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Abst ract 

Assembly line inspection is currently performed for 
General Motor's clutch drivers by means of a vision sys­
tem. When the part is changed, the system must be 
reprogrammed, which takes time and is expensive. A 
new system has been developed and demonstrated in 
the Computer Science and Engineering Department at 
Wright State University that permits an operator to 
teach the system what is to be considered good and bad 
without any need for computer reprogramming. The 
machine is shown good parts and flawed parts. In the 
latter case, the type of flaw is entered in the computer. 
Preprocessing is used to provide position and rotation 
invariance. A feedforward network is then trained to 
provide the correct output. The system is shown to per­
form reliably and has been modified to cope with more 
difficult inspection systems in which back lighting may 
not be used. 

1 BACKGROUND 

A vision system to inspect clutch drivers for missing rivets and 
springs at the Harrison Radiator Plant of General Motors (GM) 
works only on parts without covers (Figure 1) and is expensive. 
The system does not work when there are cover plates (Figure 2) 
that rule out backlight passing through the area of missing rivets 
and springs. Also, the system like all such systems must be re­
programmed at significant time and cost when the system needs 
to classify a different fault or a different part (1]. So the desired 
features of an inspection system are that it can be easily adapted 
to new pa.rts as well as being fast and low-cost. A part inspection 
demonstration system now exists which demonstrates both ease 
of adaptation to new parts through a user-friendly interface and 
a learning part inspection algorithm. The hardware consists of 
a Sun workstation, Datacube, and camera. The classifier used 
by the inspection algorithm depends on a feed-forward neural 
network trained using back-propagation (2,3,4]. 
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2 USER INTERFACE 

The user interface is a mouse driven graphics software package 
(Figure 3) which allows the operator to easily work with the 
system to t rain on new parts. In learning a new part, the oper­
ator selects LOAD to load a previously stored image or selects 
GRAB to capture a new image from the camera. Each image 
pixel is sampled into 256 grey levels. For the first training part , 
the mouse is used to select the regions of interest (ROI's). The 
system is currently tailored for the clutch driver part of figures 
1 and 2 in that the ROI is a circular ring. The clutch is round 
and all relevant information for determining a good or bad part 
is found in a circular band concentric to the center of the clutch. 
In a fully developed system, these ROI could be of different user 
selectable geometries such as a circle, rectangle, circular ring, 
or others . The operator enters names for the significance of the 
ROI's such as"missing rivet" or "missing spring" so that the 
system can give descriptive classifications of parts in the recog­
nition phase. Selecting true ( 1) or false (F) for each of these 
ROI descriptions and then selecting TEACH gives the computer 
a training pattern set which will be learned later. This process 
is repeated for all the training parts. 

Once the part inspection algorithm is trained, recognition is 
simply performed by capturing a part's image into the computer 
(select GRAB) and performing recognition with the inspection 
algorithm (select RECOGNIZE). The true and false boxes used 
previously to train the system will display the results. New 
training parts may be entered at any time. The interface also 
allows the operator to print or save the neural network informa­
tion, select an auto center option, and display where the ROI 
pixels are on the part. The interface also allows the operator to 
save the system's state information (select SAVE NET) so that 
retraining is not required after a power outage. For parts which 
are not in a fixed position, an auto center option is available to 
the operator (select AUTO CENTER). 



Figure 1: Example parts without a cover. The top part is good 
and the bottom part has a missing rivet. In this case, a rivet is 
missing at the top. 
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Figure 2: Example parts with a cover. The top part is good 
and the bottom part has a missing spring. The spring is a long 
flat rectangular piece which is mounted on an outer rivet and 
an inner rivet. In this case, a spring is missing at the top. 
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Figure 3: The demonstration inspection system's screen for a 
backlit part. Note, a missing rivet appears as a white hole at 
the bottom right of the part. 
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Figure 4: An example feed-forward neural network. 

3 INSPECTION ALGORITHM 

The inspection algorithm solves the classical recognition prob­
lem and thus must consist of a feature extractor and a classi­
fier (5]. 

3.1 Feature Extraction 

The demonstration system feature extraction steps consist of 
centering the part, extracting the ROI pixels, thresholding the 
pixels, calculating the frequency magnitude spectrum, zeroing 
out the DC component, and mapping the spectrum to numbers 
between 0 and 1. If selected, centering the part is automatically 
performed by using a simple edge detection algorithm. The 
ROI's circular band is sampled at equal angle increments into 
1024 pixels for later application of a Fast Fourier Transform 
(FFT) (6]. The user selects the ROI for the first part. Using the 
ROI radius of the first part, the system can then automatically 
retrieve the ROI from all other parts as they are digitized. 

The ROI data may then be processed in different ways based 
on which type of part is used. In the backlit case (part without 
cover), the image pixels are thresheld into 0 or 1. In the frontlit 
case (part with cover), thresholding removes significant features 
such as edges of metal on metal from the pixel information so 
the grey levels must be used. The FFT magnitude spectrum is 
used to produce a shift invariant pattern and since the ROI is 
a circular band, the image is made rotation invariant. For the 
type of part considered only the first 100 spectral frequenci es 
were needed , thus reducing learning time relative to including 
all spectral frequencies. Next, the DC component is removed 
and the FFT magnitude spectrum is normalized to a maximum 
of one. Without the last two steps, the learning algorithm did 
not converge. 

3.2 The Classifier 

The pattern recognition capability of neural networks is docu­
mented by many researchers (2,3,4,7]. Figure 4 shows a three 
layer network and an example node. The demonstration system 
has one neural network per ROI. Each network consists of three 
layers with 100 input, 10 hidden, and 2 output nodes. Weights 
are randomly selected to be from 0.0 to 1.0. Back-propagation 
uses an iterative gradient algorithm to adjust the network 's 
weights so as to minimize the mean square error between the 
actual and desired output of all the training patterns [2,3,4] . 
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The target output patterns are (0.1,0.9] for a good part and 
(0.9,0.1] for a bad part. Consider the network with J neurons in 
the output layer, I hidden neurons, and K neurons in the input 
layer. The outputs may be written for j = 1 to J. 

Yj = 9 [t Wij9 (t W~;Xk)] 
•=I k=l 

(1) 

The nonlinear neuron functions were selected as in references (2, 
3,4] 

(2) 

The weights are updated sequentially for each layer, starting at 
the layer nearest the output. At the I th iteration, for a given 
layer, the update is performed with 

(3) 

where Vj(l) and p;(l) are computed as described in reference (8] 
and 1-1(/) permits overrelaxation. Vj depends on the output and 
error out of the jth node. p; is the value of the input from the 
ith node. The outputs for each set of data are computed using 
the forward equations (1). For the output layer, the last term 
in equation (3), the weight update-increment , is computed for 
each training set. These weight update-increments are averaged 
across all sets of training data for application in equation (3). 
The hidden layer weights are then computed in a similar man­
ner. The procedure is repeated iteratively until the weights sta­
bilize. The network also has one bias node with a value of 1 
which is connected through weighted links to all other nodes 
as in (4]. The bias node's link weights are trained similarly to 
other weights in the network. The bias node allows the train­
ing algorithm to individually shift each node's output curve. In 
the recognition stage, the previously trained network is simply 
propagated using the input pattern in question . The resulting 
output is used to classify the input pattern. 

4 TESTS AND RESULTS 

The system has been tested and found able to correctly recog­
nize good and bad parts. In the backlit rivet case, the system 
was given two training patterns, a good part and a bad part , 
and found to correctly identify the training parts and one un­
known good part at rotations of 6° increments. In the frontlit 
(no thresholding) spring case, the system was given 16 train­
ing patterns, 8 orientations each of a good and bad part, and 
found to correctly identify the training parts and one unknown 
good part at rotations of 6° increments. Without training the 
system with different orientations of the same part, the system 
incorrectly identified parts. Variations in the frequency spec­
trum were observed to be due to milling and ambient lighting 
variations and therefore additional rotations were required. 

Timing runs were performed on the backlit case clutch driver 
part to see if the system requires less than the estimated assem­
bly line requirement of 2 seconds per part. The backlit case is 
estimated to take 0.63 + 0. 78 * N seconds to recognize a part's N 
ROI in a production line system using a SUN 3/160. The 0.63 
seconds is required to sample the image (1/30 second) and cen­
ter the part automatically (0.60 seconds) while the 0. 78 seconds 
is due to the other feature extraction steps and the neural net 
propagation time (0 .04 seconds per ROI) which are required for 
each ROI. So the system is fast enough to process a part with 
one ROI within 2 seconds. The time could be reduced by at 
least an order of magnitude if a signal processing chip or array 
processor were incorporated into the system. 



5 DISCUSSION 

The neural net approach makes the pattern recognition system 
flexible because the system uses learning to be able to classify 
good and bad parts. The existing demonstration system looks 
applicable for separating round parts in the class of problems 
which have all required information in a circular band concentric 
to the center of the part and which have features which are visu­
ally detectable. This is of considerable interest given the fairly 
simple approach presented above compared to more complex ap­
proaches of current day systems [1]. In the research performed 
so far, only a limited number of parts were used for training and 
recognition studies. For more difficult cases, extraction of dif­
ferent features other than a circular band is needed and/or the 
system can be trained with more and more parts until it narrow~ 
in on exactly which inputs in the pattern are significant. 

6 CONCLUSION 

The feasibility of using neural networks combined with a simple 
feature extraction algorithm to make visual inspection systems 
which learn has been demonstrated. The system seems to be 
a viable option for the factory line environment because the 
system is flexible and fast. As far as flexibility, the existing 
demonstration system can separate round parts in the class of 
problems which have all of the required information in a circular 
band concentric to the center of the part and which have features 
which are visually detectable. The user can easily train the 
system by showing it good and bad parts. The system can be 
readily adapted to parts which are easily centered. 

7 Acknowledgements 

The authors wish to thank Wright State University for support­
ing this research under a President's Club grant. 

1170 

References 

[1] J . Wilder, "Industrial requirements for real-time image pro­
cessing", SPIE '87, Vol 849, Automated Inspection and 
High Speed Vision Architectures. 

[2] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, "Learn­
ing internal representations by error propagation", in Par­
allel distributed processing: Explorations in the Microstruc­
ture of cognition, The MIT Press, Cambridge, 1986. 

[3] R.P. Lippmann, "An Introduction to Computing with Neu­
ral Nets", IEEE ASSP Aprill987. 

[4] W.P. Jones and J. Hoskins, "Back-Propagation: A gener­
alized delta learning rule." Byte, October 1987. 

[5] K.S. Fu, Sequ ential Methods in Pattern Recognition and 
Machine Learning. Academic Press 1968. 

[6] A. Oppenheim and R. Schafer, Digital Signal Processing, 
Prentice-Hall Inc. 1989. 

[7] M. Schmutz, M. Rueff, and U. Mussigmann, "Neural net­
works: a new approach to pattern recognition." SPIE '87, 
Vol849, Automated Inspection and High Speed Vision Ar­
chitectures. 

[8] A.D. McAulay, "Engineering design neural networks using 
split inversion learning", IEEE First International Confer­
ence on Neural Networks, Vol. 4, pp. 635-642, June 1987. 




