepwise manner, exactly as in MARS. A score test 
(analogous to that described in Section 2 above) is used to select the “split point” for each 
variable. In contrast to CART, a basis function is not removed from the model after it has been 
“split”, thereby encouraging main and lower order effects to appear. 

2. The model is pruned in a backwards hierarchical fashion, similar to the pruning in CART. In 
detail, a pruning operation consists of deleting a pair of functions of the form b(x)(zj - t)+ and 
b(x)(zj - t)- and any higher order terms in which they appear. k-fold cross-validation (of the 
entire estimation procedure) is used to determine the optimal amount of pruning. In contrast to 
CART, we favor the use of deviance rather than misclassification cost to guide the pruning; this 
enhances the interpretability of the final model. 

The result of this process is an estimated binary logistic model with a linear predictor that is a sum 
of products of indicator functions. In addition, a global (cross-validation) estimate of its classification 
performance is available, which is hopefully a more accurate estimate of future performance than 
GCV estimates, such as those used by MARS, which do not involve cross-validating the term selection 
process. The model can be interpreted either in terms of its basis functions or of the binary partition 
of the predictor space that they define. Initial studies suggest that this procedure is more effective 
(as a descriptive tool) than CART in cases where main effects dominate. On the other hand, in 
general it does not seem to classify as well as CART does. Extensions to ordered and unordered 
multiple class problems are possible. Further details will appear in a forthcoming technical report. 



Comments on MARS by Jerome Friedman 

Chong Gu* Grace Wahbat 

We would like to begin by thanking Professor Friedman for a very interesting and thought 

provoking paper. The idea of combining splines with recursive partitioning ideas is clearly an idea 

whose time has come, and this paper is sure to generate much interest! 

We have a number of comments that fall into several areas. 

1 Nonparametric function estimation is a rich field 

Of course, the general area of nonparametric function estimation is a rich and growing one. The 

major methods in one variable are, kernel methods, smoothing spline methods, regression spline 

methods, orthogonal series methods, and nearest neighbor methods. When the data points are 

uniformly spaced, if these methods have their various tuning parameters matched up they are 

quite similar for medium sized data sets, and can essentially be tuned so that they have the same 

convergence rates for functions with the same number of (square integrable, say) derivatives. Even 

when the data points are not uniform, kernel methods and spline methods can be shown to be 

similar under certain circumstances. As soon as we get into more than one dimension, however, 

choices proliferate, and results are not necessarily so similar. Xarrowing our consideration to kernel 

estimates, smoothing splines and regression splines, we may, at the outset, consider what might 

be called a “tensor product” structure versus a “thin plate” structure - we will define these by 

example. Considering two variables, z = (zr,zx), and given a knot t = (tr,tz), a basis function 

of tensor product type is of the form BtI,tz(zr,~2) = H(zr - tr)11(~2 - tz), where H stands for a 

generic function, usually depending on some order parameter 4, whereas a basis function of thin 

plate type is of the form B tI,tz(~r,~2) = H(IIz-tll) where Jlz-t/l is the Euclidean distance between 

*Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T lW5, Canada. 
‘Department of Statistics, University of Wisconsin, Madison, WI 53706. 



z = (~1, $2) and t = (ti, tz). Thin plate splines do not know the difference between north and 

- east, whereas tensor product splines do. Of course kernels as well as regression splines come in 

both types. Friedman’s splines are regression splines of tensor product type with a sophisticated 

procedure for choosing the number, and order(s) of the spline basis functions and the knots. It of 

course equally possible to do regression splines on thin plate basis functions. See Poggio and Girosi 

(1990) who discuss regression thin plate splines with moveable knots in the context of neural nets 

-for multidimensional function estimation. Which type one might prefer would certainly be related 

to the nature of the variables one is dealing with. In principle it is quite possible to mix the various 

types of basis functions. However Friedman’s recursive partitioning approach to knot selection fits 

naturally into the tensor product setup and probably not in the thin plate setup (since there are 

not natural cutting planes in that case), while Poggio and Girosi’s approach appears to fit in to the 

thin plate case, and not the tensor product setup. In both these cases knot selection is a non-trivial 

operation, and clearly as time goes on further insight will be gained. 

2 Smoothing splines with multiple smoothing parameters 

We agree with Friedman that automatic selection of multiple smoothing parameters is inherently 

difficult and computationally consuming. Nevertheless, our experience is that it is feasible for 

relatively small number of covariates and medium sample sizes on modern workstations. Recall 

that given responses y; and covariates 2; where y; N p(y; q(zi)), a smoothing spline regression fit 

with multiple smoothing parameters is the solution to the problem: Find 77 E 7-L to minimize 

- 2 k(dzi)) + (n/2)X 2 ej’Jp(fp) (24 
1 p=1 

where ii(v) = log p(y;; q), 7 = C”,=, fp, and 7-L = 7-10 $ ‘J-f1 $ . . . $ ‘,YFI, is a reproducing kernel 

Hilbert space with reproducing kernel R = Ro + RI + . . . + R,; see Wahba (1990). Here 2; may be 

quite general consisting of several components, in arbitrary index sets. ‘He, on which there is no 

penalty, is of necessity of finite dimension M, say, which is less than 12, and as X tends to infinity 

the estimate tends to the maximum likelihood estimate in ?fo. fp is the component (projection) 

of r,.in 7-i~ and Jp is a suitable quadratic penalty, which we will take as the squared norm in 7-t~. 

The elements in each ?f~p may actually depend on all or only a few of the components of Z. It can 
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be shown that the solution of (2.1) has an expression 

where { 41, . . . , 4~4) span x0, tT(x:) = (El(x), *a- , L(x)), (i;(x) = C& epRp(xi, x), and c and d 

are the minimizers of 

- 2 li(+T(x;)d + (T(xi)c) + (n/2)X 2 OpcTQpc7 
i=l p=1 

(24 

where Qp is a n x 2 matrix with (i,j)th entry Rp(xi,Zj). [i ‘s in the smoothing spline examples 

have knots at the data points z;, and under certain circumstances they span the same space as 

commonly used local bases such as the B-splines on the real line. Let S be the matrix with (j, v)th 

entry 4v(zi), Q = C”,=, BPQP, W = diag(wr, * * I, wn) where 20; = -dZ2Zi/dqf, and u = (~1, *. *, un) 

where Ui = -dli/dqi. The Newton iteration for minimizing (2.3) proceeds by solving 

W’i2(Q + nXW-‘)c + W112Sd = Wli2j.j 

STd = 0, (2.4) 

where5 = qo-W -lu, v. is the fit at the previous step, and W and u are evaluated at qo. See, e.g., 

Gu (1990a). This setup provides a unified numerical treatment for broad varieties of nonparametric 

regression problems with either Gaussian or non-Gaussian responses and with all kinds of covariate 

structures; see the next section. Generic algorithms for solving (2.4) with automatic smoothing 

parameters X and B’s appear in Gu et al. (1989) and Gu and Wahba (1988) mentioned by Friedman. 

Transportable code is available from the netlib under the name RKPACK; see Gu (1989). We feel 

comfortable with these algorithms for n up to 500 and p up to 6 on the contemporary workstations, 

and with smaller p we can afford larger n. 

3 ANOVA decomposition and varieties of subspaces 

A nice feature of the MARS product is the ANOVA decomposition which greatly enhances the 

interpretability of the computed fit. It is known that the same structure can also be obtained 

via interaction smoothing splines, which are important specializations of (2.1). Recall that for 

a bivariate covariate x = (zr,22) on a domain 71 x 72, given reproducing kernel Hilbert spaces 
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‘Ft” = ‘HA $7-I; of functions on x’, i = 1,2, the tensor product Hilbert space of functions on 7” x 72 

- has a tensor sum decomposition ‘FI = ‘?fl 69 7-f’ = (‘HA @Xi) $ (Xi @ 7-t:) $ (7-f; @I XT) $ (‘FI: @ ‘FI:). 

Assuming finite dimensional ‘Hi, i = 1,2, an interaction spline is obtained by specializing (2.1) with 

3-10 = ‘HA @ 7-1;, Ifi = 3-1: 63 If:, ?f2 = ?iA @ 3if, and Ifs = YHi @ ‘FIY. When l-if; = {l}, i = 1,2, 

the setup provides an ANOVA decomposition of the estimate by construction. When we take the 

tensor sum or tensor product of any two reproducing kernel spaces we just add or multiply their 
. reproducing kernels to get the reproducing kernel of the resulting space. Obviously the tensor sum 

on each coordinate can take more than two operands and so can the tensor product. 

Examples of interaction splines in subspaces of tensor products of WF[O, 11’s appear to be 

the most popular in the existing literature. However, the foregoing general framework covers a 

much broader spectrum of model specifications. Consider a covariate z on a categorical domain 

7 = {l;.., C}. A real function on {l,*.., C} is just a real vector in the Euclidean space RC. 

Adopting a roughness penalty proportional to the Euclidean norm of the projection of a vector onto 

w7 a “smooth” vector would then be a one with a small variance. The corresponding Hilbert 

space decomposition is RC = {I} $ {I}’ with a reproducing kernel R(z,z’), 2,x’ E {l,..‘.,C}, 

representable as a C x C real matrix, llT/C + [1 - llT/C], where the term in brackets is the 

reproducing kernel for {I}‘. Using RC for categorical (nominal) covariates in the construction 

of tensor product Hilbert space, one can incorporate both continuous and categorical covariates 

simultaneously to build a model with a natural ANOVA decomposition. We understand from 

Friedman’s talk at Interface 90 that categorical covariates can also be incorporated into the MARS 

framework. It would be interesting to compare the two approaches. 

We have discussed the “tensor product” structure versus the “thin-plate” structure in Section 

.i. In general a “tensor product” structure is appropriate for combining individually interpretable 

covariates and a “thin-plate” structure is appropriate for dealing with rotation invariant problems. 

The example below indicates that certain problems require mixed structures. From the Eastern 

Lake Survey of 1984 implemented by the Environment Protection Agency of the United States, a 

data set has been derived by Douglas and Delampady (1990) which contains geographic information, 

water acidity measurements, and main ion concentrations of 1798 lakes in four regions in the 

Eastern United States. An attempt is made to explore the dependence of the water acidity on 

the geographic locations and other information concerning the lakes. Preliminary analysis and 
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consultation with a water chemist suggest that a model for the surface pH in terms of the geographic 

- location and the calcium ion concentration is appropriate. Obviously, a “thin-plate” structure is 

appropriate for the geographic location. To account for the joint effect of geographic location 

and the calcium concentration, however, a “tensor product” structure appears to be appropriate. 

A tensor product reproducing kernel Hilbert space with a “thin-plate space” component for the 

geographic locations and a W$ component for the calcium concentrations does the job simply. This 
. example actually illustrates the fact that the general framework of interaction splines can paste up 

arbitrarily complicated components to provide an interpretable ANOVA decomposition. 

To use a thin plate spline as a component of an ANOVA model as we have just described, one 

needs an explicit reproducing kernel. (Only a so-called “semi-kernel” is needed for the construction 

of a thin plate spline by itself, see the references in Wahba (1990).) An explicit reproducing kernel 

appears in Wahba and Wendelberger (1980) but it is not a natural one to use in an ANOVA model. 

We will provide a more natural one here. Let X be the thin plate function space (in two variables) 

consisting of linear functions plus all functions (modulo the linear functions) for which the thin 

plate penalty functional 

J(f) = Jrn JW u:,“, + u% + -00 -m 
is well defined and finite. Now let tj, j = 1,. . . , K be 

f,2, > du dv 

any set of K 2 3 points in R2 not 

falling on a straight line. Let &(z) = l/a and let c#’ 2 and 4s be linear functions satisfying 

Cgl 4p(tj>4v(tj> = l, P = v, 0, otherwise, and let wj(z) = C”,=, &,(tj)&(z). If we endow X 

with the sauared norm 

it can then be shown that the reproducing kernel for X is 

I 
[E(Z, Z’) - 5 Wj(z)E(tj, 2’) - 5 Wk(z’)E(tk, z) + e 5 wj(z)wk(z')E(tj, tk)], 

j=l k=l j=l k=l 

where E(z, z’) = (l/z - z’)12 log 112 - z’ll)/(Srr). Th e erm in brackets is the reproducing kernel for t 

‘Hi .if 7fe is taken as the span of the linear functions. Furthermore each element f of ‘Xi satisfies 

the discrete orthogonality conditions C$i 4y(tj)f(tj) = 0, u = 1,2,3. It is natural to choose 

Ii = n and the tj’s at the data points. With this construction thin plate splines can be included 
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in a nonparametric ANOVA model, possibly by moving span (42, 4s) into ‘Hi. This construction 

- extends to higher order and higher dimensional thin plate splines in a straightforward way. 

4 Model selection and concurvity 

Model selection in MARS is built into the step-wise estimation procedure by choosing bases and 

_ knots to minimize an intuitive GCV score. In a smoothing spline setup (2.1), model selection is by 

selective inclusion of subspaces and selection of smoothing parameters. Step-wise nonparametric 

estimation procedures are likely to be confused by concurvity (collinearity), for which Friedman 

proposes several cures in his algorithms. On the other hand, the direct approach of Section 2 

estimates all terms simultaneously and is not bothered by negligible terms and concurvity. For the 

sake of parsimony and interpretability, however, one wishes to remove abasing effects and noise 

terms in a fit. Recently Gu (1990b) proposed simple geometric diagnostics to tackle the problem. 

Recall that the solution 6 of (2.1) also minimizes 

where the &‘s and the W;‘S are those of (2.4) evaluated at 7j; see, e.g., Gu (1990a). Evaluating the 

computed fit on the data points, one obtains a retrospective linear model 

w1i2jj = W’/2(j, + j1 + . . . + j, + i?) = W112Sd + W1i2h + W’/2E, (4.2) 

where jP = (f~(~r), -. . , fo(~,))~ and F = (j, =. * j,). Removing the null model effect by project- 

ing (4.2) onto the orthogonal space of W1j2S, one gets 

z=Fi+e. (4.3) 

The collinearity indices of F (Stewart 1987)) which is equivalent to the cosines between the columns 

of F, measure the concurvity in the fit. The columns of F are supposed to predict the “response” z 

so a near orthogonal angle between a column of F and z indicates a noise term. Signal terms should 

be reasonably orthogonal to the residuals hence a large cosine between a column of F and e makes 

a term suspect. cos(Z,e) and R2 = [Ix - e~~2/~~r~~2 are informative ad hoc measures for the signal 

to noise ratio in the data. Finally, a very small norm of a column of F relative to that of z: also 

indicates a negligible term. It could be argued that the cosine diagnostics can be treated as absolute 
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measures provided an automatic smoothing parameter selection is adopted. These diagnostics can 

- be used to sequentially delete redundant subspaces to build a parsimonious model in a backward 

fashion. See Gu (1990b) for details and examples. 

5 Accuracy estimates 

For any method, it would be nice to be able to say something about the accuracy of the estimate. 

Monte Carlo bootstrap is one method that has found use in the application of smoothing splines. 

In the Monte Carlo bootstrap, one generates a new set of data via a random number generator 

centered about the estimated model. In this setup the distribution of the y; has to be assumed 

up to parameters which can be estimated, i.e., p is Gaussian, Bernoulli, etc. From this new data 

set one estimates a curve or surface, and by repeating the operation obtains a “cloud” of curves or 

surfaces which hopefully gives some idea of the accuracy of the estimate. Although the “clouds” 

one gets seem reasonable, it still appears that not much is known about their properties, although 

they have been around a while. In particular, since the estimate is generally a bit “smoother” than 

the truth it is possible that these clouds give a possibly too rosy picture. This method might be 

used with Friedman’s approach here, if (assuming the E; are i.i.d. zero mean Gaussian), an estimate 

of a2 were available. 

In the single smoothing parameter smoothing spline case, there are coverage bands (also called 

Bayesian “confidence intervals”) which have the property that the expected number of “true” data 

points they cover is about .95n. See Wahba (1983) and Nychka (1988). It would be interesting 

to see what happens in the multiple smoothing parameter case, and also, if there is anything 

like a counterpart for MARS. Some authors, in the case of (nonadaptive) regression splines, have 

suggested the usual parametric confidence intervals for the estimated basis coefficients, as though 

the estimate were really in the span of the basis functions. This has yet to be justified if the true 

function is not in this span and hence there is bias. There is, however, no free lunch in the case of 

nonparametric regression, since the good methods are all biased and we have to accept a somewhat 

weaker definition of “confidence interval” in the nonparametric regression case if we wish to remain 

honest. 
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6 Hybrid methods 

Hybrid methods which combine regression spline and smoothing spline ideas have also been con- 

sidered; see, e.g., Nychka et al. (1984), Hutchinson and Bischof (1983)) and O’Sullivan (1990). 

Let {&(z))fV=, b e a set of N basis functions where N is generally (much) smaller than n. The 

estimate of 77 is then that 77 in the span of the {Bl} which minimizes (2.1). If N is closer to n, 

then the estimate will be a good approximation to the minimizer in ‘FI of (2.1)) and the X and 9;‘s 

will be controlling the smoothing. In this case, the basis functions are mainly used to ease the 

computation, and the location of the knots may not be very crucial. For example, if n is large, 

one might choose a set of basis functions with the knots a regular subset of the data points, as did 

Hutchinson and Bischof (1983). In their case the basis functions were formed from representers of 

evalzlation at the knot points. That would amount to using $q,. . - ,4M and a subset of the t’s of 

(2.2) in the present context. See also Wahba (1990), Chapter 7. O’Sullivan (1990) used a large 

basis of tensor products of B-splines, with a thin plate penalty functional. 

If N is smaller, then the basis functions may be helping along the smoothing (and they might 

be explicitly used to eliminate the possibility of too much fine structure that is known not to be 

there), in this case their number and locations of their knots may be more influential. 

7 An omnibus GCV? 

We think that all of these methods and combinations will come into use, and no one of the possi- 

bilities is going to turn out to be uniformly superior - which method is “best” is going to depend 

on the context. Of course it would be lovely if there was one grand criterion for comparing among 

-the different methods, given a particular data set. It would be nice to have something like an 

omnibus GCV criterion, which would compare different model building procedures (for example a 

pure smoothing vs a pure regression procedure), but this is something remaining to be done. As 

Friedman takes pains to note, all of the degrees of freedom for signal must be accounted for. In 

order to compare across different methods this accounting should be done in comparable ways. In 

the case of smoothing splines, when a subspace is added, if this subspace carries an independent 

smoothing parameter then the minimum GCV value is non increasing. To see this, note that if 

the smoothing parameter for the new subspace is estimated as infinity, then we have reverted to 
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the model without the new subspace. It is not yet known how to “charge” for adding another 

- free smoothing parameter in this context. The proceeding suggestions on methods for choosing 

subspaces as a form of model selection were in part motivated by this lack. 

Given a sufficiently large data set, in practice it is of course possible to do the classical double 

cross validation, say, divide the set in half, fit and tune two or more models for comparison on the 

first half of the data, and compare them as to their predictive ability on the second half. Naturally, 

. this brings up the question of what is a “significant” difference - which, again, could be answered 

if one could partition the data into several subsets. Data sets are getting bigger and computers 

more powerful, so statisticians are not likely to be out of business soon! 
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1. Introduction. We describe the multivariate adaptive polynomial synthesis 
(MAPS) method of multivariate nonparametric regression and compare it to the mul- 
tivariate adaptive regression spline (MARS) method of Friedman (1990). Both 
MAPS and MARS are specializations of a general multivariate regression algorithm 
that builds hierarchical models using a set of basis functions and stepwise selection. 
We compare polynomial and spline bases in this context. Our experience is that there 
is no substantial difference in the statistical accuracy for the data sets that we have 
investigated, provided that some care is taken in the choice of the model selection cri- 
terion. It is argued that the polynomial methods, with a smaller set of basis functions 
to select from at each step, should yield a computationally faster algorithm. 

A potential difficulty of either polynomial methods with high-order terms or 
spline methods with closely spaced knots is the high sensitivity of the estimated 
response to slight changes in the inputs. We advocate the use of a roughness penalty 
in the performance criterion that forces smoother models to be accepted. A conse- 
quence of this roughness penalty in the polynomial case is that large coefficients in 
high-order terms are avoided. We believe that the MARS algorithm could also 
benefit from the use of the roughness penalty. 

Polynomial networks are synthesized by a simple variant of the algorithm. In 
particular, an option of the MAPS algorithm is to allow the outputs of tentatively 
selected models to be considered along with the original explanatory variables as 
inputs for subsequent steps of the algorithm. This algorithm exhibits many of the 
properties of more complicated polynomial networks, and other ‘neural” networks for 
multivariate regression. For an overview of statistical learning networks see Barron 
and Barron (1988). 

The advantage of adaptively synthesized model structure compared fixed model 
structure is the opportunity to seek out accurate lower-dimensional nonlinear models 
in the high-dimensional space of functions of several variables. MARS, MAPS, and 
some adaptive network techniques have the potential for selecting accurate yet parsi- 
monious models in these high-dimensional settings. 

2. Adaptive Regression. Multivariate adaptive regression is a stepwise procedure 
for the automatic selection of basis functions from observed data. The selected basis 
functions B, (x) yield models of the form 

f~ (x,e> = C,“= lemB, (xl, 

for x in R”. These models are fit to observed data (Xi,yi)i’j=1. 

Briefly, the forward algorithm takes the following form. The initial function esti- 
mate is taken to be a constant by setting B 1(x) = 1. Then the following steps are 
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repeated until a model selection criterion stops the growth of the model. From a list 
of candidate basis functions FM, we choose one or two new basis functions B,U+l(x), 
BM+2(~) to append to the current list of basis functions {Bl(x),B2(x),...,BM(x)) and 

- then regress the data onto the span of the new list. At each step we adopt the choice 
of basis functions that provide the best improvement in a model selection criterion. 

The key to the algorithm is the specification of a parsimonious yet flexible set FM 
of candidate basis functions (or pairs of candidate basis functions) from which the 
new terms BM+ I(x) and in some cases B,+~(x) are selected. Naive choices of l7, 
such as the set of all polynomial terms in n variables up to a given degree, are 
exponentially large sets in the dimension n, and, consequently, would be computa- 

‘tionally prohibitive in moderately high-dimensions. 
Friedman’s strategy is to adapt the set FM of candidate basis functions to the 

current list of terms, by taking the set of products of terms in the current list with 
one-dimensional basis functions. In particular, MARS (with 4= 1) takes FM to be the 
set of pairs of candidate terms B,(x)[+ (xi-t)]+ for i= 1,2,...,M and j= 1,2,...,n with 
the restrictions that xi is not already in a factor of B,(x) and r is in a list of candidate 
knot locations determined by the sample quantiles of Xj. 

The MAPS algorithm, in its simplest form, takes 
rbf = { Bi(X)Xj : i= l,..., M, j= l,..., n ). Thus each step of the MAPS procedure yields 
a polynomial, where in one coordinate the degree is incremented by one. Experimen- 
tation has revealed that in some cases it is better to introduce pairs of basis functions 
Bi(X)Xj and Bi(X)Xj2 on each step. This has two benefits: firstly, it tends to orient 
the search in early steps toward models with low interaction order that are more reli- 
ably estimated, and, secondly, it avoids some of the traps of stepwise selection. [For 
instance, if y = xf and xt is symmetrically distributed about the origin, then the 
linear regression of y onto the span of (1,x1) is constant, and, consequently, without 
forced consideration of higher-order terms, the stepwise algorithm would stop with a 
constant as its best estimate.] With this modification, each step of the MAPS algo- 
rithm selects BM+l(x) and B,+,(x) from the set 

rM = { Bi(X)Xj, Bi(X)Xj2 :i= l,..., M, j= l,... ,n 1. 

Here the second new term may be rejected from inclusion at the current step if it does 
not yield an improvement in the performance criterion, whereas the first new term 

‘may be rejected only after consideration of the performance with both new terms. 
As in Friedman’s LIARS algorithm, MAPS provides an option to restrict the 

order of interaction of candidate terms to be not greater than a specified limit mi. 

Here mi = 1 yields an additive polynomial, mi = 2 allows cross terms B (x_) = xl!jx;j 

and mi = n allows general polynomial terms B(x) = x;‘x;: * . . xr to eventually be 
synthesized by the algorithm. Even with mi = n, the algorithm often stops before 
such high-order interactions are considered. 

Following the completion of the forward stepwise algorithm, it is advisable to per- 
form a backward stepwise pass that at each step removes the term that permits the 
best improvement in the performance criterion for the remaining terms. This back- 
ward pass is implemented by Friedman. With the backward pass implemented, one is 



-3- 

free to allow the forward pass to proceed past the point at which the performance cri- 
terion is optimized with respect to forward selection. Extraneous terms are left to be 
removed by the backward pass provided their removal is determined to be beneficial. 

- At the present time, we have only. implemented the forward stepwise synthesis in the 
MAPS program. 

We hasten to point out that stepwise selection procedures can not in general be 
guaranteed to provide the best set of terms of a given size, see, for instance, Cover 
(1974). To get the best set of terms essentially exhaustive subset selection procedures 
would be needed. Such exhaustive procedures are feasible for certain linear regres- 
sion problems, but they are not feasible for multivariate nonlinear regression, because 

.. of the exponential explosion of number of terms from which the subsets are selected. 
Therefore, stepwise selection is a necessary compromise in the multivariate nonlinear 
case. 

In the related context of iterative L2 approximation of functions, a recent result 
of Jones (1990) states that if the target function is in the closure of the convex hull of 
a given set of functions with bounded norm, then the squared norm of the error is of 
order 0 (l/m) for an m-step forward stepwise selection. That result can be adapted 
to the context of adaptive polynomial regression with l? equal to all polynomial terms 
up to a given degree, to yield bounds on the statistical risk. Thus forward stepwise 
selection can yield a reasonably accurate set of terms even if it is not, strictly speak- 
ing, the best set of terms. It is not clear whether theory analogous to that provided by 
the result of Jones can be developed that applies to the smaller sets of candidate terms 
used by MARS or MAPS. 

The approximation capabilities of polynomials and splines are known in the case 
of complete bases (in which all polynomial terms up to a prescribed order are 
included). These results show, for instance, that for any given k 2 1, if f (x) is an 
k times differentiable function on [O,lln, then there exists a polynomial 
fk(X) = -p,x;’ . . ’ x2, where the sum is for all r = (rl,...,r,) with 01 rj2 k, for 
which the L2 approximation error is bounded by 

This particular bound is a specialization of the multivariate extension in Sheu (1989) 
of a bound due to Cox (1988). It shows the exponential convergence rate of polyno- 
mial approximation for analytic functions, assuming that the norm of the k partial 
derivatives is bounded by a multiple of k !. Splines approximations of a fixed order 
q, which are chosen to have roughly the same number of basis functions, k”, are not 
capable of the same accuracy. 
polynomial rate (l/k )‘4, 

The integrated squared error saturates at the slower 
see for instance, Schumaker (1981). 

Unfortunately, there is not yet an analogous theory for the approximation with 
subsets of the complete set of basis functions. An exception is the case of additive 
approximation. For instance, to approximate the additive part of a function, the best 
additive polynomial approximation (which uses only nk + 1 terms instead of (k+ 1)” 
terms), achieves the same accuracy as derived above by Sheu, whereas spline approxi- 
mation again saturates at the slower rate. It also may be possible to the use the theory 
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to characterize the error of approximation of the second-order interaction component 
of a function. Such a theory would hopefully show that parsimonious approximation 
is possible for all function with negligible higher- order interactions. 

3. Complexity Penalties for Adaptive Regression Selection. At each step of the 
adaptive regression algorithms, terms are chosen to optimize a statistical performance 
criterion. The criterion depends on the average squared residuals (ASR ) but incor- 
porates a modification to penalize the number of parameters. 

There is a proliferation of criteria that have been proposed for model selection. 
They can be roughly categorized into two groups. The first group seeks to estimate the 

.. mean squared error of prediction MSEP,,, = E (Y -fM (X ,8))2 or related quantities 
of cross-validation, where X,Y denotes a sample drawn independently of the training 
data. The idea is that the best model is the one with the minimum MSEP,,,. Cri- 
teria that estimate the MSEP can be interpreted as adding a penalty to ASR which is 
roughly equal to 2(M IN) times an estimate of the variance of the error incurred by 
the best function of x, where M is the number of parameters and N is the sample 
size. A representative criterion in this group is the generalized cross validation 
(GCV), a modification of which is used by Friedman in his MARS program. For 
models of the form fM(x,B) = C,fzlbmB,(x), the generalized cross validation (not 
accounting for the selection bias) takes the form 

GCV = ASR 
(l-M/N)2’ 

where ASR = (l/N )~;~l(yi-f~ (Xi16))2 is the average squared residual. See for 
instance, Eubanks (1988) for properties of the generalized cross validation and its 
relationship to other criteria, including Mallows’ CP, Akaike’s final prediction error 
FPE, and Akaike’s information criterion AIC. The predicted squared error PSE cri- 
terion studied in Barron (1984) is defined as PSE = ASR + 2(M lN )02, where o2 is 
either the known error variance E (Y-E(Y I X))2 or a rough estimate of it provided 
prior to the stepwise selection process. Under certain formulations, it is equivalent as 
a selection criterion to C, and AIC. The final predication error FPE = 
ASR (l+MIN)I(l-M/N), is the minimum variance unbiased estimator of the mean 
squared error of prediction, in the case of a correctly specified model and Gaussian 
errors. A surprising fact, shown in Barron (1984), is that for reasonable choices of 
02, PSE is a more accurate estimate of the mean squared error of prediction. All of 
the criteria mentioned above suffer from the problem of considerable selection bias if 
the criteria is minimized over too large a set of candidate models: that is, the minim- 
ized criterion value may be significantly smaller than the value for the best model. 

At first we ran our MAPS program with the GCV criterion, to facilitate com- 
parison with the MARS procedure, believing that more conservative criteria would 
probably not be necessary in our case. However, as the results show in section 5, we 
encountered persistent problems of overfit. This overfit invariably occurred whenever 
the selection was taken over a very large sets of candidate terms, a large fraction of 
which are spurious. Friedman avoids the overfit problem by modifying the GCV cri- 
terion. He replaces the number of parameters M with an associated cost C(M) in the 
expression GCV = ASR /(l-C (M >iN)2, where C(M) is between 3M and 5M. 
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After encountering the overfit problems with the ordinary GCV, we found greater 
success using criteria which are specifically designed for selection and not just for the 
estimation of risk. 

This second group of criteria, .to which we turned our attention, includes criteria 
designed to approximate the test statistic that minimizes the overall probability of 
error in a Bayesian formulation of the model selection problem (such as the BZC of 
Schwarz 1978) or seeks to approximate the length of an asymptotically optimal 
information-theoretic code that describes the observed response values given the 
explanatory variables (such as the MDL criterion of Rissanen 1983). For either case, 
there is a formulation in which the dominate terms of the statistic define a criterion 

-equivalent to the following 

BIC = MDL = ASR + -~-CT’ In(N). 

This criterion is similar to the first group of criteria, but it incorporates a penalty 
which is a factor ( l/2) In N greater. For N between 50 and 400, the factor 
(l/2) In N is between 2 and 3. So for conservative values of o2 (values believed to 
be not smaller than the true error variance), the BICIMDL criteria and Friedman’s 
modification of the GCV criterion should give similar results. Indeed, it appears that 
in practice, Friedman’s modified GCV is closer to the BZCIMDL criterion than the 
original GCV criterion upon which the modification is based. 

The MAPS algorithm is set up to compute any of the above criteria, GCV, FPE, 
PSE, and MDL , as well as the AZC and BZC criteria that obtain when the error vari- 
ance o2 is regarded as an unknown parameter. An option selects which criterion is 
used for the minimization. 

For theoretical properties, the work of Shibata (1981) and Li (1987) demon- 
strates an asymptotic optimality property satisfied by any of the criteria in the first 
group (with penalty equal to 2(M lN) times a consistent estimate of 02). In particu- 
lar, Li (1987) gives conditions such that if MSE,,, = E (fM (X)-f (X))2 denotes the 
mean squared error in the estimation off(X) = E (Y I X) by a linear model M fit by 
ordinary least squares, then the mean squared error MSEh hr incurred by the selected 
model &? satisfies MSEG .~MSEM~,N + 1 in probability as N -+w , where 
MSEMN,N = minM MsE,v ,N . The minimizations are assumed to be taken for a fixed 

.sequence of lists of models HN, rather than for an adaptively determined list. The 
theory assumes a condition that effectively limits the asymptotic number of candidate 
linear models that may be considered. Namely, the quantity CnlEHN(NMSE,, N)-? 
must be negligible (as N +=), for some r for which the 2r’th moment of the distri- 
bution of the error (Y -E (Y I X)) is finite. For very large sets of candidate models 
this quantity is not negligible, and the theory is not applicable. Indeed, in this case, 
significant selection biases can occur that are characterized by a tendency to overfit. 
Another implication of Li’s condition is the requirement that the mean squared error 
for the best sequence of models MSEM,,N tends to zero slower than the rate (l/N) 
that is achieved if the true function were finite dimensional. In the case that the true 
function f(X) is in one of the finite-dimensional families, it is known that models 
selected by criteria in the first group have non-zero probability of asymptotically 
selecting an overfit model. 
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Asymptotic theory for model selection by the more conservative BIC or ,MDL cri- 
teria is given in Barron and Cover (1990) and Barron (1989,199O). This theory gives 
conditions such that the mean squared error of the selected model MSE,-, y converges 

- to zero at rate bounded by MSEMN,p + (MN lN ) In N . Convergence at this rate holds 
in both parametric and nonparametric cases and holds without restriction on the 
number of candidate models. As for the Shibata and Li theory, it is assumed that the 
criterion is optimized for a fixed sequence of lists of models, indexed by the sample 
size, rather th,an optimized stepwise for an adaptively determined set of models. 
Nevertheless, it suggests useful guidelines that might also be appropriate in the adap- 
tive context. Chief among these is the need for care in the choice of criteria when a 

-very large number of candidate models are considered. Somewhat larger penalties are 
required for accurate model selection in this case. 

4. Roughness Penalty for Polynomial Smoothing. Essential to polynomial 
methods of regression in the presence of noise and/or model uncertainty is the use of 
a criterion which incorporates a roughness penalty. In particular, the MAPS algorithm 
chooses the parameters of each model so as to minimize 

ASR + RP, 

where ASR is the average squared residual 

ASR = ~$f. (yi-f (Xi,e))2 
I=1 

and RP is the roughness penalty 

RP = 62 ~~ II V,f(Xi,e) I12. 
i= 1 

Then ASR + RP is used in place of the average squared residuals ASR in the model 
selection criteria discussed in the preceding section. 

Here 6 is a parameter that controls the smoothness of the model. One interpreta- 
tion of the roughness penalty is that it captures the sensitivity of the average squared 
error to slight changes in the input variables. If the inputs are permitted to be 
changed from Xji to Xjik 6, then ASR +RP is an estimate of the average squared error 
that would be incurred by the function with perturbed inputs. The 6 may often be set 
by the scientist or engineer who supplies the data as quantifying the size of changes in 
the input that should not be accompanied by significant changes in the response. Or it 
may be set by the statistician by inspection of a few runs to determine the one with 
which he is most satisfied. The selection of 6 may also be automated by generalized 
cross-validation, but at considerable additional computational expense. 

There is a relationship between polynomial smoothing and smoothing splines. 
The 2-nd order smoothing spline arises as the solution to the problem of minimization 
of 

1 N 
,isl(Yi - fcxi)) 2 + z2J II Vf(x) l12. 

For smoothing splines the minimization is taken over all continuously differentiable 
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functions f (x). In contrast, for polynomial smoothing, the integral is replaced, for 
convenience, with the sample average, and the minimization is taken over the res- 
tricted class of polynomial functions with specified bases. It is our experience that 

_ polynomial smoothing approximates the capabilities of spline smoothing, while provid- 
ing advantages of speed of computation, due to the reduced size of the dimension of 
the linear system that is solved to obtain the polynomial approximation. 

It is seen that polynomial smoothing with a roughness penalty is a generalized 
form of ridge regression. For a linear model 

f (X9@> = 2 ejBj(X)v 
. j= 1 

the roughness penalty is a positive definite quadratic function of the parameters 
8 = (el,...,e,jT, 

RP = OTR 8, 

where R is the m by m matrix with entries 

Rjk = 62 +.g i aBi:xi) aBiixi) . 
l=ld=l d d 

The roughness penalty prevents the estimation of models with large coefficients for 
terms that contribute large derivatives. With polynomial basis functions Bj(X) each 
derivative aBj(Xi)/aXd is also a polynomial but with the degree reduced by one in.the 
coordinate xd. The larger derivatives are typically associated with the higher-order 
terms. 

The set of equations to be solved for 8 is obtained as follows. Let 
V = ( lIN)BTB and c = ( lIN)BTy be defined as in Friedman, equation (49), where 
y = (yl,-~>‘N)~. Assume that the sample average of the response variable has been 
subtracted off so that jr = ( lIN)Cin,lyi = 0 and let 6; = (l/N) I I y I I2 denote the 
sample variance of y. The penalized average squared residual may then be expressed 
as the following quadratic function of 8, 

ASR + RP = (l/N)IIy-B8112+ eTR8 

= 6j? + eTve-2CTe + eTR 8 

= 6:+ eTVe-2CTe, 

where v = V + R . The parameter vector which minimizes this expression is found 
by soiving the modified normal equations 

Qe= C. 

Each new basis function introduces a new row and column of R and V, so the solu- 
tion may be updated by Cholesky decomposition in the same manner as explained by 
Friedman. 

.In its simplest form, the roughness penalty treats each of the variables equally. 
More generally, it may be desirable to aSSOCiate a parameter 6d.i for each value xd,i of 
the explanatory variables. The roughness penalty then takes the form 
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In like manner, the expression for the matrix R is modified to bring 8j,i inside the 
double summation. The choice 6d,i = aXt?i allows the penalty to be scaled to the 
observed spread of the explanatory variables as measured by the standard deviation 

_ 6zd. Alternatively, it may be desirable to let 6d,i be proportional to the magnitude of 
the observed values of the variables, that is 

6 d,i = I xd,i I 6. 

The latter choice helps to mitigate the effect of extreme observations. Also, in the 
case of polynomial basis functions, it allows the entries in the matrix R to be deter- 
mined as a weighted sum of entries of the matrix V, thereby avoiding much of the 
additional computational expense otherwise associated with the use of the roughness 

‘penalty. Specifically, R may be expressed as 

R jk = scdn= lrjd ‘kd vjk 9 

where rjd denotes the exponent of variable xd in the basis function 
Bj(x) = x;‘l . . . ~2. Note that the off-diagonal entries Rjk of the matrix R are zero 
for those pairs of basis functions Bi and Bk that share no common factors. The larg- 
est entries are typically on the diagonal and correspond to 
exponents. 

the terms with large 

Some of the characteristics of the roughness penalty 
Friedman’s MARS algorithm. He adds a small multiple of the 
to numerically stabilize the resulting modified normal equations. 

are incorporated in 
diagonal entries of V 

S.Experimental Results. First, we took 10 replications of the simulated data 
from Friedman’s example 4.2, each with a sample of size N =200. In this example, 
the dependence of y on x l,...,xl~ is additive, as given in Friedman’s equations (56) 
and (57), and the inputs are drawn uniformly over the unit cube [O,l]‘“. For each 
replication the observed response was scaled to have sample mean zero and sample 
variance one, but the input variables are left unscaled. The parameter for the rough- 
ness penalty was set to be 6 = 0.01, a moderately small value that allows for the high 
gradients of the response near x1 = 1.0 and near x2 = l/2 in equation (56). The gen- 
eralized cross validation GCV (without modification) was used as the selection cri- 
terion. The results of the 10 MAPS runs for each interaction limit mi=1,2,10 are 
summarized in Table A. Depicted are the averages and standard deviations based on 
the ten runs of the standardized integrated squared error ((SE), the standardized 
mean squared error of prediction (MSEP), the generalized cross validation (GCV), 
and the number of selected terms (TERMS). In accordance with the definitions in 
Friedman, the integrated squared error and the mean squared error of prediction are 
computing using knowledge of the true function and 5,000 new sample points for 
Monti Carlo integration. 

The results in Table A may be compared with those reported in Friedman’s Table 
3 in the N = 200 case. It shows that when the unmodified GCV criterion is used, if 
the model is forced to be additive, the polynomial method is nearly as good as the 
spline method; however, in the case that interaction terms are considered, mi=2,10, 
we have noticeably worse integrated squared error. The large average numbers of 
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terms 17.3 and 20.7 reveal that the polynomial models are overfit using the 
unmodified GCV criterion. Indeed, the first 11 or 12 terms were almost exclusively 
additive terms in the meaningful variables (x1 through x5), but the additional terms 

- chosen in the mi=2 and mi= 10 case were almost exclusively spurious cross product 
terms and terms involving the nuisance variables x6 through xlo. This large number 
of spurious models contribute to the large selection bias that results in overfit with the 
unmodified GCV criterion. 

We then repeated the experiment using the more conservative BICIMDL cri- 
terion. In the definition of the BICIMDL we used the known variance of the noise 
CJ’-= 1. The results are summarized in Table B. The results in Table B for adaptive 

--polynomial modeling compare quite favorably with those for adaptive splines in 
Friedman’s Table 3. Indeed, the averages and standard deviations of the integrated 
squared error and the mean squared error of prediction are either equally good or 
slightly better in every case. The most noticeable improvement is in the case that 
arbitrary interactions are allowed (mi= 10). With the BICIMDL criterion almost all of 
the spurious interaction terms are rejected. 

Next, we drew one sample of size 100 in accordance with Friedman’s example 
4.3. Again there are ten variables. The first two variables contribute to the response 
through a term which is a sinusoidal function of the product x1x2. The remaining 
contributions are additive, specifically, a quadratic term in x3 and linear terms in x4 
and x5. (Admittedly, the polynomial terms in the true response give polynomial 
modeling an unfair advantage for this example.) The other variables x 6 thr0ugh.x 1~ 
are not used by the true response. We set 6 = 0.01, 0 = 1.0, mi = 2, and standard- 
ized the observed response. With the BICIMDL criterion the terms and coefficients 
for the normalized model are given in Table C in the order in which they are selected. 
(The model is expressed in standardized form; it is unitized by multiplying by 
6, = 5.8189 and then adding y= 15.0549.) The criteria values suggest that the 
MAPS model and the MARS model are roughly equally accurate for this sample from 
example 4.3. 

Table C shows that apparently meaningful terms were selected by the MAPS 
algorithm with the BZCIMDL criterion, with the exception of the third term, which is 
a quadratic in x4 while the true response is linear in x4. It is anticipated that this term 
would be removed by a backward stepwise selection. When the unmodified GCV is 
u-sed as the criterion, six more terms are selected, all of which involve interactions 
with the extraneous variables, x6, x7, x9, and xlo. Evidently, the extraneous variables 
introduce two many diverse candidate terms for the GCV to provide a uniformly 
accurate criterion. 

Finally, we considered the Portuguese olive oil data, a copy of which was 
obtained from Friedman. We standardized the response variable to have sample 
mean zero and sample variance one. Inspection of the data set shows that the vari- 
ables are rounded to the nearest one-tenth, so we set 6 = 0.05, accordingly. Using a 
ten-fold cross validation as explained in Friedman, we ran MAPS ten times each with 
41 or 42 observations removed, using the unmodified GCV criterion, and a maximum 
term limit of 30. The resulting standardized average squared residual (CV > and rela- 
tive frequence of misclassifications (error CV) on the cross-validated data is given in 
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Table D. Also show is the unmodified GCV and number of variables obtained from 
the MAPS procedure with all observations included. With the GCV criterion the 
MAPS procedure hit the maximum term limit of 30. (Subsequent runs with an 

-increased term limit stopped at 42 terms, fueling suspicion of overfit). Despite the 
excessive number of terms selecteh with the unmodified GCV criterion, the cross- 
validation results in Table D for MAPS are as good as obtained by Friedman in Table 
9 with MARS and the least squares criterion. Nevertheless, improved cross validation 
results may be possible with MAPS using a more conservative performance criterion. 

In Table E, we show the selected model, when MAPS is run with the BZCIMDL 
criterion and 02= 0.03 (which corresponds to a standardized variance of 0.18). Here 

-we standardized both the observed explanatory variables and the response variables to 
have sample mean zero and sample variance one. In this case a more parsimonious 
model (16 terms) is selected. The values of the BICIMDL and GCV criteria for this 
selected model appear to be reasonable, but we have not yet completed the ten-fold 
cross validation of models selected by BZC IMDL to provide additional confirmation 
of the apparent accuracy. 

6. An adaptive network example. In this last section, we illustrate a simple feed- 
forward polynomial network. This is created using a option of the MAPS algorithm. 
With the feedforward network option, each step of the algorithm augments the X 
matrix with the current model output for consideration at subsequent steps. The set 
of candidate new terms, when submodel outputs are fed forward, is determined as 
before. An exception is that terms which are linear in a previous model output are 
not permitted, since such a term would introduce a linear dependence with other 
terms still on the term list. Consequently, we require previous model outputs to be 
initialized in the list as a nonlinear product with itself or with other variables. 

Table F depicts the results using the Portuguese olive oil data with the network 
option and the BICIMDL criterion. Here the outputs from model 3 and model 6 were 
selected by the criterion to be input to subsequent models. The bases functions for 
models 3 and 6, respectively, are the same as the first 3 and first 6 terms in Table F. 
However, the coefficients for these submodels are somewhat different than for the 
final linear combination in model 11. 

The effective number of parameters of the network for use in the performance 
criteria is defined as the number of coefficients directly computed in the present 
model plus ~1 times the number of parameters in submodels that feed into the present 
model. For the results in Table F we are using a = 0.3. When a step of the algo- 
rithm selects a pair of terms, only the output with both included is passed as an input 
to subsequent models; this explains why there is no M 2, m 5, m7, or m9 in Table F. 

The results with the network option for the olive oil data show a slight improve- 
ment in the values of the criteria. It is interesting that in Table F the algorithm proved 
eager to include successive powers of an intermediate output, rather than successive 
powers of a single variable as in Table E. Cross validation values have not yet been 
computed for the models in Tables E and F. We suspect that the CV will be slightly 
better but not substantially better than reported in Table D. 
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The network option also was tried on the data from examples 4.2 and 4.3. In both 
of these cases, no factors were selected from the list of previous models. So in these 
cases, the result of the network synthesis algorithm reverts to the results obtained 

- with the conventional adaptive selection algorithm. This is not surprising since the 
synthetic examples 4.2 and 4.3 are defined directly as a sum of terms rather than 
indirectly through a composition. Experience has shown, as reported in Barron et.al. 
(1984, 1988), that network methods frequently provide useful answers for large- 
dimensional data from real engineering and scientific problems for which conventional 
linear techniques have not been as successful. 

7. Conclusions. ,4daptive synthesis of nonlinear models is essential in those 
empirical modeling contexts where scientific or engineering considerations do not pro- 
vide a complete parametric solution, and where the high-dimensionality of the space 
of candidate inputs prohibits the use of other nonparametric smoothing techniques. 

The techniques that gain widest acceptance among empirical modelers are those 
that are statistically accurate, computationally reasonable, flexible to use in diverse 
contexts, and (sometimes most importantly) well understood by the scientist or 
engineer and his clients. The paper by Jerry Friedman goes a long way toward making 
a powerful technique clearly understood. Also, the thoroughness of his methodologi- 
cal and experimental studies of a statistical modeling technique provide an excellent 
prototype for what, hopefully, will be many more such papers in the field. 

The preliminary comparison provided here of adaptive regression splines with 
adaptive polynomial smoothing on several data sets suggests that the spline method 
does not provide any substantial gain in accuracy over the polynomial method. This 
should provide some pause for the empirical modeler who is debating whether to 
switch from the more customary polynomial models to the sometimes less familiar 
splines. 

In addition to the known approximation capabilities, polynomial models have in 
their favor the relative ease of interpretation in many scientific and engineering con- 
texts. Against polynomial models has been the fact that least squares polynomials are 
prone to wild extrapolative behavior in the high-order case. Here we have pointed out 
that the simple device of a roughness penalty, familiar to spline smoothers, can be 
used for polynomial smoothing to mitigate this wild behavior. We recommend prop- 
erly smoothed and adaptively synthesized polynomial modeling as a serious competitor 
to adaptively synthesized splines. 
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Table A 

C~zzrLary of the results of YAPS modeiing with the unmodified 
C-C'*' criterion cn Friedman's additive data (Section 4.2). 

mi ISE MSEP GCV TERMS 
7 
; 

.030(.010) .16(.01) .15(.01) 12.0(1.4) 

.053(.018) 18(.02) .14(.01) 
:21(.31) .13(.01) 

17.3(2.9) 
LO .086(.037) 20.7(5.2) 

Table i3 

Summary of the results of MAPS modeling with the BIC/MDL 
criterion on Fy+ --edman's additive data (Section 4.2). 

mi ISE MSEP BIC,MDL TERMS 
1 .025(.006) .155(.006) .16(.01) ll.l(l.3) 
2 .030(.007) .159(.007) .16(.01) 11.5(1.6) 

10 .031(.007) .160(.007) .16(.01) 11.3(1.6) 

Table C 

Coefficients and exponents of 
fcr the model in Example 4.3. 

Term Coefficient xl x2 x3 X4 x5 x6 x7 x8 x9 x10 
1 -1.6809 0 0 0 0 0 0 0 0 0 0 
2 2.0970 0 0 0 1 0 0 0 0 0 0 
3 -0.3138 0 0 0 2 0 0 0 0 0 0 
4 9.2363 0 1 0 0 0 0 0 0 0 0 
5 -0.2508 0 2 0 0 0 0 0 0 0 0 
6 -0.3203 1 0 0 0 0 0 0 0 0 0 
7 0.3347 2 0 0 0 0 0 0 0 0 0 
8 -4.0523 0 0 1 0 0 0 0 0 0 0 
9 3.9369 0 0 2 0 0 0 0 0 0 0 

10 3.7853 0 0 0 0 1 0 0 0 0 0 
11 -0.0794 2 1 0 0 0 0 0 0 0 0 
12 -5.9382 2 2 0 0 0 0 0 0 0 0 
13 6.9397 1 1 0 0 0 0 0 0 0 0 

GCV 
0.041 

the selected polynomial terms 

BIC,!<DL 
0.049 



Table 3 

Portuguese Glive Oil 

method #variables GCV cv error CV 

:JkPS(mi=2) 7 .15 .22 .036 

Table E 

Coefficients and exponents of the selected polynomial terms 
for the ?ortuguese olive oil data. 

Term Coefficient xl x2 x3 x4 x5 x6 x7 x8 x9 xlOxllx12xi3 
i -0.5731 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0.2923 0 1 0 0 0 0 0 0 0 0 0 0 0 
3 0.2829 0 2 0 0 0 0 0 0 0 0 0 0 0 
P 0.3247 0 2 0 0 0 0 0 0 0 0 010 
5 -0.0088 0 0 0 0 010 0 0 0 0 0 0 
6 0.0588 0 0 0 0 0 2 0 0 0 0 0 0 0 
7 -0.2483 0 1 0 0 0 0 0 0 0 0 010 
8 -0.0794 0 2 0 0 0 0 0 0 0 0 0 2 0 
9 -0.0417 0 2 0 0 0 0 0 0 0 0 0 3 0 

10 -0.0417 0 2 0 0 0 0 0 0 0 0 0 0 1 
11 -0.7796 0 3 0 0 0 0 0 0 0 0 0 0 0 
12 0.0527 0 4 0 0 0 0 0 0 0 0 0 0 0 
13 0.1896 0 5 0 0 0 0 0 0 0 0 0 0 0 
14 -0.0520 0 2 0 0 0 0 0 01 0 0 0 0 
15 -0.0264 0 0 0 0 0 2 0 0 0 0 010 
16 0.0440 0 4 0 0 0 0 0 0 0 0 0 01 

GCV BIC,MDL 
0.159 0.188 

Table F 

Coefficients and exponents of the selected polynomial terms with 
the feedforward network option, for the Portuguese Olive Oil data. 

Term - 7 
; 
2 
4 
5 
6 

8 
9 

- n - ‘r 
. l- 

Coefficient xl x2 x3 x4 x5 x6 x7 x8 x9 xlOxllx12x13m3 m4 m6 m8 ml0 
-0.71278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
-0.25350 010000000000000000 

0.07698 0 2 0 0 0 0 0 0 0 0 0 0 0 9 c 9 0 0 
0.18919 000000000001 010 0 0 0 

-0.00770 0 0 0 0 010 0 0000000000 
0.02824 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
1.89370 0 0 0 0 0 0 0 0 0000000200 
0.49567 000000000000000300 

-1.26261 000000000000000400 
0.32184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 

-0.05317 0 2 0 0 0 0 0 010 0 0 0 0 0 0 0 0 

Effective #Parameters GCV BIC,MDL 
14 0.14 0.174 
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I thank the Editors for inviting such a distinguished group of researchers to discuss this paper, and 
the discussants for their valuable contributions. The discussants are among the leaders in the field of 
function approximation and estimation; it is therefore no surprise that their comments are so perceptive and 
stimulating. Many important suggestions are made for improving the MARS procedure. These discussions 
provide a clearer and deeper understanding of both the strengths and limitations of the MARS approach. 
Each of them raises many very important issues, some of which I respond to below. Space limitations 
preclude a more thorough discussion of all of the cogent points and innovative ideas presented. 

S humaker 
I thank Professor Shumaker for providing the additional references, especially the recent ones that were 

not available in 1987 when I performed the main body of this work. Of the five that relate to multivariate 
adaptive approximation, only one (deBoor and Rice, 1979) presents a procedure that could possibly lead 
to a practical method in high dimensions. Their procedure is essentially recursive partitioning (15) using 
polynomials for the parametric functions gm(x 1 {aj};) in each subregion. The limitations of recursive 
partitioning methods are discussed in Section 2.4.2. It is perhaps interesting to note than in none of these 
papers was the method proposed therein ever actually applied to any (real or synthesized) multivariate 
problems. 

In the asymptotic limit with no noise it may be true that only the continuity properties of the function 
to be estimated and the degree of the polynomials in each subregion limit the accuracy of a recursive 
partitioning scheme. As discussed in Section 2.2, all practical sample sizes are far from being asymptotic 
in high dimensional problems. In such cases there is a trade-off between the number of subregions and the 
maximum degree of the approximating polynomial in each one. A q-degree polynomial in n dimension is 
characterized by more than (*:“‘I) parameters. Thus, even globally, there is a severe restriction on the 
degree of a polynomial fit. One can use the available degrees-of-freedom to fit moderate degree polynomials 
in a few regions or very low degree ones in many regions. Which is the best strategy in a particular 
application will depend upon the true underlying function f(x) (l), b t u a g reat body of experience indicates 
that the latter approach gives the best results in general. In fact, the most popular choice with recursive 

- partitioning methods is zero degree (AID, Morgan and Sonquist, 1963, and CART, Breiman, et al., 1984). 
With this rather strong limitation on the allowable (and desirable) polynomial degree in each subregion, the 
lack of continuity of approximations derived from recursive partitioning methods does have an adverse effect 
on their accuracy, especially when compared to similar methods that produce continuous approximations. 
This is provided, of course, that the function to be approximated is relatively smooth. 

The discussion concerning end effects in Section 3.7 centers on the bias-variance trade-off of estimates 
near the edges. In the mathematical approximation literature the value of the function is generally assumed 
to be measured without error [c = 0 (l)]; that is, all relevant variables that contribute to the variation of the 
response are available to help construct the approximation. In this case there is no variance and only bias 
considerations are relevant. When there is error, the variance of the function estimate near the edges is a 
dominant concern. Having the estimate smoothly match a linear function near the edges removes only the 
first order bias there, but has a strong moderating influence on the variance. In fact, even this precaution 



is sometimes inadequate and additional measures are required (see Section 3.8). As discovered by both 
Breiman (1989a) and Stone and Koo (1985) restricting the dependence of the approximation near the edges 
to be (at most) linear is an essential ingredient for controlling variance. 

I agree that if one does not need C’ functions is is often better to use the approximation based on linear 
splines (see second paragraph of Section. 3.7). The continuous derivative approximation often does better, 
but the effect is seldom dramatic, whereas the converse is not true. (See the example in Section 4.7 and 
the comments of Buja, Duffy, Hastie, and Tibshirani.) When the piecewise-linear approximation is doing 
dramatically better this is evident from the estimated lack-of-fit (relative GCV scores). Again the converse 
is not necessarily true. Since the model optimization is based on the linear spline basis, the piecewise- 
cubic fit to the data is generally slightly (to moderately) worse than the corresponding piecewise-linear 
fit for comparable (future prediction) accuracy. I generally use the piecewise-cubic model if its optimized 

. GCV score is no more than 10 to 20 percent worse than that for the linear spline fit. Otherwise, I prefer the 
piecewise-linear model. Of course one could use cross-validation to more directly judge the relative quality 
of the two models. 

I also agree that the approximation properties of the modified (piecewise-cubic) basis functions are not 
yet well understood. Whether they approximate as well as linear, quadratic or other splines will depend on 
the particular application. It seems reasonably clear that they will perform better than quadratic or higher 
order splines in noisy situations (with a smooth underlying function) owing to the end effects discussed above 
(Breiman, 1989a, and Stone and Koo, 1985). 

The reason for using the truncated power spline basis is given in Section 3.9; there is a one-to-one cor- 
respondence between knots and basis functions. This was the central ingredient in the (univariate) adaptive 
regression spline strategy originally proposed by Smith (1982). Lyche and Mmrken (1988) propose essentially 
the same idea but use a B-spline implementation. As described in their paper, severe computational com- 
plexities are involved with the B-spline approach, as compared to the simple and elegant method proposed 
by Smith (1982). In the multivariate case the analog of these increased computational complexities are likely 
to lead to insurmountable problems. 

Owen 
I am grateful to Professor Owen for contributing his valuable piece of research to the discussion of this 

paper. He has set down a theoretical framework that explains many of the results that I obtained empirically 
through Monte Carlo studies. More importantly his work provides the understanding and insight necessary 
to suggest improvements to the simple model selection approach that I implemented. 

The results contained in his last paragraph concerning the relative insensitivity of the fit to the precise 
locations of the placed knots are surprising and encouraging. I observed this phenomenon during empirical 

_ studies on varying the minimum span (43). The quality of the fit appeared to be remarkably insensitive to the 
value used provided it was not too small (in high noise situations). Also, I implemented an algorithm for post 
knot optimization (“model polish”) given the topology of the model (23) derived form the forward/backward 
stepwise strategy. This algorithm minimized the lack-of-fit criterion simultaneously with respect to all the 
knot parameters {tkm} in (23). Th’ is can be done surprisingly rapidly using a minor variation of an algorithm 
originally proposed by Breiman (private communication) in the context of recursive partitioning. Given the 
suboptimal way in which the knots are placed with the stepwise strategy, the expectation was that this model 
polish would provide distinctly superior fits. This was not the case. In all situations in which I tried model 
polish, the resulting fits were changed very little from that provided originally by the stepwise algorithm. It 
should be noted however that the examples that I used in both studies (minimum span variation and model 
polish) involved very smooth functions with no really sharp local structure. For functions with such (sharp) 
structure, model polish may provide substantial improvement. Routinely applying model polish would then 
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provide insurance against this possibility. 
Owen’s suggestion is to deliberately use a very coarse grid during the initial stepwise knot placement 

and then to rely on model polish to produce the final refined model. This will not improve speed for least- 
squares fitting since the updating formulae (52), in conjunction with suggestions in Stone’s discussion, allow 
all possible (data point) knot locations to be evaluated with nearly the same computation as any subset of 
them. As Owen points out however, for lack-of-fit criteria that to not admit fast updating, this strategy will 
produce dramatic computational savings, perhaps enough to make their routine application feasible. 

I agree with Owen that MARS may have potential as a method for modeling noiseless data such as that 
produced by computer simulation experiments. Although it may produce adequate results in its present 
formulation it is quite likely that its performance can be improved for this purpose by changing aspects 
of the implementation to take advantage of the knowledge that there is no noise (as noted by Owen). For 

.. example, the strong concern about end effect variance, that motivated several important design decisions, 
could be relaxed and different strategies may be more appropriate in this case. Also, different model selection 
strategies are likely to help improve performance in these settings. 

Stone 
Stone’s suggestions in the second and third paragraphs of his discussion turn out to be quite useful. 

The principal idea in the “t-to-enter” algorithm is to orthogonalize both the response and the yet to be entered 
(predictor) variables with respect to each predictor as it is entered into the regression equation. In the 
context of MARS the corresponding predictors are the basis functions derived during the forward stepwise 
procedure (algorithm 2). Of course, during the execution of the forward stepwise algorithm all of the yet 
to be entered basis functions are not known. However, one can orthogonalize each basis function as it is 
entered with respect to all of those already selected, thereby keeping all currently entered basis functions 
orthonormal to each other. Let BM(x) be one of two (centered) next basis functions selected as a result of 
executing the outer loop of algorithm 2. Then fin and CM are saved where 

M-l 
&(x) = BM(X) - c bag& /bz&, 

m=l 1 
with 

bMm = 2 BM(xi)Bm(xi), l<m<M--1 
i=l 

N M-l 

(75) 

bMM = x[BM(xi) - C bMmBm(xi)]2 
i=l m=l 

-and 

CM = 5 !/i&(Xi). 
i=l 

The denominator bMM in (75) is zero if and only if BM((x) has an exact linear dependence on the previously 
entered basis functions {B,(x)}?-‘. In this case 8,(x) and CM need not be saved. BM(x) must still be 
retained however to serve as a candidate parent for future basis functions. 

Consider now the search for the next basis function BIv+i(x). The (least-squares) lack-of-fit criterion 
to be evaluated in the innermost loop of algorithm 2 (line 7) at each potential knot location t is proportional 
to -I(t) where 

I(t) = 
CM+l(t) - c:, C&M+@)]’ 

VM+LM+l(t) - xi:, y&+#> 
(76) 
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with {ci}iW given in (75) and the other quantities given by the updating formulae (52) with the orthonormal 
basis functions { &}y replacing the {Bd - &}y appearing there. The quantity I(t) (76) is the improvement 
in the residual sum of squares resulting from adding the corresponding basis function with knot location t. 
This must be computed at every eligible knot location. 

A computational advantage results from the fact that I(t) (76) can be computed rapidly in O(M) time. 
The strategy described in Section 3.9 required a partial Cholesky decomposition [O(iW2)] and a full back- 
substitution [also O(M2)] t a each eligible knot location. Since the computation associated with the updating 
(52) is O(M) ( as 1 was before) the total computation for the new approach is ‘t 

in general, and C - nNM2, for additive modeling (mi = 1). Here M max is the maximum number of basis 
functions. Basically the second term in the sum of (53) has been eliminated by this approach reducing the 
computation by roughly a factor of M,,, for (very) large values. This will enable the MARS procedure to 
be applied to much larger and more complex problems than with the initial implementation described in 
Section 3.9. 

I have implemented this new approach into the latest version of the MARS software. In order to get 
an idea of the computational savings involved, I reran the example of Table 1 (this time on a DECstation 
3100) contrasting the running times of the new versus the old implementation. Table 14 shows the ratio of 
running times (new/old) in the same format as Table 1. 

Table 14 
Ratio of running times (sec.) for the new versus old (new/old) implementations of the least-squares updating 
algorithm on the example of Table 1. Computations were performed on a DECstation 3100. 

M max 5 10 20 40 50 
mi 
1 9 5 g 2.4 3.1 

.4 
& 

2.3 8.4 14.1 
2 -4 3.7 16.0 

.6 2.1 73 55.2 
22.9 
107.3 

4 -s u 5.3 
.7 11.4 

16.4 
2.3 

24.a 
114.7 228.2 

The last two columns especially of Table 1, representing the higher M,,, values, indicate that the 
computational savings associated with the new approach are nontrivial. For example, with mi = 4 and 
~M,ax = 40 or 50, one can now do a ten-fold cross-validation to access the quality-of-fit in the same time 
that the old program could do just a single fit. Buja and Duffy (see discussion of Buja, Duffy, Hastie and 
Tibshirani) consider very large M,,, values, for which the computational savings ought to be even more 
dramatic. 

Stone’s suggestions for extending MARS to logistic regression parallel those made by Buja, Duffy, Hastie, 
and Tibshirani. I think this idea has substantial potential and that it should lead to a better method than 
that described in Section 4.5. His ideas for density and conditional density (MARES) estimation are quite 
clever and intriguing, and hold practical promise. The computational burden, especially in the multivariate 
case, is likely to be heavy unless special tricks can be found. Perhaps the ideas mentioned by Owen in the 
last para.graph of his discussion might be helpful here. 

Lewis and Stevens (1990) have been studying the application of MARS to the autoregressive modeling 
of time series. They report considerable success. 

O’Sullivan 
Professor O’Sullivan presents some valuable ideas for enhancing the power and interpretability of MARS- 

like approaches. MARS is indeed coordinate sensitive as are most of the commonly used regression techniques 
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(linear regression with variable subset selection, CART, additive modeling). The very notions of main 
effects and interactions are coordinate sensitive. Coordinate sensitive procedures will outperform their affine 
equivariant counterparts in situations for which the dependence of the true underlying function is simplest in 
the coordinate system chosen (usually the original measured predictor variables). Here simplicity is defined 
in terms of the ease with which a given.procedure can approximate the function. Introducing adjustable 
linear combinations in place of the original coordinates removes the coordinate sensitivity and allows the 
approximation procedure to search for linear combinations that provide the simplest representation. This 
potential reduction in bias comes at the expense of increased variance (optimizing with respect to the 
linear combination coefficients) and usually substantially increased computational complexity. Interpretation 
of the fitted models is most easily achieved in terms of the original measured variables so that special 
interpretation/visualization tools are necessary for affine equivariant procedures. O’Sullivan presents some 

. nice ideas along these lines in his discussion. 
Experience with the linear combination split option in CART (Breiman et al., 1984) has yielded some- 

what surprising results. Employing linear combination splitting seems to only rarely give substantially 
improved performance over axis oriented splitting and surprisingly often it does worse. This may be a re- 
flection of the types of problems to which CART has been applied. It also might be a reflection of the local 
variable subset selection property of axis oriented recursive partitioning (see Section 2.4.2) which, of course, 
is a coordinate sensitive concept. 

As discussed in Section 3.3, recursive partitioning procedures produce basis function sets that involve 
high order interactions. This explains their poor performance in situations where main effects and low 
order interactions dominate. On the other hand, in converse situations where the true underlying function 
happens to dominately involve high order interactions this aspect of recursive partitioning becomes an asset. 
The alternating current examples (Sections 4.4-4.4.2) were included because they involve strong interaction 
effects to all orders. (Such examples involving real situations are not easy to find.) The MARS results 
indicate that it does a credible, if less than perfect, job in this case. CART with its bias toward high order 
interactions ought to do better here except that lack of smoothness limits its accuracy. A smoothed version 
of CART, such as O’Sullivan’s SCART, mitigates this limitation and, as reported in his discussion, it does 
somewhat better than MARS. The two examples where he reports MARS does substantially better are ones 
that involve dominately main effects and/or only low order interactions. 

O’Sullivan suggests a clever approach based on finite element techniques (SCART) for smoothing CART 
models. Another way to implement a smoothed version of CART would be to directly follow the paradigm 
outlined in Section 3.2. That is, replace the CART step functions by corresponding higher order (univariate) 
spline functions, without employing the strategy described in Section 3.3, i.e. the parent basis function 
would be removed as in CART. Repeated factors involving the same variable would be allowed in the same 
basis function product with this strategy. Also? the backward stepwise procedure would follow that used in 

- CART. A possible advantage of this approach over one based on finite elements is that no additional global 
smoothing (really smearing) parameter s (or p) need be introduced and adjusted to optimize the fit. All 
(local) smoothing is controlled directly by the forward/backward knot placement algorithm as in CART. 

Breiman 
I share Professor Breiman’s wonderment at this article appearing in the Annals of Statistics. I was 

surprised when the journal solicited this paper and astonished when I discovered that they were serious. 
I hope that as a result traditional readers of the Annals will not cancel their subscriptions, but instead 
swallow hard and wait for the next issue where things ought to be back to normal. 

Breiman’s remarks center on the issue of model selection and specifically on the use of a penalized least- 
squares criterion for this purpose. I agree that the (historical) name “generalized cross-validation” for the 
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GCV criterion (30) is misleading and that, especially with nonlinear fitting, it bears little resemblance to 
ordinary leave-one-out cross-validation. This fact, in and of itself? does not indicate its superiority or lack 
thereof. Ordinary cross-validation has its detractors and the issue of model selection is still being hotly 
debated in what has become a vast literature on the subject. I wholeheartedly agree with Breiman that 
the use of model selection criteria derived for linear fitting in nonlinear contexts (such as the use of C, or 
F-testing with variable subset selection procedures) represents a long standing abuse in our field. In fact, 
Breiman has been one of the (few) leaders in pointing this out and suggesting remedies [Breiman (1989c) 
and Breiman and Spector (1989)]. The modification to the (linear) GCV criterion proposed in Section 3.6 is 
an (admittedly crude) attempt to account for the nonlinear aspects of MARS fitting. As noted by Breiman 
the motivation for this approach was largely computational. The extent of its statistical success seems 
remarkable given the crudeness of the approximation. There is nothing intrinsic in the MARS approach 

.. to the use of any particular model selection criterion. If a better criterion can be found, this will improve 
the performance of MARS: and so the results obtained with it so far represent lower bounds on what may 
be possible with this approach in the future. With the increased speed of the MARS algorithm obtained 
as a result of Stone’s suggestion (Table 14) model selection through ordinary cross-validation is certainly 
computationally feasible except for large problems. (For these an independent test set can be used.) I intend 
to implement this approach and compare its performance to that of the current implementation. To the 
extent that Breiman’s speculations are correct this should lead to improved statistical performance for MARS. 

I also found the “packing problem” to be an important concern. This was the motivation for the 
introduction of a “minimum span” described here in Section 3.8 and in Friedman and Silverman (1989), 
Section 2.3. Requiring a minimum number of observations between successive knot locations limits the 
number of candidate models in precisely the same way as Breiman’s strategy of placing a limited number I’ 
of initial knots in his backwards stepwise method. They both limit the number of eligible knot locations and 
prevent nearby models from becoming too closely packed in the space of candidate models. The analogy in 
MARS to Breiman’s strategy of choosing K through model selection, would be to adjust the parameter L that 
controls the minimum number of observations between knots, to optimize a model selection criterion such 
as cross-validation. The generic default value for L given by (43) is conservative in the sense that it is set as 
small as possible consistent with some resistance to runs in the noise. The motivation is to keep the procedure 
as sensitive as possible to potential sharp structure in the function. When MARS is used in an initial 
exploratory mode, this seems like a reasonable choice. This of course has the collateral effect of increasing 
the variance of the estimates (possibly reacting to noise masquerading as sharp structure). When the true 
underlying function is very smooth with no sharp structure anywhere (such as f(z) = ,667 sin( 1.3x1)- .465x!) 
then there is no bias increase in increasing L, but there is a corresponding variance decrease. Figures 1 and 
2 of Breiman’s discussion compare MARS using its generic default value (no adjustment) to a procedure 

-for which the corresponding parameter has been adjusted to do best on this particular example (through 
cross-validation). Such adjustment is a good idea, and I recommend it with MARS modeling, especially in 
the latter stages of obtaining a final model estimate. 

Restricting the minimum number of observations between knots (or the number of initial knots IC in a 
backward strategy like Breiman’s) is an indirect way of trying to limit the global (absolute) second derivative 
of the final estimate. In his discussion of TURBO (Friedman and Silverman, 1989) Hastie (1989) suggested 
that the sometimes “wild” behavior of adaptive spline estimates (seen in low signal to noise, small sample 
situations) could be mitigated by directly placing a mild bound (or penalty) on the average squared second 
derivative. (As can be seen in Figures 1 and 2 of Breiman’s discussion, the “wild” estimates tend to have 
much higher absolute second derivatives.) Such a bound or penalty is global in nature, so that if one wanted 
to retain the flexibility of adaptive regression splines to adapt the degree of smoothing locally, the penalty 
should be made just large enough to inhibit possible wild behavior. In their discussion of this paper Buja, 
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Duffy, Hastie, and Tibshirani show how to extend this idea to the more general context of MARS, and, 
in addition? suggest the possibility using this approach for general model selection in place of backward 
basis function deletion. Both ideas are straightforward to implement in MARS and are currently under 
investigation (jointly with Hastie). We expect this approach to produce the biggest improvements in small 
sample, low signal to noise, situations where the underlying function is very smooth. 

Breiman points to some of the simulation study results as indicating a general failure of the (modified) 
GCV criterion (30) when used in the context of MARS. As noted above the MARS procedure in no way 
requires the use of this criterion and one that can be shown to work better would be enthusiastically welcomed. 
However, I feel an obligation to those who support GCV to respond to some of Breiman’s concerns. Cross- 
validation produces an estimate of average predicted squared error. It can be shown to be an unbiased 
estimate but it surely has variance [sometimes rather high - see Efron (1983)]. For this reason it will not 

.. select the best model every time. I view the pure noise results in Tables 2a and 2b to be highly encouraging. 
While the GCV score estimated the MARS model as doing (slightly) better than the response mean about 
half the time, the actual distribution (percent points) show that it hardly ever claims that the MARS 
model is very much better, making it unlikely that one would be led to embarrassing conclusions. Whether 
ordinary cross-validation would do better, given the high variance of its estimates, is by no means certain. 
In any case, the results in Tables 2a and 2b are really more a test of the smoothing parameter choice d = 3 
(32), rather than the criterion (30), since one can make the procedure arbitrarily conservative by increasing 
the value of d. The fact that on the data of Section 4.3 (Table 5b) full MARS modeling does as well as 
when interactions are restricted to be bivariate (mi = 2), represents a (fairly dramatic) success for the model 
selection procedure. 

When the number of basis functions that can potentially enter is very large, beginning with forward 
stepwise selection is the only viable option. Sample size limitations, if nothing else, do not permit fitting 
with the full (astronomically large) basis set. In fact Breiman’s (1989b) implementation of the II-method 
employs a forward then backward stepwise approach (using GCV for model selection). It’s my guess that in 
low dimensional applications (ns3), the II-method will emerge as a strong competitor to other procedures 

intended for those settings, especially for certain very highly structured functions. [More detailed comments 
on the II-method appear in the discussion of Breiman (1991)]. 

Golubev and Hasminskii 
Golubev and Hasminskii raise the important issue of the theoretical properties of MARS when applied 

to various classes of smooth functions. I appreciate their inclusion of the known general results in this area. 
Gaining any theoretical understanding of the performance properties of MARS would likely be an enormous 
help in improving it. 

Buja, Duffy, Hastie and Tibshirani 
The discussion by Buja, Duffy, Hastie and Tibshirani describes important enhancements to MARS (and 

related procedures) that will likely improve both performance and interpretability. I am especially grateful 
for the discussion of their experiences with MARS on an important real problem. One tends to learn much 
more about a procedure when it is applied in a setting where the actual answer is the important thing, rather 
than serving simply as a test bed for the procedure. 

A diagnostic tool indicating when a future covariate vector is outside the range of the training data 
is important. With flexible fitting procedures like MARS the notion of “outside” needs to be broadened. 
Simply being inside (say) the convex hull of the design may not be enough to be safe. If the density of the 
design contains extended sparse or empty regions (“holes”), predictions within those regions may be suspect, 
especially if they are dramatic (far from the response mean). A diagnostic procedure that could indicate 
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such situations would be an invaluable companion to any flexible fitting procedure in practical applications. 
Buja and Duffy’s experiences with using MARS raised a series of questions put forward in their discus- 

sion. I have observed some of the phenomena they relate in my experiences with MARS. I will try to address 
the issues they raise in their points l-5 of Section 1 of their discussion. 

1. The recommendation at the end of Section 3.6 for choice of M,,, (maximum number of basis functions) 
was intended to serve as a starting guide. It will not likely be the final best choice in all situations. 
As was done by Buja and Duffy, I recommend some experimentation with several values, using cross- 
validated performance as a guide, before a final model is chosen. 

2. The “cost” parameter d (32) is the primary smoothing parameter of the MARS procedure. [Secondary 
less influential smoothing parameters are M,,, and L(a) (43)]. I ncreasing its value will cause fewer 
basis functions (knots) to be entered, thereby increasing smoothness. The penalty increase (in the GCV 

. criterion) that it regulates is intended to compensate for the increased degree of data fitting associated 
with the stepwise basis function selection. As such its value should depend on the degree of optimiza- 
tion performed. This in turn has a mild dependence on other parameters that limit the optimization 
procedure such as Mmax, L (43), and mi (maximum interaction order). Its greatest dependence can 
be, however, on the underlying function f(x) (1) w h en it is highly structured. The default value d = 3 
[d = 2 for additive modeling (mi = l)] was chosen (mainly through simulation studies) to be appropri- 
ate for the null situation, f(x) = constant. This is a conservative choice and is appropriate as a starting 
value in order to avoid the embarrassment (discussed by Breiman) of fitting pure noise with a structured 
approximation. The results shown in Tables 2a and 2b indicate that it works reasonably well for this 
purpose. Theoretical results quoted in Owen’s discussion, however, suggest that this choice might be 
too conservative for highly structured functions (far from null situations). The intuitive reason is that 
such highly structured functions give rise to highly preferred knot locations and the sampling functions 
induced by the noise are not strong enough to cause (initial) knots to be placed far from these preferred 
locations. The optimization procedure is thereby (indirectly) restricted as to where it can place knots, 
reducing the variance of the estimates. In the null case the true underlying (constant) function has no 
preference at all for where knots are located and knot placement is totally driven by the noise, induc- 
ing the most variance. The results quoted in Section 3.6 were based on simulation studies involving 
very smooth weakly structured functions, where the-default values motivated by the null case seemed 
to work reasonably well. The situation faced by Buja and Duffy seems to be one involving a highly 
structured function with sharp threshold effects. The default values may not be appropriate in this case. 

3. In the present implementation of MARS, d (32) is not adjusted for Mmax although it would be reasonable 
to do so. The oddities observed by Buja and Duffy may stem from implementation details associated 
with the backward stepwise strategy like those pointed out in Owen’s discussion. 

_ 4. The anomalous behavior associated with the piecewise-cubic fits observed by Buja and Duffy is (as they 
concluded) due to the (apparently) highly structured nature of their function. This same effect was 
observed in the semiconductor design example in Section 4.7. It also has sharp threshold effects that 
cause problems for the derivative smoothing. (Note that Section 4.7 was added to a later version of the 
manuscript than was supplied to the discussants.) This anomalous behavior is in some sense a blessing 
in disguise. It stems from the ability of the piecewise-linear basis to approximate sharp thresholding 
with a small number of basis functions; a single threshold can be captured with at most two knots. 
Imposing a higher level of smoothness (say by using higher order splines) would require placing more 
knots in the vicinity of each threshold to allow the derivative to change very rapidly there. The piecewise- 
cubic approximation used in MARS has an even greater disadvantage since it attempts derivative 
smoothing using only the knot locations derived from the piecewise-linear fitting. It therefore does 
not have additional knots near each threshold to help it rapidly adjust the derivative. Thus it even 
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more dramatically over smooths the derivative in such regions. Approximations that impose a higher 
level of smoothness of course perform best when the underlying function is very smooth; that is, func- 
tions that nowhere have locally high second derivatives. For such functions, piecewise-linear splines will 
require several knots over the data interval to adequately approximate the smoothly changing (first) 
derivative. The derivative smoothing strategy (Section 3.7) can then use these to fashion a piecewise 
cubic basis to remove the resulting mild derivative discontinuities. 

. 

As observed by Buja and Duffy, anomalous behavior of the piecewise cubic fit (when it occurs) is readily 
diagnosed by simply examining the respective GCV scores of the two models. Simulation studies on 
relatively smooth functions indicate that the continuous derivative approximation tends to fit the data at 
hand slightly worse (since the knots are optimized for the linear basis) but has slightly better predictive 
performance. Experience with sharply structured functions (such as those involving threshold effects) 
indicate that the piecewise-cubic basis fits both the data at hand and future data badly. This suggests 
a strategy of accepting the cubic fit if its GCV score is at most slightly (lo%-20%) worse than the 
piecewise-linear fit; otherwise use the linear basis fit. Considerably worse GCV scores for piecewise 
cubic fits can serve as a useful diagnostic indicating sharp structure in the response. One (but not the 
only) source for such sharp structure can be single or multiple response outliers. 

5. The evenness of the growth of the selected model size on M,,, (maximum number of basis functions) 
likely depends on a variety of different characteristics associated with each particular problem. These 
include sample size, properties of the design, and the true underlying function. 

Gu and Wahba 
Gu and Wahba present a lovely concise descriptive summary of the “smoothing spline” approach to fit- 

ting functions of several variables. Researchers at the “Madison spline school” led by Wahba h&e been 
pioneers in this important area of statistics. Thin-plate and interaction splines represent important con- 
tributions that are theoretically attractive and are, in addition, highly competitive in practical settings 
involving low to moderate dimensionalities and relatively small sample sizes. 

In their discussion, Gu and Wahba point out some of the aspects that MARS and interaction splines 
hold in common. There are also important differences. These differences basically stem from differing 
motivations associated with intended applications. -Applications motivating MARS are similar to those that 
motivated CART (Breiman, et al., 1984), namely (relatively) large complex data sets where little is known 
about the true underlying function f(x) (1). I n such settings one needs a general procedure that requires as 
its only input specification the training data, from which it produces a reasonably accurate and interpretable 
approximation f(x). If such a procedure is successful in this, the user may wish to use the derived information 
to further refine the model. This can be done by reapplying the general procedure in various restricted 

-modes, where the restrictions are guided by the results of the earlier general application. For example, 
if a MARS run indicates that certain variables enter additively or participate only in limited interactions, 
further tuning of the model would be done in the presence of these constraints. This refinement can also be 
done by applying a different less general procedure that requires a more detailed input specification, with 
these details provided by the output of the previously applied general procedure. 

Application of interaction splines requires as part of its user specified input an ANOVA decomposition 
(10) (24). That is, the user must tell the procedure what variables enter the model, which specific variables 
(if any) they interact with, and the levels of those interactions. Since these reflect properties of the true 
underlying function f(x) (1) the quality of the approximation can depend strongly on this input in any given 
situation. Statistical and computational considerations strongly limit the number of ANOVA functions that 
can be entered into an interaction spline model. In low dimensional settings this problem is mitigated by the 
(relatively) small number of ANOVA functions that can potentially enter. The user can simply enter them 
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all or experiment with different possible subsets. With increasing dimension of the predictor variable space 
the number of possible ANOVA functions grows very rapidly and this is no longer a viable strategy. 

MARS does not require an ANOVA decomposition as part of its input specification. Using only the 
data, it provides an ANOVA decomposition as part of its output. As noted in the discussions, this can be a 
valuable tool for interpreting the approximating function, and (to the extent it reflects the true underlying 
function) also the system under study that generated the data. If it turns out that MARS produces an 
ANOVA decomposition with a small number of ANOVA functions each involving only a few of the variables 
(as is often the case), this information can be used as input for an interaction spline model. Whether this 
will result in improved accuracy will largely depend on the smoothness properties of the underlying function. 

Other differences between the two approaches also largely center on issues of generality. In its most 
general application, interaction splines associate a single smoothing parameter with each specified ANOVA 

. function (lo), (12), (24), that constrains its overall global smoothness. As a consequence of its adaptive 
knot placement algorithm, 1lARS attempts to adapt its smoothness constraint locally within each ANOVA 
function that it produces. ?u’ote that this will only provide a potential benefit if there is sharp structure 
present, as was the case in the semiconductor design example (Section 4.7) and in the problem encountered 
by Buja and Duffy (discussion of Buja, Duffy, Hastie, and Tibshirani). In cases where the (true underlying) 
ANOVA functions are all globally very smooth, this local adaptability can be counterproductive in that 
the associated increased variance is not offset by decreased bias. For these cases model refinement using 
an interaction spiine approach might provide a real benefit. (Applying MARS with a strong global second 
derivative penalty may also help in these situations.) 

The method for incorporating categorical variables into interaction spline models described by Gu 
and Wahba basically encodes them into real valued (O/l) dummy variables. Regularization is provided 
by grouping together the coefficients associated with each original categorical variable and shrinking them 
towards a common mean by penalizing the variance of their solution estimates. This is a clever idea. 
Categorical variables are incorporated into MARS using a different strategy (Friedman, 1990). This strategy 
is motivated by that of CART, which does not use dummy variables, but instead attempts to find subgroups 
of categorical values within each variable over which the response (conditioned on the rest of the model) is 
roughly constant (small variance). The differences between these two approaches for categorical variables 
reflect the respective differences between the two methods for ordinal variables. Interaction splines apply a 
global smoothness constraint on each variable or ANOVA function, whereas adaptive spline strategies like 
MARS, attempt to adjust the smoothing constraint locally within each variable or ANOVA function, to 
adapt to possible sharp local structure. 

Barron and Xiao 
Barron and Xiao suggest several clever modifications to the MARS procedure, some of which will likely 

improve its performance. Like Hastie (1989) and Buja, Duffy, Hastie and Tibshirani (discussion herein), they 
propose the imposition of a global roughness penalty on the solution. Their criterion penalizes increasing 
(squared) first, rather than second, derivatives but it should produce similar results. In fact, the Barron-Xiao 
penalty has an especially nice intuitive appeal. As discussed in the rejoinder to Breiman, a global roughness 
penalty will likely provide substantial benefit when the true underlying function varies quite smoothly over 
the predictor space with no (relatively) sharp local structure anywhere. There is however no free lunch. 
While helping with such very gentle functions, the price paid for using a strong (global) roughness penalty 
will be to inhibit the ability of MARS to capture local structure when it is present (without degrading the 
fit elsewhere). At least for (initial) expldratory applications, the penalty should be set just large enough to 
inhibit only possible wild behavior (see Breiman rejoinder) and not limit the flexibility of the procedure. 
Considerations are different for procedures based on global polynomials (such as MAPS). Since polynomials 

10 



(unlike splines) already have inherent difficulty dealing with local sharp variation of the underlying function 
(see below), nothing (additional) is lost by imposing a moderate to strong global roughness penalty on them. 

Barron and Xiao also raise the issue of model selection and suggest alternatives to the GCV criterion 
used in the present implementation of MARS. As mentioned in the rejoinder to Breiman, MARS is in no 
way wedded to the GCV criterion. More.effective model selection can only help improve performance. The 
BIC/MDL criterion suggested by Barron and Xiao has strong intuitive appeal and, along with ordinary 
cross-validation (proposed by Breiman), will be tested in the context of MARS. The evidence provided for 
its superiority in Table B of their discussion however is only partially convincing. This is due to the fact 
that the criterion was used there in conjunction with the true underlying error variance (q” = 1, known 
only because this is a simulated example) rather than trying to estimate it from the data at hand. Knowing 
that the true error is homoscedastic, and the value of its variance, provides a strong advantage to any model 

. selection procedure. If an estimated value of u2 happens to be too large the model selection criterion will 
tend to include too few terms whereas conversely, too many will be entered. The variance of estimates of 
a2 can be quite high, especially in conjunction with (nonlinear) flexible fitting procedures. There may also 
be considerable bias unless one knows how to correct for the (basis function) selection aspect. There is no 
obvious analog here for obtaining an unbiased estimate based on the largest possible model. 

The MAPS procedure introduced by Barron and Xiao closely follows the MARS strategy and as a 
consequence inherits many of its characteristics. The only basic difference is the substitution of global 
polynomials in place of (adaptive) splines. If one is constrained to produce only polynomial models this 
represents an attractive approach. If not, the difficulties associated with polynomial approximations can 
impose (sometimes rather strong) limitations. 

Global polynomials are held in somewhat low esteem as general tools for function approximation (or 
estimation) in both the mathematical approximation and statistical curve and surface estimation literatures. 
Nearly all the recommended procedures that have emerged so far possess in common a locality property; the 
estimate at a point is most strongly influenced by (training) observations close to that point and observations 
further away have little or no influence. This gives rise in large part to their flexibility. They can respond to 
(sharp) local properties of the function without affecting the fit everywhere else. Global polynomial fits do 
not share this property; the function estimate at a point can be strongly influenced by data points very far 
away from it in the predictor space. As a consequence, locally sharp structure anywhere can influence the fit 
everywhere. This is the likely motivation for the quote from J. W. Tukey, “polynomials cut peoples’ throats,” 
and the observation by deBoor (1978), “If the function to be approximated is badly behaved anywhere in 
the interval of approximation, then the approximation is poor everywhere. This global dependence on local 
properties can be avoided using piecewise polynomials (splines).” [See deBoor (1978), Chapter II for a nice 
discussion of the limitations of polynomial approximations.] 

- If the true underlying function f(x) (1) is everywhere gently varying with no sharp structure anywhere 
then approximations based on global polynomials perform very well. In fact if f(x) happens to actually be 
a polynomial (or very close to one) then they will give the best performance. However, local methods such 
as splines also do quite well in these settings. Thus, if one expects to only encounter situations such as this, 
there is (as noted by Barron and Xiao) little to choose between them. If, however, one wants to maintain the 
additional ability to adequately deal with more structured functions then local methods might be preferred. 

The MARS procedure is based on (adaptive) spline functions because they emerge naturally as a gener- 
alization of recursive partitioning. It thereby inherits the attractive properties of the recursive partitioning 
approach discussed in Sections 2.4.2 and 6.0. These include local variable subset selection and automatic 
local adjustment of the degree of smoothing within each ANOVA function produced. Substituting polyno- 
mials for the adaptive spline functions sacrifices the local aspects of both these properties; only global vari- 
able subset selection, and automatic adjustment of global smoothing on each ANOVA function are retained. 
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If in a particular situation the nature of the underlying function happens to be such that this additional 
flexibility of MARS gives rise to no advantage, then there is little to choose between MARS and MAPS. 
Therefore, issues of generality will (as above) likely guide the choice. 

Using adaptive splines also causes MARS to inherit the ability to isolate local sharp structure and deal 
with it separately without affecting the fit in other regions of the predictor space. Buja and Duffy (discussion 
by Buja, Duffy, Hastie and Tibshirani) report this as a crucial advantage in their application. Also, the 
semiconductor component example of Section 4.7 likely benefits from this property. 

The examples of Sections 4.2 and 4.3 were chosen largely because they do not play to the particular 
strengths of MARS. They are globally very smooth quite gentle functions and (as noted by Barron and 
Xiao) global low order polynomials make up a substantial part of their definitions. One would expect 
approximations based on low order polynomials to do very well here. This is partially verified by the 

. results presented by Barron and Xiao (Tables B and C). Perhaps somewhat surprising is the degree of 
competitiveness displayed by adaptive splines in these situations. For these examples, local variable subset 
selection and adaptive local smoothing provide little or no advantage. The MAPS procedure on the other 
hand has the additional benefit of a global roughness penalty constraint (not yet incorporated into MARS) 
which as noted above is a real help with very smooth functions. It also has the advantage (Tables B and 
C) of being supplied with the true underlying error variance. As discussed above, this provides the model 
selection criterion with an important advantage. This can be seen by comparing Tables A and B of Barron 
and Xiao’s discussion. 

The results presented for MARS in Tables 3 and 5a were obtained using its default smoothing parameter 
value d = 3 (32) without any attempt to even estimate a best value from the data. The best value is 
controlled by the underlying error variance which for the purposes of illustration was assumed not to be 
known. As discussed in the rejoinder to Breiman, using this default value may be reasonable for initial 
exploratory work, but one may wish to refine the fit in the later stages of the analysis by estimating a better 
value through cross-validation. To get an idea of whether this can give rise to substantial improvement the 
simulation study on the example of Section 4.2 was rerun (N = 200 only) but this time using cross-validation 
to estimate the smoothing parameter rather than using the default value. Table 15 shows the results based 
on 100 replications. Also shown are the average estimated smoothing parameter values. (The quantities in 
parentheses are the standard deviations over the 100 trials.) 

Table 15 
Accuracy of MARS applied to the example of Section 4.2 (N = 200) with the smoothing parameter d (32) 
selected through cross-validation. 

mi ISE PSE 2 

1 .015 (.013) .15 (.Ol) 4.9 (1.2) 
2 .030 (.015) .16 (.Ol) 5.7 (1.3) 

10 .031 (.016) .16 (.Ol) 5.8 (1.3) 

Table 15 (column 4) shows that the cross-validation procedure was choosing (on average) considerably 
larger smoothing parameter values that the default (d = 3.0) in this case. This reflects the very smooth 
nature of the underlying function. Comparing Tables 3 and 15 shows substantial improvement [24% in 
m (58)] only f or mi = 1 (additive model). However, as Table 4 indicates, this is the one most likely to 
be chosen. Comparing Table 15 with Table B of the discussion of Barron and Xiao shows that even without 
a global roughness penalty and knowledge of the true underlying error, adaptive splines compare favorably 
with global polynomials in this setting. 

The motivations put forward by Barron and Xiao for substituting global polynomials for adaptive splines 
in MARS are mainly computational and (to a lesser extent) interpretability. An implementation based on 
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polynomials did gain a computational advantage over one based on adaptive splines when the old implemen- 
tation strategy described in Section 3.9 was used for the latter. This is, however, no longer the case with the 
new implementation discussed in the rejoinder to Stone. The computation for both global polynomials and 
adaptive splines (new implementation) is proportional to nNM&,,. The actual relative computing speeds 
will depend on implementation details but are not likely to be very much different. Adaptive splines may 
have a slight advantage since fewer basis functions A4 max are often needed for comparable accuracy. This is 
a consequence of the fact that each basis function included in a MARS model is adapted to the data through 
the adjustment of its knot locations. 

Interpretability of the resulting approximation was an important design goal motivating the MARS 
approach. The ANOVA decomposition (Section 3.5) and slicing (Section 4.7) are intended as important 
interpretational aids. The MAPS procedure by closely following the MARS strategy inherits these aspects. 

. The most powerful interpretational aids in understanding each ANOVA function are likely to be graphical 
representations (curves or surface displays). For these, whether the approximation is internally represented 
by a polynomial or spline function is of little consequence. If the polynomial representation involves more 
that a very few terms and/or high degrees some may argue that spline representations are more interpretable, 
especially since they are likely to be more parsimonious (see discussion of Buja, Duffy, Hastie, and Tibshirani). 
On the other hand, if a function can be approximated by a few low-degree polynomials, those familiar 
with polynomials may feel more comfortable interpreting them. Such interpretations can be misleading 
however since (except for artificially constructed examples) the corresponding true underlying function is 
seldom really a polynomial. 

One very important aspect in interpreting these approximations is a small number of resulting ANOVA 
functions. In this respect adaptive splines may have a distinct advantage (ss noted above). In the Portuguese 
olive oil example (Section 4.5) the MARS model resulted in four ANOVA functions, involving only three 
variables (Table lo), that can be represented by only two (surface) plots (Figure 5). While achieving 
comparable accuracy in this case, the polynomial approximation produced by MAPS was far more complex 
as reflected in Table E (and F) of the Barron-Xiao discussion. The underlying function for this example 
is also globally quite smooth as can be seen in Figure 5. [Note that Figure 5 displays the log-odds. The 
underlying function estimate l/(1 + e-f(“)) is correspondingly much more gentle.] 

For those who happen to have a strong preference for approximations based on polynomials (or other 
global basis functions) but would still like to retain the flexibility of the adaptive spline approach there are 
several possibilities. One simple possibility would be to apply both to the data. If they provide comparable 
estimated accuracy then the user could interpret the one he/she finds to be most understandable. Perhaps 
a more elegant approach would be to include both global functions (such as polynomials), and adaptive 
splines, in a hybrid MARS modeling strategy. To enhance interpretability one could (optionally) forbid 
interactions between the global and spline basis functions. An incremental penalty might be attached for 
including adaptive splines to reflect the user’s preference for the global basis functions. The global basis 
function part of the resulting approximation could then be interpreted as reflecting the very smooth aspects 
of the underlying function whereas the spline part (in this case) would reflect possible local sharp structure. 
(Such a hybrid strategy is easily added to the MARS program as a user option.) 

The “feed-forward” idea proposed by Barron and Xiao is quite intriguing. It would allow the procedure 
(MARS or MAPS) to more rapidly build up (synthesize) higher order interaction terms but in a constrained 
manner. The resulting models (if feed-forward inputs are selected) will be far more complex and difficult 
to interpret. Whether this approach will give rise to substantially improved prediction accuracy in some 
situations awaits the results of further investigation. 
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