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A GENERALIZED FINITE ELEMENT METHOD FOR
MULTISCALE SIMULATIONS

FA9550-09-1-0401

C. Armando Duarte
Dept. of Civil and Environmental Engineering
Computational Science and Engineering Program
University of lllinois at Urbana-Champaign

Abstract

This report focuses on recent advances of the Generalirgte Element Method (GFEM)
for multiscale simulations. This method is based on thetswiwf interdependent global
and local scale problems, and can be applied to a broad dlassltiscale problems of
relevance to the United States Air Force. The local problemss on the resolution of fine
scale features of the solution while the global problem eslskes the macro-scale struc-
tural behavior. The local solutions are embedded into thbajlsolution space using the
partition of unity method.

A rigorousa-priori error estimate for the method is presented along with nuakever-
ification of convergence properties predicted by the edémdhe convergence analysis
shows optimal convergence of the method on problems witingtsingularities. It also
shows that the method can deliver the same accuracy asulin@erical simulations (DNS)
while using meshes with elements that are orders of magnlauder than in the DNS case.

Recent advances of the GFEM for three-dimensional propap&tctures are also pre-
sented. The GFEM enables accurate simulations of this ofgg®blems using finite ele-
ment meshes with elements that are orders of magnitude ldorge those required by the
FEM. The intrinsic parallelism of the enrichment functi@ntputations is also explored in
this research. The parallel efficiency of the method on aesharemory multi-processor
machine is demonstrated on a three-dimensional probleimoeimplex geometry.

This document further reports on extensions of the methaoalitiscale problems exhibit-
ing nonlinear behavior. The nonlinear model problem fosume structures with plastic
deformations at regions that are orders of magnitude snihla the dimensions of the
structural component. It is shown that the multiscale GFEM produce accurate nonlin-
ear solutions at a reduced computational cost comparedawéitable FEMSs.

We conclude with some novel results on the Stable GFEM. Thielenent functions in
this method are modified in order to further reduce discaéitn error without increasing
the problem size. Itis shown that the Stable GFEM also leadgyhificant improvements
on the numerical conditioning of the method at a negligilmputational cost.



Bridging Scales with Global-Local Enrichment Functions

Generalized FEM approximation spaces (i.e., trial spacess$ist of three components —
(a) patches or clouds, (b) a partition of unity, and (c) th&lpar cloud approximation
spaces.

The Generalized Finite Element method with global-locaiamments GFEM?) com-
bines the classical global-local finite element method withpartition of unity approach.
In contrast to the standard Generalized/eXtended FEMghwise analytical enrichment
functions, this method provides a framework to enrich thetsm space with functions ob-
tained from the solution of a local boundary value problerhe Doundary conditions for
this problem are obtained from the solution of the globabjem discretized with a coarse
finite element mesh. The local problems can be accuratelggalsing thénp-GFEM, and
therefore theGFEMY' can be applied to problems with limitedpriori knowledge about
the solution like those involving 3-D complex fractures,ltisgale or non-linear phenom-
ena. In this method, the patch or cloud approximation spaebuilt with the aid of local
boundary value problems defined in a neighborh@pdof a crack or other local feature
of interest. Global-local enrichment functions can betdoit many classes of problems.
Here we report on the formulation developed for propagatmge-dimensional fractures.
Further details can be found 7.

Let u'é denote a generalized FEM approximation of the problem akoesolution stefk.
This approximation is the solution of the following problem

Find u& € SSTEM¥(Q) c HY(Q) such thaty V& € SEFEM¥(Q)
/Q o(us) : £(VK)dx = / tVids )

0Q°

WhereﬁFEM’k(Q) C HY(Q) is the generalized FEM space at simulation $tefhe en-

richment functions ilﬁgFEM’k(Q) are defined in cloud spaces and have to be computed as
describe below. The mesh used to solve problémg typically acoarsequasi-uniform
mesh regardless of the presence of cracks in the domain

Fine-Scale Problem at Simulation Stefk

Having the global approximatiaué at simulation stef, the following fine-scale problem
onQ C Qs solved to find enrichment functions for the spﬁgEM’”l(Q):

Finduk € SPFEMK(QK) ¢ H1(QK), such that vk e STFEMK(Qk)
Ky . K
o(u .£deX+K/ uk - vkds
A o) &) i ontra S ¥

- t‘.vtds+:</ u-vkds (2)

aQkNIQo aQk\(9QkN0Q)



wherefFEM’k(Q'ﬁ) is a discretization oH(Q[) using the GFEM shape functions pre-
sented in PDGJ0O9 pp. 10-12]. A key aspect of probler®)(is the use of the coarse-scale
solution at simulation stef, u¥, as boundary condition 08Qf \ (9Qf N Q). Exact
boundary conditions are prescribed elsewheré'@h.

T

enrichment for step k+1

global problem

Figure 1: Model problem used to illustrate the main ideas of @EEM? for propagating cracks. The
solution computed on the coarse global mesh provides boymdaditions for the extracted local domain
in a neighborhood of the cracK.he crack is shown in the global domain for illustration posgs only In
the GFEMY, fine-scale features aret discretized in the global problem. Instead, global-locai@ghment
functions are usedLp].

Scale-Bridging with Global-Local Enrichment Functions

The solution,uX, of the fine-scale problen?) is used to build generalized FEM shape
functions defined on the coarse-scale (global) mesh:

@L(X) = da (X UK (X) 3)

where the partition of unity functio®, is provided by a globakoarse FE mesh andl'ﬁ
has the role of an enrichment or basis function for the pataiond space(y (wq ). Here-
after,u'ﬁ is denoted @lobal-local enrichment functioriThe global GFEM space containing
shape functiontp'g,T lis denotecngEM’k“(Q). The coarse-scale probler) (s solved for

u‘é*l € %FEM"‘“(Q) and the procedure is repeated at each crack evolution step.
The methodology is illustrated in Figufle The global solution provides boundary condi-

tions for fine-scale problems while their solutions are usednrichment functions for the
coarse-scale problem through the partition of unity framdveof the GFEM.



A-Priori Error Estimate for Global-Local Enrichments

The boundary conditions applied to the local problems de-
scribed above are not exact. Hence, the effect of these bound
ary conditions on the performance of tB&EM?' was one of
the major focuses of this project. An a-priori error estiena
for the local solutions was derived. Based on this estimate,
two strategies to control the effect of inexact boundary-con
ditions on theGFEM9' were developed. A summary of the
main results is presented below. Details can be found]in [

QL

’/ 5 \“4/(992
1\\ QL :'

Let Q. denote the domain of a local problem a@@ a subdo- Figure 2: Local domainQ, and
main ofQ, such thadist(9Q.,dQ¢) > & > 0 (cf. Figure2). subdomairy.

Parameteb is termed as the size oftauffer zone Let u®&C

andu™e*BChe the solutions of a local problem with exact and inexachidany conditions,
respectively, andi"®EC the generalized or finite element approximatioru#*C. The
erroru®8C— uneECin the energy norm o@? is bounded by

<

5 ”uexBC_ uineXBCHLZ(QL) (4)

U U g <C it U g+
xeX['P(Qy)

whereXEp(QL) is a discretization o(Hl(QL))3 using GFEM or FE shape functions. The
first term on the right hand side of)(denotes the finite element discretization error, which
can be controlled by refining the local mesh. The second teemsnres the effect of the
inexact boundary conditions on the local problem bound&®y. The estimate shows that
this term can be reduced by increasing the size of the budfez&. Furthermore, the effect
of inexact boundary conditions is measured inltA@orm which is weaker than the energy
norm.

In [7], we propose two strategies to control the error of REMY solution due to inexact
boundary conditions on local problems. The first one is basdtie use of dufferzone as
described above. The second strategy investigated is loasedomputationally efficient
global-local iterative process (FiguBg, wherein the solution of the enriched global prob-
lem is used again as the boundary conditions for the locdlleno and the process is re-
peated until the desired accuracy is achieved. Severalmeahexperiments performed on
three-dimensional fracture mechanics problems illusttla¢ effectiveness of these strate-
gies in controlling the error of the FEM®' solution. The problems were selected such that
the boundary conditions on the local problems ranged fromatmto singular functions.
Here, we report on a representative case to illustrate theteeness of these approaches.
The results shown in Figuieare obtained from simulations run on a 3030” x 1” edge-
crack panel with different sizes of the local domain, prawiddifferent number of layers
of elements in the buffer zone. These results agree withrtioe estimate 4) in the sense
that the effect of inexact boundary conditions decay asiiteeds the buffer zone increases.
An important point to observe from Figukeis that a couple of iterations in the problems
with buffer zone size®-2 delivers the same error level as obtained with one iteratidhe



problem with a 4 layer buffer zone. This shows that similaoetevels can be obtained
by either of the strategies, i.e. by multiple global-lodatations or by the use of a buffer

zone.

BCs from iteration ¢

Solve local
problem

Figure 3: lllustration of the process of multiple global-local itéoms to improve the quality of boundary
conditions applied to a local problem around a crack front.
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Figure 4: Buffer zone in a local domain. The blue shaded area repefiategion from which the solution
of local problem is used as enrichment in the enriched glptzilem.

Size of the Enrichment Zone

In the context of th&&FEMY, an enrichment zone is the geometric zone (or region) of the
global problem domain within which the solution of the lopabblem is used to enrich the
global solution space with the global-local enrichmentctions. In this project we have

derived an estimate for the optimal size of the enrichmenezb
d>C(h)® (5)

where C is a constanth is the size of a representative finite element in the globalaad
p is the corresponding polynomial order. The proof®fgnd numerical verification of the

5



Relative Error in Strain Energy
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Figure 5: Relative error in Strain Energy of enriched global probleemputed with exact strain energy as
the reference value, against the number of iterations,iftarent sizes of the buffer zone.

same through several numerical examples are gived]in [



Crack Propagation usingGFEMY!

Figure 6 shows several steps of a crack propagation simulation wsingdaptive GFEM
and theGFEMY' developed in this project. Both methods predict the samekcsarface
path, however, there is a dramatic difference in the reduiresh density and problem size
in each methodology.

—r

= v D= V.
:

¥ 2

M

step 10 step 15 step 20
(a) hp-GFEM orhp-FEM with remeshing

step 0 step 5

A A =
— = £ F =4
= o

g T =
étep 0 step 5 step 10 step 15 steb 20

(b) GFEMY' uses a coarse mesh enriched with global-local functions

Figure 6: Crack surface evolution and mesh for various crack steppiGFEMandGFEM? simulations.

These results are published it?].



Parallel Computation of Global-Local Enrichment Func-
tions

A single local problem around a crack was considered inGREM?' described above.
While this facilitates the computational implementatidritee method, it does not have to
be the case. Each cloud from the global mesh can be used te desmall local problem.
This procedure is illustrated in Figure The creation of a large number of small local prob-
lems in the neighborhood of, e.g., a crack, instead of asilagde one, is attractive since
the solution of these problems lends itself to a parallelem@ntation. This section reports
on the computational performance of a parallel implemémaif theGFEMY'. Several lo-
cal problems are defined around crack fronts and solved assiggle pair of scatter-gather
communications. No communication amongst threads soleicey problems is required.

Typical parallel FEM implementations partition the comadignal domain and distributes
the partitions among threads such that each one processssutie computational load
[Far89 However, FEM discretizations with non-uniform elemer#tes and/or polynomial
orders are difficult to partition since estimating the comagional load of each partition
is not trivial [OPS92. In the parallel implementation of th@eFEMY' developed in this
project, load balancing is addressed by defining a largebeunif local problems than the
number of parallel threads, and by sorting and solving thallproblems based on simple
estimates of their workload.

Extract Master-
Local Domain

i /
N

Local Domains Nodes with Sub-

Local Solutions

Create Sub- [ Enrich Global

Sub-Local Problems Global Domain Enriched

Initial Global Domain

with Sub-Local Solutions

Figure 7: lllustration of parallel computation of global-local ecliment functions. Several local problems
used for the computation of global-local enrichments aeated around the crack front. Each local problem
is sent to a different processor and efficiently solved irafbel:

The effectiveness of the proposed paraBEEM? was verified through several numerical
examples with the emphasis on the parallel efficiency andracyg of the method. Here, we



report on arepresentative case. These results are preégejaarnal paperll]. This paper
appeared in theist of Top Five Most Downloaded Papersof Computational Mechanics

Tablel reports the parallel efficiency of the method on a represigatthree-dimensional
problem with complex geometry. The table lists the CPU tieguired to solve the sub-
local problems, the parallel efficiency and the speed-up regpect to the number of CPUSs.
It can be observed that a high parallel efficiency is attasredithat the CPU time reduces
from 1537 seconds to just 66.4 seconds when 32 processarsae

Table 1: Parallel performance @@FEMY'.

Number of CPUg CPU time (sec.) Parallel efficiency] Speed-up
1 1537.4 N/A N/A
2 778.1 0.99 1.98
4 392.1 0.98 3.92
8 198.3 0.97 7.75
16 101.1 0.95 15.21
18 92.3 0.93 16.67
20 86.3 0.89 17.82
32 66.4 0.72 23.16

GFEM¢Y for Confined Plasticity Problems

The GFEMY' was extended in this project to problems with localized m@ar behav-
ior. The procedure involves the solution of boundary valtebfems around local regions
exhibiting nonlinear behavior and the enrichment of thebglsolution space with local
solutions through the partition of unity framework usedhe generalized finite element
method. The formulation and other details are givenli@}.[ This paper appeared in the
List of Top Five Most Downloaded Papersof Computational Mechanics

The GFEM?' developed in this project can produce accurate nonlindatisos with a
reduced computational cost compared with standard fird@eht methods since compu-
tationally intensive nonlinear iterations can be perfalno@ coarse global meshes after
the creation of enrichment functions properly describmgal nonlinear behavior. The ef-
fectiveness of the method was investigated in terms of acguand computational cost
through several three-dimensional examples exhibitingioced plasticity. A representa-
tive example from10] is presented here.

Figure 8 describes thisSSFEMY' procedure to analyze an L-shaped domain subjected to
constant vertical tractions. The local domain is createdirad the re-entrant corner of the
domain where plastic strains are concentrated.

Figure 9 shows the von Mises stress distributions obtained fromhin&FEM (Direct
Numerical Simulation) and tteFEMY'. The quality of theGFEM?! solution is comparable

9
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Provide
Enrichment

Provide BCs

(c) Nonlinear enriched

(a) Linear initial global problem (b) Nonlinear local problem
global problem

Figure 8: Nonlinear solution procedure for the L-shaped domain examging theGFEM?' developed in
this project.

to or even better than that of tigp-GFEM solution even though a coarse global mesh is
used for theGFEMY' analysis [L.0].

(a) Hp-GFEM (b) GFEM9"!

Figure 9: Von Mises stress distributions in the L-shaped domain exampmputed by thép-GFEM and
GFEMY'. The newGFEM? for non-linear problems is able to capture highly localinea-linear responses
using coarse meshes at the structural scale.

GFEMY for Nonlinear Fracture Problems

The formulation proposed inlp] was extended to three-dimensional fracture problems
involving confined plasticity. The results from this studg aublished in§], an illustrative
example from which is shown in Figuf. It is an edge-crack panel subjected to uniform
tractions of magnitudg = 12.50 on the top and bottom faces. The thickness of the panel
in the z-direction is unity. This figure also shows the global finikenreent mesh, a uniform

10



mesh of tetrahedron elements, used to solve the probleny alth the traction boundary
conditions.

40

20

40

Figure 10: Three-dimensional edge-crack panel subjected to unifeawntibns on the top and bottom faces.
The right figure features the global finite element mesh withapplied tractions.

The procedure to analyze this problem using®®EM?' is illustrated in Figurel1l. The
first step in this procedure involves the solution of the glgisoblem on a coarse mesh with
the full load applied and assuming a linear elastic matemiadel. A local domain, which
fully contains the region with plastic deformations, isrhteutomatically extracted from
this coarse global mesh as shown in the figure. The solutidneoihitial global problem,
obtained in the first step is used to prescribe boundary tondifor the local problem.
The local problem is solved nonlinearly using Newton-Raphiserations. The computed
nonlinear local solution at the final load step is then usedriach the global solution
space at certain nodes in the coarse global mesh (shown apinedes in Figurd.l).
Thisenriched global problens then solved nonlinearly using Newton-Raphson iteration
Figures12 and13 show the contour plots of the distribution of the equivalgastic strain
obtained with theGFEM?' andhp-GFEM, respectively. As can be seen from the figures,
the plastic strain distribution in the two cases are veryilamnin spite of using a coarse
global mesh in the case GFEMY.  Figure 14 shows the deformed shape of the edge-
crack panel obtained in the case®FEM?'. This figure clearly shows the blunting ahead
of the crack front due to plastic deformations.

11
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Figure 11: Figure showing the algorithm for the nonlinear solution lué £dge-crack panel problem using
the GFEMY'. Red nodes in the enriched global problem indicate nodésglibal-local enrichments.
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Figure 12: Figure showing the distribution of equivalent plastic stia the case oGFEMY'.
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Figure 13: Figure showing the distribution of equivalent plastic stia the case of thép-GFEM

Figure 14: Figure showing the deformed configuration (scaled by a faaftten) of the edge-crack panel in
the case of th6&FEMY'. Note that the refined mesh close to the crack front correbpmgraphical elements
used for visualization. The computations are performechercbarse mesh shown in Figur2
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Stable GFEM

The GFEM allows great freedom in the selection of enrichment fumgioBabgka and
Banerjee BB12] have recently proposed modifications to available enrehis for the
GFEM in order to create functions that are near orthogonal. Tlase lshown that the
conditioning of this so-called Stab6FEM (SGFEM) is not worse than that of the stan-
dard FEM. Moreover, their modified enrichment functionsdléa optimal convergence
rates at finite elements that are only partially enriched, gb-called blending elements
[BMMBO5]. During the past year, we worked on extension$S&FEMin collaboration
with Prof. Ivo Babgka from University of Texas at Austin and Prof. Uday Barefjem
Syracuse University. This collaboration is at no cost touh®. Air Force.

Let¢q , a =1,...,N, denote Lagrangian finite element shape functions, i.e.rtéipa of
unity. LetLy; denote an enrichment function. The modified enrichmenttfancL i, is
given by _

Lai - Lai - jwa(l—ai) (6)

where Z,q (Lgi) is an interpolation oL, on the patchw, . This interpolation is de-
fined using the partition of unitygB12]. The following problem provides a representative
example to compare tteFEM andSGFEMapproach:

e Domain:|[0,1] x [0,1]

e Crack: (0,1/2) to (1/2,1/2).

e Mesh: uniformh = 5.

e Crack matches with the mesh; crack-tip is on a node.

e Manufactured solutionu(r,0) = /rf(0); —mm< 6 <, f(0) is discontinuous at the

crack-line L 0 1. 38
mmmzw{ﬁiﬁﬁéiiﬁg} (7)

wherer and 6 are polar coordinates at the crack tip andr < 6 < m, K is a material

constant (3- 4v), andv is the Poisson’s ratio.

e Enrichment region[0, 3 +d] x [ —d, 3 +d],d = 1/8.
e Enrichment: exact, i.eu,(r,8) = /rf(0) at all the nodes in the enrichment region.

In the computations, nodes shown in red are enriched witttifms (7) andthe first term
of the Mode Il expansion, namely

0 (1.6) = \ﬂ{ (k +§)sin%+f—%sin%‘;} @)

(k —3) cosy + 5 c0s%

Figures15 and 16 show the contour plots for the distribution of element-wéseor in
energy norm obtained in the casesGFEM and SGFEMrespectively. Note that the red
nodes in these figures are enriched with the singular funetaefined by equation§)(
and @). The much reduced error levels in caséeS@FEMcan be clearly seen from these

14



figures, even in the interior of the enrichment region. Tabdows the relative error in
energy norm and the condition number of the resulting gfthmatrix in the two cases.
The relative error in energy norm obtained wBIGFEMis almost half as that obtained
in the case oGFEM. The SGFEMalso shows an improvement in the Condition Number
which would become much more significant for larger problems

o,oo:}!

0.064 £
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2
&
2
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£
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0.002

0.001

Figure 15: Contour plot for element-wise error in energy-norm obtdiméth GFEM. Red nodes are enriched
with the singular functions defined by equatiosgnd @).

u.ocs'

0.007 &

ngles
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Figure 16: Contour plot for element-wise error in energy-norm obtdiméth SGFEM Red nodes are en-
riched with the singular functions defined by equatiofjsapd @).

GFEM

SGFEM

Relative Error in Energy Norn

L

Condition Number

0.106202703
8.4968932990% 10°

0.052492384
4.6211911755 10*

Table 2: Table showing relative error in energy norm and conditiombar forGFEM andSGFEM
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Transitions

1. The parallel algorithms for the computation of globatdbenrichments developed
in this research effort are being used by the group of Dr. TdeBEason.

2. TheGFEM?' developed in this project is fully compatible with the stardi FEM.
This, together with the hierarchical nature of the glolalal enrichments, allow
adding the method as an external module to existing FEM cddws feature of the
method was the subject of an AFRL project aimed at a nonsiMeumplementation
of the GFEMY' in a commercial FEM. The co-PI of this project was Dr. Thomas
Eason.

Impact in the Research Community

The research results of this project has attracted corsdteattention from the compu-
tational mathematics research community. The first evid@fic¢his impact is the various
keynote and plenary lecture invitations received by theThe second evidence is that
publications [10] and [11] appeared in thist of Top Five Most Downloaded Papersof
Computational Mechanics
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