

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

May 1990 Conference paper

See report.

See report.

See report.

See report.

Distribution Statement A - Approved for public release; distribution is unlimited.

Presented at the IEEE 1990 National Aerospace and Electronics Conference (NAECON 1990) held in Dayton, Ohio, on 21-25 May 1990.

See report.

Unclassified Unclassified Unclassified
UU

EXPLANATION GENERATION IN
EXPERT SYSTEMS

Abstract

Capt Vance M. Saunders
WRDC/ AAWA-1

WPAFB, Ohio

Today's technology provides tremendous amounts of information
at incredible speeds. In order to make this information useful for
more complex, significant problem solving applications, intelli
gent computer software systems are needed . The Expert System
(ES) technology of Artificial Intelligence (AI) is one solution that
is emerging to meet this need. However, as this technology con
tinues to develop and as we begin to use expert machines more
and more, it is crucial that we demand the same explanatory
capability from these mechanical experts as we do from human
experts.

This paper examines the Explanation Facilities (EFs) of ESs
by preseuting some background information on explanation gen
eration and by discussing the development of a specific EF.

1 Introduction

The purpose of this paper is to examine the explanation genera
tion capabilities of expert systems. As the technology of building
computerized expe1·ts transitions more and more from the aca
demic laboratory to different operational, on-line environments
(business, industry, defense, etc.), the importance of incorporat
ing software engineering practices into the development of these
ESs needs to be reemphasized. Due to the complexity and se
riousness of the problems ESs are being developed to solve, we
simply can't afford the cost associated with producing
systems that are unreliable or prod~ce incorrect results.

This paper begins by presenting some general background
information on explanation generation in ESs and then moves
into a discussion of an Explanation Facility for a Frame-based
Expert System Shell (EFFESS). Topics presented in this discus
sion include EFFESS's scope, underlying knowledge representa
tion structure (KRS), design, and functionality.

2 Background

Definition And Importance

The Random House College Dictionary defines explanation as:

"to make plain, clear, or intelligible something that
is not known or understood". (13]

Chandrasckaran et al. (4] identifies two different types of expla
nation that this general definition encompasses with respect to
ESs. These two types of explanation are explaining the world (ex
plaining objects and processes external to an ES) and explaining
decisions (explaining an ES's own internal objects and processes).
It is this internal type of explanation that we are interested in in
this paper.

While some of the first ESs did not have EFs, it didn't take
long for their need to be identified. Today, EFs are considered
as important to an ES as its knowledge base, control strategy, or
infercncing mechanism. In fact , Firebaugh (8] emphasizes that it

Verlynda S. Dobbs
Wright State University

Dayton, Ohio

is the explanation facility of an ES that distinguishes it from
other knowledge-based AI programs. In other words, an expert
system without an explanation facility is not an expert
system. Regardless of whether one agrees with Firebaugh or
not, few individuals (if any) working in ES research and develop
ment will argue against the need for EFs. There arc three major
reasons why this is true.

The first reason EFs are important stems from the rationale
requiring an expert to be able to explain himself. Schank (11]
points out that we humans don't allow other human beings to
come up with new ideas, concepts, etc. unless these new ideas and
concepts can be explained to us in some understandable way. In
other words, experts must be able to explain themselves because
we humans require it in order to have confidence in what they
are telling us. EFs satisfy this same requirement for ESs.

While this first reason argues that we humans won't accept
ESs that lack an explanation facility, reason number three argues
that we can't accept ESs that lack an explanation facility. Says
Forsyth,

"The explanation facility should not be regarded
as an optional extra. Donald Michie (1982) and oth
ers have warned about the dire consequences of sys
tems which do not operate within the 'human cog
nitive window', i.e. whose actions are opaque and
inexplicable.

If we are to avoid a succession of Three-Mile- Island
type disasters or worse, then our expert systems must
be open to interrogation and inspection. In short, a
reasoning method that cannot be explained to a per
son is unsatisfactory, even if it performs better
than a human expert." (9, page 14]

The problems associated with the development of erroneous, un
reliable, and unmaintainable software systems is one of the most

serious problems in the field of computer science. The entire Soft
ware Engineering discipline is dedicated to solving this problem.
ESs that do not have a capability for interrogation and inspec
tion will only aggravate and complicate the problems Software
Engineering is trying to solve. Thus, EFs provide an invaluable
debugging tool for knowledge engineers and system designers.

The third reason EFs are important can almost be viewed
as a by-product of the previous two capabilities. If EFs can be
used by technical experts to establish credibility and confidence
in the design and functionality of ESs, then it stands to reason
that they can also be used as a teaching/tutorial aide for less
knowledgeable users of these ESs.

These are the major reasons EFs are considered to be such
important components of ESs. Let's now look at the three fun c
tions that must be considered in order to produce them.

Functional Framework

There are three high-level functions that constitute the basic
framework in which all work on explanation generation is cur
rently being done. Interestingly, these three functions are iden
tified in the literature in several different ways. In this paper we
will refer to them as Functions 1, 2, and 3. A high-level descrip-

1101 U.S. Government work not protected by U.S. copyright.

tion of each will now be presented.
Function 1: The content of any explanation is based on the

ES's internal examination (introspection) of its own problem
solving mechanism or behavior. Function 1 concerns itself with
identifying ways to model the contents of this problem-solving
mechanism (the knowledge and reasoning process of the system).
In order to do this the knowledge and reasoning process must
be represented in well defined, well structured methods or for
malisms. In addition, these methods or formali sms must be ap
propriate for the specific problem-solving task being addressed
and must be able to be examined by the system. Attacking this
modeling process from the knowledge and reason ing process level
is to approach it from a very high-level , abstract point of view.
By identifying three different types of explanation that can be
produced from the knowledge and reasoning process of an ES,
Chandrasekaran et al. [4,5] have provided a more detailed level
of abstraction from which to attack this problem. These three
types of explanation are now described.

1. Type 1 explanations are concerned with explaining why
certain decisions were or were not made during the execu
tion (runtime) of the system. These explan~tions use infor
mation about the relationships that exist between pieces of
data and the knowledge (sets of rules for example) available
for making specific decisions or choices based on this data.
For example, Rule X fired because Data Y was found to be
true.

2. Type 2 explanations are concerned with explaining the
knowledge base elements themselves. In order to do this,
explanations of this type must look at knowledge about
knowledge. For example, knowledge may exist about a rule
that identifies this rule (this piece of knowledge) as being
applicable ninety percent of the time. A type 2 explanation
could use this information (this knowledge about knowl
edge) to justify the use of this rule. Other knowledge used
in providing this type of explanation consists of knowledge
that is used to develop the ES but which does not effect the
operation of the system. This type of knowledge is referred
to as deep knowledge.

3. Type 3 explanations are concerned with explaining the
runtime control strategy used to solve a particular prob
lem. For example, explaining why one particular rule (or
set of rules) was fired before some other rule is an explana
tion about the control strategy of the system. Explaining
why a certain ques tion (or type of question) was asked of
the user in lieu of some other logical or related choice is
another example. Therefore, type 3 explanations are con
cerned with explaining how and why the system uses its
knowledge the way it does , a task that also requires the use
of deep knowledge in many cases.

Function 2: This function concerns itself with providing an
explanation to the user based on that user's particular needs and
abilities. Every user is different. Each has a different level of
understanding about the problem domain. Each has a different
reason for wanting a particular explanation. Based on these dif
ferences, it may not be necessary for all available information
about an explanation to be provided. Function 2 therefore, is
concerned with determining ways to tailor explanations for indi
vidual users.

Function 3: This function concerns itself with how to con
vey or present the information to the user. Should natural lan
guage be used or will source code statements suffice? What
about graphical displays? Should text and graphics be combined?

These are the types of questions (or concerns) this function must
consider.

Having now established a basic foundation of knowledge con
cerning explanation generation in ESs, lets look at the design and
implementation of a specific EF.

3 EFFESS: Background Information

An ongoing research and development effort is being conducted
at Wright State University (WSU) into the use of two important
(and somewhat conflicting) technologies: software engin eering
with Ada and AI applications. The remainder of this paper dis
cusses the design and implementation of an EF project (EFFESS)
that is part of this WSU work.

The ES Shell

· The ES shell being used in EFFESS was developed by Capt
James Cardow as part of his master's degree requirements. [3]
Cardow's shell was designed using the Object Oriented Program
ming (OOP) design methodology, partly because Ada supports
this methodology and partly because OOP is closely related to
the frame-bas ed KRS Cardow chose to use. Reasoning within
the system is performed by using either a forward-chaining {data
driven} process, a backward-chaining {hypothesis driven} process,
or a combination of both of these processes. Information in the
system is stored in a hierarchy of frames and can be passed be
tween these frames by using inheritance or by passing m essages.
Demons are attached to the slots of the frames and represent the
execution mechanism of the system. Each type of demon per
forms a specific function on the slot to which it is attached and
accomplishes this function by processing or firing an associated
set of production rule(s}.

Initial Requirements

There are two major requirements for EFFESS that define the
scope of this project . These are: the usc of Ada as the imple
mentation language for the project and the decision to add an
EF to an existing system rather than include an EF in the de
sign/redesign of an ES.

The need to include sound software engineering practices in
the development of any computer software system is a well ac
cepted fact and has been discussed elsewhere. [3] The require
ment to add an EF rather than include its requirements and
specifications in the design or redesign of an ES developed from
three different sources . The first deals with the need for a plug-in
type EF that provides a testing and debugging type explanation
capability for ESs that are uljimately going to be embedded into
larger systems of some kind .[lO, page 70] The second is identified
by Wick and Slagle, in their work on JOE [12]. They recognized
that many operational ESs (ones they called practice syst ems)
needed an EF but could not afford to go through a major re
design in order to acquire some of the sophisticated explanation
capabilities being developed. They also recognized that an effec
tive EF could be provided without going through this redesign
process . Therefore, their effort was concentrated on providing
effective EFs for on-line ESs without making major modifi
cations to the original ES code, an effort that was directly
applicable to this project. The third contributing source to this
requirement was the fram e-based KRS Cardow chose to use in
the ES shell. After examining Cardow's shell , definite support
existed for viewing this requirement as a feasible one.

1102

Borrowed Ideas And Concepts

An extensive literature review was conducted as preparation for
the EFFESS project. This subsection identifies those concepts
and ideas that have been taken from the literature and used (in
one way or another) in EFFESS. (See [10] for detailed discussions
of these different EF research and development efforts.)

• MYCIN : The basic functionality of MYCIN's Reasoning
Status Checker (RSC) is used in EFFESS. In addition, the
two example questions listed for the RSC arc implemented.
While the functionality of the General Question and An
swerer (GQA) was considered, its requirement for natu
ral language processing was determined to be beyond the
scope of this project. However, access to the different types
of information required by the GQA is made available in
EFFESS.

• TEIRESIAS: The four step process Davis identifies as be
ing necessary to design an EF was used. Section 5 presents
a discussion of EFFESS' design process using these four
steps.

• GUIDON: While specific use of meta-rules was not needed
in EFFESS, meta-knowledge concerning the implicit inheri
tance control mechanism of the frame-based KRS was used.

• NEOMYCIN : The primary focus of NEOMYCIN was on
explaining diagnostic strategies. While EFFESS does pro
vide a limited capability in this area, little of the work done
in NEOMYCIN was used.

• Explicit Development Models: Most of Swartout's work in
volves the capturing and explanation of deep knowledge.
Two aspects of EFFESS can be traced back to Swartout 's
work. First, the production rules in the system were en
coded using descriptive, English-like names. This is a pow
erful feature of Ada and allows EFFESS to produce very
descriptive explanations without having to concern itself
with English translations of rules, use of text generators,
etc. Swartout used a similar capability in the Digitalis
Therapy Advisor. Second, Swartout recognized the soft
ware engineering assistance EFs can provide.

• BLAII: None of Weiner's work in BLAII is used in EFFESS
because major changes to the ES shell would be required.
However, a discussion of his system view and his user view
with respect to EFFESS is presented in Section 6.

• CLEAR : Rubinoff's CLEAR system was designed to be
an attachable front-end to an independ ent ly deve loped
ES. While none of the functionality of CLEAR is included
in EFFESS, the basic design goal of CLEAR is one of the
primary objectives of this project.

• JOE : Wick and Slagle's work on JOE has been, by far, the
most influential on this project. Four of the six functions
they provide in JOE arc implemented in EFFESS: WHAT,
WHERE, WHY, and HOW. (However, these four functions
are not presented in three different tenses, as was done in
JOE.)

While we arc discussing the literature information that has influ
enced the development of EFFESS, one final reference needs to be
mentioned. In one section of their article, I3uilding Knowledge
Based Systems with Procedural Languages (2], Outler, Hodil, and
Richardson discuss EFs. In their discussion they identify three

functions that an EF should perform: the Rule Query, the Why
Query, and the Explain (or How) Query. Additionally, they
identify the use of a stack as an appropriate data st ructure for
maintaining a trace of the system's performance. All of this in
formation is included in the functionality of EFFESS. However,
the implementation of the Why Query and the How Query vary

· from the descriptions Butler, Hodil, and Richardson provide for
these functions. EFFESS's How and Why functions are based on
MYCIN's interpretation of what these queries mean . The rea
son for this difference stems from the fact that both systems arc
avoiding the problems of natural language processing by explic
itly defining what is meant by Why and How.

4 EFFESS: A Frame-Based System

One of the most important aspects of our project is that it in
volves the explanation of a fram e- based KRS. Therefore, to un
derstand the specifics of this implementation effort, a detailed
examination of this KRS is required. Interestingly, there arc sev
eral differing opinions within the AI community concerning the
definition of a frame-based KRS or fram e-based system. While
understanding these differences is not important for our discus
sion, a brief look at the origin of this KRS is needed.

There are two fundamental KRSs from which a fram e-based
KRS is derived, a rule-based KRS and a fram e KRS. However,
with respect to explanation generation, each of these KRSs has
a major limitation. Rule-based systems can't define terms, de
scribe objects, or identify static relationships among objects.
Frame systems can't declaratively describe how to process the
knowledge they contain. [7] However, by combining these two
KRSs, the strength(s) of one can be used to overcome the wcak
ness(s) of the other thereby creating a much more powerful and
robust KRS. This new KRS is what we are calling a frame-based
KRS and is the one used by Cardow in his ES shell.

There are several contributions that this hybn"d KRS makes
to explanation generation.

1103

1. I3ecausc the production rules are attached to the slots via
demons, a logical partitioning of the rule set is provided.
Thus , a partial explanation as to the purpose of a given rule
can be provided simply by examining the slot information
to which it is attached.

2. The hierarchical structure identifies the relationships among
objects and allows for an explanatory description of an
object by simply identifying the sub-frames attached to
it . Further explanation of each of the sub-frames can also
be provided by identifying the slots attached to each sub
frame.

3. The implicit control/inferencing mechani sm (inh eritance)
in this system is available for explanation and thus provides
some Function 1, Type 3 explanation capabilities. In ad
dition , slot values that were determined by inheritance can
also be identified. This additional information enhances
the explanation of that particular slot.

4. The hierarchical structure also provides a logical partition
ing of the knowledge. Therefore, if an EF were to be en
hanced by providing d eep descriptive knowledge for an ob
ject, this information could be easily added as a slot to the
appropriate frame or as an attribute to the appropriate slot.

5. As already noted by Firebaugh, this type of KRS provides

5

an easy, efficient process for handling queries about the KB
because the knowledge is so well structured and easy to
find.

6. This KRS provides two typical representations of expert
knowledge (if - then rules, and object decomposition) that
map almost directly to the way this knowledge is thought
of by experts in the real world. Therefore, explanations of
these objects should provide more understandable explana
tions simply because of their realistic representations in the
system.

EFFESS Design & Functionality

The Design

In deciding how to go about designing EFFESS, two concepts or
ideas were used. The first was Davis' design process for EFs. [6,
page 264] The second was the OOP methodology used by Cardow
in designing the original ES shell.

The primitive operation chosen for EFFESS is the same as
the one Davis chose for TEIRESIAS, the invocation or firing of a
rule. While the execution of the demons in our frame-based sys
tem is identified as providing the execution control of the system,
demons are not the most primitive operation. The specific oper
ation a particular demon is identified to perform is carried out
by firing the set of rule(s) associated with that demon. There
fore , the individual production rule is the primitive operation in
EFFESS.

The execution trace in EFFESS is a stack data structure. As
identified in Section 3, this idea was taken from Butler, Hodil,
and Richardson's article on using procedural languages to build
knowledge-based systems. A stack provides a straightforward
mechanism for properly recording the order in which the rules
were fired.

The global framework in which the execution trace can be
understood in EFFESS is its frame-based KRS. Davis chose a
goal tree for his work in TEIRESIAS because of the backward
chaining control structure used in MYCIN. While our system also
provides a backward-chaining control structure (and a forward
chaining one as well), the framework for understanding the exe
cution trace (for understanding why a rule was tested/fired at a
particular time during the execution of the system) involves in
formation contained in the KRS . Remember that information is
passed between frames in oneoftwo ways (through inheritance or
by passing messages) and that demons are executed when a slot's
value is requested but does not exist. Therefore, understanding
why a rule was tested/fired at a particular time (as indicated by
the execution trace) requires that we know the method that was
used in attempting to obtain a value for the slot. This informa
tion is contained in the KRS.

The final step of Davis's EF design process (writing a program
to explain the trace to a user) has been expanded in EFFESS.
This is because several of the explanation functions of EFFESS
don't use the execution trace in providing their explanations.
They are able to get the information they need directly from the
KRS. Therefore, the EFFESS program contains more than just
the code related to explaining the execution trace to the user.

The OOP design methodology presented by 13ooch [1, Chap
ter 4] was used in EFFESS' design at three different levels of
abstraction. A discussion of its use at the highest level of ab
straction (the complete ES Development Environment level) is
presented here. EFFESS and the ES shell are the two primary
objects that have to interact in order to provide the function-

ality of this larger system. As the ES shell was designed using
OOP (before EFFESS existed), the only change that needed to
be made was in its visibility. The ES shell has to have access to
(be able to see) EFFESS in order to build the execution trace. It
also has to have access to EFFESS's processing entry procedure
in order to pass control when it is time to generate explanations.
Because of Ada's strong support of OOP, providing this visibility
for the ES shell was easily done.

With respect to using OOP in designing EFFESS, the oper
ations identified for this object are the explanatory functions it
must perform and are described in the next section. The visibility
EFFESS requires consists primarily of the ES shell's processing
package and its KRS. (Visibility was also established to a useful
package of 1/0 routines. However, this was done from a code
reusability standpoint and was not functionally required). As for
establishing EFFESS 's external interface, the routines it uses to
build its execution trace and its processing entry procedures have
to be made available to the ES shell.

Functionality

In looking at the functional requirements of EFFESS, two dif
ferent explanation environments were identified: the runtime en
vironment and the end-of-processing environment. Interestingly,
the explanation requirements for these two environments are not
the same. While they do share several of the same requirements,
each has some unique requirements as well. For example, during
the runtime environment the user may be prompted for infor
mation needed by the system. Being able to explain WHY the
system needs this information is an important explanation re
quirement in these situations. However, the end-of-processing
environment has no reason to prompt the user for information,
therefore no requirement exists for a WHY explanation capabil
ity. Conversely, once the system has completed its processing and
arrived at some kind of decision, being able to SHOW the critical
decision path (the sequence of rules that fired) the system used to
arrive at this decision provides a great deal of important informa
tion. However, during system execution, explaining the current
decision path is the important issue. Therefore, in support of
these differences, EFFESS provides a set of runtime explanation
funct ions and a set of end-of-processing explanation fun ctions.

Runtime Functions

1104

1. Explain Rule: The Explain Rule function explains the iden
tified rule by displaying its contents to the screen. As de
scriptive, English-like naming conventions were used in the
construction of the rules, no additional text generation is
required to present an understandable explanation.

2. Explain l¥hy : The Explain Why function is interpreted to
mean, Why is this informat ion being req ues ted ? and
is presented to the user as an option whenever the user is
prompted for information. The basis for providing this ex
planation is twofold. First, some component in the system
(i.e. a rule) needs this information in order to continue
processing. Second, this value is currently unknown and
couldn't be determined via inheritance or message passing.
Therefore, EFFESS's WHY explanation identifies the slot
whose value is being requested, the frame to which this slot
is attached, and the system component that is waiting on
this slot in order to continue processing.

3. Explain How: The Explain How function is interpreted to
mean, H ow did the system arrive a t t his p oin t in

its processing? and uses the execution trace to provide
this explanation. This function starts with the first rule
tested by the system and recurses through the execution
trace for as long as the user determines is necessary. One
rule from the trace is explained for each successive HOW
request the user provides. He can examine the entire exe
cution trace (from the start rule all the way to the current
rule being processed) or he can stop at whatever level he
is comfortable/satisfied with. The explanation content for
each rule is based on the specific type of rule it is. For
example, rules associated with GOAL frames are chosen
for execution because they represent the specific goal to
be achieved. Therefore, EFFESS's HOW function explains
these rules in this context, identifying the rule number, the
goal to be achieved, etc. On the other hand, rules that
prompt the user for information are chosen for execution
because the system needs this information to continue pro
cessing. Therefore, these rules are explained with respect
to the system component that is dependent on them for the
needed information.

4. Explain What : The Explain What function is interpreted
to mean, What is the value of slot X? and is available
for use throughout the execution of the system. The user
must provide the name of an attribute (slot) and will receive
its corresponding value (or a not found error message) in
return. This function represents one type of query function
Firebaugh identified as one of the features easily supported
by a frame- based system.

5. Explain !¥here : The Exp·lain Where function is interpreted
to mean, Where is X located in the KRS? and is used
to explain the relationships of objects and attributes in the
KB. The user must provide an object name or an attribute
name and will receive an explanation of who/what the in
put item is related too. If the input item is an object, any
inheritance relationships to other objects are identified. If
the input item is an attribute, the object to which it is at
tached is identified. ~his function represents a second type
of query function.

End-Of-Processing Functions

1. Explain Rule, What, Where : same as in runtime functions

2. Show Critical Path : The execution trace is used to provide
this function. As the trace maintains the correct ordering
of all rules tested during the system's execution, the critical
path list is provided by simply looping through the execu
tion trace and printing out the rule numbers of the rules
whose fired flag has been set.

3. Show Execution Trace : This function also uses the exe
cution trace to accomplish it function. Its purpose is to
display the entire sequence of rules that were tested during
the system's execution. However, a rule can be in one of
three states during various stages of the system's execution:
pending (awaiting information), fired (its antecedent tested
true), or failed (its antecedent tested false). Therefore, this
function identifies which state a particular rule is in at the
various stages of its execution.

Functional Framework

In analyzing EFFESS with respect to the Functional Framework
we find that Function 1, Type 1 explanations are provided by

the HOW function, the SHOW Critical Path function, and the
SHOW Execution Trace function. By using a stack to capture the
execution trace of the system (the order in which the rules were
accessed), the basic decision process of the system is identified .
Type 2 explanations are provided by the Rule, What, Where, and
Why functions, all of which provide information about the ele
ments (objects and attributes) in the knowledge base. Function
1, Type 3 explanations are also provided to a limited degree. The
Why function can identify certain instances when inheritance or
message passing has been used.

EFFESS provides limited Function 2 capabilities by allowing
the user to determine the degree of explanation provided by the
HOW function. However, as the primary users of EFFESS are
assumed to be system designers and knowledge engineers (based
on the previously discussed need for plug-in test and debugging
type EFs), the explanations provided in this system have been
directly geared for these users.

With respect to Function 3 capabilities, EFFESS does provide
English-like output due to the descriptive naming conventions
used in the system. However, considerable room for improvement
still exists in this area.

6 EFFESS: Conclusions

A Straightforward Development Process

Using the OOP design methodology provided several contribu
tions to the development process. Probably the most influential
is the fact that in analyzing the ES shell and the desire to add an
EF to it (from an OOP point of view), enough of a feasible solu
tion was identified to make the decision to attempt the effort in
the first place. Additionally, the required visibility and interface
between EFFESS and the ES shell were easily identified using
this design methodology.

Closely coupled with the contributions OOP provided to the
design of EFFESS were the contributions Ada provided in sup
port of these OOP decisions . Due to the already identified re
lationship that exists between Ada and OOP, once the visibility
and interface specifications had been established, implementing
them in Ada was a straightforward process using the built in con
tructs it specifically provides for these purposes (i.e. with clauses,
package specifications, separate compilation units, etc.).

With respect to the frame-based KRS used in the ES shell,
many of the contributions this structure provides for explanation
generation were described in Section 4. These contributions are
universal in nature, in that they are provided by a frame-based
KRS implemented in any language. However, a frame-based KRS
implemented in Ada provides an additional contribution to ex
planation generation as a result of its strong typing require
ments. While these requirements are being identified as a major
contribution to the development of EFFESS, it is interesting to
note that these same requirements were identified as a maJor
obstacle in the development of the ES shell (see (3, Chapter 3)
for complete details). In any case, Ada's strong typing required
the different objects of the ES shell to be decomposed into dif
ferent structures of nested records and record pointers in order
to be implemented. The contribution this makes to EFFESS is
that each of the decomposed parts of an object are available for
explanation. Therefore, in a frame-based KRS implemented in
Ada, a hierarchical decomposition of objects at two different lev
els of abstraction are available for explanation. At the knowledge
level this hierarchy is provided by the KRS. At the implementa
tion level this hierarchy is provided by the different structures of

1105

nested records and record pointers mentioned above.

A Plug-In & Unplug Type EF

In evaluating how successful we were in accomplishing our plug
in EF objective, two answers are required. Overall, the effort
appears to be a success. Absolutely none of the original ES shell
data structures were changed at all and the processing routines
were only changed (added to) in three places: in the routine
where the execution trace had to be built, in the routine that
interfaced with the user so as to gain access to EFFESS, and in
the driver routine to provide the end of processing explanation
capabilities. Due to Ada's separate compilation construct , all of
EFFESS' code is contained in one Ada package. Therefore, to
unplug EFFESS from the ES shell requires commenting out or
removing fifteen lines of code in three different routines, removing
the EF package from the compilation order, and recompiling the
ES shell code.

From an explanation standpoint we can also consider EFFESS
a success in that effective, useful explanations are provided, espe
cially with regards to Type 1 and Type 2 explanations. However,
we can also consider EFFESS to be only marginally successful be-

. cause of its limited ability to produce Type 3 explanations. While
this is true, it is important to note that the reason Type 3 expla
nations are limited is not due to a lack of explainable information
but rather because we restricted ourselves to not changing any
(or as little as possible) of the ES shell code. Had this restric
tion not existed, several Type 3 explanations could have been
provided because information concerning inheritance, message
passing, and the forward/backward chaining control mechanisms
is available to be explained.

Cost versus Capability

In many ways, the entire EFFESS project has re-addressed or
re-focused our attention on a very old and important issue in
the use of any new technology, cost versus capability. Only finite
amounts of resources (time, money, and manpower) exist for any
given project. Often times, the cost of incorporating the most
state-of-the-art capabilities a technology provides exceeds these
finite limits. Therefore, efforts at identifying ways to provide
the most capability for the least amount of resources are
not only justified, but severely needed. This project has been
one of these efforts. However, it is important to realize that
a frame-based ES provides the potential for producing a much
richer explanation capability than provided in this project , if
one includes the requirements and specifications of an EF in the
initial design stages of the ES.

Acknowledgment

This work was sponsored in part by WRDC/ AAWA-1 of the U.S.
Air Force, WPAFB, Ohio.

1106

References

[1] Grady Booch. Software Engineering with Ada. The Ben
jamin/Cummings Publishing Company, Inc., Menlo Park,
California, second edition , 1983.

[2] C. W. Butler, E. D. Hodil, and G. L. Richardson. Building
knowledge-based systems with procedural languages. IEEE
Expert Magazine, pages 47- 59, Summer 1988.

[3] James C. Cardow. Toward an expert system shell for a com
mon ada programming support environnment. Master 's the
sis, Wright State University, Dayton, Ohio, 1989.

[4] B. Chandrasekaran, J. Josephson, and Michael C. Tanner.
Explaining control strategies in problem solving. IEEE Ex
pert Magazine , pages 9- 24, Spring 1989.

[5] B. Chandrasekaran, John R. Josephson, and A. Keuneke.
Functional representation as a basis for generating explana
tions. Technical Research Report 86-BC-FUNEXPL, The
Ohio State University Department of Computer and In
formation Science Laboratory for Artificial Intelligence Re
search, 1986 .

[6] R. Davis and D. Lenat. Knowledg e-Based Systems In Artifi
cial Intelligence. McGraw- Hill, New York, New York, 1982.

[7] Richard Fikes and Tom Kehler. The role of frame-based
representation in reasoning. Communicat ions of the A CM,
28(9):904- 920, Sep 1985.

[8] Morris W. Firebaugh. ARTIFICIAL INTELLIGENCE: A
Knowledge-Based Approach. Boyd and Fraser Publishing
Co., Boston, Massachusetts, 1988.

[9] Richard Forsyth, editor. Expert Systems: Principles and
Case Studies. Chapman and Hall Publishing Co., London,
England, 1984.

[10] Vance M. Saunders. Explanation generation in expert sys
tems (a literature review and implementation). Master 's
thesis, Wright State University, Dayton, Ohio, 1989.

[11] Roger C. Schank. Explanation Patterns: Understanding M e
chanically and Creatively. Lawrence Erlbaum Associates,
Publishers, Hillsdale, New Jersey, 1986.

[12] James R. Slagle and Michael R. Wick. An explanation fa
cility for today's expert systems. IEEE Expert Magazin e,
pages 26- 36, Spring 1989.

[13] Jess Stein, editor. Th e Random 1/ouse College Dictionary.
Random House, Inc., New York, New York, revised edition,
1979.

