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1.0. Introduction

A problem common to many disciplines is that of adequately approximating a function of sev-
eral to many variables, given only the value of the function (often perturbed by noise) at various
points in the dependent variable space. Research on this problem occurs in applied mathematics
(multivariate function approximation), statistics (nonparametric multiple regression), and in com-
puter science and engineering (statistical learning “neural” networks). The goal is to model the
dependence of a response variable y on one or more predictor variables z,,- - -, z,, given realizations

(data) {yi,Z1i,* ", Zni}. The system that generated the data is presumed to be described by

yzf(zla"'$xn)+€ (1)

over some domain (z1,--,Z,) € D C R" containing the data. The single valued deterministic func-
tion f, of its n-dimensional argument, captures the joint predictive relationship of y on z1,---, zy.
The additive stochastic component ¢, whose expected value is defined to be zero, usually reflects
the dependence of y on quantities other than zy,---,z, that are neither controlled nor observed.
The aim of regression analysis is to use the data to construct a function f(zl, -++,Zp) that can
serve as a reasonable approximation to f(z1,---,2,) over the domain D of interest.

The notion of reasonableness depends on the purpose for which the approximation is to be
used. In nearly all applications however accuracy is important. Lack of accuracy is often defined

by the integral error ,
1= [ we0AL), f(xldx @
D

or the expected error
N

1 R
E == w(x)Af(x), f(x:)]. (3)
i=1
Here x = (z1,-+-,%n), A is some measure of distance, and w(x) is a possible weight function.

The integral error (2) characterizes the average accuracy of the approximation over the entire
domain of interest whereas the expected error (3) reflects average accuracy only on the design
points X1,---,Xn. In high dimensional settings especially, low integral error is generally much
more difficult to achieve than low expected error.

If the sole purpose of the regression analysis is to obtain a rule for predicting future values of the
response y, given values for the covariates (z,---,2,), then accuracy is the only important virtue
of the model. If future joint covariate values x can only be realized at the design points X1, -, Xy
(with probabilities w(x;)) then the expected error (3) is the appropriate measure; otherwise the
integral error (2) is more relevant. Often, however, one wants to use f to try to understand the
properties of the true underlying function f (1) and thereby the system that generated the data. In
this case the interpretability of the representation of the model is also very important. Depending on
the-application, other desirable properties of the approximation might include rapid computability
and smoothness; that is f be a smooth function of its n-dimensional argument and at least its low

order derivatives exist everywhere in D.



This paper presents a new method of flexible nonparametric regression modeling that attempts
to meet the objectives outlined above. It appears to have the potential to be a substantial improve-
ment over existing methodology in settings involving moderate sample sizes, 50 < N < 1000, and
moderate to high dimension, 3 < n < 20. It can be viewed as either a generalization of the recur-
sive partitioning regression strategy (Morgan and Sonquist, 1963, and Breiman, Friedman, Olshen,
and Stone, 1984), or as a generalization of the additive modeling approach of Friedman and Sil-
verman (1989). Its immediate ancestor is discussed in Friedman (1988). Although the procedure
described here is somewhat different from that in Friedman (1988), the two procedures have a lot
in common and much of the associated discussion of that earlier procedure is directly relevant to
the one described here. Some of this common discussion material is therefore repeated in this pa-

per for completeness.

2.0. Existing Methodology

This section provides a brief overview of some existing methodology for multivariate regression
modeling. The intent here is to highlight some of the difficulties associated with each of the methods
when applied in high dimensional settings in order to motivate the new procedure described later. It
should be borne in mind however that many of these methods have met with considerable success

in a variety of applications.

2.1. Global Parametric Modéling.

Function approximation in high dimensional settings has (in the past) been pursued mainly in
statistics. The principal approach has been to fit (usually a simple) parametric function g(x | {a;}})
to the training data most often by least-squares. That is

fx) = g(x1{a;}}) (4)

where the parameter estimates are given by

N
{85} = argmin Y "[y: — g(x | {3

i 51 i=1

The most commonly used parametrization is the linear function

p
g(x|{a;}§) = a0+ aiz:, p<n. (5)

i=1
Sometimes additional terms, that are preselected functions of the original variables (such as poly-
nomials) are also included in the model. This parametric approach has limited flexibility and is
likely to produce accurate approximations only when the form of the true underlying function f(x)
(1) is close to the prespecified parametric one (4). On the other hand, simple parametric models
have the virtue of requiring relatively few data points, they are easy to interpret, and rapidly com-
putable. If the stochastic component € (1) is large compared to f(x), then the systematic error

associated with model misspecification may not be the most serious problem.
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2.2. Nonparametric Modeling.

In low dimensional settings (n < 2) global parametric modeling has been successfully general-
ized using three (related) paradigms — piecewise and local parametric fitting and roughness penalty
methods. The basic idea of piecewise parametric fitting is to approximate f by several simple
parametric functions (usually low order polynomials) each defined over a different subregion of the
domain D. The approximation is constrained to be everywhere continuous, and sometimes have
continuous low order derivatives as well. The tradeoff between smoothness and flexibility of the
approximation f is controlled by the number of subregions (knots) and the lowest order derivative
allowed to be discontinuous at subregion boundaries. The most popular piecewise polynomial fit-
. ting procedures are based on splines, where the parametric functions are taken to be polynomials
of degree q and derivatives to order ¢ — 1 are required to be continuous (¢ = 3 is the most popular
choice). The procedure is implemented by constructing a set of (globally defined) basis functions
that span the space of gth order spline approximations, and fitting the coeflicients of the basis func-
tion expansion to the data by ordinary least-squares. For example, in the univariate case (n = 1)
with K + 1 regions delineated by K points on the real line (“knots”), one such basis is represented
by the functions

1, {=7}, {(z -3} (6)

where {t; }I€ are the knot locations. (Here the subscript “+” indicates a value of zero for negative
values of the argument.) This is known as the “truncated power” basis and is one of many that span
the space of ¢g-degree spline functions of dimension K +g+1. [See deBoor (1978) for a general review
of splines and Shumacker (1976), (1984) for reviews of some two-dimensional (rn = 2) extensions.]

The direct extension of piecewise parametric modeling to higher dimensions (n > 2) is straight-
forward in principle but difficult in practice. These difficulties are related to the so called “curse-
of-dimensionality,” a phrase coined by Bellman (1961) to express the fact that exponentially in-
creasing numbers of (data) points are needed to densely populate Euclidean spaces of increasing
dimension. In the case of spline approximations the subregions are usually constructed as tensor
products of K + 1 intervals (defined by K knots) over the n variables. The corresponding global
basis is the tensor product over the K 4 ¢ 4+ 1 basis functions associated with each variable (6).
This gives rise to (K + ¢+ 1)™ coefficients to be estimated from the data. Even with a very coarse
- grid (small K'), a very large data sample is required.

Local parametric approximations (“smoothers”) take the form

F(x) = g(x | {a;(x)}})

where ¢ is a simple parameric function (4). Unlike global parametric approximations, here the
parameter values are generally different at each evaluation point x and are obtained by locally

weighted least-squares fitting

N
{a;(x)}] = argmjnz w(x, x:)[yi — g(xi | {a;3D))* (7)

e} =1



The weight function w(x,x') (of 2n variables) is chosen to place the dominant mass on points x’
“close” to x. The properties of the approximation are mostly determined by the choice of w and
to a lesser extent by the particular parametric function g used. The most commonly studied g is
the simple constant g(x | ) = a [Parzen (1962), Shepard (1964), Bonzzini and Lenarduzzi (1985)].
Cleveland (1979) suggested that local linear fitting (5) produces superior results, especially near
the edges, and Cleveland and Devlin (1988) suggest local fitting of quadratic functions. Stone
(1977) shows that, asymptotically, higher order polynomials can have superior convergence rates
when used with simple weight functions (see below), depending on the continuity of properties of
£.1).
_ The difficulty with applying local parametric methods in higher dimensions lies with the choice
of an appropriate weight function w (7) for the problem at hand. This strongly depends on f (1)
and thus is generally unknown. Asymptotically any weight function that places dominant mass in

a (shrinking) convex region centered at x will work. This motivates the most common choice
w(x,x’) = K(|Jx - x'|/s(x)) (8)

with |x — x/| being a (possibly) weighted distance between x and x’, s(x) is a scale factor (“band-
width”), and K is a (“kernel”) function of a single argument.The kernel is usually chosen so that
its absolute value decreases with increasing value of its argument. Commonly used scale functions
are a constant s(x) = 8¢ (“kernel” smoothing) or s(x) = so/p(x) (“near neighbor” smoothing),
where p(x) is some estimate of the local density of the design points. In low dimensional (n < 2)
settings, this approximation of the weight function w of 2n variables by a function K of a single
variable (8), controlled by a single parameter (sg), is generally not too serious since asymptotic
conditions can be realized without requiring gargantuan sample sizes. This is not the case in higher
dimensions. The problem with a kernel based on interpoint distance (8) is that the volume of the
corresponding sphere in n-space grows as its radius to the nth power. Therefore to ensure that
w (8) places adequate mass on enough data points to control the variance of f(x), the bandwidth
s(x) will necessarily have to be very large, incurring high bias.
Roughness penalty approximations are defined by

N

f(x) = argmin {Z[yi - g(x)) + /\R(g)} :
9 i=1

Here R(g) is a functional that increases with increasing “roughness” of the function g(x). The

minimization is performed over all g for which R(g) is defined. The parameter A regulates the

tradeoff between the roughness of g and its fidelity to the data. The most studied roughness

penalty is the integrated squared Laplacian

R(g)=ii/

k=1 £=1

g
0z 0z,

2
dx (9)

leading to Laplacian smoothing (“thin-plate”) spline approximations for n < 3. For n > 3 the

general thin-plate spline penalty has a more complex form involving derivatives of higher order than
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two. [See Wahba (1990), Section 2.4).] The properties of roughness penalty methods are similar to
those of kernel methods (7) (8), using an appropriate kernel function K (8) with A regulating the

bandwidth s(x). They therefore encounter the same basic limitations in high dimensional settings.

2.3. Low Dimensional Expansions. .
The ability of the nonparametric methods to often adequately approximate functions of a
low dimensional argument, coupled with their corresponding inability in higher dimensions, has

motivated approximations that take the form of expansions in low dimensional functions
J
fx) =" 35(z)- (10)
i=1

Here each z; is comprised of a small (different) preselected subset of {zy,---,2,}. Thus, a function
of an n-dimensional argument is approximated by J functions, each of a low (< 2) dimensional
argument. [Note that any (original) variable may appear in more than one subset z;. Extra
conditions (such as orthogonality) can be imposed to resolve any identifiability problems.] After
selecting the variable subsets {z;}{, the corresponding functions estimates {§;(z;)}{ are obtained
by nonparametric methods, for example, using least-squares

2

N J
{9i(z))}] = argmin ) |5 — > g;(245) - (1)

9r  i=1 j=1

with smoothness constraints imposed on the §; through the particular nonparametric method used
to estimate them.

In the case of piecewise polynomials (splines) a corresponding basis is constructed for each
individual z; and the solution is obtained as a global least-squares fit of the response y on the
union of all such basis functions [Stone and Koo (1985)]. With roughness penalty methods the

formulation becomes

2

N J J
fx)= argﬂ;in Solw=Dgi(za))| + > AR5 ¢ - (12)
g; i=1 j=1 i=1

These are referred to as “interaction splines” [Barry (1986), Wahba (1986), Gu, Bates, Chen and
Wahba (1990), Gu and Wahba (1988), and Chen, Gu and Wahba (1989)].

Any low dimensional nonparametric function estimator can be used in conjunction with the
“backfitting” algorithm to solve (11) [Friedman and Stuetzle (1981), Breiman and Friedman (1985),
and Buja, Hastie and Tibshirani (1989)]. The procedure iteratively reestimates §;(z;) by

2

N
§(z;) — argmin > | | v = Y g(zax) | — g(zi5)
9; i=1 k#j



until convergence. Smoothness is imposed on the §; by the particular estimator employed. For
example, if each iterated function estimate is obtained using Laplacian smoothing splines (9) with
parameter A; (12), then the backfitting algorithm produces the solutions to (12). [See Buja, Hastie
and Tibshirani (1989)]. Hastie and Tibshirani (1986) generalize the backfitting algorithm to obtain
solutions for criteria other than squared-error loss.

The most extensively studied low dimensional expansion has been the additive model
Fx)=>"gi(z5) (13)
j=1

- since nonadaptive smoothers work best for one dimensional functions and there are only n of them
(at most) that can enter. Also, in many applications the true underlying function f (1) can be
approximated fairly well by an additive function.

Nonparametric function estimation based on low dimensional expansions is an important step
forward and (especially for additive modeling) has met with considerable practical success (see
references above). As a general method for estimating functions of many variables, this approach
has some limitations. The abilities of nonadaptive nonparametric smoothers generally limit the
expansion functions to low dimensionality. Performance (and computational) considerations limit
the number of low dimensional functions to a small subset of all those that could potentially
be entered. For example, there are n(n + 1)/2 possible univariate and bivariate functions. A
good subset will depend on the true underlying function f (1) and is often unknown. Also, each
expansion function has a corresponding smoothing parameter causing the entire procedure to be
defined by many such parameters. A good set of values for all these parameters is seldom known
for any particular application since they depend on f (1). Automatic selection based on minimizing
a model selection criterion generally requires a multiparameter numerical optimization which is
inherently difficult and computationally consuming. Also the properties of estimates based on the
simultaneous estimation of a large number of smoothing parameters are largely unknown, although

progress is being made [see Gu and Wahba (1988)].

2.4. Adaptive Computation.

Strategies that attempt to approximate general functions in high dimensionality are based on
~ adaptive computation. An adaptive computation is one that dynamically adjusts its strategy to take
into account the behavior of the particular problem to be solved, e.g. the behavior of the function to
be approximated. Adaptive algorithms have been in long use in numerical quadrature [see Lyness
(1970); Friedman and Wright (1981).] In statistics, adaptive algorithms for function approximation
have been developed based on two paradigms, recursive partitioning [Morgan and Sonquist (1963),
Breiman, et al. (1984)], and projection pursuit [Friedman and Stuetzle (1981), Friedman, Grosse,
and Stuetzle (1983), and Friedman, (1985)].



2.4.1. Projection Pursuit Regression.

Projection pursuit uses an approximation of the form

M n
f(x) = Z fm (z aimzi) ) _ (14)

that is, additive functions of linear combinations of the variables. The univariate functions, f,,
are required to be smooth but are otherwise arbitrary. These functions, and the corresponding co-
efficients of the linear combinations appearing in their arguments, are jointly optimized to produce
a good fit to the data based on some distance (between functions) criterion — usually squared-error
. loss. Projection pursuit regression can be viewed as a low dimensional expansion method where
the (one dimensional) arguments are not prespecified, but instead are adjusted to best fit the data.
It can be shown [see Diaconis and Shahshahani (1984)] that any smooth function of n variables
can be represented by (14) for large enough M. The effectiveness of the approach lies in the fact
that even for small to moderate M, many classes of functions can be closely fit by approxima-
tions of this form [see Donoho and Johnstone (1989).] Another advantage of projection pursuit
approximations is affine equivariance. That is, the solution is invariant under any nonsingular
affine transformation (rotation and scaling) of the original explanatory variables. It is the only
general method suggested for practical use that seems to possess this property. Projection pursuit
solutions have some interpretive value (for small M) in that one can inspect the solution functions
fm and the corresponding loadings in the linear combination vectors. Evaluation of the résulting
approximation is computationally fast. Disadvantages of the projection pursuit approach are that
there exist some simple functions that require large M for good approximation [see Huber (1985)],
it is difficult to separate the additive from the interaction effects associated with the variable de-
pendencies, interpretation is difficult for large M, and the approximation is computationally time

consuming to construct.

2.4.2 Recursive Partitioning Regression

The recursive partitioning regression model takes the form
if Xx € Ry, then f(x)= gm(x|{a;}?). (15)

Here {R.,}} are disjoint subregions representing a partition of D. The functions g, are generally

taken to be of quite simple parametric form. The most common is a constant function
gm(xlan) = an (16)

[Morgan and Sunquist (1963) and Breiman, et al. (1984)]. Linear functions (5) have also been
proposed [Breiman and Meisel (1976) and Friedman (1979)], but they have not seen much use
(see below). The goal is to use the data to simultaneously estimate a good set of subregions and
the parameters associated with the separate functions in each subregion. Continuity at subregion

boundaries is not enforced.



The partitioning is accomplished through the recursive splitting of previous subregions. The
starting region is the entire domain D. At each stage of the partitioning all existing subregions
are each optimally split into two (daughter) subregions. The eligible splits of a region R into two
daughter regions R, and R, take the form

if .x € R then
if z, <t then x€ R,
else x € R,
end if.

Here v labels one of the covariates and ¢ is a value on that variable. The split is jointly optimized over
1 <v<nand —oo <t < 0o using a goodness-of-fit criterion on the resulting approximation (15).
This procedure generates hyperrectangular axis oriented subregions. The recursive subdivision is
continued until a large number of subregions are generated. The subregions are then recombined
in a reverse manner until an optimal set is reached, based on a criterion that penalizes both for
lack-of-fit and increasing number of regions (see Breiman et al., 1984).

Recursive partitioning is a powerful paradigm, especially if the simple piecewise constant ap-
proximation (16) is used. It has the ability to exploit low “local” dimensionality of functions. That
is, even though the function f (1) may strongly depend on a large number of variables globally,
in any local region the dependence is strong on only a few of them. These few variables may be
different in different regions. This ability comes from the recursive nature of the partitioning which
causes it to become more and more local as the splitting proceeds. Variables that locally have less
influence on the response are less likely to be used for splitting. This gives rise to a local variable
subset selection. Global variable subset selection emerges as a natural consequence. Recursive
partitioning (15) based on linear functions (5) basically lacks this (local) variable subset selec-
tion feature. This tends to limit its power (and interpretability) and is probably the main reason
contributing to its lack of popularity.

Another property that recursive partitioning regression exploits is the marginal consequences
of interaction effects. That is, a local intrinsic dependence on several variables, when best approx-
imated by an additive function (13), does not lead to a constant model. This is nearly always the
-case.

Recursive partitioning models using piecewise constant approximations (15) (16) are fairly
interpretable owing to the fact that they are very simple and can be represented by a binary
tree. [See Breiman et al. (1984) and Section 3.1 below.] They are also fairly rapid to construct and
especially rapid to evaluate.

Although recursive partitioning is the most adaptive of the methods for multivariate function
approximation it suffers from some fairly severe restrictions that limit its effectiveness. Foremost
among these is that the approximating function is discontinuous at the subregion boundaries. This
is more than a cosmetic problem. It severely limits the accuracy of the approximation, especially

when the true underlying function is continuous. Even imposing continuity only of the function
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(as opposed to derivatives of low order) is usually enough to dramatically increase approximation
accuracy.

Another problem with recursive partitioning is that certain types of simple functions are diffi-
cult to approximate. These include linear functions with more than a few nonzero coefficients [with
the piecewise constant approximation (16)] and additive functions (13) in more than a few vari-
ables (piecewise constant or piecewise linear approximation). More generally, it has difficulty when
the dominant interactions involve a small fraction of the total number of variables. In addition, one
cannot discern from the representation of the model whether the approximating function is close
to a simple one, such as linear or additive, or whether it involves complex interactions among the
_ variables.

3.0. Adaptive Regression Splines

This section describes the multivariate adaptive regression spline (MARS) approach to multi-
variate nonparametric regression. The goal of this procedure is to overcome some of the limitations
associated with existing methodology outlined above. It is most easily understood through its con-
nections with recursive partitioning regression. It will therefore be developed here as a series of

generalizations to that procedure.

3.1. Recursive Partitioning Regression Revisited.

Recursive partitioning regression is generally viewed as a geometrical procedure. This frame-
work provides the best intuitive insight into its properties, and was the point of view adopted in
Section 2.4.2. It can however also be viewed in a more conventional light as a stepwise regression
procedure. The idea is to produce an equivalent model to (15) (16) by replacing the geometrical
concepts of regions and splitting with the arithmetic notions of adding and multiplying.

The starting point is to cast the approximation (15) (16) in the form of an expansion in a set

of basis functions

M
()= amBm(x). (17)
m=1
The basis functions B,, take the form
Bpn(x) = I[x € Ry (18)

 where I is an indicator function having the value one if its argument is true and zero otherwise.
" The {an}M are the coefficients of the expansion whose values are jointly adjusted to give the best
fit to the data. The {R,,}3! are the same subregions of the covariate space as in (15) (16). Since
these regions are disjoint only one basis function is nonzero for any point x so that (17) (18) is
equivalent to (15) (16).
The aim of recursive partitioning is not only to adjust the coefficient values to best fit the
data, but also to derive a good set of basis functions (subregions) based on the data at hand. Let
H{[n] be a step function indicating a positive argument

1 ifg>0
Hn] = {0 otherwise, (19)

10



and let LOF(g) be a procedure that computes the lack-of-fit of a function g(x) to the data. Then
the forward stepwise regression procedure presented in Algorithm 1 is equivalent to the recursive

partitioning strategy outlined in Section 2.4.2.

Algorithm 1: (recursive partitioning)
By(x) <1
For M = 2 to Mpyax do: lof* — >
Form=1to M -1 do:
For v = 1 to n do:
For t € {z,;|Bm(x;) > 0}
g < Zi;ém @;Bi(X) + am B (x)H[+(zy — 1)] + apr Bm (x) H[ (24 — 1)]
lof « min,,,...q, LOF(g)
iflof < lof* then lof* — lof; m* < m; v* —v; t* —tendif
end for
end for
end for
Bum(x) « B (X)H[— (20 — t7)]
Bpe (%) « By (X)H[+ (20~ — t*)]
end for

end algorithm

The first line in Algorithm 1 is equivalent to setting the initial region to the entire domain.
The first For-loop iterates the “splitting” procedure with My, being the final number of regions
(basis functions). The next three (nested) loops perform an optimization to select a basis function
B~ (already in the model), a predictor variable z,~ and a “split point” ¢*. The quantity being
minimized is the lack-of-fit of a model with B,,~ being replaced by its product with the step function
H[+(zy — t*)], and with the addition of a new basis function which is the product of B,,- and
the reflected step function H[—(z,~ — t*)]. This is equivalent to splitting the corresponding region
R~ on variable v* at split point t*. Note that the minimization of LO F(g) with respect to the
expansion coefficients (line 7) is a linear regression of the response on the current basis function
set.

The basis functions produced by Algorithm 1 have the form

Km
Bn(x) = [] Hlskm - (To(kym) — tkm)]- (20)

k=1
The quantity K, is the number of “splits” that gave rise to B,,, whereas the arguments of the step
functions contain the parameters associated with each of these splits. The quantities sk, in (20)
take on values +1, and indicate the (right/left) sense of the associated step function. The v(k, m)
label the predictor variables and the t,, represent values on the corresponding variables. Owing to

the forward stepwise (recursive) nature of the procedure the parameters for all the basis functions
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can be represented on a binary tree that reflects the partitioning history (see Breiman et al., 1984).
Figure 1 shows a possible result of running Algorithm 1 in this binary tree representation, along
with the corresponding basis functions. The internal nodes of the binary tree represent the step
functions and the terminal nodes represent the final basis functions. Below each internal node are
listed the variable v and location ¢ associated with the step function repreéented by that node. The
sense of the step function s is indicated by descending either left or right from the node. Each basis
function (20) is the product of the step functions encountered in a traversal of the tree starting at
the root and ending at its corresponding terminal node.

With most forward stepwise regression procedures it makes sense to follow them by a backwards
. stepwise procedure to remove basis functions that no longer contribute sufficiently to the accuracy
of the fit. This is especially true in the case of recursive partitioning. In fact the strategy here is
to deliberately overfit the data with an excessively large model, and then to trim it back to proper
size with a backwards stepwise strategy (see Breiman, et al., 1984).

In the case of recursive partitioning the usual straightforward “one at a time” stepwise term
(basis function) deletion strategy does not work. Each basis function represents a disjoint subregion
and removing it leaves a hole in the predictor variable space within which the model will predict
a zero response value. Therefore it is unlikely that any term (basis function) can be removed
without seriously degrading the quality of the fit. To overcome this a backward stepwise strategy
for recursive partitioning models must delete (sibling) regions in adjacent pairs by merging them
into a single (parent) region in roughly the inverse splitting order. One must delete splits rather
than regions (basis functions) in the backwards stepwise strategy. One method for doing this is the
optimal complexity tree pruning algorithm described in Breiman et al. (1984).

3.2. Continuity.

As noted in Section 2.4.2, a fundamental limitation of recursive partitioning models is lack of
continuity. The models produced by (15) (16) are piecewise constant and sharply discontinuous at
subregion boundaries. This lack of continuity severely limits the accuracy of the approximation. It
is possible, however, to make a minor modification to Algorithm 1 which will cause it to produce
continuous models with continuous derivatives.

The only aspect of Algorithm 1 that introduces discontinuity into the model is the use of the
- step function (19) as its central ingredient. If the step function were replaced by a continuous
‘function of the same argument everywhere it appears (lines 6, 12, and 13), Algorithm 1 would
produce continuous models. The choice for a continuous function to replace the step function (19)
is guided by the fact that the step function as used in Algorithm 1 is a special case of a spline basis
function (6).

The one-sided truncated power basis functions for representing gth order splines are

bo(z = 1) = (2 — 1)1

where ¢ is the knot location, ¢ is the order of the spline, and the subscript indicates the positive

part of the argument. For ¢ > 0 the spline approximation is continuous and has ¢ — 1 continuous
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derivatives. A two-sided truncated power basis is a mixture of functions of the form
bE(z —t) = [£(z - 1)]1. (21)

The step functions appearing in Algorithm 1 are seen to be two-sided truncated power basis func-
tions for ¢ = O splines.

The usual method for generalizing spline fitting to higher dimensions is to employ basis func-
tions that are tensor products of univariate spline functions (see Section 2.2). Using the two-sided

truncated power basis for the univariate functions, these multivariate spline basis functions take

the form «
BO(x) = []lskm - (@o(kym) — tem) (22)
k=1

along with products involving the truncated power functions with polynomials of lower order than
q. (Note that sy, = £1.) Comparing (20) with (22) we see that the basis functions (20) produced
by recursive partitioning are a subset of a complete tensor product (g = 0) spline basis with knots
at every (distinct) marginal data point value. Thus, recursive partitioning can be viewed as a
forward/backward stepwise regression procedure for selecting a (relatively very small) subset of
regressor functions from this (very large) complete basis.

Although replacing the step function (19) by a ¢ > 0 truncated power spline basis function (21)
in Algorithm 1 will produce continuous models (with ¢ — 1 continuous derivatives), the resulting
basis will not reduce to a set of tensor product spline basis functions (as was the case for ¢ = 0).
Algorithm 1 permits multiple splitting on the same variable along a single path of the binary
tree (see Fig. 1). Therefore the final basis functions can each have several factors involving the
same variable in their product. For ¢ > 0 this gives rise to dependencies of higher power than g
on individual variables. Products of univariate spline functions on the same variable do not give
rise to a (univariate) spline function of the same order, except for the special case of ¢ = 0 (21).
Each factor in a tensor product spline basis function must involve a different variable and thereby
cannot produce dependencies on individual variables of power greater than q. Owing to the many
desirable properties of splines for function approximation (de Boor, 1978) it would be nice for
‘a continuous analog of recursive partitioning to also produce them. Since permitting repeated
(nested) splits on the same variable is an essential aspect contributing to the power of recursive
partitioning, we cannot simply prohibit it in a continuous generalization. A natural resolution to

this dilemma emerges from the considerations in Section 3.3.

3.3. A Further Generalization.

Besides lack of continuity, another problem that plagues recursive partitioning regression mod-
els is their inability to provide good approximations to certain classes of simple often occurring
functions. These are functions that either have no strong interaction effects, or strong interactions
each involving at most a few of the predictor variables. Linear (5) and additive (13) functions are

among those in this class. From the geometric point of view, this can be regarded as a limitation
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of the axis-oriented hyperrectangular shape of the generated regions. These difficult functions (for
recursive partitioning) have isopleths that tend to be oriented at oblique angles to the coordinate
axes, thereby requiring a great many axis oriented hyperrectangular regions to capture the func-

tional dependence.

One can also understand this phenomenon by viewing recursive p@rtitioning as a stepwise
regression procedure (Algorithm 1). It is in this framework that a natural solution to this problem
emerges. The goal, in this context, is to find a good set of basis functions for the approximation.
The final model is then obtained by projecting the data onto this basis. The bias associated with
this procedure is just the average distrance of the true underlying function f (1) from its projection
onto the space spanned by the derived basis functions. The variance of the model estimate is
directly proportional to the dimensionality of this space, namely the number of basis functions
used. In order to achieve good accuracy (small bias and variance) one must derive a small set of

basis functions that are close to the true underlying function in the above sense (small bias).

The problem with the basis derived through recursive partitioning (20), or the continuous
analog (22), is that it tends to mostly involve functions of more than a few variables (higher order
interactions). Each execution of the outer loop in Algorithm 1 (split) removes a basis function of
lower interaction order, and replaces it by two functions, each with interaction order one level higher,
unless it happens to split on a variable already in the product. Thus, as the partitioning proceeds
the average interaction level of the basis function set steadily increases. One simple consequence
is that recursive partitioning cannot produce an additive model in more than one variable. The
overriding effect is that such a basis involving high order interactions among the variables cannot
provide a good approximation to functions with at most low order interactions, unless a large
number of basis functions are used. This is the regression analog of trying to approximate with

rectangular regions, functions that have isopleths oblique to the axes.

As noted in Section 3.2, recursive partitioning (¢ = 0) can be regarded as a stepwise procedure
for selecting a small subset of basis functions from a very large complete tensor product spline
basis. The problem is that all members of this complete basis are not eligible for selection, namely
many of those that involve only a few of the variables. The problem can be remedied by enlarging
the eligible set to include all members of the complete tensor product basis. This in turn can be
-accomplished by a simple modification to Algorithm 1, or its continuous analog (Section 3.2).

The central operation in Algorithm 1 (lines 6, 12, 13) is to delete an existing (parent) basis
function and replace it by both its product with a univariate truncated power spline basis function
and the corresponding reflected truncated power function. The modification proposed here involves
simply not removing the parent basis function. That is, the number of basis functions increases
by two as a result of each iteration of the outer loop (split). All basis functions (parent and
daughters) are eligible for further splitting. Note that this includes B;(x) = 1 (line 1). Basis
functions involving only one variable (additive terms) can be produced by choosing B;(x) as the
parent. Two-variable basis functions are produced by choosing a single variable basis function as

the parent, and so on. Since no restrictions are placed on the choice of a parent term, the modified
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procedure is able to produce models involving either high or low order interactions or both. It can
produce purely additive models (13) by always choosing B;(x) as the parent.

This strategy of not removing a parent basis function, after it has been selected for splitting,
also resolves the dilemma presented in the last paragraph of Section 3.2. A prohibition against more
than one split on the same variable along the path leading to a single basis function can now be
enforced without limiting the power of the procedure. Repeated splitting on the same variable is
used by (g = 0) recursive partitioning to attempt to approximate local additive dependencies. This
can now be directly accomplished by repeated selection of the same parent for splitting (on the
same variable) thereby introducing additional terms but not increasing the depth of the splitting.
_ There is no longer a need for repeated factors associated with the same variable in a single basis
function.

Combining the considerations of this and the preceding section leads to a generalization of
recursive partitioning regression involving the following modifications to Algorithm 1:

(a) replacing the step function H[+(z —t)] by a truncated power spline function [+(z — t)]5.

(b) not removing the parent basis function B,,-(x) after it is split, thereby making it and both its
daughters eligible for further splitting.

(c) restricting the product associated with each basis function to factors involving distinct predic-
tor variables.

An important consideration in this generalization of recursive partitioning is the degree-of-
continuity to impose on the solution; that is, the choice of ¢ (21) (22). There are both statistical and
computational trade-offs. These are discussed in Sections 3.7 and 3.9, where it is argued that only
continuity of the approximating function and its first derivative should be imposed. Furthermore,
the proposed implementing strategy is to employ g = 1 splines in the analog of Algorithm 1, and
then to use the resulting solution (with discontinuous derivatives) to derive a continuous derivative

solution. The detailed discussion of this is deferred to Section 3.7.

3.4. MARS Algorithm.

Algorithm 2 implements the forward stepwise part of the MARS strategy by incorporating
the modificatons to recursive partitioning (Algorithm 1) outlined above. Truncated power basis
functions (¢ = 1) are substituted for step functions in lines 6, 12, and 13. The parent basis function
- is included in the modified model in line 6, and remains in the updated model through the logic of
" lines 12-14. Basis function products are constrained to contain factors involving distinct variables

by the control loop over the variables in line 4 [see (20), (22)]. This algorithm produces Mmax ¢ =1
tensor product (truncated power) spline basis functions that are a subset of the complete tensor
product basis with knots located at all distinct marginal data values. As with recursive partitioning,
this basis set is then subjected to a backwards stepwise deletion strategy to produce a final set of
basis functions. The knot locations associated with this approximation are then used to derive a
piecewise cubic basis, with continuous first derivatives (Section 3.7), thereby producing the final

(continuous derivative) model.
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Algorithm 2 (MARS - forward stepwise)
Bi(x) — 131 M « 2
Loop until M > Mpax: lof* — o
Form=1to M — 1 do:
For v ¢ {v(k,m)| 1<k < Kp}
For t € {z,;|Bm(x;) > 0}
g — L7 @:Bi(x) + ans B (%)[+(20 — D)4 + an1 B (%)~ (20 — )]+
lof « ming,...ap,, LOF(g)
if lof < lof* then lof* — lof; m* —«m; v* —wv; t* —tendif
end for
end for
end for
Bum(x) — B (x)[+(zo= — 7))+
Bar1(%) = Bun (%)= (or — 1))
M—M+2
end loop
end algorithm
Unlike recursive partitioning, the basis functions produced by Algorithm 2 do not have zero
pairwise product expectations; that is, the corresponding “regions” are not disjoint but overlap.
Removing a basis function does not produce a “hole” in the predictor space (so long as the constant
basis function Bj is never removed). As a consequence, it is not necessary to employ a special “two
at a time” backward stepwise deletion strategy based on sibling pairs. A usual “one at a time”
backward stepwise procedure of the kind ordinarily employed with regression subset selection can

be used. Algorithm 3 presents such a procedure for use in the MARS context.

Algorithm 3 (MARS — backwards stepwise)
J*={1,2,- -, Mpax}; K*—J*
lof* — mingq;|jes-} LOF(Y e - a;Bj(x))
For M = Mpyax to2do: b —o0; L — K*
Form =2to M do: K « L— {m}
lof & mingo, kexy LOF(X ek ok Br(x))
iflof < bthen b« lof; K* — K end if
iflof <lof* then lof* —lof; J* — K end if
end for
end for
end Algorithm
Initially (line 1) the model is comprised of the entire basis function set J* derived from Al-
gorithm 2. Each iteration of the outer For-loop of Algorithm 3 causes one basis function to be
deleted. The inner For-loop chooses which one. It is the one whose removal either improves the fit

the most or degrades it the least. Note that the constant basis function B;(x) = 1 is never eligible
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for removal. Algorithm 3 constructs a sequence of Myax — 1 models, each one having one less basis
function than the previous one in the sequence. The best model in this sequence is returned (in

J*) upon termination.

3.5. ANOVA Decomposition. ‘
The result of applying Algorithms 2 and 3 is a model of the form

M Ko
fE) =ao+ Y am [[lskm - (@ugkm) = tkm)]+- (23)

m=1 k=1
Here ao is the coefficient of the constant basis function By, and the sum is over the basis functions
" B, (22) produced by Algorithm 2 that survive the backwards deletion strategy of Algorithm 3 and
sgm = *1. This (constructive) representation of the model does not provide very much insight
into the nature of the approximation. By simply rearranging the terms, however, one can cast the
model into a form that reveals considerable information about the predictive relationship between
the response y and the covariates x. The idea is to collect together all basis functions that involve

identical predictor variable sets.
The MARS model (23) can be recast into the form

fx)=a+ Y fiz)+ D fis(zirz5)

5 o (24)
+ D fir(zi i ze) oo
K,,=3

The first sum is over all basis functions that involve only a single variable. The second sum is
over all basis functions that involve exactly two variables, representing (if present) two-variable
interactions. Similarly, the third sum represents (if present) the contributions from three-variable
interactions, and so on.

Let V(m) = {v(k,m)}{™ be the variable set associated with the mth basis function B,, (23).
Then each function in the first sum of (24) can be expressed as

fl) = ) anBm(z:). (25)
i€V

- This is a sum over all single variable basis functions involving only z;, and is a ¢ = 1 spline
representation of a univariate function. Each bivariate function in the second sum of (24) can be

expressed as

fij(miz) = Y amBm(zi,z;), (26)
GHEV (m)
which is a sum over all two-variable basis functions involving the particular pair of variables z; and

z;. Adding this to the corresponding univariate contributions (25) (if present)

fii(@iszj) = fi(z:) + fi(2;) + fis(zi, z5) (27)
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gives a ¢ = 1 bivariate tensor product spline approximation representing the joint bivariate con-
tribution of z; and z; to the model. Similarly, each trivariate function in the third sum can be

obtained by collecting together all basis functions involving the particular variable triples

fiik(®@iz2) = Y amBm(zi, 25, 7k). (28)
GRSV (m)
Adding this to the corresponding univariate and bivariate functions (25) (26) involving z;,z; and
Zk, provides the joint contribution of these three variables to the model. Terms involving more
variables (if present) can be collected together and represented similarly. Owing to its similarity to
- decompositions provided by the analysis of variance for contingency tables, we refer to (24) as the
ANOVA decomposition of the MARS model.

Interpretation of the MARS model is greatly facilitated through its ANOVA decomposition
(24). This representation identifies the particular variables that enter into the model, whether
they enter purely additively or are involved in interactions with other variables, the level of the
interactions, and the other variables that participate in them. Interpretation is further enhanced
by representing the ANOVA decomposition graphically. The additive terms (25) can be viewed by
plotting fi(z;) against z; as one does in additive modeling. The two-variable contributions can be
visualized by plotting f;(z:,z;) (27) against z; and z; using either contour or perspective mesh
plots. Models involving higher level interactions can be (roughly) visualized by viewing plots on
variable pairs for several (fixed) values of the other (complementary) variables (see Section 4.7).

3.6. Model Selection

Several aspects of the MARS procedure (Algorithms 2 and 3) have yet to be addressed. Among
these are the lack-of-fit criterion LOF' (Algorithm 2, line 7, and Algorithm 3, lines 2 and 5), and the
maximum number of basis functions Mp,ax (Algorithm 2, line 2, and Algorithm 3, lines 1 and 3).
The lack-of-fit criterion used with the algorithm depends on the distance (loss) function A specified

with the integral (2) or expected (3) error. The most often specified distance is squared-error loss

A[f(x), f(x)] = [f(x) = f(x) (29)

-because its minimization leads to algorithms with attractive computational properties. As will be
~ seen in Section 3.9, this aspect is very impotant in the context of Algorithm 2, and so squared-error
loss is adopted here as well. The goal of a lack-of-fit criterion is to provide a data based estimate
of future prediction error (2) (3) which is then minimized with respect to the parameters of the
procedure.

As in Friedman and Silverman (1989) and Friedman (1988) we use a modified form of the
generalized cross-validation criterion originally proposed by Craven and Wahba (1979)

' N 2
LOF(fu) = GCVM) = 5 Sl = FuutxaP [1 - KD (30)
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Here the dependencies of f (23), and the criterion, on the number of (nonconstant) basis functions
M is explicitly indicated. The GCV criterion is the average-squared residual of the fit to the data
(numerator) times a penalty (inverse denominator) to account for the increased variance associated
with increasing model complexity (number of basis functions M).

If the values of the basis function parameters (number of factors K,,, variables v(k,m), knot
locations tg,, and signs Sgm ) associated with the MARS model were determined independently of
the data response values (y1,::+,yn), then only the coeflicients (ag,---,ans) are being fit to the
data. Consequently the complexity cost function is

C(M) = trace(B(BTB)"!BT) +1 (31)

where B is the M x N “data”matrix of the M (nonconstant) basis functions (B;; = Bi(x;)). This
is equal to the number of linearly independent basis functions in (23) and therefore C(M) here (31)
is just the number of parameters being fit. Using (31) in (30) leads to the GCV criterion proposed
by Craven and Wahba (1979).

The MARS procedure (like recursive partitioning) makes heavy use of the response values to
construct a basis function set. This is how it achieves its power and flexibility. This (usually
dramatically) reduces the bias of model estimates, but at the same time increases the variance
since additional parameters (of the basis functions) are being adjusted to help better fit the data
at hand. The reduction in bias is directly reflected in reduced (expected) average squared residual
(numerator (30)). The (inverse) denominator (30) (31) is, however, no longer reflective of the
(increased) variance owing to the additional number of (basis function) parameters as well as their
nonlinear nature.

Friedman and Silverman (1989) suggested using (30) as a lack-of-fit criterion in these circum-
stances, but with an increased cost complexity function C(M) to reflect the additional (basis func-
tion) parameters that, along with the expansion coefficients (aq, - - -, aar), are being fit to the data.

Such a cost complexity function can be expressed as
C(M)=C(M)+d-M. (32)

* ‘Here C(M) is given by (31) and M is the number of nonconstant basis functions in the MARS
" model, being proportional to the number of (nonlinear) basis function parameters. The quantity d
in (32) represents a cost for each basis function optimization and is a (smoothing) parameter of the
procedure. Larger values for d will lead to fewer knots being placed and thereby smoother function
estimates.

In the case of additive modeling, Friedman and Silverman (1989) gave an argument for choosing
the value d = 2, based on the expected decrease in the average-squared residual by adding a single
knot to make a piecewise-linear model. The MARS procedure can be forced to produce an additive
model by simply modifying the upper limit of the outer For-loop in Algorithm 2 (line 3) to always

have the value one. With this modification only the constant basis function B; is eligible for
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“splitting” and the resulting model is a sum of functions each of a single variable (K,, = 1) which,
after the corresponding ANOVA decomposition (24), assumes the form of an additive model (13).
Restricting MARS in this manner leads to a palindromically invariant version of the Friedman and
Silverman (1989) procedure. This type of additive modeling is a restricted version of general MARS
modeling. A higher degree of optimization (over m) is being performed by the latter causing the
data at hand to be fit more closely, thereby increasing variance. In order for the GCV criterion
(30) (31) (32) to reflect this, an even larger value for d is appropriate.

One method for choosing a value for d in any given situation would be to simply regard it as
a parameter of the procedure that can be used to control the degree of smoothness imposed on the
_ solution. Alternatively it could be estimated through a standard sample reuse technique such as
bootstrapping (Efron, 1983) or cross-validation (Stone, 1974). In a fairly wide variety of simulation
studies (a subset of which are presented in Section 4) the resulting model and its accuracy (2) (3)
are seen to be fairly independent of the value chosen for the parameter d (32). These simulation
studies indicate:

(1) The optimal cost complexity function C(M) to be used in the GCV criterion (30) (in the
context of MARS modeling) is a monotonically increasing function with decreasing slope as

M increases.

(2) The approximation (32), with d = 3, is fairly effective, if somewhat crude.

(3) The best value for d in any given situation depends (weakly) on M, N, n and the distribution
of the covariate values in the predictor space. '

(4) Over all situations studied, the best value for d is in the range 2 < d < 4.

(5) The actual accuracy in terms of either integral (2) (29) or expected (3) (29) squared error is
fairly insensitive to the value of d in this range.

(6) The value of the GCV criterion for the final MARS model does exhibit a moderate dependence

on the value chosen for d.

A consequence of (5) and (6) is that while how well one is doing with the MARS approach is
fairly independent of d, how well one thinks one is doing (based on the optimized GCV score) does
depend somewhat on its value. Therefore, a sample reuse technique might be used to obtain an
additional estimate of the goodness-of-fit of the final model if it needs to be known fairly precisely.
) The strategy in recursive partitioning regression (Breiman et al., 1984) is to let the forward
_ stepwise procedure produce a fairly large number of regions (basis functions) and then have the
backwards stepwise procedure trim the model back to an appropriate size. The arguments in
favor of this apply equally well to the MARS approach. Therefore, the value chosen for My, in
Algorithms 2 and 3 should be considerably larger than the optimal (minimal GCV') model size M™.
Typically choosing Mpya.x = 2M ™ is suflicient.

3.7. Degree-of-Continuity.
“ One of the central ideas leading to the MARS generalization of recursive partitioning is to
replace the step function implicit in the latter with a truncated power spline basis function (21).

This leads to an approximation in the form of an expansion in tensor product spline basis functions.
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The continuity properties of this approximation are governed by the order ¢ (21) chosen for the

univariate spline functions comprising the tensor products; derivatives exist to order g.

If the intent is accurate estimation of the function (as opposed to its derivatives of various
orders) then there is little to be gained by imposing continuity beyond that of the function itself. If
the true underlying function nowhere has a very large local second derivative then a small additional
increase in accuracy can be achieved by imposing continuous first derivatives. Also, continuous
(first) derivative approximations have considerably more cosmetic appeal. There is, however, little
to be gained and in fact much to lose, by imposing continuity beyond that of the first derivative,

especially in high dimensional settings.

The difficulty with higher order regression splines centers on so called “end effects.” The
largest contribution to the average approximation error (2) (3) emanates from locations x near the
boundaries of the domain. This phenomenon is well known even in univariate smoothing (n = 1),
and is especially severe in higher dimensions. As the dimension of the covariate space increases,
the fraction of the data points near a boundary increases rapidly. Fitting high degree polynomials
(associated with high degree regression splines) in these regions leads to very high variance of the
function estimate there. This is mainly due to the lack of constraints on the fit at the boundaries.

One approach that has been suggested (Stone and Koo, 1985) is to modify the spline basis
functions so that near the ends of the data interval (on each variable) they smoothly join a linear
function. This can substantially help moderate the bad end effects of (unmodified) regression
splines in the case of smoothing (n = 1) and additive modeling (13), although the approximating
basis functions can still have very large slope near the boundaries. A computationally simpler way
to ensure a linear approximation near the boundaries is to make a piecewise-linear approximation
everywhere by using ¢ = 1 tensor product splines. This is accomplished in the MARS approach by
using ¢ = 1 truncated power (univariate) spline basis functions (21) in Algorithm 2 (lines 6, 12,
and 13).

A piecewise-linear approximation, of course, does not possess continuous derivatives. The
lowest order spline approximation with continuous derivatives involves ¢ = 2 univariate spline basis
functions. Their use, however, leads to the problems cited above. Motivated by the approach of
"Stone and Koo (1985) we fit with a modified basis set. These functions resemble ¢ = 1 splines, but

have continuous derivatives.

The model (23) produced by Algorithms 2 and 3 involves a sum of products of functions of
the form

b(zls, 1) = [s(z — )]s (33)

Our strategy for producing a model with continuous derivatives is to replace each such function by
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a corresponding truncated cubic function of the form

0 z <t_
C(z|s = +1,t_,t,ty) = {p+(:v —t_ )t rp(z—tl) t_<z <ty
—(z—1) z <t (34)
Clzls= -1t ,t,t4)=¢ p(z—t ) +r_(z—14)° t_<z<ty
0 T Z t+
with t_ <t < t4. Setting
P+ = (2t +t- = 3t)/(t4 — 1)
re=(2t—ty —t_)/(ty —t_)3
+=( + )/ (t+ ) (35)

p-=(3t—2t_ —ty)/(t- —t1)?

o= (to by = 28) (1~ — 14 )
causes C(z|s,t_,t,t;) to be continuous and have continuous first derivatives. There are second
derivative discontinuities at z = ¢;.. Each truncated linear function (33) is characterized by a single
knot location ¢, whereas each corresponding truncated cubic function (34) (35) is characterized by
three knots; these are a central knot ¢t and upper/lower side knots ¢.. Figure 2a compares the two
functions.

Each factor (33) in every basis function in the approximation produced by Algorithms 2 and
3 (23) is replaced by a corresponding truncated cubic factor (34) (35). The central knot ¢ (34) is
placed at the same location as the (single) knot for its associated truncated linear function (33).
The side knots ¢4+, t_ < t < t;, are located so as to reduce the number of second derivative
discontinuities. This is accomplished through the ANOVA decomposition of the MARS model (24)
(25) (26) (28).

Each basis function m in (23) has a knot set {tx, }2™. The ANOVA decomposition collects
together all basis functions corresponding to exactly the same variable set {v(k,m)}¥™. Thus, the
knot sets associated with each ANOVA function (25) (26) (28) can be viewed as a set of points
(multivariate knots) in the same K,,-dimensional space. The projections of these points onto each
of the respective K,, axes, v(k, m), gives the knot locations of the factors that correspond to that
variable. These are the central knot locations for the piecewise cubic factors. The side knots ¢4+ for
-each cubic factor are placed at the midpoints between its central knot and the two adjacent central
* knots in the same projection. The lower/upper side knots for the corresponding smallest/largest
projected central knot value are placed midway between the central knot and the smallest/largest
data value on that variable. Figure 2b illustrates this process for one and two dimensional ANOVA
functions.

The final model is obtained by fitting the resulting piecewise cubic basis function set to the
data. It will have continuous first (but not second) derivatives. The contribution to the fitted
model of each basis function far from its central knot location will be the same as its corresponding
piecewise linear basis function. Therefore this continuous derivative model will tend to have the

same highly desirable boundary properties as the piecewise linear model produced by Algorithms
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2 and 3. The important ingredient is that the slope of each univariate basis factor never exceeds a

value of one.

3.8. Knot Optimization.

The MARS procedure (Algorithm 2), as well as recursive partitioning (Algorithm 1), can be
viewed as a technique for developing a multivariate model, based on sums of products of univariate
functions (17) (20) (23), through the use of a univariate smoother. This can be seen by casting the
(MARS) model in the form

f(x) = f\mv(x) + B (X)Pmu(2v), (36)
with
Amo(x) = Z a; B;(x). (37)
V(i)#V(m)

V(H#EV (m)+{v)

The function ¢.,,(z,) has the form

J
Pmo(@0) = co + D eilsi(zy — 1))+ (38)
j=1

which is just a (¢ = 1) piecewise linear spline representation of a univariate function. (In the case
of recursive partitioning it would be a ¢ = 0 piecewise constant representation.) The second
term in (36) isolates the contributions to the model of the variable set V(m) of the mth basis
function, and the set including the variable v with V(m). The first term (37) represents the
contributions of the variables from the other basis functions. Minimization of the lack-of-fit criterion
(30) in Algorithm 2 (line 7) performs a joint optimization of the current model with respect to the
coefficients (co, - -, cs) of the univariate function ¢,,, (38) and those of the other basis functions
{a:} (37).

Expressing the current model in the form given by (36) and letting
R\my = Y — Ao (39)
this optimization can be written in the form
E[R\mo — Br@mu(so)]? = min. (40)

Here the dependence of the respective quantities on the multivariate argument x has been sur-

pressed. If one fixes the values of the coefficients {a;} (37) then (40) has the general solution

R
_ 2 \mv
Omo(Zy) = E [Bm ( B )

] oA (41)

which can be estimated by a weighted smooth of R\,,,/Bs, on z,, with weights given by B2,.
Letting this smooth take the form of a piecewise linear spline approximation (38) gives rise (in an
indirect way) to the MARS approach.
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This framework provides the connection between MARS and the smoothing (and additive mod-
eling) method (TURBO) suggested by Friedman an Silverman (1989). They presented a forward
stepwise strategy for knot placement in a simple piecewise linear smoother. The inner For-loop of
Algorithm 2 can be viewed as an application of this strategy for choosing the best location for the
next knot ¢y in @m.(z,) (38) (41) in the more general context of MARS modeling. In fact, in the
univariate case (n = 1) the MARS algorithm simply represents a (palindromically invariant) ver-
sion of TURBO. As noted above, restricting the upper limit of the outer For-loop to always have
the value one (Algorithm 2) gives rise (for n > 1) to the TURBO method of additive modeling.

Both recursive partitioning (Algorithm 1, line 5) and MARS (Algorithm 2, line 5) make every
. distinct (nonzero weighted) marginal data value eligible for knot placement. As pointed out by
Friedman and Silverman (1989), this has the effect of permitting the corresponding piecewise linear
smoother (38) (41) to achieve a local minimum span of one observation. In noisy settings this can
lead to locally high variance of the function estimate. There is no way that a smoother, along with
its lack-of-fit criterion, can distinguish between sharp structure in the true underlying function f
(1), and a run of either positive or negative error values € (1). If one assumes (as one must) that the
underlying function is smooth compared to the noise, then it is reasonable to impose a minimum
span on the smoother that makes it resistant to runs in the noise of length likely to be encountered
in the errors. In the context of piecewise linear smoothing this translates into a minimal number L
of (nonzero weighted) observations between each knot. Assuming a symmetric error distribution,
Friedman and Silverman (1989) use a coin tossing argument to propose choosing L = L*/2.5 with
L* being the solution to

Pr(L*) = a. (42)

Here Pr(L*) is the probability of observing a (positive or negative) run of length L* or longer in
nN,, tosses of a fair coin, and a is a small number (say @ = 0.05 or 0.01). The quantity N,, is
the number of observations for which B,, > 0 (Algorithm 2, line 5). The relevant number of tosses
is nN,, since there are that many potential locations for each new knot (inner two For-loops in
Algorithm 2) for each basis function B,, (outer For-loop).

For nN,, > 10 and o < 0.1 a good approximation to L* (42) is

L* = —log, [_n;’ In(1 - a)] ,

so that a reasonable number of counts between knots is given by

;,m tn(1 - a)] /2.5, (43)

L(a) = —log, [—-n

The denominator in (43) arises from the fact that a piecewise linear smoother must place between
two and three knots in the interval of the run to respond to it, and not degrade the fit anywhere
else. Using (43) gives the procedure resistance, with probability 1 — @, to a run of positive or

negative error values in the interior of the interval.
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The arguments that lead to (43) do not apply to the ends of the interval; that is, L() refers
to the number of counts between knots but not to the number of counts between the extreme knot
locations and the corresponding ends of the interval defined by the data. As discussed in Section
3.7, it is essentjal that end effects be handled well for the procedure to be successful. An argument
analogous to the one that leads to L(a) (43) for the interior, can be advanced for the ends. The
probability of a run of length L* or longer of positive or negative error values at the beginning or
end of the data interval is 2=L"+3, There are n such intervals, corresponding to the n predictor

variables, so that the total probability of encountering an end run is
Pr(L*) = n27L7+3, (44)

Therefore requiring at least

Le(a) = 3 — logy(a/n) (45)

observations between the extreme knots and the corresponding ends of the interval provides resis-
tance (with probability 1 — «) to runs at the ends of the data intervals.

The quantity o in (43) (45) can be regarded as another smoothing parameter of the procedure.
Both L(a) (43) and Le(a) (45) are, however, fairly insensitive to the value of a. The differences
L(.01)~L(.05) and Le(.01)-Le(.05) are both approximately equal to 2.3 observations. In any case
both expressions can only be regarded as approximate since they only consider the signs and ignore
the magnitudes of the errors in the run.

It can be noted that (36), (37), (39), and (41) could be used to develop a generalized backfitting
algorithm based on a (univariate) local averaging smoother, in direct analogy to the backfitting
algorithm for additive modeling (Friedman and Stuetzle, 1981, Breiman and Friedman, 1985, and
Buja, Hastie and Tibshirani, 1989). Like MARS, this generalized backfitting algorithm could be
used to fit models involving sums of products of univariate curve estimates. It would, however, lack
the flexibility of the MARS procedure (especially in high dimensions) owing mainly to the latter’s
close relation to the recursive partitioning approach (local variable subset selection - see Sections

2.4.2 and 6). It would also tend to be computationally far more expensive.

-3.9. Computational Considerations

In Sections 3.2 and 3.3 the MARS procedure was motivated as a series of conceptually simple
extensions to recursive partitioning regression. In terms of implementation, however, these ex-
tensions produce a dramatic change in the algorithm. The usual implementations of recursive
partitioning regression [AID (Morgan and Sonquist, 1963) and CART (Breiman, et al., 1984)]
take strong advantage of the special nature of step functions, along with the fact that the result-
ing basis functions have disjoint support, to dramatically reduce the computation associated with
the middle and inner For-loops of Algorithm 1 (lines 4 and 5). In the case of least-squares fitting,
very simple updating formulae can be employed to reduce the computation for the associated lin-
ear (least-squares) fit (line 7) from O(NM? + M?) to O(1). The total computation can therefore

25



be made proportional to n/N M.y, after sorting. Unfortunately, these same tricks cannot be ap-
plied to the implementation of the MARS procedure. In order to make it computationally feasible,
different updating formulae must be derived for the MARS algorithm.

The minimization of the lack-of-fit criterion (30) in Algorithm 2 (line 7) is a linear least-squares
fit of the response y on the current basis function set (line 6). There are a variety of techniques for
numerically performing this fit. The most popular, owing to its superior numerical properties, is
based on the QR decomposition (see Golub and Van Loan, 1983) of the basis “data” matrix B,

B = Bm(xi)- (46)

. As noted above, however, computational speed is of paramount importance since this fit must be
repeated many times in the course of running the algorithm. A particular concern is keeping the
computation linear in the number of observations N, since this is the largest parameter of the
problem. This rules out the @R decomposition technique in favor of an approach based on using
the Cholesky decomposition to solve the normal equations

BTBa = BTy (47)

for the vector of basis coefficients a (line 6). Here y is the (length N) vector of response values. This
approach is known to be less numerically stable than the Q R decomposition technique. Also, the
truncated power basis (21) is the least numerically stable representation of a spline approximation.
Therefore, a great deal of care is required in the numerical aspects of an implementation’of this
approach. This is discussed below.

If the basis functions are centered to have zero mean then the matrix product BT B is propor-
tional to the covariance matrix of the current basis function set. The normal equations (47) can be
written

Va=c (48)

with
N
=D Bj(xk)[Bi(xx) - Bil,
k=1
N (49)
Z(yk — 9)Bi(xx),
and B; and § the corresponding averages over the data. These equations (48) (49) must be resolved
for every eligible knot location ¢, for every variable v, for all current basis functions m, and for all

iterations M of Algorithm 2 (lines 2, 3, 4, and 5). If carried out in a straightforward manner this

would require computation proportional to
C ~nNMi, (aN + BMuay)/ L (50)

with @ and B constants of proportionality and L given by (43). This computational burden would
be prohibitive except for very small problems or very large computers. Although it is not possible
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to achieve the dramatic reduction in computation for MARS as can be done for recursive parti-
tioning regression, one can reduce the computation enough, so that moderate sized problems can
be conveniently run on small computers. Following Friedman and Silverman (1989), the idea is to
make use of the special properties of the ¢ = 1 truncated power spline basis functions to develop
rapid updating formulae for the quantities that enter into the normal equations (48) (49), as well
as to take advantage of the rapid updating properties of the Cholesky decomposition (see Golub
and Van Loan, 1983).

The most important special property of the truncated power basis used here is that each
(univariate) basis function is characterized by a single knot. Changing a knot location changes
" only one basis function, leaving the rest of the basis unchanged. Other bases for representing
spline approximations, such as the minimal support B-splines, have superior numerical properties
but lack this important computational aspect. Updating formulae for B-splines are therefore more

complex giving rise to slower computation.

The current model (Algorithm 2, line 6) can be reexpressed as

M-1
g — Z a;Bi(x) + apM B (X)2y + aprp1 B (X)) (24 — 1) 4. - (51)

i=1

The inner For-loop (line 5) minimizes the GCV criterion (30) jointly with respect to the knot
location t and the coefficients aq, - - -, ap+1. Using ¢’ (51) in place of ¢ (line 6) yields an equivalent
solution with the same optimizing GCV criterion lof* (line 8) and knot location t* (line 8). (The
solution coefficient values will be different.) The advantage of using ¢’ (51) is that only one basis

function is changing as the knot location ¢ changes.

Friedman and Silverman (1989) developed updating formulae for least-squares fitting of ¢ = 1
~splines by visiting the eligible knot locations in decreasing order and taking advantage of that fact
fort < u

0 <t

(x—t)+—(x—u)+={z—t t<z<u
v—t 2> u.

The Friedman and Silverman (1989) updating formulae can be extended in a straightforward man-
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ner to the more general MARS setting, giving (¢t < u)

er+1(t) = enrr (W) + D (k= §)Brk(@ur — 1)

tska <u

+ (u _'t) Z (yk - g)Bmk,
Typ2U

Viree1(t) = Vimer(w) + Y (Bik — Bi)Brk(zuk — 1)
tS_x‘,,, <u . (52)

+(u—1) Z (Bir — Bi)Bp, (1<i< M),

Typ 22U
_ 2 2
Varrr,mar(8) = Vigmaa(w) + Y Bhg(aok — 1)
t<zor<u

+(uw=1) Y Bhi(2Tek —t —u)+ (s*(u) - $*(2))/N,

:17.,;,_>_u

with s(t) = 32, 5 Bmk(Tuk — ). In (52) Bix and Bji are elements of the basis function “data”
matrix (46), the z,i are elements of the original data matrix, and y, are the data response values.

These updating formulae (52) can be used to obtain the last (M + 1)st row (and column)
of the basis covariance matrix V and last element of the vector ¢ at all eligible knot locations t
with computation proportional to (M + 2)N,,. Here N,, is the number of observations for which
Bp.(x) > 0 (line 5). Note that all the other elements of V and ¢ do not change as the knot location
t changes. This permits the use of updating formulae for the Cholesky decomposition to reduce its
computation from O(M?3) to O(M?) (in solving the normal equations (48)) at each eligible knot
location. Therefore the computation required for the inner For-loop (lines 5-9) is proportional to
aMN,, + BM?*N,,/L. This gives an upper bound on total computation for Algorithm 2 as being
proportional to

C* ~nNM3, (a+ BMmpay/L). (53)

Thus, comparing with (50) the use of updating formulae is seen to reduce the computation roughly
by a factor of N Myax/L. For typical values of N = 200, My.x = 30, and L = 5 this reduces the
required computation by roughly a factor of 1000.

Table 1 shows the total computation time (sec.) of the MARS procedure as a function of Mpyax
- for one of the examples (AC circuit impedance, Section 4.4.1) discussed below. These times were
obtained on a SUN Microsystems Model 3/260 (with floating point accelerator). For this example
n =4 and N = 200. The computation scales linearly in both n and N with the MARS algorithm.

Three timing sequences are shown in Table 1, corresponding to different constraints being
placed on the final MARS model. The first row (mi = 1) corresponds to an additive model
where interactions among the variables are prohibited. As mentioned above, this is accomplished
by suppressing the outer For-loop in Algorithm 2 (line 3) and only allowing the constant basis
function By(x) = 1 to appear in the products with the univariate spline basis functions. This, of

course, reduces the total computation roughly by a factor proportional to My,,x. The second row
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(mi = 2) only allows two-variable interactions to appear in the model. This reduces computation
a little since only previous basis functions involving one variable are permitted to appear in the
products. The last row in Table 1 (m¢ = n) shows the times for the fully unconstrained MARS
model.

It should be noted that in all the examples discussed in this paper (some of which, like this one,
involve fairly complex functions) the optimal number of basis functions was between 10 and 15, so
that Mmax values around 20 to 30 were appropriate. Setting Muax = 50 permits the procedure
to use from 125 to 200 degrees of freedom to fit the final model, if required, thereby allowing it
to approximate very complex functions. Clearly though, for very large problems (say n > 20 and
~ N > 1000) either long execution times or fast computers (compared to the one used here) would
be required. It can also be noted that the MARS algorithm admits a high degree of parallelization
so that it could run very fast on computers with parallel architectures.

Updating formulae for higher order (¢ > 1) truncated power spline basis functions (21) can
be developed in analogy to (52). They would, however, be far more complex than those for ¢ = 1
leading to much slower execution of the algorithm. Also, their corresponding numerical properties
would be very much worse.

At any point during the execution of Algorithm 2 the current basis function set need not be
linearly independent. (The basis functions set comprising the final model is, however, always
linearly independent.) Therefore, the covariance matrix V appearing in the normal equations
(48) may be singular. This presents no fundamental problem since they can be solved by applying
pivoting in the Cholesky decomposition (see Dongarra, Moler, Bunch and Stewart, 1979). A better
strategy from the point of view of MARS modeling is, however, to slightly modify the normal

equations via

(V+eD)a=c (54)

where D is a diagonal (M + 1) x (M + 1) matrix comprised of the diagonal elements of V. The
coefficients for the basis function set a are then taken to be the solution derived from (54). The

average-squared-residual

1 N M+1
ASR(a) = 5 |> (e —9)° = ) ai(ci + 6Dyia;) (55)
k=1 i=1

is still used as the numerator of the GCV criterion (30). The value for § is taken to be a small
number just large enough to maintain numerical stability.

The principal advantage of this “ridge regression” approach (54) is that it eliminates the need
for pivoting in the Cholesky decomposition update, thereby increasing execution speed. Additional
advantages are that it increases numerical stability to help compensate for the bad numerical
properties of the truncated power spline basis representation, and it applies a small overall shrinkage
to the solution coefficients to help compensate for the selection bias inherent in stepwise regression

procedures (see Copas, 1983).
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The updating formulae (52) are not necessarily numerically stable. Widely different locations
and scales for the predictor variables can cause instabilities that adversely effect the quality of the
final model. The MARS procedure is (except for numerics) invariant to the locations and scales
of the predictor variables. It is therefore reasonable to perform a transformation that causes the
resulting locations and scales to be most favorable from the point of view of numerical stability.

Standardizing them to each have zero location and unit scale provides good numerical properties.

4.0. Simulation Studies and Examples

~In the following sections we present the results of applying the MARS procedure to a series

of simulated and real data sets. The goal is to try to gain some understanding of its properties
"~ and to learn in what situations one might expect it to provide better performance than existing
methodology. In all the examples the smoothing parameter d (32) was taken to be d = 3. The
software automatically reduces it to 2d/3 (= 2) for additive modeling. The minimum number of
observations between knots was determined by (43) and the number between the extreme knots
and the edges was determined by (45), both with ¢ = 0.05. In all examples the explanatory
variables were standardized to aid in numerical stability (see Section 3.9). In all simulation studies
the covariate vectors were independently drawn (from the same sampling distribution) for each
replication of the experiment. Therefore, nonidentical (random) designs were realized for each of
the 100 replications. All results reported are for the continuous derivative (piecewise cubic) model

(see Section 3.7) unless otherwise noted.

4.1. Modeling Pure Noise

With a modeling procedure as flexible as MARS, a reasonable concern is that it might find
considerable spurious structure in data for which the signal to noise ratio is small. This false
structure would reflect the sampling fluctuations in the noise € (1) and would provide a misleading
indication of the association between the response and predictor variables. One would expect this
effect to be especially severe for small samples in high dimensions. Our first simulation study
indicates that this tends not to be the case for the MARS procedure.

Tables 2a and 2b summarize the results of applying MARS to pure noise f(x) = 0 (1). Results
are presented for two dimensionalities (n = 5,10) and three sample sizes (N = 50,100,200). The
- summary consists of the percent points of the lower half of the distribution of the optimizing GCV
~ score (30) for the MARS model, scaled by that for the corresponding constant model f(x) = .

These distributions were obtained by applying MARS to 100 data sets for which the response values
were randomly generated from a normal distribution and the covariate vectors were randomly
generated from a uniform distribution in R™. As in Table 1, Tables 2a and 2b show the results
for three types of constraints being placed on the model. These constraints are controlled by the
parameter mi, which is the maximum number of variables allowed to appear in any basis function,
K, < mi (23), thereby controlling the number of variables that can participate in interaction
effects. For mi = 1 the model is restricted to be additive in the variables, whereas for mi = 2,

interactions are limited to those involving (at most) two variables. Setting m: = n places no
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constraint on the number of variables that can enter into interactions.

This simulation study represents one test of the lack-of-fit criterion based on the GCV score
(30) using the cost complexity criterion C(M) (31) (32). Tables 2a and 2b show that the MARS
procedure in this situation seldom claims to produce a model that fits the data markedly better
than the response mean. Over half of the time (as reflected by the median) it claims to provide no
better fit than the constant model at all dimensionalities and sample sizes shown. Even the best
MARS fit over the 100 trials (1% point) does not produce a distinctly superior GCV value to the
constant (no structure) fit on the same data. This is especially noteworthy given the small sample
sizes for these dimensionalities.

4.2. MARS Modeling on Additive Data.

A related concern to that of the previous section concerns what happens when MARS is applied
in situations where the true underlying function f (1) is additive (13) in the predictor variables.
It might be expected that given the ability of MARS to introduce a large number of complex
interactions into its models, that it might be somewhat at a disadvantage in these situations when
compared to procedures that restrict the model to be additive. This section presents a simulation
study that indicates that this is not the case.

We use for this study an example presented in Friedman and Silverman (1989)

10
f(x) = 0.1e*"1 +4/[1 4 €721 4 355 + 224 + 15 +0- Y @i, - (56)
i=6
This function has a nonlinear additive dependence on the first two variables, a linear dependence
on the next three, and is independent of the last five (pure noise) variables. A simulation study was
performed consisting of 100 replications of the following experiment. First N(= 50,100, 200) ten
dimensional (n = 10) covariate vectors were generated in the unit hypercube. Then corresponding

response values were assigned according to
vi=f(xi)+e, 1<i<N (57)

with the ¢; randomly generated from a standard normal and f(x) given by (56). Here the signal
-to noise ratio is 3.28 so that the true underlying function (56) accounts for 91% of the variance of
~ the response (57).

A reasonable strategy to be used with MARS modeling is to fit both an additive model (mi = 1)
and one that permits interactions (mi = 2 or m¢ = n). The respective GCV scores of both models
can then be compared and the one corresponding to the lowest score chosen. With this strategy a
model involving interactions is only used if it claims (through its GCV score) to do better than an
additive model on the same data.

- For each of the 100 replications (at each sample size N) the MARS procedure was applied
with m: = 1,2, and n. The first value (mi = 1) corresponds to additive modeling, the second

(mi = 2) permits interactions in at most two variables, whereas the last (m: = n = 10) fits an
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unconstrained MARS model. For the last two mi values the corresponding interaction fit was only
used if it produced a smaller GCV score than the additive model on the same data.

Table 3 compares the average accuracy of using this strategy to that of additive modeling
on the purely additive data (56) (57). The principal measure of accuracy is the (scaled) integral-
squared-error ISE (2) (29) '

ISE = /D [F(x) — FO)Pd"z/Varxep f(x), (58)

where here n = 10 and D is the ten-dimensional unit hypercube. For each replication of the simu-
lation study, the ISE (58) was estimated by Monte Carlo integration using 5000 points randomly
" generated from a uniform distribution over D.

A closely related quantity of interest is the (scaled) predictive-squared-error
PSE = Ely - f(x)]*/Var y (59)
which is related to the ISE (58) by
PSE = (ISE- Varxepf(x)+ Vare)/Var y (60)

with € being the error component (1). If the response values y;,---,yxn are standardized to have
unit variance then the GCV criterion (30) (31) (32) is intended as an estimate of the PSE (59)
(60), and the ratio GCV/PSE provides an estimate of how well the optimized GCV criterion for
the model is estimating the true PSE.

Shown in Table 3 are the average ISE (58), PSE (59) and GCV/PSE, along with the cor-
responding standard deviations (in parentheses) over the 100 replications at each sample size N
(= 50,100,200). (Note that the standard deviations of the averages shown in the table are one
tenth the corresponding standard deviations shown.) Comparing the first row (mi = 1) to the next
two (mi = 2,n) shows that there is little sacrifice in accuracy using interaction models in the con-
text of the above strategy, even though the true underlying function (56) involves no interactions.
Table 3 also shows that the optimized GCV score produced by the MARS fit slightly overestimates
(on average) the actual predictive-squared-error for this problem at all sample sizes studied. This
- -effect is most pronounced for the smallest sample size (N = 50). (Note that the variability of this
~ ratio as reflected by its standard deviation over the 100 replications if fairly high.)

The above strategy chooses the additive model over that involving interactions only if the
former produces a GCV score no worse than the latter. The first column of Table 4 shows the
number of times the additive model was chosen in the 100 replications of this simulation experiment.
As can be seen, the additive model was being chosen most of the time. This is why the loss in
accuracy was so slight. A more conservative strategy would be to accept the additive model if its
GCYV score is only slightly (say 5 or 10 percent) worse. The second and third columns of Table 4
show the number of times the additive model is chosen under these two slightly more conservative

scenarios. In these cases the fit involving interactions is seen to be almost never chosen.
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The results of this simulation study indicate that on data for which the true underlying function
f (1) is additive, the MARS procedure does not produce fits involving interactions that appear
distinctly superior to an additive model. This basically is another test of the lack-of-fit criterion
(30) (31) (32), and especially the choice of d = 3 (32) for general MARS modeling and d = 2 for
additive modeling with MARS (Friedman and Silverman, 1989). ‘

4.3. A Simple Function of Ten Variables.

The previous examples (Sections 4.1 and 4.2) tested the ability of MARS to avoid finding
structure when it is not present. It is at least equally important that it find structure when it does
exist. The next several examples examine the ability of MARS to uncover interaction effects that
are present in data. The first test example is taken from Friedman, Grosse and Stuetzle (1983).

They considered trying to model the function

1\ 2
f(x) = 10sin(rzy22) + 20 <z3 - —2-) + 10z4 + 525 (61)

in the n = 6 dimensional unit hypercube using N = 200 points. The covariates were randomly
generated from a uniform distribution and the responses were assigned using (57) with f(x) given
by (61) and with € being a standard normal deviate.

We consider here this same function (61) but in a more difficult setting. First we reduce the
sample size to N = 100. In addition we increase the dimensionality of the covariate space to n = 10,
so that instead of one noise variable, there are now five such variables that are independent of
f(x). For this study however the MARS procedure has no prior knowledge of the nature of the
dependence of f(x) on any of the variables. The signal to noise ratio for this example is high
(4.8/1); the true underlying function accounts for 96% of the variance of the response. On the
other hand, the dimension of the covariate space is high (n = 10), the sample is small (N = 100)
and the function (61) is fairly highly structured.

Table 5a summarizes the MARS model derived from a data set generated from the above
prescription. The data response values were standardized so that the resulting GCV scores are
an estimate of the PSE (59). The first two lines in Table 5a give the optimizing GCV scores
for the corresponding piecewise linear (23) and piecewise cubic (Section 3.7) fits. The third line

-gives the total number of (nonconstant) basis functions M in the final model, whereas the fourth
line gives C(M) (31) (32), the estimated number of linear degrees-of-freedom used in the fit. The
ANOVA decomposition is summarized by one row for each ANOVA function. The columns represent
summary quantities for each one. The first column lists the function number. The second gives
the standard deviation of the function. This gives one indication of its (relative) importance to the
overall model and can be interpreted in a manner similar to a standardized regression coefficient in a
linear model. The third column provides another indication of the importance of the corresponding
ANOVA function, by listing the GC'V score for a model with all of the basis functions corresponding
to that particular ANOVA function removed. This can be used to judge whether this ANOVA
function is making an important contribution to the model, or whether it just slightly helps to
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improve the global GCV score. The fourth column gives the number of basis functions comprising
the ANOVA function while the fifth column provides an estimate of the additional number of linear
degrees-of-freedom used by including it. The last column gives the particular predictor variables
associated with the ANOVA function.

The MARS fit is seen in Table 5a to have produced seven ANOVA functions, the first five
involving only one variable (K, = 1), and two comprised of two variables (K,, = 2). Judging from
the second and (especially) the third columns, the last ANOVA function (involving an interaction
between variables 2 and 6) is not very important to the fit. Its standard deviation is much smaller
than that of the other ANOVA functions and removing it from the fit degrades the GC'V score for
the entire fit imperceptibly (see line 1). All other ANOVA functions seem important to the model
in that the removal of any of them substantially degrades the quality of the fit.

After removing the unneeded (seventh) ANOVA function, the resulting MARS model is seen
to be additive in variables 3, 4, and 5, and involves a two- variable interaction effect between
variables 1 and 2. Note that this model shows no indication of a dependence of the response
on the last five (pure noise) variables. Figure 3 shows a graphical representation of these ANOVA
functions. The three additive contributions fy(z4), f5(z5) and f3(z3) (25) are plotted in the first
three frames. The joint contribution of the first two variables f;,(z1,z3) (27) is presented in three
different views of a perspective mesh plot of this function (last three frames). Low values of the
corresponding variables are indicated by the position of the “0”, whereas higher values are in the
direction of the axis label. Note that the plotting routine does not show the bivariate function
outside the convex hull of the projected data points. As discussed in Section 3.7, the MARS
procedure basically extrapolates linearly beyond the boundaries of the data. It is important to
note that this surface does not represent a smooth of y on z, and z;, but rather it shows the
contribution of z; and z; to a smooth of y on the ten variables z4,---, z10.

Comparing the results of the MARS fit to these data (Table 5a and Figure 3) with the true
underlying function f(x) (61), shows that the resulting model provides a fairly accurate and inter-
pretable description. This is especially noteworthy given the high dimensionality (n = 10) and the
small sample size (N = 100).

Table 5a (and Figure 3) show results for one realization of a data set with N = 100. In order

- -to assess the general ability of MARS to model data of this kind, it must be applied to a large

- number of realizations of this situation. Table 5b summarizes the results of running MARS on 100
replications of this example at three sample sizes (N = 50, 100, and 200), in the same format as
Table 3. (Here the strategy of choosing the additive fit if it produced a better GCV score was
not used for the mi = 2,10 models.) For the very smallest sample size (N = 50) the additive
model (m: = 1) is seen to actually produce more accurate fits than those involving interactions
(mi = 2,10), even though there are strong interaction effects (involving z; and z2) in the generated
data. This is due to the bias-variance tradeoff. Even though the additive model is highly biased,
its lower variance leads to lower estimation errors. When the sample size is increased, however,

this is no longer the case and the models involving interactions produce vastly superior accuracy.
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As in the additive case (Table 3) the optimized GCV criterion is seen to overestimate the actual
PSE on average (again with fairly high sample to sample variability). It is interesting to note that
even though the true underlying function (61) exhibits interactions involving only two variables,
the totally unconstrained MARS fit (m¢ = 10) produces models nearly as accurate as when the fit

is constrained to have at most two-variable interactions (m: = 2).

4.4. Alternating Current Series Circuit.
Figure 4a shows a schematic diagram of a simple alternating current series circuit involving a

resistor R, inductor L, and capacitor C. Also in the circuit is a generator that places a voltage
Vab = Vysinwt (62a)

across the terminals a and b. Here w is the angular frequency which is related to the cyclic frequency

f by
w = 2rf. (62b)

The electric current I, that flows through the circuit is also sinusoidal with the same frequency,
Iy = (Vo/Z) sin(wt — ¢). (62¢)

Its amplitude is governed by the impedance Z of the circuit and there is a phase shift d), both

depending on the components in the circuit:

Z = Z(R,w,L,C),
¢ = ¢(R7wach)-

From elementary physics one knows that

Z(R,w,L,C) = [R* + (wL — 1/wC)?*M?, (63a)
$(R,w,L,C) = tan~" [“’L—"};/“—C] . (635)

The purpose of this exercise is to see to what extent the MARS procedure can approximate these

“functions and perhaps yield some insight into the variable relationships, in the range

0 < R<100 ohms
20 < f <€ 280 hertz
(64)
0 < L <1 henries
1 € C <11 micro farads.

~ Two hundred four-dimensional uniform covariate vectors were generated in the ranges (64). For
each one, two responses were generated by adding normal noise to (63a) and (63b). The variance

of the noise was chosen to give a 3 to 1 signal to noise ratio for both Z (63a) and ¢ (63b), thereby
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causing the true underlying function to account for 90% of the variance in both cases. As with the

previous example, the data response values were standardized.

4.4.1. Impedance Z

Applying MARS to the impedance data (63a) (64) (with 3/1 signal to noise) gave an optimizing
GCYV score of 0.19. The corresponding GCV Scores for an additive model (m: = 1) was 0.56,
whereas that for mi = 2 was 0.19. The additive model is seen (not surprisingly from the known
truth) to be inadequate. Perhaps more surprising is the fact that even though the true underlying
function (63a) has interactions to all orders, an approximation involving at most two-variable

interactions gives just as good a fit to these data. Owing to its increased interpretability we select

" the m7 = 2 model.

Table 6a summarizes the (mé = 2) MARS fit. There are five ANOVA functions all of which,
except for the last, seem important to the model. There is an additive contribution from R, and in-
teractions between wC and wL. Figure 4b displays a graphical representation of the ANOVA decom-
position. The upper left frame shows the additive contribution fr(R) (25), the upper right shows
the joint contribution of w and C, fJ-(w,C) (27), while the bottom two frames show f*;(w, L)
(27) from two different perspectives.

The dependence of the impedance Z (62) on the resistance R of the circuit is seen to be
roughly linear. Its joint dependence on w and C is seen to be fairly mild except when they both
achieve simultaneously very low values, in which case the impedance increases very sharply. For
low frequencies w, the impedance Z is seen to be high and independent of the inductance L. For
high w, Z has a monotonically increasing dependence on L. For low L, Z monotonically decreases
with increasing w, whereas for high L values, the impedance is seen to achieve a minimum for
moderate w. These interpretations are based on visual examination of the graphical representation
of the ANOVA decomposition of the MARS model, based on a sample of size N = 200. Since the
data are in this case generated from known truth, one can examine the generating equation (63a)
to verify their general correctness.

Table 6b summarizes the results of a simulation study based on 100 replications of AC circuit
impedance data (63a) (64) (3/1 signal to noise) at three sample sizes (N = 100, 200, and 400).
Additive modeling (mi = 1) is seen to perform badly at all sample sizes. The accuracy of the
‘models involving interactions improves sharply with increasing sample size. The mi = 2 models
offer slightly higher accuracy in most situations. Unlike the previous examples the GCV score is

seen to underestimate the true predictive squared error PSE (59) a little on average.

4.4.2. Phase Angle ¢

The MARS procedure applied to the phase angle data (63b) (64) (3/1 signal to noise) with
mt = 1,2,4 gave optimizing GCV scores of 0.30, 0.22, and 0.22, respectively. Here the additive
model, while still being less accurate, is more competitive with those involving interactions. The
model limited to two-variable interactions (mi = 2) is again seen to fit the data as well as the
general (mi = 4) MARS model. Table 7a summarizes the m: = 2 model. It involves nine ANOVA
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functions, two of which are clearly unimportant (6 and 7), and three more that are of marginal
importance (5, 8, and 9). Figure 4c shows perspective mesh plots of all six bivariate functions f*
(27) associated with the four variables. The dependence of the phase angle ¢ on all of the variables
is seen to be more gentle and more nearly additive than the impedance Z (Figure 4b).

Table 7b gives the results of applying MARS to 100 replications of the phase angle data at
N =100, 200, and 400. At the smallest sample size additive fitting is seen to be almost as accurate
as with interactions. This is, however, no longer true at the larger sample sizes. The optimizing
GCV score is seen to slightly underestimate the true PSE (on average) for most of the situations,
but as with the previous examples, the variance of the ratio (GCV/PSFE) dominates this small bias.

4.5. Portuguese Olive Oil.

For this example MARS is applied to data from analytical chemistry. The observations consist
of 417 samples of olive oil from Portugal (Forina, et al., 1983). On each sample, measurements
were made on the concentrations of 10 acids and three sterols (see Table 8). Also recorded was
the location where the sample originated. The purpose was to see if there is a relation between
the chemical composition and geographical origin. Of particular interest was the extent to which
olive oil from northeastern Portugal (Douro Valley — 90 samples) differed from that of the rest of
Portugal (327 samples). One way to address this question is to examine the results of trying to
model the probability that a sample originates from the Douro Valley given its measured chemical
composition (Table 8). The response variable y in this case takes on only two values: 1 = Duoro
Valley, 0 = rest of Portugal. Since Pr(y = 1| x) = E(y | x) one can estimate this prdbability
through regression techniques.

Linear logistic regression (Cox, 1970) is often used when the response variable assumes only

two values. The model takes the form

loglp/(1 = p)] = Bo + D _ Bizi

i=1

where p is the probability that y assumes its larger value. The coefficients {3;}5 are estimated by
(numerically) maximizing the likelihood of the data. Hastie and Tibshirani (1986) extended this

approach to additive logistic regression
log[p/(1—p)] = > _ fi(ws).
i=1

The smooth covariate functions are estimated through their “local scoring” algorithm. The model

can be further generalized to involve potential interaction effects by

log[p/(1 - p)] = f(x) (65)

with f(x) taking the form of the MARS approximation. This can be implemented in the MARS
algorithm by simply replacing the internal linear least-squares routine (LOF — Algorithm 2, line 7,
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and Algorithm 3, lines 2 and 5) by one that does linear logistic regression (given the current set of
multivariate spline basis functions). Unless rapid updating formulae can be derived this is likely
to be quite computationally intensive. A compromise strategy, however, is likely to provide a good
approximation; the multivariate spline basis functions are selected using the MARS squared-error
based loss criterion, and the coefficients {a,,}§T for the final model are fit using a linear logistic
regression on this basis set. In this mode one takes advantage of the local variable subset selection
aspect of MARS as well as its ability to produce continuous models. The detailed knot placement
on the selected variables will, however, be optimally placed for the untransformed response rather
than for the logistic fit.

Table 9 gives the results of six different analyses (rows) on the Portuguese olive oil data set. The
first column describes the method. The first two rows are for MARS runs on the untransformed 0/1
response using its least-squares criterion. The next two rows give results when a post (linear) logistic
regression is applied to the final basis function set as described above. The parameter mi is (as
before) the maximum number of variables permitted in any basis function (m: = 1 gives an additive
model; mi = 2 allows two variable interactions). The last two rows are (respectively) ordinary
stepwise linear logistic regression and recursive partitioning [CART: Breiman, et al. (1984)]. The
second column gives the number of variables that entered each final model; the third column gives
the GCV estimate of the PSE (59); the fourth column gives another estimate of this quantity
(CV) based on tenfold cross-validation; and the last column gives the cross-validated error rate of
a prediction rule that assigns § = 1 if the estimated conditional probability E(y | x) is greater than
0.5 and assigns § = 0 otherwise. In the case of logistic regression the GCV and CV scores were
computed using as a (squared-error) loss function

[y =1/ +e TN,
with f(x) the corresponding MARS estimate of the log-odds (65).

Table 9 indicates that the (post) logistic transformation improves the fit substantially. The
GCV and CV estimates are seen to be fairly close, especially for the (untransformed) least-squares
fits. The introduction of interaction effects (mi = 2) seems to improve the quality of the fit,
especially for the logistic models. (Increasing the value for mi beyond two did not result in further
improvement.) CART and stepwise linear logistic regression do not perform as well as the logistic

-MARS model involving two variable interactions on these data, although (like MARS) they do
indicate a strong association between geographical origin (Douro Valley versus rest of Portugal)
and the chemical composition (Table 8) of the olive oil samples. This (strong) association can
be expressed with a small fraction of the 13 original predictor variables. (When using GCV or
CV scores for comparisons it should be remembered that they not only estimate the accuracy of
the approximation (2) (3) but also include the irreducible (binomial) error. Therefore their ratios
understate the actual accuracy ratios of the methods being compared.)

Table 10 provides a summary of the logistic (mi = 2) MARS model. There are four ANOVA
functions involving three (of the 13) predictor variables. All four ANOVA functions appear impor-

tant to the fit, including the last two that involve interactions. Figure 5 shows the joint contribution
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(to the log-odds) of the second and twelfth variables fy,,(z2,212) (27) in the upper left frame, and
fe12(z6,212) in the upper right frame. The two lower frames show the same two plots respectively
from a different perspective. The MARS model for the log-odds is (in this case) the sum of these

two bivariate functions.

4.6. Low Dimensional Modeling

The main advantage of MARS modeling over existing methodology is clearly realized in high
dimensional settings. It is, however, (unlike recursive partitioning) competitive in low dimensions
(n < 2) as well. Friedman and Silverman (1989) studied its properties for the nonparametric
simoothing problem (n = 1) and showed that it can produce superior performance especially in
situations involving small samples and low signal to noise. (They also showed that for additive
modeling (13) (n > 1, m¢ = 1) it is quite competitive with procedures based on the “backfitting”
algorithm using local averaging smoothers.) In the univariate case (n = 1) the MARS method can
be viewed as a modification of an approach first suggested by Smith (1982). In a massive simulation
study Breiman and Peters (1988) showed that this was one of the best all around smoothers of
those they tested.

In this section we illustrate the use of MARS for two-dimensional nonparametric smoothing
(n = 2). The first example is taken from Andrews and Herzberg (1985). The data comes from an
experiment on the recoiling of guns (Brouncker, 1734). A total of 109 shots were fired at different
distances D between the muzzle and the target, and with varying grains of powder in the charge
C. The upper left frame of Figure 6 shows the experimental design. Note that there are 40 distinct
points in the design so that some points represent more than one firing. The response variable is
the (standardized) distance by which the resulting shot missed the target.

The MARS procedure applied to these data resuited in a model with three basis functions and
an optimized GCV score of 0.39. The upper right and lower left frames of Figure 6 show two views
of the MARS surface smooth. The average shooting error is seen to increase linearly with shooting
distance for all powder charges. As might be expected, at the shortest distance the error is very
small and independent of the size of the powder charge. As the distance increases, the dependence of
the shooting error on charge becomes nonmonotonic with the degree of nonmonotonicity increasing

with shooting distance. The optimal (lowest shooting error) charge is seen to increase somewhat as

* ~the distance increases. This error is seen to be asymmetric about the minimum with the degree of

asymmetry increasing with distance. For moderate to large distances it appears to be much more
costly (in terms of average accuracy) to shoot with too small a powder charge than with one that
is too large.

Our second example is an artificial one used by Gu, Bates, Chen, and Wahba (1990) to illustrate
interaction spline smoothing (see Section 2.3) They generated 300 points (more or less) randomly

from a uniform distribution in the unit square and set the response to

yi = 40 exp{8[(z1; — .5)% + (z2: — .5)*1}/ exp{8[(z1i — -2) + (z2i — .T)*]}

+ exp{8[(z1i — .7)% + (z2; — .2)*]} + €, 1 <7< 300. (66)
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The errors ¢; were drawn from a standard normal distribution. Here the signal to noise is
3.15/1 so that the true underlying function accounts for about 91% of the variance of the response.
Figure 7a shows a mesh plot of the true underlying function y — € (66) over the unit square.

The optimized MARS model on these data consisted of 18 basis functions using an estimated
45 linear degrees-of-freedom for the fit. The corresponding surface estimate is shown in Figure 7b.
Although this estimate is a bit smoother than the one produced by interaction splines (see Gu et
al., 1990, Fig. 4) they both have nearly the same accuracy in terms of expected squared error (3)
(29). Since this is a relatively well behaved function and the sample size is quite large (N = 300) it
is likely that methods based on kernel smoothing (Cleveland and Devlin, 1988) and (nonadaptive)
_ tensor product splines (de Boor, 1978) would also do well in this case.

Although MARS is competitive with other methodologies in low dimensions, what sets it
apart is its ability to handle problems involving many variables. Suppose the variables (z1,z2) in
(66) were two out of ten variables, all of which (jointly) effect the response y in an unknown way,
and the goal is to estimate the dependence of the response on zi,z;, accounting for the effect of
the other eight (nuisance) variables z3,---,219. To get an idea of how well MARS might do in
such a problem, N = 300 points were generated in the n = 10 dimensional unit hypercube. The
dependence of this response §j was taken to be

¥ = vi + f(xi) (67)

with y; given by (66) and f(x) given by (61) (shifted by two arguments). Thus, the dependence
of §j on the first two variables is the same as in the previous two-dimensional example, whereas
its dependence on the last eight is the same as the first eight variables of the problem studied
in Section 4.3. The sample size (N = 300) and the pure noise level are the same as in the two-
dimensional problem. The apparent noise in the z;z,-plane is now however many times greater
owing to the variability induced in the response by the many nuisance variables. It is hoped that
one can account for the variance associated with the nuisance variables by fitting a (nonparametric)
model jointly with respect to them and the variables of interest, thereby obtaining a better estimate
of the dependence of the response on 1, ;.

Applying MARS to this ten dimensional data resulted in a model with 27 basis functions using
- an estimated 68.5 linear degrees-of-freedom. Eleven of the basis functions were associated with the
dependence on variables z; and z, accounting for 27.5 linear degrees-of-freedom. Figure 8a shows
the resulting surface estimate. Although it is not quite as accurate as the smooth (Figure 7b)
produced in the absence of the eight nuisance variables, it still gives a good indication of the nature
of the joint dependence of the response on z; and z;. The estimate (Figure 8a) is smoother than
that of Figure 7b owing to the fact that it is based on 11 rather than 18 basis functions. Figure
8b shows plots of all of the ANOVA functions produced by the MARS fit to the 10-dimensional
data. The estimates corresponding to the (nuisance) variables associated with f(x) (61) (67) are
actually better than those obtained in the example of Section 4.3. This is the result of having 300

observations here, whereas only 100 were used in Section 4.3.
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4.7. Slicing a Mars Model

In the examples so far presented the dominant interactions involved at most two variables.
The resulting MARS models could then be visualized through plots of the contributing ANOVA
functions (25) (27). When substantial interaction effects involving more than two variables are
present the model becomes more difficult to interpret. This section describes an interpretational
tool called “slicing” that can aid in the visualization of such models.

The MARS model (23) (34) is a sum of products of univariate functions

M Kum
fE) =ao+ > am [] brm(@oie,m))- (68)

m=1 k=1
Here by, is either a ¢ = 1 spline basis function (33) or its cubic analog (34). If the number of
factors K,, in any product is greater than two then f(x) is more difficult to interpret since the
ANOVA decomposition (24) contains functions of more than two variables which are difficult to
plot or visualize. It is possible, however, to get a rough idea of the behavior of f(x) by reducing the
dimensionality of the predictor variable space by repeatedly conditioning on subsets of the variables.
Let Z represent a (selected) subset of the predictor variables {zj---z,}, with dimension d
(< n), and Z the complement subset of dimension n — d. Define a d-dimensional slice of the

predictor variable space by simultaneously assigning specific values to the selected variables
slice: {Z1 =2, -, Za=2} =Z = =z. - (69)

The MARS model along the slice will be a function of the variables Z complement to those defining
the slice
M Ky
fx1Z=2)=f(Z|2)=ao+ ) am [] bkm(zuiim) | Z = 2). (70)
m=1 k=1
The particular form of the MARS model (68) makes the sliced model (70) especially straightforward
to compute by decomposing its products into those factors involving variables defining the slice,

and those involving the complement variables,

M
f=a+ D am [ bem@wem) [ bem(zumm)- (71)
m=1 Ty(t,m)EZL -‘L‘u(k,m)EZ
" For a given slice (Z = z) the first product in (71) evaluates to a constant (multiplying the coefficient
@, ) and the second product gives the dependence on the complement variables. The MARS model

along the slice can therefore be represented as

M Ko
f(Z12)=co(z) + Y em(2) [] bkm(Zuirom)) (72a)
m=1 k=1

with

co(z) = ag + Z A H bem (2ue,m) )s (72b)

{Iv(l,m)}gz
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Cm(z) = Z am H bfm(z'u(l,m))' (726)

{Zok,m)}CZ  Toe,m)€EZL

The sum in (72b) is over all basis functions in (68) (71) that involve only variables defining
the slice. The sum in (72c) is over all basis functions that involve exactly the same complement
variables {Zu(k,m)}.

For a given slice (69) the MARS model along the slice (72a) has the same (constructive) form
as any ordinary MARS model (68), and thus has a corresponding ANOVA decomposition that
can be interpreted graphically as illustrated in the previous sections. This suggests the following
strategy for trying to visualize models that contain interactions involving more than two variables:
(1) Use the ANOVA decomposition of the full MARS model f(x) (24) to identify those variables

that participate in interactions with more than one other variable.

(2) Choose a variable subset Z for slicing, such that the MARS model along the slice f(Z | z)
involves (at most) two-variable interactions.
(3) Examine graphically the ANOVA decomposition (25) (27) of f(Z | z) for various values of the

slice (Z = z).

This slicing strategy is illustrated on testing data taken from a semiconductor component. The
predictor variables V; - - - V4 are the simultaneous voltages applied to the terminals of a four terminal
semiconductor resistor in the ranges -6 < V; <6, —.75 < V, < 10.75, and —.5 < (V3,Vy) < 5.5.
The response is the current I into one of the terminals. There were 599 observations taken. Table
11 provides a summary of the results of four MARS runs on these data. The first column gives
the maximum number of variables mi allowed to participate in interactions. The second column
gives the GCV estimate (30) (32) of the vPSE (59) and the third gives another estimate of this
quantity based on 10-fold cross-validation. The last three columns give respectively the median,
75th percentile, and maximum values of the distribuiton of the absolute cross-validated residuals
divided by the absolute deviation of the response from its mean value. Table 11 shows results only
for piecewise-linear fits; in all cases the corresponding piecewise-cubic models gave rise to much
larger values and thus worse fits.

Increasing the permissible interaction level is seen to improve the general quality of the fit.
The GCV score appears to rather dramatically underestimate the PSE as estimated from cross-
-validation. Inspection of the (cross-validated) residual distributions reveals that they are highly
skewed toward large values. The GCV score is seen to reflect the size of the typical residuals
(median — 75% point) but not the few extremely large ones. Increasing the interaction level beyond
two seems to preferentially reduce the larger residuals.

Figure 9a shows a graphical representation of the ANOVA decomposition for the MARS model
involving ony two-variable interactions (m: = 2). The resistor is seen to be a very nonlinear device.
The current appears to be roughly independent of the terminal voltages except when one or more
of them take on extreme values where the current changes rapidly.

As seen in Table 11 the MARS model involving four-variable interactions provides a subtan-

tially better fit to these data. Figures 9b and 9c explore this function of four variables using the
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slicing strategy described above. Figure 9b shows the current as a function of V; and V, along four
slices defined by V3 and V4. In this figure the functions are not plotted on the same vertical scale.
In order to relate the scales, the maximum value of each function relative to that of the first (upper
left frame) is shown above each plot. Since the relative locations of the plots are arbitrary they are
each plotted to have a minimum value of zero, so that the maximum value is equal to the range.
The (V3, Vy) slices are taken at the four extreme corners of the V3 — V; design. Both the magnitude
and shape of the dependence of the current on V; and V; are seen to depend rather strongly on
the values of V3 and Vj. For simultaneously low values of V3 and V4 (upper left) the dependence is
seen to be roughly linear, whereas when Vj takes on its highest value, with V3 at its lowest value
(lower left) the current is seen to vary much less as a function of V; and V,. For high values of V3
the dependence is similar to that of the lower left frame except for the existence of the dramatic
peak for low values of V5.

Figure 9c shows the dependence of the current (as reflected by the MARS fit) on V3 and Vj for
four slices on (V;, V). Here the slices do not include the two extreme corners on V; for low values
of V; since they are outside the support of the design. (This can be seen on the V; — V, plots; the
functions are plotted only within the convex hull of the bivariate distributions.) In Figure 9c the
functions are all plotted on the same scale. As would be expected from the previous results, the
dependence of the current on V3 and V, changes substantially with differing values of V; and V5.

Exploring the resulting MARS model in this manner provides some insight into the nature of
the cross-validated residual distributions observed in Table 11. The function has very high (and
increasing) first and second derivatives very near some of the (joint) boundaries. When extreme
observations on these boundaries are deleted during the cross-validation, the resulting slopes are
underestimated and the extrapolation to the left out observation gives rise to a large error. This
phenomenon also explains why the piecewise-linear models give rise to much better fits. There are
clearly small local regions where the second derivatives are very large. By approximating these by
infinite second derivatives the piecewise-linear model is able to come closer than the piecewise-cubic
fit which tries to moderate these locally very high second derivatives.

Figures 9b and 9c represent a small subset of all possible revealing slices of this four-variable
function. In general, slicing is likely to be most effective when performed in an interactive manner.
Functional dependencies revealed by inspecting the results of a particular slice will likely suggest
‘further slices to try. The straightforward and rapid calculation of sliced models (72) from the
complete MARS model (68) (71) might make feasible the computation of sliced functions in real
time on modern workstations. In this case the values defining the slice could be defined (and
changed) in a continuous manner through a graphical input device (such as by moving a mouse)

and the continuously changing functions along the slice can be viewed in real time.

5.0. Remarks.
~ This section covers various aspects (extensions, limitations, etc.) of the MARS procedure not

discussed in the previous sections.
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5.1. Constraints.

The MARS procedure is nonparametric in that it attempts to model arbitrary functions. It is
often appropriate, however, to place constraints on the final model, dictated by knowledge of the
system under study, outside the specific data at hand. Such constraints will reduce the variance
of the model estimates, and if the outside knowledge is fairly accurate, not substantially increase
the bias. One type of constraint has already been discussed in Section 4, namely limiting the
maximum interaction order (mz) of the model. Setting this maximum to a small value (mi <2)
causes the resulting (restricted) model to be more interpretable since its ANOVA components
(Section 3.5) can be directly visualized graphically. With this restriction the MARS model has the
same form as a low dimensional expansion (additive model, interaction splines — see Section 2.3).
Unlike those methods however, which require the variable subsets to be preselected (in advance),
MARS automatically selects them separately for each problem at hand based on the data. It
also automatically (and adaptively) selects the (different) degree of smoothing to be applied in
estimating the separate functions of each of the variable subsets it produces. In situations where
this adaptability is not important one might apply MARS to obtain the low dimensional variable
subsets (ANOVA decomposition) and then apply a less adaptive smoothing method (kernel with
the backfitting algorithm, or interaction splines (12)) on these subsets to obtain the final function
estimates.

One might in addition (or instead) limit the specific variables that can participate in inter-
actions. If it is known a priori that certain variables are not likely to interact with others, then
restricting their contributions to be at most additive can improve accuracy. If one further suspects
that specific variables can only enter linearly, then placing such a restriction can improve accuracy.
The incremental charge d (32) for knots placed under these constraints should be less than that for
the unrestricted knot optimization. (The implementing software charges 2d/3 and d/3 respectively,
for the additive and linear constraints where d is the charge for unrestricted knot optimization.)

These constraints, as well as far more sophisticated ones, are easily incorporated in the MARS
strategy. Before each prospective knot is considered (Algorithm 2, lines 6-8), the parameters of the
corresponding two new potential multivariate spline basis functions (v, ¢, and B,,) can be examined
for consistency with the constraints. If they are inconsistent, they can be made ineligible for

.inclusion in the model by simply skipping lines 6-8 in Algorithm 2.
5.2. Semiparametric Modeling

Another kind of a priori knowledge that is sometimes available has to do with the nature of
the dependence of the response on some (or all) the predictor variables. The user may be able to
provide a function g(x) that is thought to capture some aspects of the true underlying function
f(x). More generally, one may have a set of such functions {g;(x)}{, each one of which might

capture some special aspect of the functional relationship. A semiparametric model of the form

J

fop(x) = ¢j05(%) + f(x), (73)

i=1
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where f(x) takes the form of the MARS approximation, could then be fit to the data. The
coefficients ¢; in (73) are jointly fit along with the parameters of the MARS model in Algorithms
2 and 3. To the extent that one or more of the g; successfully describe attributes of the true
underlying function, they will be included with relatively large (absolute) coefficients, and the
accuracy of the resulting (combined) model will be improved. |

Semiparametric models of this type (73) are easily fit using the MARS strategy. One simply
includes {g;(x)}{ as J additional predictor variables (Zp41,---,&nss) and constrains their con-
tributions to be linear. One could also, of course, not place this constraint, thereby fitting more
complex semiparametric models than (73).

Another strategy that is often employed in this context is to first fit only the parametric com-
ponent to the data and then apply a nonparametric method (such as MARS) to the residuals of
the parametric fit. In general, this strategy is likely to be less successful because the residual func-
tion may be more highly structured than the original one (and thus more difficult to approximate)
especially if the parametric approximation is not close to the true underlying function. The more
general approach (73) allows the fitting procedure to automatically adjust the strength of the para-
metric components as part of the fitting process.

5.3. Collinearity

Extreme collinearity of the predictor variables is a fundamental problem in the modeling of
observational data. Solely in terms of predictive modeling it represents an advantage in that it
effectively reduces the dimensionality of the predictor variable space. This is only true provided
that the observed collinearity is a property of the population distribution and not an artifact of
the sample at hand. Collinearity presents, on the other hand, severe problems for interpreting the
resulting model.

This problem is even more serious for (interactive) MARS modeling than for additive or linear
modeling. Not only is it difficult to isolate the separate contributions of highly collinear predictor
variables to the functional dependence, it is also difficult to separate the additive and interactive
contributions among them. A highly nonlinear dependence on one such (highly correlated) variable
can be well approximated by a combination of functions of several of them, and/or by interactions
among them.

In the context of MARS modeling one strategy to cope with this (added) problem is to fit a
sequence of models with increasing maximum interaction order (m:). One first fits an additive
model (m:¢ = 1), then one that permits at most two variable interactions (mi = 2), and so on.
The models in this sequence can then be compared by means of their respective optimizing GCV
scores. The one with the lowest mi value that gives a (relatively) acceptable fit can then be chosen.

Another (complementary) strategy is to directly resolve the ambiguity by enforcing parsimony
on the number of variables that enter the model (Friedman and Silverman, 1989). This will dis-
courage spurious interaction effects caused by collinearity (or concurvity) and, in addition, partially
stabilize the function estimates. It will also aid in interpretation in that the resulting approximation

will involve fewer variables.
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Variable parsimony can be accomplished by introducing a small incremental penalty to the lack-
of-fit criterion for choosing factors (knots) that involve introducing a new variable (not already in

the model) as part of the forward stepwise procedure (Algorithm 2, line 7):

. M-1 .
LOF(g) — LOF(g) [1 + I (v ¢ | {v(k,m) {‘m)J : (74)

At the Mth iteration there are M — 1 basis functions currently in the model and the indicator
function in (74) will be zero if the vth variable appears in a least one of them; otherwise it will
be equal to one. The parameter v (> 0) regulates the strength of the penalty for entering new
variables and can be used to control the lack-of-fit/variable parsimony tradeoff. Note that this
penalty (74) is only introduced as part of the (forward stepwise) knot selection process and it is
not used to reflect the overall lack-of-fit of the model.

In highly collinear settings the (unmodified) lack-of-fit criterion (LO F(g)) has very little pref-
erence on which particular variable to enter from a highly correlated set, and a small value for v
will cause the modified criterion (74) to repeatedly enter the same one from that set, without se-
riously degrading the quality of the approximation. A good value for ¥ depends on the particular
situation (degree of collinearity) and how much goodness-of-fit the user is willing to sacrifice for
variable parsimony. This can be judged by examining the resulting fit quality for several (increas-
ing) values of v as reflected by either the final GCV score (30) or a sample reuse method. ’

We illustrate these two approaches on data taken from the Places Rated Almanac (Boyer
and Savageau, 1986). They rated 329 American cities on the nine criteria listed in Table 12.
For this exercise we attempt to model housing cost (y = z3) on the other eight criteria. Table
13 shows the resulting number of variables and GCV estimate (30) of the PSE (59) for running
MARS with different values of v (74). The first three rows are for additive modeling (mi = 1)
and the second three for models with two variable interactions permitted (mi = 2). The models
involving interactions are seen to not be distinctly superior to the additive ones, so that using the
first strategy (above) one would be inclined to choose the latter. As the value of v (74) is steadily
increased, MARS produces models with progressively fewer variables, as one would expect. For
these particular data, however, one is able to reduce the number of variables from (nearly) the

- full set (at ¥ = 0) to only three (.05 < v < .15) without seriously degrading the quality of the
fit as estimated by the solution GCV score. Note that this GCV score (30) does not reflect the
additional penalty imposed by setting v > 0, so that differences between scores involving larger and
smaller values of v underestimate (on average) their actual differences. Ordinary cross-validation
(CV) does account for this increased penalty. For example, the CV estimate (10 replications) for
the ¥ = 0 (m¢ = 1) model is 0.56 whereas the corresonding score for v = 0.1 is 0.52.

Figure 10 shows the graphical ANOVA decomposition for the three variable additive model
produced for 0.05 < v < .15. From this analysis it appears that average (increasing) housing
costs are most strongly affected by increasingly good climate (especially for the highest values)

and are associated to a somewhat lesser degree with economic conditions and access to the arts.
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The dependence on climate might be somewhat surprising since in these data housing costs reflect
utility bills, which are likely to decrease with good climate, as well as taxes and mortgage payments.
Any interpretations, however, must be tempered by the existence of the collinearities present in
the design and the fact that the model is estimated to account for only 50% of the variance of the

respomnse.

5.4. Robustness

Since the MARS method as described here uses a model selection criterion based on squared-
error loss it is not robust against outlying response values. There is nothing fundamental about
squared-error loss in the MARS approach. Any criterion can be used to select the multivariate
spline basis functions, and construct the final fit, by simply replacing the internal linear least
squares fitting routine (LOF — Algorithm 2, line 7, and Algorithm 3, lines 2 and 5) by one that
minimizes another loss criterion (given the current set of multivariate spline basis functions). Using
robust/resistant linear regression methods would provide resistance to outliers. The only advantage
to squared-error loss in the MARS context is computational. It is difficult to see how rapid updating
formulae (Section 3.9) could be developed for other types of linear regression.

Gross outliers (in both the response and covariates) that can be detected through a preliminary
(exploratory) analysis of the data, should be considered for removal before applying MARS. The
MARS procedure is less sensitive than linear regression to covariate outliers owing to the local
nature of the fit; sample covariate vectors far from an evaluation point tend to have less rather
than more influence on the model estimate. Covariate outliers can have a strong influence on the
fit near the corresponding data boundaries. This can be quite helpful if the corresponding response
values for the outliers are correctly measured. If not, these outliers will contribute to end effect
€errors.

Recursive partitioning responds to outlying response values by trying to isolate them. It
produces a series of splits so as to place each such outlier in its own region. This localizes the
effect of the outlier(s) so that they only distort the fit for covariate values close to that of the
outlier(s). The MARS procedure operates similarly. It will also try to isolate outliers through a
series of corresponding “splits” producing basis functions that attempt to capture the (apparent)
high curvature of the function near each outlier. The outliers will tend to heavily influence the
- values of the coefficients of their corresponding basis functions, but have much less influence on
the rest of the fit. The particular basis functions introduced in this manner by outlying response
values, may tend to involve interactions of high order depending on their location in the covariate
space. Thus, interpreting the presence of interaction effects can be highly distorted by the existence
of outlying response values.

Computationally feasible methods of robustifying the MARS procedure are currently under

investigation.

6.0. Conclusion

The aim of the MARS procedure is to combine recursive partitioning and spline fitting in a
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way that best retains the positive aspects of both, while being less vulnerable to their unfavorable
properties. This has been accomplished, at least to some extent. The greatest strength of recursive
partitioning is its adaptability, through its local variable subset selection strategy. This makes it a
highly dynamic computation (Section 2.4) capable of tracking the dependencies associated with a
wide variety of complex functional forms. The two weaknesses of recursive partioning are the lack
of continuity of its models, and its inability to capture simple relationships such as linear, additive,
or interactions of low order compared to n. Nonadaptive (tensor product) spline fitting produces
continuous models with continuous derivatives. It strongly suffers, however, from the “curse-of-
dimensionality” in that very large basis function sets are usually required in high dimensions to
capture relatively simple functional relationships.

The MARS procedure completely retains the adaptability of recursive partitioning by its close
adherence to the recursive splitting paradigm (compare Algorithms 1 and 2). It is in fact much
more adaptive because it permits the recursive “splitting” of all basis functions (nodes) in the
model and not just those that are currently terminal. This causes it to overcome the second
problem (mentioned in the previous paragraph) associated with recursive partitioning. It produces
continuous models by replacing the step functions (19) (20) by ¢ = 1 truncated power spline
basis functions (21) (22). Continuous derivatives are obtained through the strategy outlined in
Section 3.7. From the point of view of tensor product spline methods, MARS can be viewed
as a hierarchical forward/backward stepwise subset selection procedure for choosing a subbasis
appropriate for the problem at hand, from the complete (¢ = 1) truncated power tensor product
basis with knots at every (distinct) marginal data value. MARS models have a fair degree of
interpretability through the ANOVA decomposition (Section 3.5) that breaks up the approximation
into an additive component and into interaction contributions of various orders. Slicing (Section
4.7) can be used to explore the higher dimensional aspects of the models

The implementation of the adaptive regression spline strategy presented here represents a
“first attempt” in that particular choices have been made concerning many of the “engineering
details” in the absence of a great deal of experience with the procedure. Although incidental to the
fundamental ideas, these details can have a strong bearing on performance. As experience is gained
it is likely that many of the choices taken here will be seen to be less than optimal and suitable
~ modifications will emerge that improve the performance of the procedure. The attempt here has
been to demonstrate that the adaptive regression spline strategy, first introduced by Smith (1982)
(in the univariate setting), holds substantial promise as a tool for multivariate function estimation.

A FORTRAN program implementing the MARS procedure is available from the author.
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Table 1
Computation time in seconds for executing the MARS procedure on the alternating current
impedance example of Section 4.4.1, as a function of the maximum size, Mp.x, of the basis function
set. Computations were performed on a SUN 3/260 with FPA. For this example n = 4 and
N = 200. Execution times scale linearly with both these parameters. The quantity mi is the

maximum number of variables that are allowed to interact.

Max 5 10 15 20 30 40 50
mi
1.5 3.0 4.4 8.4 17.2 32.1 54.2
23 7.2 14.1 24.6 88.1 227.8 536.9
n 24 8.1 154 33.7 119.1 271.3 546.2

Table 2a
Results of applying MARS to pure noise in five dimensions (rn = 5). Shown are the lower
quantiles for the ratio of the MARS GCV score to that of a constant model f(x) =7.

mi 1% 5% 10% 25% 50%
N =150

1 79 .88 93 .98  1.02

2 .79 .88 .91 99  1.04

n .81 .86 .91 99  1.04
N =100

1 .88 .94 .96 99  1.00

2 89 94 .96 98  1.01

n 89 94 95 98 1.00
N =200

1 97 .98 99 1.00 1.01

2 94 97 98 1.00 1.01

n 94 96 98 1.00 1.01
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Table 2b
Results of applying MARS to pure noise in ten dimensions (n = 10). Shown are the lower
quantiles of the ratio of the MARS GCYV score to that of a constant model f(x) = 7.

mi 1% 5% 10% 25% 50%
N =50

1 77 .82 .87 97  1.00

2 71 .75 .86 98  1.01

n 64 .75 86 .96  1.02

N =100
1 93 94 .96 .98 1.00
2 .84 91 .92 97  1.00
n .84 .89 .92 .96 1.00
N = 200
1 94 96 .98 1.00 1.00
2 94 .95 97 .99 1.01
n 92 94 .95 .98 1.00

Table 3
Comparison of the accuracy of MARS modeling, with interactions permitted (mi = 2,10), to
that of purely additive modeling (m? = 1) on additive data (Section 4.2).

mi ISE PSE GCV/PSE
N =50

1 14 (.07) .26 (.06)  1.16 (.32)

2 15 (.08) .27 (.07)  1.12(.32)

10 15 (.08) .27 (.07) 1.10 (.32)
N =100

1 053 (.027) .18 (.02)  1.06 (.19)

2 .060 (.034) .19 (.03)  1.02 (.20)

10 063 (.043) .19 (.04)  1.02 (.21)
N =200

1 .026 (.011) .16 (.01)  1.08 (.16)

2 033 (.021) .17 (.02)  1.04 (.16)

10 037 (.017) .17 (.03)  1.02 (.16)
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Table 4
Number of replications (out of 100) for which the optimizing GCV score for the additive model
(mi = 1) is less than (or equal to) THR times that for models with interactions allowed (m: = 2, 10),
on additive data (Section 4.2).

mi THR=10 THR=105 THR=1.1

N =50
2 36 93 97
10 84 91 95
N =100
2 83 95 98
10 31 94 99
N = 200
2 70 94 100
10 72 94 100

Table 5a
Summary of the MARS model for the data of Section 4.3.
GCV (piecewise-linear) = .059
GCV (piecewise-cubic) = .055
total number of basis functions = 11
total effective number of parameters = 32.3
ANOVA decomposition:

Fun o \GCV # basis # parms variable(s)
1 .56 .67 1 2.8 4
2 .29 .087 1 2.8 2
3 .50 .26 1 2.8 1
4 .28 21 1 2.8 5
5 .30 .22 2 5.7 3
6 .46 37 4 11.3 1 2
7 .064 .059 1 2.8 2
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Table 5b
Results of applying MARS to 100 data sets, at three sample sizes IV, for the situation described

in Section 4.3.

mi - IS PSE GCV/PSE
N =50
1 16 (.08) .20 (.08)  1.17 (.40)
2 20 ((12) .24 (.11)  1.23 (.63)
10 20 (.12) .23 (.11)  1.23(.63)
N =100
1 11(.02)  .15(.02)  1.07 (.27)
2 .035 (.025) .074 (.024)  1.19 (.33)
10 038 (.025) .077 (.024)  1.16 (.30)
N =200
1 .097 (.009) .13 (.009)  1.01 (.16)
2 .017 (.007) .056 (.007)  1.09 (.21)
10 .018 (.008) .058 (.008)  1.05 (.20)
Table 6a

Summary of the MARS model for the alternating current series circuit impedance Z.

GCV (piecewise - linear) = 0.21
GCV (piecewise - cubic) = 0.19
total number of basis functions = 9

total effective number of parameters = 31.0
ANOVA decomposition:

Fun. o \GCV # basis # parms variable(s)

1 .35 .25 2 6.7 w
2 .62 44 1 3.3 R
3 .53 .52 3 10.0 w C
4 .53 40 2 6.7 w L
5 A7 .22 1 3.3 R L
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Table 6b
Results of applying MARS to 100 data sets, at each of three sample sizes V, for the alternating
current impedance Z example.

mi . ISE PSE GCV/PSE
N =100

1 68 (.11)  .71(.10) .86 (.19)

2 28 (.17) .35 (.15) .88 (.28)

4 31(.18) .38 (.16) .81 (.28)
N =200

1 59 (.05) .63 (.05) .96 (.14)

2 12 (.06) .21 (.06) 1.01 (.21)

4 12 (.07)  .21(.06) .96 (.20)
N =400

1 56 (.04) .60 (.04) .98 (.11)

2 067 (.015) .16 (.01) 1.01 (.15)

4 .069 (.028) .16 (.03) .97 (.15)

Table 7Ta A
Summary of the MARS model for the alternating current series circuit phase angle .

GCV (piecewise - linear) = .19

GCV (piecewise - cubic) = .22

total number of basis functions = 14

total effective number of parameters = 40.2
ANOVA decomposition:

Fun o \GCV # basis # parms variable(s)

1 45 .32 2 5.6 w

2 .86 34 2 5.6 C

3 .62 .38 2 5.6 L

4 42 .26 3 8.4 R C
5 23 .21 1 2.8 w L
6 12 .19 1 2.8 L C
7 .14 .19 1 2.8 w C
8 .28 .22 1 2.8 R L
9 .24 .23 1 2.8 R w
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Table 7b
Results of applying MARS to 100 data sets, at each of three sample sizes IV, for the alternating

current phase angle ¢ example.

mi - ISE PSE GCV/PSE
N =100

1 27 (04) .34(.04) .98 (.18)

2 24 (10) .32 (.09) .92 (.24)

4 24 (.07) .32 (.06) .92 (.23)
N = 200

1 24 (.02)  .31(.02) 1.01(.11)

2 16 (.03) .25(.02) .95 (.15)

4 16 (.03) .25(.03) .90 (.16)
N =400

1 22 (.01) .30 (.01) 1.04 (.09)

2 12 (.01) .21 (.01) 1.00 (.13)

4 12 (.02) .21 (.02) .94 (.13)

Table 8

Measured variables for the Portuguese olive oil data

C16:0 palmitic acid
C16:1 palmitoleic acid
C17:0 heptadecanoic acid
C17:1 heptadecenoic acid
C18:0 stearic acid

C18:1 oleic acid

C18:2 linoleic acid

C18:3 linolenic acid

C20:0 eicosanoic acid
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(o)

C24:0 lignoceric acid

—
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Beta-sitosterol
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Campesterol
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Table 9
Portuguese Olive Oil

method #vars GCV CV  error (CV)
MARS (mi=1)" 3 .23 .21 .050
(least-squares)
MARS (mi = 2) 3 19 .20 .038
(least-squares)
MARS (mi=1) 3 16 .19 036
(logistic)
MARS (mi = 2) 3 13 .16 026
(logistic)
linear logistic 4 .25 .26 .070
(stepwise)
CART 2 - .22 .058
Table 10

Summary of the (mi = 2) logistic MARS model for the Portuguese olive oil example.

piecewise-linear: GCV = .10 CV =.15
piecewise-cubic: GCV = .13 CV = .15

total number of basis functions = 9
total effective number of parameters = 29.5

ANOVA decomposition:

Fun \ GCV  # basis # parms variable(s)

1 .60 3 9.5 2
2 .26 1 3.2 6
3 27 2 6.3 2 12
4 .20 3 9.5 6 12
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Table 11

MARS on semiconductor data, piecewise-linear fits — see Section 4.7.

GCV  cross-validation (10-reps)

residual distribution

ma ver +e? med. .75  max.

1 458 508 159 316  18.9
2 .041 211 .012 .032 7.6
3 .016 .118 .010 .025 4.6
4 0096 .090 .0078 .017 2.9

Table 12

The nine criteria used to rate U.S. cities by the Places Rated Almanac.

climate
housing costs
health care and environment

crime rate
education

access to the arts

1

2

3

4

5 transportation
6

7

8 recreational opportunities
9

economniics
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Table 13
The number of variables and corresponding GCV score for a sequence of MARS models on the

Places Rated data, produced by increasing the penalty v (74) for adding variables.

mi=1

v 0 .01 .02 .03 .05 .10 .15
# vars 7 7 7 4 3 3 2
GCV 49 49 49 50 .51 .51 .58
mi =2

¥ 0 .01 02 .05 07 10 15
# vars 6 5 5 4 3 2
GCV 48 50 48 47 51 .51 .58

60



2a.

2b.

4c.

Figure Captions

A binary tree representing a recursive partitioning regression model with the associated basis

functions.
Comparison of ¢ = 1 truncated power spline functions and the corresponding continuous
derivative truncated cubics, with central knot ¢ = 0.5 and side knots at t_ = 0.2 and ¢t = 0.7.

Dlustration of side knot placement for a one-dimensional ANOVA function comprised of three
basis functions (upper frame), and a two-dimensional ANOVA function with two basis functions

(lower frame).

. ANOVA functions for the MARS model of Example 4.3.
) 4a.
4b.

Schematic diagram of the alternating current series circuit for Examples 4.4.

ANOVA functions of the MARS model for the alternating current series circuit impedance Z,
Section 4.4.1.

ANOVA functions of the MARS model for the alternating current series circuit phase angle ¢,
Section 4.4.2.

5. ANOVA functions for the log-odds MARS model on the Portuguese olive oil data, Section 4.5.
6. Experimental design (upper left) and MARS surface smooth for the gun recoil data, first

7a.
7b.
8a.

8b.
9a.

9b.

9c.

10.

example, Section 4.6.

True underlying function (eqn. 66) for the second example, Section 4.6.

MARS surface smooth for second example, Section 4.6.

MARS surface smooth for the second example, Section 4.6, in the presence of eight highly
structured nuisance variables.

ANOVA functions for the ten variable version of the second example in Section 4.6.

MARS model for semiconductor component data restricted to two-variable interactions (mi =
2).

Full (mi = 4) MARS model for semiconductor component data. Functions of V; and V; along
various slices defined by V3 and Vj.

Full (mi = 4) MARS model for semiconductor component data. Functions of V3 and Vj along
several slices defined by V; and V5.

Graphical ANOVA decmposition of the three variable additive MARS model on the Places
Rated data, Section 5.3.
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Figure 1

By = H[~(zv, — ta)|H[=(zv, —ts)]

By = H[—(zy, — to)|H[+(zv, — ts)|H[~(zv. —tc)]
Bs = H[—(zy, — ta)|H[+(zv, — ts)|H[+(zv, —tc)]
By = H[+(zv, —ta)]
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Discussion by Larry L. Schumaker of
Multivariate Adaptive Regression Splines by J. H. Friedman

Clearly the fitting of functions of more than two variables is an important problem,
and it is nice to see that statisticians are willing to tackle it. Mathematicians have tended
to concentrate on the bivariate case (perhaps because even there, much remains to be
done). The recently published bibliography [1] provides a fairly uptodate list of what ap-
proximation theorists have been doing. Some of this work does deal with the many variable
case. In particular, the papers [2-6] deal with adaptive fitting of piecewise polynomials,
much in the spirit of the paper under discussion. These papers also deal with the problem
of giving error bounds.

Approximation theorists have also recently been interested in the problem of approx-
imating multivariate functions by sums of univariate functions. In this connection I would
like to cite [7,8], (see also the bibliography (1] mentioned above). Other references can be
found the the book [8].

Next, a few comments to the paper under discussion. I am a bit puzzled by the
assertion in Section 2.4.2 and later in Section 3.2 that lack of smoothness of the approxi-
mating functions limits the accuracy of the approximation. Generally it is true that lack
of smoothness of the function to be approxxmated limits accuracy, while for the approxi-
mating functions it is the degree of the polynomials used which is critical. Similarly, I do
not understand the discussion of end effects in Section 3.7. The classical natural splines
perform badly near the boundaries precisely because they smoothly match linear functions
there; i.e., they are constrained at the endpoints in the wrong way. The author uses a basis
of piecewise linear functions which are smoothed out to be C'. If one does not need C!
functions, it seems it would be better to simply use linear splines to begin with. As far as
I know, the approximation properties of the modified basis function are not understood.
Do they approximate with the same power as linear splines? Surely they not do as well
as quadratic ones. My next remark relates to the basis functions being used. As noted
in Section 3.9, the one-sided truncated power basis is well-known to be very badly condi-
tioned whereas the classical B-splines are very well-conditioned. Why not use the latter?
Updating might even be easier.

The idea of simplifying the model by removing knots (recombining pieces) strikes me
as very important. This idea has recently been discovered by approximation theorists in
connection with general spline fitting. The papers [9-11] are representative.

1. R. Franke and L. L. Schumaker, A bibliography of multivariate approximation, in

Topics in Multivariate Approximation, C. K. Chui, L. L. Schumaker. and F. Utreras

(eds.), Academic Press, New York, 1987, 275-335.

M. S. Birman and M. E. Solomiak, Approximation of the functions of the classes W

by piecewise polynomial functions, Soviet Math. Dokl. 7 (1966), 1573-1577.

3. Ju. A. Brudnyi, Piecewise polynomial approximation and local approximations, Soviet
Math. Dokl. 12 (1971), 1591-1594.

4. C. de Boor and J. R. Rice, An adaptive algorithm for multivariate approximation
giving optimal convergence rates, J. Approximation Theory 25 (1979), 337-359.

o
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10.

11.

R. A. DeVore and V. A. Popov, Free multivariate splines, Constructive Approximation
3 (1987), 239-248.

V. Popov, Nonlinear Multivariate Approximation, in Approximation Theory VI, C.
Chui, L. Schumaker and J. Ward (eds.), Academic Press, New York, 1989, 519~-560.
W. A. Light and E. W. Cheney, On the approximation of a bivariate function by the
sum of univariate functions, J. Approximation Th. 29 (1980), 305-322.

W. A. Light and E. W. Cheney, Approximation Theory in Tensor Product Spaces,
Springer-Verlag Lecture Notes 1169, New York, 1985.

T. Lyche and K. Mgrken, Knot removal for parametric B-spline curves and surfaces,
Computer-Aided Geometric Design 4 (1987), 217-230.

T. Lyche, T. and K. Mgrken, A data reduction strategy for splines, IMA J. Numer.
Anal. 8 (1988), 185-208.

T. Lyche, T. and K. Mgrken, A discrete approach to knot removal and degree reduction
algorithms for splines, in Algorithms for the Approximation of Functions and Data,
M. G. Cox and J. C. Mason (eds.), Oxford Univ. Press, 1987.



Discussion of: Multivariate Adaptive Regression Splines
ART OWEN

Stanford University

I like MARS. It looks like a good tool for pulling out the most useful parts of large interaction
spaces. Most of my comments are directed at accounting issues: How many degrees of freedom are
used in knot selection? How can the cost be lowered? At the end, there are some comments on
how one might apply MARS to models for which fast updating is not available.

My main interest in MARS stems from work in computer experiments. In these applications
smooth functions, of fairly high complexity, are evaluated over high dimensional domains with no
sampling error. I plan to use MARS on such functions evaluated over Latin hypercube designs
(McKay. Conover and Beckman, 1979). Some theory for linear modeling of nonrandom responses
over such designs is given in Owen (1990).

When there is no noise, one expects that a larger number of knots might be warranted. It then
becomes worthwhile to lower the price of a knot somehow.

Degrees of Freedom in Broken Line Regression. Consider the broken line regression
model ,

Yi=bo+biti +8(ti -0y +e; i=1,---,n (1)

where t; < t; < ... < t, are nonrandom with 3" t; = 0 and }_ ¢! = no?, ¢; are independent N(0,1)

and bo, b,,3 and 6 are parameters. Taking 8 = 0 in (1) yields a one segment model. Taking 8 # 0
and ¢y < 8 < t, yields a two segment model. This model has been studied by Feder (1967), Hinkley
(1969), Davies (1977,1987) and Knowles and Siegmund (1989). All these authors point out that
nonstandard asymptotics apply when 3 = 0. In particular estimation of 3 and § “uses up” more
than 2 degrees of freedom in that case. Hinkley (1969) reports that approximately 3 degrees of
freedom are used, based on a simulation in which the potential knots were uniformly spaced. When
- 3 # 0 the standard asymptotics, that is 2 degrees of freedom, are relevant (Feder 1967, Part 2).

This suggests that when the evidence that 3 # 0 is extremely strong, that fewer degrees of
freedom should be “charged” than when the evidence is borderline. Of course for small § # 0 and
finite n the nonstandard asymptote might be the more accurate one.

Following Davies (1987) we consider testing whether the line breaks at 8 via
Z(0) = V=UHO) Y Elti—0), (2)
i=1

where N
@,' = Y, —Y— t,'i?/U?

1



1
V(8) = Roz2 — ”Rm 3 — R},
:

and

Rjx = Rx(8) = Zt’(t —9)k. (3)

The null distribution of Z(8) is N(O 1) for t2 < 8 < t,_;. To test whether the regression line
breaks at all we consider the supremum of Z(8) or of |Z(8)| over an interval. The null covariance

of Z(8) and Z(4) is
p(0,6) = VHOV(9) [Rorn(6,6) ~ LB (0)Ron(9) - FRnORu)] (@

where n

Ro1,01(8,9) = D (4 — 0)4(t: — &)+ (8)

i=1
Bounds for

P( sup Z(0)>c)

80<6<8,

may be derived from the expected number of upcrossings of ¢ by Z. For example

1 b1
P ( sup  Z(6) > c) < ®(—c)+ —exp (—lcz) / pi[2(8)d8 (6)
80<6<6; 2 2 9
where ® is the standard normal distribution function and
82
Davies (1977) gives (6) as his (3.7), except that he uses
32
— ~1
p11(0) = —'éggp(qﬁﬂ) lg=6 - (7

Definitions (7) and (7') are equivalent when both derivatives exist (since the process has constant

variance). For broken line regression neither exists but the problem is easily handled: replace

(ti — 0)4 by qe(t; — 8) where
ge(z) = {

for small positive € in (1), (2), (3), (5). The function ¢, is Friedman’s piecewise cubic approximation

—€
Tj <€
€

+

Y

[§]

-+

8 wm O
Wy
.4-'8
m

8 T8

IV A

to 4 which in this case is piecewise quadratic. Now 8%p(8, ¢)/968¢ exists and is continuous so
(6) follows from (3.3) of Leadbetter (1972). The right side of (6) is continuous in € > 0 when this

substitution is made. If we take the 'limit as € | 0 we get
L(VIO)) | -
pu(0) = - (m) + V49 [Roo - —Roo Rw]

2



where

d 2 2
V= —V(8) = 2Ro1 + —RooRo1 + —5 R0l
ae n no;
with
. Rjo = R]'O(a) = Z t'Z : (8)
ti >4

One could also take the sum in (8) over t; > 6; it makes no difference in (6) because the
integrand is only affected at finitely many places.
Since both positive and negative [ are of interest we write

P< sup |Zl>c)=P< sup Z>c)[2—P< inf Z<-c| sup Z>c)]

8p<6<6, 80<0<6, 80<6<6, 90 <8<6,

< 2P ( sup Z > c)
80<6<6

1 1,) [*
= P(X(21) >c?)+ —exp | —=c* p}{2(0)d0
s 2 8

1% . .,
= P(X(zl) > CZ) + ;r-/ p}{'(@)d@P(X(ZQ) > C"). (9)

8o

For a given set of t;, p;; can be computed and the integral in (9) can then be numerically
evaluated. Updating formulae are easy to derive for the Rjz. Assume that }5¢; = Oand 3 2 =n,
that is 07=1. The integral of pif is invariant when a nonsingular location scale transformation is
applied to the t; and to the limits of integration. Suppose we want p;;(8;) fort, < 4, <8, < ... <
Om < th—y. Let 51 < 53 < ... < Sp4m be obtained by pooling and sorting the data points ¢; and
the evaluation points #;. Let D; be 1 if s; arose as a data point and 0 if s; arose as an evaluation
point. With this set up, Roo(s1) = n — 1, Roi(s1) = —nty, Rio(s1) = —t; and Ry1(s1) = n.
For 2 < i < n+ m, Roo(si) = Roo(si-1) — Di, Roi(si) = Ror(si—1) — (si — si—1)Roo(si-1),
Rio(si) = Rio(8i-1) — Disi, and Ryy(si) = Ryi(si—1) — (8¢ — si—1)Ry0(8i-1). Now p1; can be
computed on noting that Rg2(0) = R11(8) — ORo1(6) and the values corresponding to evaluation
points can be extracted. At an evaluation point 6; that coincides with a data point t;, p11(6;) will
" depend on the order in which the two points appear in the list of s;.
For uniformly distributed ¢; we can find a simple approximation to (9). Let ¢t; = (i —.5)/n—.5

so 07 = (n® —1)/(12n%) = 1/12, and approximate R by
. /2
Rjk(e) = n/ u](u - O)I‘du
[/

and similarly for Ro101. Use V and § to denote the corresponding changes to V and p. Some

| V(6) = g G - 02)3

3

calculus gives



and

and so

. VB ds |
P( sup |Z| > c) < P(x(zl) >c¢)+ /9 (T—P(X?z) > c?)
0o

f0<6<8, 2T Z _92)1/2
V3 1+ 1+6,
= P(x{ >02+—(102 — log 2 )P 2y > c?).
(X{y > ¢)+ o~ | log Ty, 81y (X{z) > ¢*)

Therefore for 0 < € <

o

1—c¢

3
P < sup |Z| > c) < P(x(zl) > )+ \/T—log( ) P(x(22) > c?). (10)

161< 4 —e

Knowles and Siegmund (1989, Section 4) obtain (10) for uniformly spaced ¢; and large n using
the Hotelling-Naiman “volume of tubes” approach. For large n the ¢ above corresponds to n!/?w
in their notation. One substitutes their equation (10) in their (6) and letting n — oo one gets the
one tailed (i.e. sup Z) version of (10) above.

Figure 1 compares the bound in (10) to tail probabilities from chi-squared distributions on
degrees of freedom ranging from 1 through 4 by steps of 0.5. Chi-squared tail probabilities are
plotted by lines, probabilities based on (10) are plotted as asterisks. For Figure 1, ¢ = .2,.05,.01
and .0001 are used.

The points for ¢ = .01 fall close to the curve for X(23)- So searching the central 98% of the
range for § uses roughly 3 degrees of freedom under the nuil hypothesis. Hinkley (1969) notes from
simulations that roughly 3 degrees of freedom are used. The relative error in these probabilities is
less than 0.1 when the value of the bound (10) is between .05 and .005. While the tail probability
in (10) is not in the chi-squared family it would appear that if one were to approximate it in the
chi-squared family for purposes of model selection, that 3 degrees of freedom would be a reasonable
-choice. Using 3 degrees of freedom might even be a little conservative since it would be common
to search over less than the central 98% of the range.

The choice € = .2 corresponds to searching the central 60% of the range and uses approximately
2 degrees of freedom under the null hypothesis. It also uses (asymptotically) 2 degrees of freedom
under the alternative 3 # 0,]6] < 0.3. So it might be reasonable to make all splits in the central
60% of whatever range is being searched, and charge 2 degrees of freedom.

- Figure 2 shows 10 realizations of the Gaussian process Z(6) on (—1,1) with covariance given
by 6. The mean is 0 and the variancelis 1 over the whole range. The process “turns more rapidly”

(correlations are smaller) for large ||, so more upcrossings occur near the edges.

4
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Figure 3 compares p,;" and p}l where the latter is computed for n = 25. The steep parts

of the jagged curve are meant to be vertical. Since (10) only uses integrals of pi{Q the continuous
approximation using g should be reasonably accurate. especially if each limit of integration is near
the midpoint of two consecutive ;.

Now suppose that ¢; is the (i — .5)/n quantile of the distribution with density
f)=e""1, 2> -l (11)

This is the unit exponential distribution shifted left one unit so as to have mean zero. For this
distribution Roo = Roy = ™%, Ryo = (0 + 1)e™ 1= Rgp = 2¢~1=% and Ry, = (2 + §)e 19,
for § > —1. The function $ tends to 1/4 as § — oo and 5 is asymptotic to (3/4)(1+ 8)72 as
6 — —1. So searching for a breakpoint in an interval of given length should “cost” more if that
interval is near the left edge of the predictor space than if it is near the right edge. Perhaps this
is to be expected because there tend to be more points ¢; per unit length at the left end. Figure 4
plots pl/z(F‘l(u))/f(F‘l(u)) versus u where f is the density in (11) and F is the corresponding
distribution function. Asterisks are used for Pu taken from the exponentially distributed t; and
the smooth curve is for 1’1{ taken from the uniform distribution. If one decides to search over the
range between two sample quantiles then the null probability of an upcrossing is very close under
an exponential design to what it is under a uniform design. Bounds like those in (10) based on the
uniform design would be conservative for an exponential design, since the asterisks lie below the
curve in Figure 4.

Equation (1) is a model for the problem of deciding if and where to bend a line. If a variable

has not yet entered one might consider
Yi=bo+8(ti-0)1 +¢ (12a)

or

Yi=bo+ B(0~ti)s + €. (12b)

Note that (12a) at 6 = ¢; and (12b) at 8 = ¢, are the same (affine) model and that (12a) at 6 = t,,
and (12b) at 8 = ¢; are both the constant model.

For the model in (12a) we take

n

Z(0) = VRO Y &t - 0)4
i=1
where é; = Y; - Y = ¢; — € and V(0) = Roy — R%l/n. The correlation is
— - 1
p(0.0)= VOV (0) [ R 0116.6) ~ - Ron(0)Ron (0]

5



with
1 1
p11(6) = V™1 (8)[Roo — —RE} = Z(V'(6)/V(8))*.
For a uniform spacing of ¢; one finds

172, 1213 (1= A)1/2

where A = A(f) = 1/2 - 4.
If 3 =0 then

1 [
P ( sup |Z(6)] > C> < P(x(y > ) + —/ F11(8)d8P(x}y > ¢).
-1<6<6, T J-1/2

Since the process Z can be “glued onto” another one for testing 8 # 0 in (12b) the null probability
of “splitting the constant model” is bounded by

2 [ 2
Py > )+ 2 [ ALOPOE > ). (13)

For searching the central 98% of the range the coefficient of P(X(22) > ¢?) in (10) is approxi-
mately 2.53. If one considers model (12a) over all but the rightmost 1% of the range and (12b) over
all but the leftmost 1% of the range the corresponding coefficient is approximately 2.64. So the
degrees of freedom used up in deciding whether to split a constant regression are much the same
as those used in splitting a linear regression.

In the backward stepwise part (Algorithm 3), how many degrees of freedom should be charged
when a knot caused two regressors to be added to the model, and one of them gets dropped? I
would guess from the analysis of (12ab) that the full charge for the knot should be assessed, but
from Friedman’s talk at Interface '90 it seems that half the charge for the knot is assessed.

An alternative to restricting the search to a central subinterval, such as the central 60%, is to
search the whole interval. but apply a penalty that increases as the potential knot location nears the
end of the range. Davies (1977, equation 3.3) quotes an upcrossing bound for P(supy Z(8) —¢(8) >

- 0) for continously differentiable ¢(#). For the process described by the continuous approximation
to the uniform design case. the upcrossing bound is especially simple when ¢(6) = A+ Blog((0.5+
161)/(0.5 —|6])) where A. B > 0. (This ¢ has a cusp, but the bound should still be applicable.) One
finds that

P(sup 2(8) = e(8) > 0) < 2(2(B") - 1/2+ ¢(B")/B") P(xfy) > A%) (14)

where B’ = 2B/3/? and ¢ is the standard normal density.
Conclusions. It appears that Hinkley’s (1969) heuristic of charging 3 degrees of freedom for

adding a line segment is reasonably accurate in a variety of settings.

6



By restricting the search to a subinterval it may be possible to reduce the cost of breaking a
line to 2 degrees of freedom. A smoothly varying preference for central splits based on (14) could
also be used to lower the cost of knot selection.

The calculations in the preceding section are most relevant to splitting the constant function

Bo. When splitting another basis function B,, along variable T, perhaps
Y, = Bm(){i)(bo + b1t; + ﬂ(t,‘ — 0)+) +¢ t=1,---,n

should replace (1), or a similar change should be made to (12ab) depending on context.

Finally I would like to pick up on Friedman’s comments on updating formulae in Section 5.4.
When searching a variable for a split point, it may not be necessary to consider every value. The
test statistic Z(6) should tend to have very smooth sample paths. In the smoothly approximated

uniform design case

min max 6(8, ¢) > 0.94.
18]<.4 d>€{0,i.2,i.35}p( )z

That is the central 80% of the range can be effectively scanned by considering only 5 points. Note
that the realizations in Figure 2 tend to be quite smooth in the middle. I would expect the true
underlying function would also make a smooth contribution to Z(#), perhaps smoother than that
of the noise, though I also expect pathological cases are possible. So after 5 evaluations one should
have a good idea where the maximum is and whether it is worth including in the model. Then one
could spend a few more evaluations on a more local search, or wait until the backward stepwise
algorithm has finished to refine the search. When a knot is put at 0.2, the next step would involve
looking at five places between -.5 and .2 and at five places between .2 and .5. If this works it should
be possible to extend MARS to robust regressions, generalized linear models and the proportonal
hazards model. Davies (1977, Section 5) has some suggestions on how to perform various tasks on
representative points 6, and on picking those representative points.

Acknowledgements. I would like to thank Jain Johnstone and David Siegmund for helpful
- discussions. In particular Professor Johnstone showed me some unpublished work of his applying
the Hotelling-Naiman volume of tubes methodology to broken line regression and including a plot

similar to Figure 1.
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Captions for Figures

Figure 1: Tail Probabilities.

The solid lines give (right) tail probabilities from chi-squared distributions on degrees of free-
dom 1 through 4 in steps of 1/2. The asterisks plot tail probabilities from formula (10) using
€=.2,.05, .01, .0001.

Figure 2: Realizations of Z(0).

Shown are 10 realizations of the Gaussian process with mean 0, constant unit variance and

correlation j, a continuous approximation to p of formula (4).

Figure 3: Comparison of p'}{z and pi{z.

The jagged curve is p}{z from formula (4) with n = 25. The smooth curve is the continuous

/2

. . ~1
approximation py; .

Figure 4: Comparison of uniform and exponential designs.

The smooth curve is the continuous approximation ﬁi{z(O) assuming a uniform distribution
of design points. The asterisks are ﬁ}{z(O)/f(O) where § is the continuous approximation to p for
design points from the exponential distribution f given by equation (11). The z axis is F~1(4)

where F is the appropriate distribution (uniform or exponential).
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DISCUSSION OF "MULTIVARIATE ADAPTIVE REGRESSION SPLINES"
CHARLES J. STONE
University of California at Berkeley

This pioneering paper successfully combines creative breakthroughs (especially, not
removing the parent basis function) with numerous techniques developed over the years
by the author and his collaborators and others (especially, Patricia Smith). The tactics of
MARS are specific to least-squares estimation of a regression function, but the general
stfategy is much more widely applicable.

In Algorithm 2, the residual sum of squares could be used for LOF. This would
allow the entering of new basis functions to be broken up into two steps: decide which
basis function next to enter into the model; enter the selected basis function. Using the "t
to enter” algorithm from stepwise regression would then eliminate the need to fit the
various candidate models in the course of determining the next basis function to enter.

Algorithm 3 could be divided into three tasks: decide which basis function next to
remove from the model; remove the selected basis function; determine the final model.
In the first two of these steps, the residual sum of squares could be used for LOF. Using
the "t to remove" algorithm would then eliminate the need to fit the various candidate
models in the course of determining the next basis function to remove.

With these changes, MARS could be extended to handle logistic regression in a
more natural manner. The " to enter” step in Algorithm 2 could be replaced by an algo-
rithm based on Rao's score test and the "f to remove" step in Algorithm 3 could be
replaced by an algorithm based on Wald's test. The actual maximum-likelihood fitting
(based, say, on the Newton-Raphson algorithm and taking advantage of the concavity of
the log-likelihood function) would be applied Mmax times in Algorithm 2, once after
each application of the score test, and Mmax times in Algorithm 3. The final model selec-
tion could be based on a variant lof AIC, modified along the lines of (32).

Consider now the estimation of an unknown density or profability function f on a set
# . In order to guarantee positivity, we can model log(f) as a member of some adaptively

selected space ¢/ that does not contain the constant functions. Letting B1 ,--,B K be a



2 Charles J. Stone

basis of ¢/, we can write the estimate of f as f = exp(X ké kH k—c(é)), where
0= (él e .0 K)t and c(é) is the normalizing constant. This has the form of an exponen-
tial family. If # =R and the functions ine/ have linear tails, then f has exponential tails.
The selection of ¢ could be done by applying the general strategy of MARS. Ignoring
the model selection, we can choose 0 by maximum-ikelihood. The asymptotic theory of
such estimates, with ¥ a compact interval in R and B1 R ’BK consisting of B-splines
and without model selection, has been treated in Stone (1990). The numerical behavior
of such estimates, modified to incorporate stepwise knot deletion based on Wald's test
and a variant of AIC, is studied in Kooperberg and Stone (1990).

Consider next a random pair (X, Y), where X is an n-dimensional random vector and
Y is a ¢/-valued random variable. Let f(y | x) denote the conditional density or probability
function of Y given that X = x. Consider an estimate f(y|x) of the form f(ylx) =
exp(X ké k(x)B k(y)—c(é(x))), where B1 , B x are suitable basis functions of a possibly
adaptively selected space & of functions on . (The functions ine# should be piecewise
linear for ¢(-) to be computed rapidly.) We could model 61(-), cee GK(-) in turn as
members of possibly adaptively selected spaces &4 10 N3 K respectively. Letting ij,
1<j<J,, be a basis ofi{k, we can write ék(x) = hk(x;Bk) = ZBijjk(x). This leads to
an estimate of f(y |x) having the form
(1) FO1%) = exp(E 2 By H 0B, »)—<(bx; B, ye 4,
where B is the JK-tuple consisting of Bjk’ 1<k<Kand 1< </J,in some order. This
estimate has the form of a multiparameter exponential family, so the corresponding log-
likelihood function is again concave. The asymptotic theory of such estimates, with # a
compact interval in R, %1 == K and bases consisting consisting of B-splines and
without model selection, has been treated in Stone (1989). It remains to investigate the
numerical behavior of such estimates, especially as modified to incorporate the strategy
. of MARS. Perhaps the resulting technology should be referred to as "multivariate

adaptive response splines (MARES)."



Discussion of MARS 3

Suppose, in particular, that # = {0, 1}. Then we can let&¥ be the one-dimensional
space having basis Bl(y) =y. In this context, (1) reduces to logistic regression. Similarly,
by letting # be a finite set of size 3 or more, we can apply the strategy of MARS to the
polytomous extension of logistic regression.

The more general setup given by (1) allows for the estimation of the conditional
variance and conditional quantiles of an arbitrary random variable Y given X as well as
estimation of the conditional mean of Y given X, which is treated in the present paper.

 The general strategy of MARS is also applicable to time series.
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This article reviews a set of key developments in non-parametric function estination,

many of them due in part or in large to Professor Friedman, which have radically changed
* .

the scope of modern Statistics. MARS is an impressive addition to this set. There is

a growing practical interest in innovative adaptive function estimation techniques. Vor

example, [ am aware of the need for sophisticated covariate adjustment in connection with

survival analysis of a large clinical trail where ¥ = 27,000 and n > 200; The thought of

sending these data to MARS for analysis will have undoubted appeal!

1 General Comments

)
With any adaptive regression technique it is of interest to know the kinds of fuuctions

which canse greatest diffienlty. MARS is coordinate sensitive. A rotation of the coordinate
axes in the examples in sections 4.2 and 4.3 will destroy the simple additive and low order
interactive structure. Will this substantially degrade the performance (ISE) of MARS? Per-
haps the effect could be ameliorated by allowing linear combination splits in the algorithm.
A natural set of split coordinates would be those obtained by successive orthogonally re-
stricted regression of residuals, 7, at the M’th order model on the covariates: The linear
combination ¢ determining the first split coordinate solves the least squares regression of
 on covariates, the linear combination ¢, determining the second split coordinate solves
the least squares regression of r on covariates but subject to the orthogonality constraint
,c; = 0 and so on. The relevant formulas are available in Seber [5, pages 84-85]. Algorithm

2 onlv requires a minor change to incorporate consideration of linear combination splits.



Obviously it would no longer make sense to have a constraint on the order of interaction
k < K, but it would perhaps be natural to put a constraint on the number of split co-
ordinates to be examined. The l'a[;id updating formulae in equation (.52) don’t apply but
for split coordinate and knot optimization it should be adequate to compute the lack of
fit in the innermost loop of Algorithm 2 by leaving a;,a;...ap—-1 provisionally fixed and
minimizing only over ays and apr41. Optimal coefficients can be evaluated after completing

the inner loop.

With a modification of this type and with more elaborate function estimation algorithms,
the problem arises of how to interpret/visualize the non-parametric regression surface, f.
The output will not be a simple sum of fitst, second and higher order interaction terms,

so the attractive decomposition in equation (24) will not be available. However, numerical

integration can of course be used to obtain a decomposition in terms of variables of interest.

For example, if the x-variables are split as @ = (zy,z2) then
f(@) = filz1) + falz2) + fra(z1, 22)

where fi(z1) = [,, f(x)dz. foz2) = [, f(2) = Ai(zr)dz and fra(zr.22) ~ filzr) = fala).
The percent variance explained by these orthogonal components would be of interest.

A further visualization tool, focusing on isolating local collinearity type effects, could be
obtained by apply multivariate statistical density exploration procedures, such as clustering
and principal component projections. to the x-distribution associated with specified levels
of f. For example. the analysis of the distribution of z-values for which a < f(2) < b would

be of interest. Fuuction visualization is an area where there is a growing need for better



statistical tools.

The MARS algorithm offers considerable power particularly in situations where there
are additive low order nonlinear interactions. One of the motivations for MARS given in the
paper is dissatisfaction with the lack of continuity in CART. I'll finish by briefly describing

an alternative continuous modification to CART which retains some of its algorithmic and

intefpretative simplicity.

2 Smoothed CART by Finite Elements
The CART model in (17) is the represented as
) ‘M
“f(z) = 3 amBm(z)
m=1
where By, = I, the indicator function for an n-dimensional rectangular region, R,,. Re-

place the indicator function by a smooth element I,,(z,s) > 0 whose support is allowed to

extend beyond R, and define a smoothed CART model by

M

j(.‘l:;S) = Z U B (2 5) ‘ v (1)

m=1

Here B, (x;s) is forced to satisfy a local partition of unity by setting

In(z;s)
Bn(is) = &———
Zvn’ [m’(l':s)
SO Z;Y:] B, (2;8) = 1. I require that [,(2.8) > 0 for z € R,,. I've introduced a parameter
s which gives control over smoothness. Models of the above form connect with mixture

models used in the interpretation of multichannel image data, see Adams[1], Choi et al [2]

and O’Sullivan [3] for example.



Laplacian finite clements based on triangular grids have been extensively analyzed in the
approximation theory literature, see the references in Schumnaker[4]. With the rectangular
grids of CART, a reasonable choice for In(z;s)is defined by tensor prdducts of coordinate
functions.

n

In(z;5) = [] wmj(2;58)

i=1
wherre wWmj{z;;$) is a smooth non-negative function whose support for s > 0 will extend
beyvond the projection of R,, onto the j'th coordinate. Specifically, suppose the set of
split points on the j'th variable are tgk) for k = 1,2,...1’; and the projection of R,
o [4lkm) L (km+1) . ; : cnecifi dor
is [tj 't ) then wp,;{-;s) can be a B-spline basis element. of any specified order,
supported on [t;k””[”']).1§k"'+1+[3])] ﬂ[tﬁ-l),t?\")]. Here [s] is the closest integer 10 s. If we
use cubic order elements then f will have continuous second order mixed partial derivatives.

The smoothed version of CART, call it SCART ( ’scairt’ is the Irish word for a bush
or bushy place!), is easily computed. Let 0 < p < 1 be given. The algorithm applies
partitioning and pruning as in CART with a couple of minor modifications: (i) For M
fixed, the tree predictions are f(-;s) with s = pM and the coefficients a., in (1) optimized
by least squares (likelihood can also be used). (ii) At stage M, the selection of the potential
split point for R,, is done to improve the local fit. Thus if 7 are the residuals from the
M’th order model then the algorithm just applies the CART splitting rule to components
of these residuals lving in R,,. The local support of [,,(x;s) must be exploited for rapid
computation of f. Cross-validation is used to compare trees for different values of p. A

preliminary least squares version of SCART with piecewise linear elements was developed



and applied to some of the examples in the paper - those used to compute Tables 3, 5b.6b
and 7h. The ISE was evaluated and compared to that achieved by MARS. MARS is a clear
winner for the additive model in equa.tion (56) and the additive model with the single low
order interaction in equation (61). For example with N = 200 the ISE obtained hy SCART
was on the order of .17 so MARS is 90% better here. SCART wins on the alternating
current impedance exampleﬁ in equation (63a) with a 50% or better improvement in the ISE
at all sample sizes. A smaller improvement between 10 — 30% is achieved by SCART on
phase angle data in equation (63b).

I suppose the message here is that no single adaptive regression technique can perform
uniformly best on all examples, which echoes the point made by Professor Friedman in

4

section 2.0.
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DISCUSSION

This is an exciting piece of methodology. The highest compliment I can pay is to
express my feeling that “I wish I had thought of it”. The basic idea is simple and pow-
- erful. The examples are interesting and illuminating. My sense of it is that this is a
methodology that will become widely used in applications. Naturally, I have a few res-
ervations and questions. But first, | want express my sense of wonderment that this ar-
ticle is published in the Annals of Statistics.

There is not a single theorem, lemma, or proposition in the whole paper. Have my
senses taken leave of me? What, no asymptotics or results concerning the rate at which
- MARS approaches the “True Model” as the sample size goes to infinity? For one of the
few times in its history, the Annals of Statistics has published an article based only on
the fact that this may be a useful methodology. All is ad hoc; there is no maximum
likelihood, no minimax, no rates of convergence, no distributional or function theory.
Is nothing sacred? What kind of statistical science is this? My thanks go to the editor
and the others involved in this sacrilegious departure.

Now on to issues concerning Friedman’s article:

If one fits a linear regression to data, then one is projecting the data onto a fairly small
space--the set of all linear combinations of the x-variables. But now, suppose that one
has 100 x-variables and perhaps 200 data cases, and we are trying to find the best linear
predictor of y based on a subset of the x-variables.

There are billions of different subsets of the x-variables. There are a few standard
methods for choosing between these subsets. Forward variable addition can be used,
and so can backwards variable deletion, and with enough computing power, the
minimum RSS least squares regression equation using a specified number of variables
can be found.

The procedure Friedman proposes is analogous to forward variable selection. There are
a very large number of variables, consisting of all tensor products of spline functions.
Forward stepwise addition is used up to a point, followed by stepwise deletion. The
dimensionality of the final model is governed by what Friedman calls “generalized
~ cross-validation”, but what is actually an adjusted residual-sum-of-squares, with only a
‘distant connection to true cross-validation.

MARS defines a very large class of candidate models by the specification of a large set
of basis elements. Model selection is equivalent to selection of a subset of basis ele-
~ ments, since the coefficients are then defined by least squares regression. For data with
10 variables and a sample size of 100, there are 1000 univariate splines and 450,000
bivariate spline products, where I am counting only splines zero to the left assuming
that to each data value of each variable, there is a spline with knot at that point. The
number of different candidate models using, say, 10 of these basis elements is stagger-
ing.



In principle, the way Friedman would get the “best” of all candidate models is to com-
pute the PSE for all all such models and select the one having the lowest PSE. Since this
is not possible, the GCV is used as an estimate for the PSE, and basis elements are found
- by a stepwise forward addition method. This procedure raises problems which are im-
portant not only to MARS, but to the entire venture of fitting more general multivari-
ate models.

1. The set of candidate models in MARS may be too large.

A) The Packing Problem

The predecessor to MARS is TURBO. This is the program for fitting additive models re-
ported on in the Friedman-Silverman 1989 paper. In the discussion of this paper,
Trevor Hastie criticized TURBO for having high variability. He generated 50 data sets
of sample size 100 from the model:

y = .667sin(1.3x,) - 465x,% + €

where g, Xy, X, are N(0,1) and X1s Xy have correlation .4. He ran TURBO on this data, and

plotted the resulting transformations. These graphs are given below in Figure 1. Later.
as I began working with additive models using different construction methods, I
understood better what Hastie was driving at.

Figure 1.

Consider the following simple method for constructing additive models--put K knots
down on each predictor variable, and using the power basis for splines, do stepwise
backward spline deletion. Decide how many splines to leave in the model by finding
the minimum value of the cross-validation estimate of PSE.

Initially, I had thought that the value of K would not be critical as long as it was large.
For instance, I might typically begin with 15-20 knots per variable and then do the
deletion. The reasoning for taking K large was to have plenty of knots around to fit the
- functions. I thought that having too many would not be a problem since all but a few
would be deleted.

Much experimentation later, I realized that I was wrong. If the process was started with
K too large, then the resulting models were noisy and could contain odd artifacts due to
~ local quirks in the data. One way to think of this is that the deletion process forms a
path through the space of all candidate models. The larger the space of candidate mod-
els, the more tightly they are packed together and the path will be forced to select be-
tween nearby models on the basis of small local properties. The result was that not
only were noisy transformations produced, but also that prediction error increased as K
got too large.



The procedure finally selected was this: for each value of K from one on up, set K initial
knots on each variable, go through the deletion process and let PE(K) be the minimum
cross-validated PSE estimate encountered in the deletion. Now select K to minimize
- PE(K). This process was carried out using Hasties data, and resulted in the graphs
given below. For more details see Breiman [1989a].

Figure 2

The lesson is that relative to some measure of the efficacy of the data the class of candi-
date models should not be packed too tightly together. Otherwise the results will be
..noisy, possibly containing local artifacts, and with a loss in prediction accuracy. My
concern is that the candidate models in MARS are very tightly packed together. There
are many more candidate models than in TURBO. The examples do not seem to show
any signs of the packing problem, but we comment further on this below.

The above is really not a criticism particular to MARS . It could apply also to CART and
to ACE. It appears to me as a fundamental issue in model fitting. The larger the class
one selects from, the more sensitive the procedure is to noise. This issue cries for some
theoretical investigation, and deserves at least as much energy and attention as one-di-
mensional density estimation.

B. The Rashumon Effect

Suppose that we assume that we actually know or can compute the PSE for each model
and can go along with the idea that the best model is the one with minimum PSE. From
a predictive point of view, this is a perfectly defensible procedure. However, very often
predictive procedures are carried out for the purposes of interpretation. Then the ques-
tion posed is “how well does the estimated function mimic the TRUE function?”, or im-
plicitly, “how well can we recover the mechanism used for generating the data?”.

Usually, this question is dealt with by setting up simulated data where the true function
is known and seeing how well the estimation reproduces the known function. This is
the strategy followed in Friedman’s examples of sections 4.2 and 4.3. That this works is
~almost always due to the simple structure of the simulated data. In most cases of com-
‘plex real data we are up against the “Rashumon Effect”.

For instance, consider the “best subsets” procedure in regression for choosing the best
regression equation depending, say, on 5 variables, out of 30. If one prints out the resid-
~ ual-sum-of-squares for the, say 10 lowest RSS equations depending on 5 variables, then
most often the first few of these will have RSS values within a small smidge of each
other. Yet the variables used may be quite different. The analogous effect would take
place if we could compute the 10 lowest PSE equations.



The major causes of this lack of uniqueness lies in the sheer size of the class of candi-
date models and in the dependence between the basis elements. Now, if we assume
that a model with low PSE gives a “good” picture of the data generating mechanism,
then what we are getting is a multiplicity of equally “good”, but different, pictures of
- what goes on within the black box.

Thus, for complex data, there can be many different and equally valid (or equally in-
valid) pictures of the mechanism generating the data. Unfortunately, most procedures
will produce only one picture: i.e. running MARS on a data set will give only one
picture. Yet there may other models based on much different sets of basis elements
that give either as low as or lower PSE.

Unfortunately, much of classical statistics is predicated on there being one unique and
best answer. The data emanates from a black box, so the idea is to assume a stochastic
model for the mechanism in the inside of the black box, estimate a few parameters and
bingo, we know what truth is. But for creative data analysis, the desideratum is to get
as many different views as possible of what may be going on. Given this, if I were run-
ning MARS, then my predilection would be to run it on a number of bootstrap or leave-
some-out samples, and see what different results emerged.

II RSS or GCV is not PSE

Another implicit assumption made in many model fitting procedures is that all other
things being equal (for instance, in comparing two models both of which use the same
number of parameters) that the model with lower RSS will have lower PSE. This is as-
sumed in MARS, since for the same M, the lower RSS model will have lower GCV.

Unfortunately, this assumption is not valid. For the same dimensionality, the minimum
RSS model may be quite different than the minimum PSE model, and the PSE corre-
sponding to the minimum RSS model may be considerably higher than the PSE of the
minimum PSE model. Is this an inherent and unsurmountable difficulty, or is there
some way around it?

MARS uses the GCV values to select dimensionality of the final model. No matter what
you call it, the GCV criterion is not cross-validation. The reason for GCV is computa-
“tional effidency. Ten-fold cross-validation would take about ten time as long, and
MARS is not all that fast to begin with. Friedman has a number of examples showing
that his version of GCV does a pretty good job. But I still have some reservations.

For instance, in the example modeling pure noise, about half of the time MARS produc-
~es amodel that has a better GCV score than estimating the noise by its average. Would
using cross-validation improve on this? Again, the problem is interpretation. Fitting
noise with some structure can lead to embarrassing conclusions.

Near the end of section 3.6, Friedman puts up a fight for GCV based on simulation re-
sults, and claims that “the resulting model and its accuracy are seen to be fairly inde-



pendent of the value chosen for the parameter d”. He concludes that the best value for
d is between 2 and 4, that 3 is fairly effective, and that the accuracy of the result is not
sensitive to the value of d in the 2 to 4 range. This is contrary to my experience in other
contexts.

Selecting the dimensionality of the model used is critical. Selecting too large a model
leads to inflated variance and too small to lack-of-fit bias. But simulations have shown
that GCV in linear regression usually selects too large a model, whereas cross-
validation or bootstrap do a good job in selecting the right-sized model (Breiman and
Spector[1989]) Therefore, even at increased computational cost, I would suggest that the
author include a CV or bootstrap facility in the MARS program.

III Data is not always high signal/noise.

With the exception of the pure noise example, all of the examples given by Friedman
had high signal to noise rations. For instance, the example of (56) had s/n=3.28 (91% of
variance explained). The example of (61) had s/n=4.8 (96% of variance explained). The
circuit examples of Section 4.4 had s/n=3 (90% of variance explained). The olive oil ex-
ample of section (4.5) had a 3-5% misclassification rate. Finally, the example of equation
(66) has s/n=3.15 with 91% of the variance explained. For the other simulated example
(67), the s/n ratio was not specified.

Any propensity of MARS to produce artifacts due to the noisy behavior referred to
above will be most apparent in moderate-to-low signal/noise ratios. To the extent that
Friedman has stayed away from such data, the impression given by the examples in the
paper may be misleading.

Even so, there are some disturbing results in the examples. For instance, for the addi-
tive data of section (4.2) the number of times that a non-additive model is preferred by
GCV increases as the sample size increases. For the data of Section (4.3) with one bi-
variate interaction, allowing an unlimited number of interactions is about as good as al-
lowing only bivariate interactions. Can the author give explanations for these results?

IV Is stepwise forward the only way to go?

‘Stepwise forward procedures make me a bit apprehensive. There is always the risk that
‘with a poor step in the initial phases, it will produce a decidedly suboptimal fit. There
is a similar problem in CART. While with tree-structured procedures we have been un-
able to come up with computationally effective alternatives to stepwise forward split-
ting, in fitting continuous functions to multivariate data there are other methods that

 have appeared in the literature.

For fitting additive equations, there is the backfitting method used in ACE, with contin-
ued research in the Buja,Hastie .and Tibshirani[1989] article. Another interesting
method using backfitting was proposed by Hastie in his discussion of the Friedman-Sil-
verman [1989] work. There is also the work mentioned above doing backward knot de-



letion (Breiman [1989a]).

There has been less work on fitting interaction surfaces. This is where MARS breaks
new ground in being the first published method that has an effective approach to the
- problem. However, as Friedman points out, the group at Wisconsin is making progress
in the computation of interaction splines. There is also another method which depends
on the decomposition of the of the function to be estimated into a sum of products of
univariate functions (Breiman[1989b]).

This IT-method has given promising results. To illustrate we ran it on the example
given in section 4.6, equation(66), which originally appeared in the Chong,
- et.al.[1988]paper. Figure 3 shows the original function, the interaction spline fit, the

MARS fit and the fit of the IT-method.
Figure 3

None of the alternative methods are as fully developed as MARS. The MARS
algorithm, with the setting of a few parameters, produces a fit up to whatever degree of
interaction is wanted. = Whether other methods can provide improved accuracy and
comparable automation remains to be seen.

V Quo Vadis? The development and use of effective multivariate methods for fitting
complex data is an endeavor largely carried on outside of statistics by diverse and ac-
tive groups interested in results, rather than theorems. For instance, most of the CART
applications that we know about have been done by non-statisticians. The rapidly
growing field of neural networks is built around a new class of algorithms for multi-
variate regression and classification with the principle protagonists being engineers and
computer scientists. It was gratifying to find that at a recent neural network conference
there was widespread knowlege of CART. I think that MARS will similarly become
widely known and used in application areas. /

Brieman, L. [1989a] Fitting additive models to data. Technical Report no. 210,
Statiostics Department, University of California at Berkeley

- Breiman, L. and Spector, P.[1989] Submodel selection and evaluation in regression X-
Random case. Technical Report no. 191, Statistics Department, University of Califor-
nia at Berkeley

Breiman, L. [1989b] The II-method for estimating multivariate functions from noisy
data, Technical Report No. 231, Statistics Department, University of California at
* Berkeley



{1 (TURBO - piecewise cubic)

Figure 1

2 (TURBOQ - piecewise cubic)

Figure 2
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Discussion of “Multivariate adaptive regression splines”
Andreas Buja, Diane Duffy, Trevor Hastie, and Robert Tibshirani

We would like to congratulate Prof. Friedman on this characteristically ingenious advancement
in non-parametric multivariate regression modelling. MARS is a triumph of statistical computing
and heuristics: the clever algorithmic and heuristic ideas make extensive searching computationally
feasible. The resulting modeling technology offers the data analyst a remarkably flexible tool which
we found very useful on a difficult real-world problem. We will address a few issues that arose in
our reading of this excellent paper and our experience using the MARS program.

1. Some experience with MARS

Two of us (Buja and Duffy) acquired some experience with MARS in an extensive analysis of
data concerning memory usage in electronic switches. The data comprised 241 observations on 27
variables. It was known from the onset that the available variables gave an incomplete description
of the response. Careful and creative regression modeling yielded fits with good global properties
(R? ~ 0.995), but there were still unacceptably large residuals and poor performance on cross-
validation tests. The fits which we obtained from MARS, on the other hand, excelled in prediction
and cross-validation. In addition, the robustness to influential points which MARS inherits from
the local adaptivity of the selected basis functions was very advantageous in our context. Qur set
of observations was (purposely) chosen to include a subset consisting of notoriously difficult cases.
These cases, as expected, wreaked havoc on regression models but MARS was able to adapt to them
without degrading the fits to the rest of the cases. In addition, highly accurate MARS models could
be built with fewer variables (13 as opposed to 18) which happens to be a true benefit in this situation.
The MARS models involved several second and third order interactions which, while impossible to
anticipate by subject matter experts, seemed reasonable in the sense that they involved variables
which are expected to have large effects on the way memory is used.

An interesting aspect of this analysis is that the data exhibit genuine noise despite the fact that
switches are basically deterministic systems. This is because the 27 predictors were selected from
a complete set of about 300 predictors based on what information is available to engineers who
operate these systems. The success of the MARS fits can only be explained as a result of strong
interdependence within the large set of predictors, rendering most of them redundant. Thus, we
are profiting from what we call ‘concurvity’ which in most contexts is a cause for concern. Further,
models based on the theory of the switching systems would necessarily involve many of the 300
predictors and would therefore be useless to the engineers. One danger in this, or any, data-driven
- as opposed to theory-driven approach is that the model may be misleading if future predictions occur
in areas of the predictor space where data are sparse. It would be useful if MARS were accompanied
by diagnostics tools which indicated when a future set of covariate values is stepping dangerously
outside the range of the training data. A first naive attempt at deriving such a tool would be to
compute the Mahalanobis distance of test covariate vectors in the linear predictor space spanned
by the basis functions of a given MARS model. However, such an approach may have problems
since the constant zero stretches of the spline basis functions lead to clumps of data in the extended
predictor space.

We found it quite useful that the first order truncated basis splines are of an exceedingly simple
form. A fitted model is easily communicated to practitioners and it is trivial to implement on
arbi-trarily small machines. By comparison, we do not see a use for the enhanced cubic models in
this (prediction) context. For graphical display and qualitative data analysis, they may have their
advantages.



In using MARS to analyze our data the following questions and comments arose.
Friedman recommends running MARS with Mmax (the maximum number of basis functions
added in the forwards stepwise procedure) approximately equal to 2M* where M* is the GCV-
minimizing choice for the number of basis functions in the model. In our context M* is in the
neighborhood of 35-40. Based on our experience with honest cross-validation, this is too large for
the sample size and it may indicate that, at least for these data, the default cost being charged
for basis function optimization is probably too low.
. It appears that no complete description of the heuristic choice of the cost parameter d is given.
If there is no restriction on the degree of interaction (mi = n), we understand that the default
_value is d = 3. The question for which we were unable to find an answer was: how does d depend
on mi, the maximal degree of interaction, if it is specified to be less than n? When the degree of
interaction is limited (mi < n) d is, quite logically, decreased. We chose in one instance mi = 5,
which seemed to result in a value of d closer to 2 than 3.
. As mentioned in 2., the cost d is set to 3.0 when unlimited interactions are permitted. Based
on our calculations, it appears that the value of d is also being adjusted based on M,,,,;. How
exactly does it affect d? On one occasion, we observed an apparent oddity in the behavior of d
which seems counterintuitive: d can decrease as My, increases with mi (the maximum permitted
degree of interaction) held fixed.
. One of the startling features of our MARS runs is the fact that the piecewise cubic GCV values
are often an order of magnitude larger than the corresponding piecewise linear GCV values.
In addition, there is little correspondence between the piecewise linear and the piecewise cubic
GCVs for these data. For example, the model which minimizes the piecewise linear GCV
has an associated piecewise cubic GCV which is over three times larger than the piecewise
cubic GCV of another model; this other model, however, has a piecewise linear GCV which
is almost twice the minimal value. Further, the two models are very different; the first has 35
basis functions and interactions up to the third degree whereas the second has only 21 basis
functions and all are restricted to be main effects only. Hence, if a smooth (piecewise cubic)
model had been our ultimate objective, we would have been led very far astray by basing
the model choice on minimizing the piecewise linear GCV. We can see at least three reasons
for the unpredictable behavior of the piecewise cubic modifications: First, the residual sum of
squares is very nonrobust and responds dramatically to a few bad residuals. Second, in high-
dimensional predictor spaces and in the presence of higher order interactions, the seemingly
inoccuous piecewise cubic modification is far from minor because of compounding effects in the
products. And third: our data may very well be better described by piecewise linear functions
due to threshold effects which we observed while performing graphical exploration of the data.
In fitting a series of models with increasing values of M,,,,, the number of basis functions in the
final model grew quite unevenly. While this might be expected for choices of M4, which produce
poorer fitting models, it was surprising to us for a choice of M, yielding near optimal models
(i.e., models with piece-wise linear GCV values near the minimum). We are unsure whether to
interpret the widely varying numbers of basis functions as an artifact of our data or as a property
of the MARS methodology.



2. Generalized Mars models

Friedman proposes using MARS for logistic models. This can, of course, be easily extended to include
all generalized linear models. The standard method for fitting such models is to maximize the
likelihood or, equivalently, to minimize the deviance. While it would be natural to use the penalized
deviance as the criterion for knot inclusion or deletion in direct analogy to the penalized RSS or
LOF used in the present paper, this is computationally impractical because iteration is required to
estimate the parameters and the crucially important ability to rely on the updating formulae is lost.
Consequently Friedman offers an approximation and here we offer another.

Suppose the basis set has k members, and we wish to find the (k¥ + 1)st. The exact inclusion of a
candidate by, can be achieved by using an iteratively reweighted least squares algorithm, with the
_ initial values and working response provided by the fit to the set of size k. Instead of iterating to
convergence, we propose using one iteration, and instead of using the deviance to evaluate the fit,
we propose using the weighted residual sum of squares or Chi-squared approximation to the deviance.
Since the fits for all candidates for br4; use the same use the same working response and the
same weights, Friedman’s entire updating approach carries over. Once the approximately optimal
br4+1 has been selected, the corresponding iterations can be completed to estimate the associated
coefficients.

This approximation for evaluating a candidate bgy; is exactly that used in Rao’s score test (Preg-
ibon, 1980) with the additional advantage that we exploit the updating facility to simuitaneously
perform multiple score tests.

3. ANOVA decomposition

The ANOVA decomposition is achieved in MARS by grouping together all terms involving the
same variables. Thus all the functions involving only X; comprise the main effect for X;, all
terms involving only X; or Xs the interaction for X; and X5, and so on. The usual ANOVA
decomposition for categorical designs ensures that interactions are free of lower order effects by
imposing suitable summation constraints. Note that the tendency for these surfaces to include
lower order effects in MARS is exacerbated because MARS can destroy the hierarchical structure
of its basis during knot deletion. It would be useful if MARS could produce an interaction surface
which was free of lower order effects. One could then use this surface to asess the way in which the
variables interact, without being distracted by the lower order effects.

Hastie and Tibshirani (1990, page 266) propose a strategy for this which can be adapted to
MARS. As in standard ANOVA, one needs only to uncouple the components in the fitted model,
not during the fitting (unless one requires an a priori bierarchy in the terms). Let us focus first
on a bivariate interaction term, say f(Xi1,X2) = >_; arb1x(X1)b2x(X2). We first identify all the
univariate basis functions in each of the tensor products pairs. In this case they are the 4,z and
. bap. We then project the interaction surface onto the joint space defined by them and the other
main-effect basis functions involving those two variables. This additive main effect component of the

interaction is then removed. and lumped together with the original main effects, leaving a residual
component which can be interpreted as a pure interaction and which is orthogonal to these (new)
main effects. It is important to stress that the fit of the model has not been changed during this
operation, simply its ANOVA decomposition.

Of course, if higher order interactions are present, this procedure would have to be used in a top
down fashion. It is not entirely obvious how this would proceed. For example, if the term in question
is a 3rd order interaction, then we should isolate all bivariate interaction basis pairs. These would
be grouped with similar and lower order terms involving the same variables, and the entire set used
to remove the second order effects from the 3rd order interaction.

Incidently, in the simple linear regression model, Y = a + 81 X; + 82X + vX1 X5, we would
not need to do all of this to understand the interaction effect. Decomposing such a fit amounts to
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looking at the coefficients (their sign and magnitude). Although these are fitted jointly, we know
from the Gram-Schmidt process that 4 is also the coefficient of X; X5 adjusted for X, and X5. This
would not be the case if the model were Y = a + /1 X1 + v X1 X5.

4. Shrinking versus knot deletion

In a discussion of the additive predecessor to MARS, called TURBO, Hastie (1989) outlined in
some detail a method for “shrinking” a TURBO model. The idea is that the forward stepwise
algorithm results in a rich set of knots/basis functions for each additive term. In particular, the
knots will be denser on some variables, and locally, within a variable, there may be clusters of knots
in regions of high signal to noise ratio. At this point the model is (purposefully) overparametrized,
and some regularization is needed. As an alternative to backward knot deletion, Hastie suggested
regularizing by shrinking according to an appropriate smoothness penalty. He suggested the penalty
PIFRY St (z,))zda:_,, and pointed out that the resulting procedure is a generalized ridge regressxon
Furthermore since the second derivatives of the piecewise-cubic approximations to the piecewise-
linear basis functions have local support, the ridge penalty matrix is diagonal.

With an appropriate set of penalty functionals, a similar approach can be taken with MARS.
Wahba (1990, chapter 10) outlines in some detail an approach using tensor-product splines, which
are exactly what MARS uses to build up its bases. In Wahba’s setting, models are fit in subspaces
of the tensor product space of all the univariate reproducing-kernel Hilbert spaces, and the penalty
functionals (norms) of these subspaces are inherited from the univariate spaces. For example,
functions involving only X; and X, would be penalized using [ [(8*f(z1,z2)/0z33z2)?dz dzx,.
In practice then, the terms are grouped according to their components (much like the ANOVA
grouping in MARS), each group gets assigned an appropriate penalty (and potentially its own’
smoothing parameter), and then the fit is computed by penalized least squares. Thus suppose the
MARS model] after the stepwise inclusion stage can be written

f(l1,-’v2,---,:rp)=a+ka(xk)+ Z famy(@i, zm) + ...

kel (I,m)el,

where I; denotes the sets of j-tuples corresponding to interactions of order j. Each of the f, has
a linear representation in terms of an appropriate set of tensor-product bases. Then the shrunken
model is the minimizer of the penalized criterion

Z(yz f(xt))2+zf\kpkfk)+ E Atm Pim (fim) + ..

kel (I m)GIQ

“where the P, are the penalty functionals.

Without going into all the details, it is worth pointing out that each of the P.(f.) evaluates to a
quadratic form al M, a. in the coefficients for the basis functions in fi; if the cubic approximations
to the piecewise-linear functions are used, then each of the M, is diagonal, and once again the
problem is a generalized ridge regression. We have used a different regularization parameter \, for
each of the components above. In practice one could simply use a single global A, and trust that the
forward knot selection will give some terms more importance than others. Alternatively, one could
lump all terms of the same interaction order together with the same penalty, and shrink them all at
the same rate.

This is a current research project (Friedman and Hastie), and we are experimenting with other
strategies and penalty functionals. '



5. MARS for classification

One of us (Tibshirani) has made some progress in the development of .a methodology for
classification that tries to combine some of the features of MARS and CART. Consider a two class
problem with Y = 0 or 1.. The working model is

PriY =1
1051—;51'(Y=l1x|)x) =a+ Y filze)+ Y. fim(znTm) + -

kel (I,m)el,

where the I;s are as defined in the previous section, but where the fs are tensor products of order
0, that is, products of indicator functions of the form (z; — t)* and (z; — ¢)~. The motivation for
0 order splines is, as in CART, 