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Abstract—Army ground vehicles often operate in extremely 
severe environmental and battlefield conditions. Condition Based 
Maintenance (CBM) allows maintenance to be performed based 
on evidence of need provided by reliability modeling and/or other 
enabling technologies, thus reducing maintenance costs and 
increasing vehicle availability. A Takagi-Sugeno fuzzy model is 
developed to diagnose the loss of engine power of light trucks. 
Baseline data are acquired through engine performance 
measurements. The Adaptive Neuro-Fuzzy (ANFIS) training 
method is used to extract the fuzzy rules. To improve the quality 
of the model a combination of the least-square error and the 
backpropagation gradient descent methods is implemented to 
minimize the errors.  

Keywords- Condition Based Maintenance, fuzzy model, engine 
power loss, intelligent diagnostics 

I. INTRODUCTION 
In a theatre, the U.S. Army ground vehicles operate in 

extremely severe environmental and battlefield conditions. 
There are challenges for the reliability of the military ground 
vehicle fleet which need to be addressed. The Army intends to 
use computer based modeling and simulation to address these 
challenges. Reliability and safety computer simulations 
provide state-of-the-art tools to predict the reliability and 
safety of fielded trucks in off-design scenarios and physics-
based prognostics criteria needed for condition-based 
maintenance (CBM) systems. CBM allows maintenance 
performed on evidence of need provided by the enabling 
reliability modeling, thus increases vehicle availability. A self-
powered, cost-efficient, integrated intelligent system of 
sensors and microcontrollers for vehicle health monitoring is 
desired.  

A significant segment of the Army’s Light Tactical 
Vehicle Fleet is not equipped with any digital electronics that 
could directly contribute to CBM. In this paper, recent 
research results are described that are part of a larger effort to 
develop an Intelligent Vehicle Health Management System 
(IVHMS) for light trucks. In particular, this paper is focused 
on the system architecture for monitoring the power loss of the 
engine and the development of a fuzzy logic model for 
diagnostics. A commercial light truck has been chosen as an 
experimental vehicle platform. 

 

The rest of the paper is organized as follows: in Section 2, 
a partial architecture and the associated functions of the 
IVHMS are presented. In Section 3, the engine failure modes 
considered for power loss diagnostics are summarized. In 
Section 4, experimental models for engine power loss are 
introduced. In Section 5, the fuzzy model and the creation of 
the fuzzy rules are described. In Section 6, the approach to 
optimize the membership functions is briefly explained. In 
Section 7, simulation results are presented. Conclusions are 
given in Section 8. 

 

II. ENGINE MONITORING ARCHITECTURE 
The functional block diagram of the engine monitoring 

section of the IVHMS is depicted in Fig. 1. 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Engine monitoring system block diagram 

All the electronic parts considered are off-the-shelf devices 
to leverage existing technologies and reduce cost. The 
microcontroller interfaced to the sensors provides for primary 
data manipulation/filtering and local data storage. Time 
stamps are attached to the sensory data collected at given 
intervals. In addition, the microcontroller firmware provides 
for off-loading the collected data via short-range wireless 
communications to a central data storage module located in a 
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safe place on the vehicle. The sensor modules communicate 
with each other and with the central data module via a wireless 
interface that is compliant with the IEEE 802.15 protocol. The 
wireless personal area network is implemented using the 
ZigBee protocol. 

The central data module integrates all data collected from 
the intelligent sensors attached to the various vehicle systems. 
A rugged laptop computer is used as the central data module. 
On demand, the central data module can upload its data along 
with the vehicle ID Number via another, secure short range 
wireless communications link, or via a wired Ethernet port to a 
mobile device (e.g., another laptop computer authorized for 
CBM). In addition, a CAN Bus interface is also available for 
vehicles that are equipped with a CAN Bus-based sensor 
system in order to collect that data as well. 

The central data module performs basic monitoring 
functions based upon the sensed data and preset boundary 
values. If the sensed data reveals a critical situation in the status 
of the vehicle then alarm signals will be generated in real-time 
on the laptop computer's screen. In addition, the coordinator 
module has sufficient nonvolatile memory to store the sensory 
data on the vehicle over a long mission route. 

The diagnosis and prognosis of the vehicle’s health will be 
based upon both the data uploaded from the vehicle’s central 
data module and a large, off-vehicle database containing 
failure mode data on the same vehicle and other vehicles of 
the same class of vehicles. The diagnosis part attempts to 
assess the status of failing or failed components of vehicle 
systems by the method of triangulating sensor information on 
the component as well as using measurement records of 
healthy and failed components. An intelligent diagnostic 
system is being developed using both analytical methods and 
fuzzy logic. A limited, rudimentary version of the diagnostics 
system is displayed on the screen of the vehicle's central data 
module laptop computer.  

The prognostics feature will also be based upon actual 
vehicle data and a recorded vehicle failure data archive. Using 
fuzzy logic an intelligent system will be developed to infer 
qualitative predictions on the mission reliability of the vehicle 
to some time periods into the future. 

 

III. ENGINE FAILURE MODES FOR DIAGNOSTICS 
Fuzzy models have been used for monitoring and 

diagnosing faults in various internal combustion (IC) engine 
subsystems. In [1], wear of a single-cylinder diesel engine (as 
quantified by an increase in the clearance between the piston-
cylinder interface) was successfully diagnosed using engine 
block vibration data and fuzzy logic (fuzzy nearness and fuzzy 
cluster) methods. Fuzzy model-based diagnostics have also 
been developed for the cooling system of a diesel engine, 
integrating a priori, ‘expert’ knowledge, sensor data, and the 
adaptive network-based fuzzy interference system (ANFIS). 
The model yielded successful fault diagnosis for 73 to 97.7 
percent of the test data [2]. Failure detection and identification 
algorithms integrating fuzzy logic control and fuzzy based 
estimators have also been proposed and successfully 

demonstrated to isolate sensor faults (e.g., faults with mass air 
flow sensor) in internal combustion (IC) engines [3]. 

With internal combustion engines, problems with any of 
the major subsystems (i.e., fuel system malfunction, lack of 
compression, increased friction losses, increased heat losses 
and air induction) can manifest as a gradual or sudden loss in 
engine power. In order to diagnose the malfunctioning of a 
particular system, it is first necessary to understand what 
constitutes normal operation. Direct, in-situ measurements of 
representative engine parameters have been used to identify 
potential problems with engine operation. 

The following parameters have been selected for 
measurement: engine output torque, throttle position, 
crankshaft rotational speed, exhaust gas temperature (EGT), 
pressure drop across the intake air filter and intake air 
temperature. 

Sensor selection was based on the criteria of robustness, 
commercial availability and price. In order to avoid 
unnecessary complexity, built-in engine sensors are used 
whenever possible (e.g. throttle position and crankshaft 
sensors). Redundancy is built into the EGT measurement (i.e. 
ten sensors instead of eight) to investigate the possibility of 
reducing the total number of EGT sensors in the future. The 
type and quantity of sensors selected is shown in Table I. 

TABLE I. Engine Diagnostic Sensors 

Quantity measured Sensor quantity 
Throttle position 1 

Output torque 1 
Crankshaft speed 1 

Pressure drop 1 
Exhaust gas 
temperature 

8 + 2 redundant 
sensors 

Intake air temperature 1 
 
In this paper, however, only one aspect of many possible 

engine power loss scenarios is considered and the full engine 
diagnostic matrix is not given. We focus on just one failure 
mode: the one that manifests itself as lower than normal 
exhaust gas temperatures (EGTs). By comparing the actual 
engine power with the nominal one the system may detect a 
power loss. The throttle position sensor (TPS) monitors the 
driver’s input. The output torque and rotational speed are 
measured to calculate the engine output power. EGTs are 
recorded simultaneously to identify whether any significant 
change in the engine’s output power is a cylinder-specific 
problem or a global problem. Based on the experimental result 
there is an expected value of throttle position for each load-
speed measurement. In the normal case (no power loss) the 
measured value of the throttle position will be equal to the 
expected value of the throttle position, otherwise the 
difference between the expected value of the throttle position 
and the measured one gives indication of the power loss of the 
engine.  

Laboratory tests have been conducted using a four-stroke, 
eight-cylinder, reciprocating diesel engine (identical to the 
engine that is mounted on the light truck) to benchmark 
performance (e.g., output power) and monitor EGTs as a 
function of speed and load. The stand alone engine is coupled 
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to a water-brake dynamometer and instrumented to acquire 
benchmark data under controlled conditions. This baseline 
provides a comparative basis with which to validate the 
diagnostic matrix. Experimental data obtained from the stand 
alone engine were used to devise the analytical correlations 
between the various measured parameters and engine power. 

IV. EXPERIMENTAL MODELS FOR ENGINE DIAGNOSTICS 
The relationship between the throttle position (TP) and the 

output power has been identified as an approximately linear 
relationship as shown in Fig. 2.  

From the baseline data, the relationship between the 
throttle position and the EGT of the left exhaust collector and 
the right exhaust collector, respectively, are approximately 
linear as shown in Fig. 3 and Fig. 4, respectively. 

 
Figure 2. Throttle Position versus Power 

 
Figure 3. Throttle Position versus Left Collector EGT 

 
 

Figure 4. Throttle Position versus Right Collector EGT 

V. FUZZY MODEL FOR ENGINE DIAGNOSTICS  
A Takego-Sugeno type [6] fuzzy logic model has been 

developed for the diagnosis of power losses in the vehicle, 
based on the torque, crankshaft rotational speed and throttle 
position (TP) measurements, as depicted in Fig. 5. The internal 
architecture of the model is shown in Fig. 6. The model has 
five inputs, three of them (i.e., speed, torque and TP) are fuzzy 
inputs to the ANFIS system and the other inputs (left collector 
EGT and right collector EGT) are used to determine the 
respective power loss causes. The model's outputs are the 
overall power loss, power loss due to the left EGT and power 
loss due to the right EGT, respectively. 

Crankshaft speed and torque are used to calculate the 
output power of the vehicle, while TP represents the driver’s 
power demand from the vehicle. On the grounds of the lab 
experiments, there is an expected value of TP for each torque-
speed combination for normal cases (no power losses). Based 
on these results, an Adaptive Neural Fuzzy Inference System 
(ANFIS) was developed using MATLAB. The inputs of the 
ANFIS system are as follows: throttle position, speed and 
torque, while the output is the power loss in the vehicle. The 
fuzzy input membership functions are shown in Figs.7(a) to 
7(c). The critical parameters of the membership functions and 
the fuzzy rules are determined by using the hybrid learning 
technique ANFIS. The ANFIS structure is given in Fig.8.  

 

 
 

Figure 5. Fuzzy model for engine power loss 
 

The relations between the TP and the EGTs are almost 
linear and can be described by the baseline equations. On the 
grounds of the TP measurements the expected value of EGTs 
can be calculated. Then the expected values are compared with 
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the measured ones to determine whether or not the power 
losses are due to malfunctioning engine cylinders. 

 

 
Figure 6. Internal architecture of the fuzzy model 

 

 
Figure 7(a). Membership functions for TP 

 

 
Figure 7(b). Membership functions for Torque 

 

 
Figure 7(c). Membership functions for Camshaft Speed 

 
 

 
 

Figure 8. ANFIS model structure 

VI. THE ANFIS SYSTEM 
The input fuzzy membership functions are shown in Figs. 7(a) 
to 7(c). Each membership function is defined by a set of 
parameters. Those critical parameters can be potentially 
determined by using experts’ domain knowledge. However, in 
a nonlinear system in which not all possible causes to engine 
power loss are considered and measured, merely relying on 
expert knowledge may not be sufficient to develop a reliable 
model. In order to improve the performance of the fuzzy 
system a learning algorithm can be used to extract the critical 
parameters from the set of input data. A first order Takagi-
Sugeno fuzzy system along with a hybrid learning algorithm is 
used to define the membership function parameters [4, 5].  

In the Takagi-Sugeno fuzzy model [6], the consequent of 
the IF-THEN rules is the linear combination of the inputs: 
 
R: If x1 is A1, ..., xk is Ak then y = g(x1,...,xk)  

 
and g is a linear function such that 
 
g = p0 + p1x1 + ,..., + pkxk    (1) 

 
where A1,…, Ak are fuzzy sets, x1,…, xk are fuzzy inputs and 
output y is obtained as a crisp value. 

The hybrid learning algorithm is a combination of the back 
propagation steepest descent and the least square methods to 
obtain the critical parameters of the membership functions. In 
this system those parameters will be recalculated as soon as 
more measured input data become available to improve the 
quality of the model. One of the advantages of this system is 
that it can be initialized by a reasonable set of fuzzy rules based 
upon expert knowledge and some measured data, even though 
the expert knowledge may not cover for extreme cases. 
Another advantage is that while the engine's performance will 
change over several years of use, the ANFIS model will adapt 
to it by using updated training data.   

 

VII. SIMULATION RESULTS 
The combined model for engine power loss (the ANFIS 

fuzzy model and the base line equations) has been created by 
collecting data from stand-alone engine tests. In order to 
investigate the performance of the fuzzy model, the output 
power of the engine has been measured and has also been 
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estimated by using the ANFIS model as well as the left 
collector EGT and right collector EGT base line equations, 
respectively, as it is shown in Table II. The first column in 
Table II represents the measured output power. Data in the 
second column are of output power values calculated by using 
the ANFIS model. Column 3 shows output power values 
calculated by using the left collector EGT base line equation, 
while Column 4 exhibits the output power calculated by using 
the right collector EGT baseline equation. Columns 5, 6 and 7 
exhibit the difference between the measured and the calculated 
output power values using ANFIS, the left and right EGTs, 
respectively. As it is shown in Table II, the ANFIS model is 
more accurate in estimating the engine power with respect to 
the baseline equations. On these grounds, ANFIS is deemed 
more accurate for estimating the engine power losses except 
for the last test. In that case it has produced a higher relative 
error than that of the baseline equations. This discrepancy is 
attributed to the relative lack of input data that cover this 
range.  

The graphs in Fig.9 show that the error introduced by the 
fuzzy model is lower than the typical test measurement 
uncertainty. The level of imprecision for the measurements 
was very high for the last tests and this is the reason for having 
high value of the relative error of ANFIS compared with the 
baseline equations. 

 
TABLE II. Power loss calculations using the ANFIS model and the EGTs 

 

 

 
Figure 9. Fuzzy model error and measurement error in tests 

 
 

In preparation to extend the engine model to cover for 
power losses due to air intake obstruction, and to further verify 
the performance of the ANFIS model additional tests have 
been conducted. In a test with 50% intake obstruction, the 
output power was calculated by multiplying the measured 
value of the torque with the measured value of the crankshaft 
speed. The ANFIS system was used to determine the expected 
(base) power from the measured values of the speed, torque 
and TP. The results are depicted in Fig.10. For this test, the 
expected output power value must not be the same as the 
measured one because of the 50% intake obstruction. As it is 
shown in Fig. 10, the expected engine power that is calculated 
using the ANFIS model runs higher than the measured one due 
to the power losses induced by the partially blocked air intake.  

 

 
 
Figure 10. Expected power (by ANFIS) versus measured power with 50% 

intake obstruction  
 

The graphs in Fig.11 and Fig.12 show the expected output 
power of the engine for the 50% intake obstruction test as 
calculated using the measured values of TP, left collector EGT 
and right collector EGT, respectively. Again, as it is depicted 
in Fig. 11 and Fig.12 the expected output power value is 
higher than the measured one due to blockage of intake air 
filter. 



UNCLASSIFIED 
 

The relative differences between the measured engine 
power and the expected power for the 50% intake obstruction 
test using ANFIS, left EGT and right EGT baseline equations, 
respectively, are shown in Fig.13. As it is indicated in Fig.13, 
ANFIS has the highest difference compared to the left and 
right collector EGT base line equations. Hence, it is likely that 
an extended ANFIS model with an added differential intake 
pressure sensor input data will deliver a better diagnosis on the 
engine power loss problem.  

 

 
Figure 11. Expected power (by left EGT baseline equation) versus measured 

power with 50% intake obstruction 
 

 

 
Figure 12. Expected power (by right EGT baseline equation) versus measured 

power with 50% intake obstruction 
 

 
 

Figure 13. Relative differences between the expected engine output power and 
the measured output power with 50% intake obstruction using ANFIS, left 

EGT and right EGT baseline equations 
 

VIII. CONCLUSIONS AND FUTURE WORK  
The basic architecture of an engine health monitoring 

system for light tactical vehicles is presented and its objectives 
are outlined. A fuzzy model is introduced to deal with the 
problem of diagnosing engine power loss. Stand-alone engine 
experimental data are collected to generate an initial set of 
training data for the fuzzy model. The ANFIS model is used to 
define the critical parameters of the membership functions and 
fuzzy rules. The simulation results indicate that the ANFIS 
model and EGT measurements can be used to diagnose the 
power loss of the vehicle.  

Future work may  focus on modifying the fuzzy model in 
two ways; one is to replace the EGT baseline equations by 
another ANFIS system (since it can deliver better results) and 
the other is to expand the diagnosis to the other causes for 
power loss of the engine. 
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