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A GENERALIZED FINITE ELEMENT METHOD FOR
MULTISCALE SIMULATIONS

FA9550-09-1-0401

C. Armando Duarte
Dept. of Civil and Environmental Engineering

Computational Science and Engineering Program
University of Illinois at Urbana-Champaign

Abstract

This report focuses on recent advances of the Generalized Finite Element Method (GFEM)
for multiscale simulations. This method is based on the solution of interdependent global
and local scale problems, and can be applied to a broad class of multiscale problems of
relevance to the United States Air Force. The local problemsfocus on the resolution of fine
scale features of the solution while the global problem addresses the macro-scale struc-
tural behavior. The local solutions are embedded into the global solution space using the
partition of unity method.

A rigorousa-priori error estimate for the method is presented along with numerical ver-
ification of convergence properties predicted by the estimate. The convergence analysis
shows optimal convergence of the method on problems with strong singularities. It also
shows that the method can deliver the same accuracy as directnumerical simulations (DNS)
while using meshes with elements that are orders of magnitude larger than in the DNS case.

Recent advances of the GFEM for three-dimensional propagating fractures are also pre-
sented. The GFEM enables accurate simulations of this classof problems using finite ele-
ment meshes with elements that are orders of magnitude larger than those required by the
FEM. The intrinsic parallelism of the enrichment function computations is also explored in
this research. The parallel efficiency of the method on a shared memory multi-processor
machine is demonstrated on a three-dimensional problem with complex geometry.

This document further reports on extensions of the method tomultiscale problems exhibit-
ing nonlinear behavior. The nonlinear model problem focuses on structures with plastic
deformations at regions that are orders of magnitude smaller than the dimensions of the
structural component. It is shown that the multiscale GFEM can produce accurate nonlin-
ear solutions at a reduced computational cost compared withavailable FEMs.

We conclude with some novel results on the Stable GFEM. The enrichment functions in
this method are modified in order to further reduce discretization error without increasing
the problem size. It is shown that the Stable GFEM also leads to significant improvements
on the numerical conditioning of the method at a negligible computational cost.
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Bridging Scales with Global-Local Enrichment Functions

Generalized FEM approximation spaces (i.e., trial spaces)consist of three components –
(a) patches or clouds, (b) a partition of unity, and (c) the patch or cloud approximation
spaces.

The Generalized Finite Element method with global-local enrichments (GFEMgl) com-
bines the classical global-local finite element method withthe partition of unity approach.
In contrast to the standard Generalized/eXtended FEMs, which use analytical enrichment
functions, this method provides a framework to enrich the solution space with functions ob-
tained from the solution of a local boundary value problem. The boundary conditions for
this problem are obtained from the solution of the global problem discretized with a coarse
finite element mesh. The local problems can be accurately solved using thehp-GFEM, and
therefore theGFEMgl can be applied to problems with limiteda priori knowledge about
the solution like those involving 3-D complex fractures, multiscale or non-linear phenom-
ena. In this method, the patch or cloud approximation spacesare built with the aid of local
boundary value problems defined in a neighborhoodΩL of a crack or other local feature
of interest. Global-local enrichment functions can be built for many classes of problems.
Here we report on the formulation developed for propagatingthree-dimensional fractures.
Further details can be found in [12].

Let uuuk
G denote a generalized FEM approximation of the problem at crack evolution stepk.

This approximation is the solution of the following problem

Finduuuk
G ∈ SSSGFEM,k

G (Ω)⊂ H1(Ω) such that,∀ vvvk
G ∈ SSSGFEM,k

G (Ω)

∫

Ω
σσσ(uuuk

G) : εεε(vvvk
G)dxxx=

∫

∂ Ωσ
t̄tt ·vvvk

Gdsss (1)

whereSSSGFEM,k
G (Ω) ⊂ H1(Ω) is the generalized FEM space at simulation stepk. The en-

richment functions inSSSGFEM,k
G (Ω) are defined in cloud spaces and have to be computed as

describe below. The mesh used to solve problem (1) is typically acoarsequasi-uniform
mesh,regardless of the presence of cracks in the domain.

Fine-Scale Problem at Simulation Stepk

Having the global approximationuuuk
G at simulation stepk, the following fine-scale problem

on ΩL ⊂ Ω is solved to find enrichment functions for the spaceSSSGFEM,k+1
G (Ω):

Finduuuk
L ∈ SSSGFEM,k

L (Ωk
L)⊂ H1(Ωk

L), such that∀ vvvk
L ∈ SSSGFEM,k

L (Ωk
L)

∫

Ωk
L

σσσ(uuuk
L) : εεε(vvvk

L)dxxx+κ
∫

∂ Ωk
L\(∂ Ωk

L∩∂ Ω)
uuuk

L ·vvvk
Lds

=
∫

∂ Ωk
L∩∂ Ωσ

t̄tt ·vvvk
Lds+κ

∫

∂ Ωk
L\(∂ Ωk

L∩∂ Ω)
uuuk

G ·vvvk
Lds (2)
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whereSSSGFEM,k
L (Ωk

L) is a discretization ofH1(Ωk
L) using the GFEM shape functions pre-

sented in [PDGJ09, pp. 10–12]. A key aspect of problem (2) is the use of the coarse-scale
solution at simulation stepk, uuuk

G, as boundary condition on∂Ωk
L \ (∂Ωk

L ∩ ∂Ω). Exact
boundary conditions are prescribed elsewhere on∂Ωk

L.

Figure 1: Model problem used to illustrate the main ideas of theGFEMgl for propagating cracks. The
solution computed on the coarse global mesh provides boundary conditions for the extracted local domain
in a neighborhood of the crack.The crack is shown in the global domain for illustration purposes only. In
theGFEMgl, fine-scale features arenot discretized in the global problem. Instead, global-local enrichment
functions are used [12].

Scale-Bridging with Global-Local Enrichment Functions

The solution,uuuk
L, of the fine-scale problem (2) is used to build generalized FEM shape

functions defined on the coarse-scale (global) mesh:

φφφ k+1
α i (xxx) := ϕα(xxx)uuu

k
L(xxx) (3)

where the partition of unity function,ϕα , is provided by a global,coarse, FE mesh anduuuk
L

has the role of an enrichment or basis function for the patch or cloud spaceχα(ωα). Here-
after,uuuk

L is denoted aglobal-local enrichment function. The global GFEM space containing
shape functionsφφφk+1

α i is denotedSSSGFEM,k+1
G (Ω). The coarse-scale problem (1) is solved for

uuuk+1
G ∈ SSSGFEM,k+1

G (Ω) and the procedure is repeated at each crack evolution step.

The methodology is illustrated in Figure1. The global solution provides boundary condi-
tions for fine-scale problems while their solutions are usedas enrichment functions for the
coarse-scale problem through the partition of unity framework of the GFEM.
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A-Priori Error Estimate for Global-Local Enrichments

Figure 2: Local domainΩL and
subdomainΩδ

L .

The boundary conditions applied to the local problems de-
scribed above are not exact. Hence, the effect of these bound-
ary conditions on the performance of theGFEMgl was one of
the major focuses of this project. An a-priori error estimate
for the local solutions was derived. Based on this estimate,
two strategies to control the effect of inexact boundary con-
ditions on theGFEMgl were developed. A summary of the
main results is presented below. Details can be found in [7].

Let ΩL denote the domain of a local problem andΩδ
L a subdo-

main ofΩL such thatdist(∂ΩL,∂Ωδ
L)≥ δ > 0 (cf. Figure2).

Parameterδ is termed as the size of abuffer zone. Let uuuexBC

anduuuinexBCbe the solutions of a local problem with exact and inexact boundary conditions,
respectively, anduuuinexBC

h the generalized or finite element approximation ofuuuinexBC. The
erroruuuexBC−uuuinexBC

h in the energy norm onΩδ
L is bounded by

‖uuuexBC−uuuinexBC
h ‖ε(Ωδ

L)
≤C inf

xxx∈XXXhp
L (ΩL)

‖uuuinexBC−xxx‖ε(ΩL)+
C1

δ
‖uuuexBC−uuuinexBC‖L2(ΩL)

(4)

whereXXXhp
L (ΩL) is a discretization of

(

H1(ΩL)
)3

using GFEM or FE shape functions. The
first term on the right hand side of (4) denotes the finite element discretization error, which
can be controlled by refining the local mesh. The second term measures the effect of the
inexact boundary conditions on the local problem boundary∂ΩL. The estimate shows that
this term can be reduced by increasing the size of the buffer zoneδ . Furthermore, the effect
of inexact boundary conditions is measured in theL2 norm which is weaker than the energy
norm.

In [7], we propose two strategies to control the error of theGFEMgl solution due to inexact
boundary conditions on local problems. The first one is basedon the use of abufferzone as
described above. The second strategy investigated is basedon a computationally efficient
global-local iterative process (Figure3), wherein the solution of the enriched global prob-
lem is used again as the boundary conditions for the local problem and the process is re-
peated until the desired accuracy is achieved. Several numerical experiments performed on
three-dimensional fracture mechanics problems illustrate the effectiveness of these strate-
gies in controlling the error of theGFEMgl solution. The problems were selected such that
the boundary conditions on the local problems ranged from smooth to singular functions.
Here, we report on a representative case to illustrate the effectiveness of these approaches.
The results shown in Figure5 are obtained from simulations run on a 30”×30”×1” edge-
crack panel with different sizes of the local domain, providing different number of layers
of elements in the buffer zone. These results agree with the error estimate (4) in the sense
that the effect of inexact boundary conditions decay as the size of the buffer zone increases.
An important point to observe from Figure5 is that a couple of iterations in the problems
with buffer zone sizes0-2delivers the same error level as obtained with one iterationin the
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problem with a 4 layer buffer zone. This shows that similar error levels can be obtained
by either of the strategies, i.e. by multiple global-local iterations or by the use of a buffer
zone.

Figure 3: Illustration of the process of multiple global-local iterations to improve the quality of boundary
conditions applied to a local problem around a crack front.

Figure 4: Buffer zone in a local domain. The blue shaded area represents the region from which the solution
of local problem is used as enrichment in the enriched globalproblem.

Size of the Enrichment Zone

In the context of theGFEMgl, an enrichment zone is the geometric zone (or region) of the
global problem domain within which the solution of the localproblem is used to enrich the
global solution space with the global-local enrichment functions. In this project we have
derived an estimate for the optimal size of the enrichment zone,d

d ≥C(h)
1

2p (5)

where,C is a constant,h is the size of a representative finite element in the global mesh and
p is the corresponding polynomial order. The proof of (5) and numerical verification of the
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Figure 5: Relative error in Strain Energy of enriched global problem,computed with exact strain energy as
the reference value, against the number of iterations, for different sizes of the buffer zone.

same through several numerical examples are given in [9].
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Crack Propagation usingGFEMgl

Figure6 shows several steps of a crack propagation simulation usingan adaptive GFEM
and theGFEMgl developed in this project. Both methods predict the same crack surface
path, however, there is a dramatic difference in the required mesh density and problem size
in each methodology.

step 10 step 15 step 20 step 25step 0 step 5

(a) hp-GFEM orhp-FEM with remeshing

step 10 step 15 step 20 step 25step 0 step 5

(b) GFEMgl uses a coarse mesh enriched with global-local functions

Figure 6: Crack surface evolution and mesh for various crack steps inhp-GFEMandGFEMgl simulations.

These results are published in [12].
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Parallel Computation of Global-Local Enrichment Func-
tions

A single local problem around a crack was considered in theGFEMgl described above.
While this facilitates the computational implementation of the method, it does not have to
be the case. Each cloud from the global mesh can be used to define a small local problem.
This procedure is illustrated in Figure7. The creation of a large number of small local prob-
lems in the neighborhood of, e.g., a crack, instead of a single large one, is attractive since
the solution of these problems lends itself to a parallel implementation. This section reports
on the computational performance of a parallel implementation of theGFEMgl. Several lo-
cal problems are defined around crack fronts and solved usinga single pair of scatter-gather
communications. No communication amongst threads solvinglocal problems is required.

Typical parallel FEM implementations partition the computational domain and distributes
the partitions among threads such that each one processes the same computational load
[Far88] However, FEM discretizations with non-uniform element sizes and/or polynomial
orders are difficult to partition since estimating the computational load of each partition
is not trivial [OPS92]. In the parallel implementation of theGFEMgl developed in this
project, load balancing is addressed by defining a larger number of local problems than the
number of parallel threads, and by sorting and solving the local problems based on simple
estimates of their workload.

Figure 7: Illustration of parallel computation of global-local enrichment functions. Several local problems
used for the computation of global-local enrichments are created around the crack front. Each local problem
is sent to a different processor and efficiently solved in parallel.

The effectiveness of the proposed parallelGFEMgl was verified through several numerical
examples with the emphasis on the parallel efficiency and accuracy of the method. Here, we
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report on a representative case. These results are presented in journal paper [11]. This paper
appeared in theList of Top Five Most Downloaded Papersof Computational Mechanics.

Table1 reports the parallel efficiency of the method on a representative three-dimensional
problem with complex geometry. The table lists the CPU time required to solve the sub-
local problems, the parallel efficiency and the speed-up with respect to the number of CPUs.
It can be observed that a high parallel efficiency is attainedand that the CPU time reduces
from 1537 seconds to just 66.4 seconds when 32 processors areused.

Table 1: Parallel performance ofGFEMgl.

Number of CPUs CPU time (sec.) Parallel efficiency Speed-up
1 1537.4 N/A N/A
2 778.1 0.99 1.98
4 392.1 0.98 3.92
8 198.3 0.97 7.75
16 101.1 0.95 15.21
18 92.3 0.93 16.67
20 86.3 0.89 17.82
32 66.4 0.72 23.16

GFEMgl for Confined Plasticity Problems

The GFEMgl was extended in this project to problems with localized nonlinear behav-
ior. The procedure involves the solution of boundary value problems around local regions
exhibiting nonlinear behavior and the enrichment of the global solution space with local
solutions through the partition of unity framework used in the generalized finite element
method. The formulation and other details are given in [10]. This paper appeared in the
List of Top Five Most Downloaded Papersof Computational Mechanics.

The GFEMgl developed in this project can produce accurate nonlinear solutions with a
reduced computational cost compared with standard finite element methods since compu-
tationally intensive nonlinear iterations can be performed on coarse global meshes after
the creation of enrichment functions properly describing local nonlinear behavior. The ef-
fectiveness of the method was investigated in terms of accuracy and computational cost
through several three-dimensional examples exhibiting confined plasticity. A representa-
tive example from [10] is presented here.

Figure 8 describes thisGFEMgl procedure to analyze an L-shaped domain subjected to
constant vertical tractions. The local domain is created around the re-entrant corner of the
domain where plastic strains are concentrated.

Figure 9 shows the von Mises stress distributions obtained from thehp-GFEM (Direct
Numerical Simulation) and theGFEMgl. The quality of theGFEMgl solution is comparable
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Figure 8: Nonlinear solution procedure for the L-shaped domain example using theGFEMgl developed in
this project.

to or even better than that of thehp-GFEMsolution even though a coarse global mesh is
used for theGFEMgl analysis [10].

Figure 9: Von Mises stress distributions in the L-shaped domain example computed by thehp-GFEMand
GFEMgl. The newGFEMgl for non-linear problems is able to capture highly localizednon-linear responses
using coarse meshes at the structural scale.

GFEMgl for Nonlinear Fracture Problems

The formulation proposed in [10] was extended to three-dimensional fracture problems
involving confined plasticity. The results from this study are published in [8], an illustrative
example from which is shown in Figure10. It is an edge-crack panel subjected to uniform
tractions of magnitudety = 12.50 on the top and bottom faces. The thickness of the panel
in thez-direction is unity. This figure also shows the global finite element mesh, a uniform
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mesh of tetrahedron elements, used to solve the problem, along with the traction boundary
conditions.

20
40

40

x

y

z

Figure 10: Three-dimensional edge-crack panel subjected to uniform tractions on the top and bottom faces.
The right figure features the global finite element mesh with the applied tractions.

The procedure to analyze this problem using theGFEMgl is illustrated in Figure11. The
first step in this procedure involves the solution of the global problem on a coarse mesh with
the full load applied and assuming a linear elastic materialmodel. A local domain, which
fully contains the region with plastic deformations, is then automatically extracted from
this coarse global mesh as shown in the figure. The solution ofthe initial global problem,
obtained in the first step is used to prescribe boundary conditions for the local problem.
The local problem is solved nonlinearly using Newton-Raphson iterations. The computed
nonlinear local solution at the final load step is then used toenrich the global solution
space at certain nodes in the coarse global mesh (shown as redspheres in Figure11).
Thisenriched global problemis then solved nonlinearly using Newton-Raphson iterations.
Figures12and13show the contour plots of the distribution of the equivalentplastic strain
obtained with theGFEMgl andhp-GFEM, respectively. As can be seen from the figures,
the plastic strain distribution in the two cases are very similar, in spite of using a coarse
global mesh in the case ofGFEMgl. Figure14 shows the deformed shape of the edge-
crack panel obtained in the case ofGFEMgl. This figure clearly shows the blunting ahead
of the crack front due to plastic deformations.
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Figure 11: Figure showing the algorithm for the nonlinear solution of the edge-crack panel problem using
theGFEMgl. Red nodes in the enriched global problem indicate nodes with global-local enrichments.

Figure 12: Figure showing the distribution of equivalent plastic strain in the case ofGFEMgl.
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Figure 13: Figure showing the distribution of equivalent plastic strain in the case of thehp-GFEM.

Figure 14: Figure showing the deformed configuration (scaled by a factor of ten) of the edge-crack panel in
the case of theGFEMgl. Note that the refined mesh close to the crack front correspond to graphical elements
used for visualization. The computations are performed on the coarse mesh shown in Figure12

.
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StableGFEM

The GFEM allows great freedom in the selection of enrichment functions. Babǔska and
Banerjee [BB12] have recently proposed modifications to available enrichments for the
GFEM in order to create functions that are near orthogonal. They have shown that the
conditioning of this so-called StableGFEM (SGFEM) is not worse than that of the stan-
dard FEM. Moreover, their modified enrichment functions lead to optimal convergence
rates at finite elements that are only partially enriched, the so-called blending elements
[BMMB05]. During the past year, we worked on extensions ofSGFEM in collaboration
with Prof. Ivo Babǔska from University of Texas at Austin and Prof. Uday Banerjee from
Syracuse University. This collaboration is at no cost to theU.S. Air Force.

Let ϕα , α = 1, ...,N, denote Lagrangian finite element shape functions, i.e., a partition of
unity. Let Lα i denote an enrichment function. The modified enrichment function, L̄α i , is
given by

L̄α i = Lα i −Iωα(Lα i) (6)

whereIωα(Lα i) is an interpolation ofLα i on the patchωα . This interpolation is de-
fined using the partition of unity [BB12]. The following problem provides a representative
example to compare theGFEM andSGFEMapproach:

• Domain: [0,1]× [0,1]

• Crack:(0,1/2) to (1/2,1/2).

• Mesh: uniform,h= 1
32.

• Crack matches with the mesh; crack-tip is on a node.

• Manufactured solution:uI (r,θ) =
√

rf(θ); −π < θ < π; f(θ) is discontinuous at the
crack-line

uI (r,θ) =
√

r

{(

κ − 1
2

)

cosθ
2 − 1

2 cos3θ
2

(

κ + 1
2

)

sinθ
2 − 1

2 sin3θ
2

}

(7)

wherer and θ are polar coordinates at the crack tip and−π ≤ θ ≤ π, κ is a material
constant (3−4ν), andν is the Poisson’s ratio.

• Enrichment region:[0, 1
2 +d]× [12 −d, 1

2 +d], d = 1/8.

• Enrichment: exact, i.e.,uI (r,θ) =
√

rf(θ) at all the nodes in the enrichment region.

In the computations, nodes shown in red are enriched with functions (7) and the first term
of the Mode II expansion, namely

uII (r,θ) =
√

r

{(

κ + 3
2

)

sinθ
2 +

1
2 sin3θ

2
(

κ − 3
2

)

cosθ
2 +

1
2 cos3θ

2

}

(8)

Figures15 and 16 show the contour plots for the distribution of element-wiseerror in
energy norm obtained in the cases ofGFEM andSGFEMrespectively. Note that the red
nodes in these figures are enriched with the singular functions defined by equations (7)
and (8). The much reduced error levels in case ofSGFEMcan be clearly seen from these
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figures, even in the interior of the enrichment region. Table2 shows the relative error in
energy norm and the condition number of the resulting stiffness matrix in the two cases.
The relative error in energy norm obtained withSGFEM is almost half as that obtained
in the case ofGFEM. TheSGFEMalso shows an improvement in the Condition Number
which would become much more significant for larger problems.

Figure 15: Contour plot for element-wise error in energy-norm obtained with GFEM. Red nodes are enriched
with the singular functions defined by equations (7) and (8).

Figure 16: Contour plot for element-wise error in energy-norm obtained with SGFEM. Red nodes are en-
riched with the singular functions defined by equations (7) and (8).

GFEM SGFEM
Relative Error in Energy Norm 0.106202703 0.052492384

Condition Number 8.49689329903×105 4.6211911755×104

Table 2: Table showing relative error in energy norm and condition number forGFEM andSGFEM
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Transitions

1. The parallel algorithms for the computation of global-local enrichments developed
in this research effort are being used by the group of Dr. Thomas Eason.

2. TheGFEMgl developed in this project is fully compatible with the standard FEM.
This, together with the hierarchical nature of the global-local enrichments, allow
adding the method as an external module to existing FEM codes. This feature of the
method was the subject of an AFRL project aimed at a non-intrusive implementation
of the GFEMgl in a commercial FEM. The co-PI of this project was Dr. Thomas
Eason.

Impact in the Research Community

The research results of this project has attracted considerable attention from the compu-
tational mathematics research community. The first evidence of this impact is the various
keynote and plenary lecture invitations received by the P.I. The second evidence is that
publications [10] and [11] appeared in theList of Top Five Most Downloaded Papersof
Computational Mechanics.
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