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Abstract 
 

Cognitive modeling is the creation of computer-based processes that mimic 
human problem-solving and task execution using existing cognitive theories.  
Cognitive modeling remains a labor-intensive and error prone activity with little 
theoretical and tool support.  In particular, we propose an approach to capturing 
specifications for cognitive models in an incremental and modular way.  We then 
discuss ways of proving that that a cognitive model meets its specification.   

 
Introduction 
Cognitive modeling is the creation of computer-based processes that mimic human 
problem-solving. Knowledge-based cognitive models capture task-specific knowledge. 
They are built to run on cognitive architectures, which are virtual machines capturing 
general-purpose regularities in human cognition, such as knowledge acquisition 
(learning), knowledge use (problem solving), and knowledge decay (forgetfulness). 
Cognitive architectures are an embodiment of cognitive theories. The most notable 
cognitive theories and associated architectures are Soar and ACT-R. They both originated 
at Carnegie Mellon: SOAR was developed by Newell et al.; ACT-R was developed by 
Anderson et al. The two architectures have many common aspects and components 
(cognitive processor, memories, and buffers) and some differences in the processes by 
which they learn, use, and forget knowledge and in the processes that capture various 
behavioral moderators such as fatigue, fear, and other emotional factors. Cognitive 
models are used in the laboratories for experimental research in cognitive science and in 
industrial applications to play a role traditionally played by a human (e.g. automatic 
piloting), for simulation and training (e.g. war gaming) and in the entertainment industry 
to create virtual actors, and credible computer game characters.  Because architectures are 
by design low-level virtual machines, cognitive models for non-trivial tasks are lengthy 
and complex. Models created to perform a single task easily exceed thousands of rules. 
Because the state of the art in the software engineering of cognitive models is still in its 
infancy stage, models are typically created from scratch; a model created for one 
architecture cannot be used with another; the validation of models is exclusively done 
through extensive testing; there is little reuse taking place, and when models are reused, 
the process of adapting and combining models is still tentative, manual, and ad hoc. One 
of the major impediments to progress on the above aspects is the absence of formal 
specifications and formal definition of model correctness.  In this paper, we focus on 
specification and verification. In section 2, we propose a language and a methodology for 
writing specifications for cognitive models. In section 3, we define the semantics of 
cognitive models in terms of trace languages. In section 4 we formulate the problem of 
model correctness as a comparison between context-free languages. In section 5, we 
show a heuristic graph-based verification method. We use the towers of Hanoi problem 
as a running example. 
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2. Specification Methodology and Language 
2.1 Challenges to cognitive models specifications 
Although specification and verification of traditional sequential programs are no longer 
research issues, they have been almost absent in cognitive models in particular, and 
artificial intelligence programs in general. Two main inhibitors to formal specification 
and verification can be identified: 

1. Tasks for which cognitive models are developed are ill-structured and hard to 
specify especially that their requirement is that they perform the task at hand in a 
human-like manner. As a result, cognitive models have been validated mostly 
through testing by comparing their traces to results generated from human 
experimentation [1, 2, 11, 12, 14] to show that they emulate human performance. 

2. Because cognitive models emulate the processes of human problem solving, they 
cannot be adequately captured with the most widely used specification languages 
and formalisms, which are state-based (precondition, post-condition) [6].  

These two above inhibitors, while real, can be overcome as follows: 
1. The ill-structured nature of the tasks can be addressed by using a specification 

formalism that  allows for an incremental formulation of the specification. 
2. The fact that cognitive models’ mission is to emulate humans performing a task 

reflects different components of the requirements: (i) perform the task (ii) perform 
it in a human-like manner. The “human-like” requirement is typically qualified 
further by specifying the specific aspects for which the model must be similar to a 
human. This may include: decisions made and actions taken, rationale used for the 
decisions, type of errors made, frequency of errors, learning taking place, timing 
characteristics, task switching, etc. Both components of the requirements: (i) and 
(ii) need to be captured explicitly before hand. 

3. Research in the area of software specifications has generated a wealth of 
specification languages adapted to capturing requirements of a variety of systems 
including history-based systems such as concurrent processes and real time 
systems. Some of these specification formalisms can be adapted to the 
specification of cognitive models. 

 
In other words, the specification of cognitive models must encompass:   

• The specification of functional requirements, i.e. capture the requirement that the 
task be realized. 

• The specification of other aspects of cognitive behavior such as timing, errors, 
task switching, etc. 

The specification language must be able to: 
• Capture state-based behavior (pre-condition, post-condition). 
• Capture history-based behavior. 

The specification language and methodology must support: 
• The modular specification of tasks in an incremental way.   

 
 
2.2 Running Example 



We use the example of the Tower of Hanoi throughout this paper. In this problem, there 
are three pegs A, B, and C and three disks of three different sizes: small, medium, and 
large placed on the pegs.  The object of the task is to transfer all three disks from peg A 
to peg B with the constraint that the disks must be moved one at a time and that no disk 
can be placed on top of a smaller one.   
 
 

 
 

Initial Configuration Final  Configuration 
Figure 1: Towers of Hanoi 

A state-based specification of this task would consist of a transcription of the information 
in Figure 1. Obviously, this information is insufficient. A complete specification of the 
task would include the definition of legal moves as well as the definition of the specific 
aspects that need to be human like and how.    
 
2.3 Multi-layered specification 
For the sake of separation of concerns and reusability, we recommend distinguishing 
between at least two separate layers in the specification:  

• Functional layer: in which we capture what constitutes a valid execution of the 
task at hand. For example, the functional layer specification of the Tower of 
Hanoi specifies that disks are moved one at a time, that no disk is placed on top of 
a smaller one, and that eventually the disks are all placed on peg B in their final 
configuration. 

• Cognitive-layers: these layers capture specific aspects of the trace that make it 
human-like. The aspects of interest vary depending on the underlying architecture 
and depending on the application at hand. The underlying architectures enable the 
mimicking of some aspects of human behavior; for example, ACT-R is tuned to 
duplicating the exact timing with which humans make decisions at the 50ms level 
and tuned to predicting some type of errors.  On the other hand, EPIC focuses on 
emulating the process by which humans interleave the processing of data from 
different sensors (vision, hearing, touching) and motor actions. The domain of 
application dictates the characteristics that are of particular interest. Emotional 
accuracy maybe more critical than intelligent behavior to make a computer game 
character compelling. For the Tower of Hanoi problem, the cognitive layers 
would capture such things as: the occurrence of trial and error; the occurrence of 
learning by not repeating the same mistake; the average time with which the task 
is executed.   

There are a number of advantages to separating the different layers of the specification. 
On the one hand, this allows us a separation of concerns and facilitates the elicitation of 



specifications. On the other hand, by capturing the functional layer separately, the same 
functional specification can be used for a model regardless of the architecture under 
which it is being implemented and of the application in which it is used. Similarly, some 
aspects of the cognitive specification can be captured in a generic way and reused for 
different tasks. Another benefit of the separation is modularity. Even if some aspects of 
the cognitive layer can be hard to formalize, we can at least capture the functional level 
and verify the model’s functional correctness. The other aspects can, then, be left for 
testing. 
 
2.5 Specification Language 
The specification of what constitutes a valid execution of a task can be though of as a set 
of constraints on the traces generated by the execution. The trace of an execution is the 
sequence of observable events perceived by or initiated by the agent (model) executing 
the task.  Some constraints are best defined positively, such as “every pick-up-disk must 
be followed by a put-down-disk”. Some constraints are best defined negatively such as 
“Must not place disk x on top of disk y where y<x”.  Positive constraints are labeled 
patterns; negative constraints are conflicts. 
Before defining the specification language formally, we illustrate it by showing patterns 
and conflicts from the specification of the Tower of Honoi: 
Functional Specifications of the Tower of Hanoi: 

Pattern P1. Eventually, all disks, the Large, then the Medium, then the Small must 
be placed on peg B in that order. This pattern is represented by the finite state 
automaton below. The initial state labeled with an arrow head represents the 
beginning of the pattern. The final state labeled with a dot inside the circle represents 
the (successful) completion of the pattern.  The labels of the arcs (state transitions) 
represent the event that triggers the transition. 

 

S0 

Figure 2: Pattern P1 
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We will ignore for now the first transition labeled with the empty action, λ and the 
loop that follows it. The pattern starts when the large disk is placed on peg B taking 
us to state S1.  From S1, three  events can take place:  

• The medium disk is placed on peg B, which takes us to the next state, S2. 
• The large disk is removed from peg B, which takes us back to state S0. 
• Any other move which leaves us looping on the same state S1. 



The final state is reached as soon as the small disk is placed on peg B (on top of the 
medium and the large). 
Pattern P2.  Every <remove disk x from peg _> must eventually be followed by a 
<place disk x on peg _>. This pattern ensures that no disks are removed; they can 
only be moved. If we want to insist that the removal of a disk must be immediately 
followed by a placement of the same disk, we need to disallow all other actions until 
it is placed. This is the subject of conflict C2 below.   
 
Conflict C1. Pattern P1 ensures that eventually disks are placed on peg B. Yet, 
pattern P1 does not guarantee that when the model stops all disks are still on peg B. 
We add the requirement that states that any disk movement that follows that point is a 
conflict. 

 

Figure 3: Conflict C1 
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As can be seen above, patterns and conflicts are represented in the same way. 
Whereas patterns state what should happen, i.e. we want to reach the final state; 
conflicts state what should not happen, i.e. their final states represent conflicts that 
should not be reached. 
 
Conflict C2. After <remove disk x from peg _>, any operation other than <place disk 
x on peg _> represents a conflict. This conflicts disallows picking up 2 or more disks 
before placing any of them back which violates the rules of the game. 
 

The above two patterns and conflicts are a representative sample of the functional 
requirements of the task Tower of Hanoi. They also illustrate the following 
characteristics of this specification approach: 

• Modularity: Writing a specification consists of adding patterns and conflicts until 
we are satisfied that we have captured all the aspects of interest.  

• Separation of Concerns: Using patterns and conflicts, the specifier can capture 
functional requirements and cognitive requirements independently. 

• Encompasses State-based: Pattern P1 and Conflict C1 together capture the 
requirement that when the task is done, the post-condition of having the three 
disks in the correct order placed on peg B. This illustrates the fact that this 



approach allows us to capture state-based requirements, in addition to history-
based requirements (sequence of events).  

• Methodological support: In the methodology subsection we discuss 
methodological support for this activity. 

We are ready now to define the specification language. 
 
Definition, Specification. 
A task specification S is defined by the definition of: 

 an alphabet SA,  
 a set of languages (called pattern languages) PL1, PL2 , …PLk  on SA, and 
 a set of languages (called conflict languages) CL1, CL2 , …CLl  on SA, 

This specification defines the language SL on alphabet SA where  
SL=  PL1 ∩PL2 ∩ … PLk  ∩CL1 ∩CL2  …∩CLl. 

▄ 
 
The specification alphabet SA is the set of “observable events” of interest to the specifier. 
For example, the Specification Alphabet for the tower of Hanoi is SA={<REMOVE, 
disk, peg>, <PLACE, disk, peg> | disk in {small, medium, large} and peg in {A,B,C}}. 
 
The traditional approach to defining a language is by defining its underlying grammar. A 
grammar G is formally defined as a quadruplet G= <T, N, ∑, P> (Denning et al.1978) 
where: T is the alphabet (finite set of terminal symbols); N is a finite set of non-
terminals; ∑, a sentence symbol not in N or T and P is a finite set of productions of the 
form α →β. 
When the productions are all of one of the following forms  
A → w   
         where A is a non-terminal symbol and w is a non-empty string  from N ∪ T. 
∑ → w    
∑ → λ  
        where λ is the empty string, 
the language is qualified as context-free. 
  
The relationship between the grammar and the associated language is defined as 
follows: 

Definition: derivation 
Given a grammar G, a production α →β, and two strings ω= ϕ α ψ and 
ω’= ϕ β ψ, we say that ω’ is immediately derived from ω in G. This is 
denoted by ω ⇒ ω’. When ω1, ω2, …ωn is a sequence of strings such that 
each is immediately derived from the predecessor, we say that ωn is 
derivable from ω1. This is denoted by ω1 ⇒* ωn. 

▄ 
Definition: Language L(G) 
The language L(G) generated by a formal grammar G is the set of 
terminal strings derivable from ∑: 

L(G)= { ω| ∑  ⇒* ω } 
▄ 



 
Pattern Grammars 
The interpretation of grammars provided above is the traditional one. Grammars 
can also be interpreted as defining patterns. For example, consider the grammar  
G =<T, N, P, ∑ >  where T={read, write}, N={A}, and P consists of the 
following two productions: 

∑ → read A 
A → write. 

The traditional interpretation of this grammar defines the language consisting of a 
single sentence: “read write”, i.e. L(G)={“read write”}. 
By contrast, the pattern interpretation of this grammar defines the constraint that 
every read must eventually be followed by a write.  The following sentences 
satisfy the above pattern:  

1. read write read write read write 
2. display 
3. write write write 
4. read read read write 
5. open read write read write close 

In each of the sentences above, every read is eventually followed by a write. Sentence 1 
illustrates the fact that a pattern may occur any number of times in a sentence therefore 
the beginning (end) of a pattern is not necessarily the beginning (end) of the sentence. 
Sentences 2 and 3 illustrate the fact that a pattern can be vacuously met; the sentences do 
not include read (prefix of the pattern), thus vacuously satisfy the pattern. Sentence 4 
illustrates the fact that different occurrences of a pattern can overlap within the same 
sentence and share some of their symbols; the pattern here appears three times (3 reads) 
all of which are terminated with a common occurrence of the symbol write. Sentences 2 
and 5 illustrate the fact that the sentences’ alphabet is not restricted to that of the pattern, 
but is generally a superset of it. 
 
We use a two-step process to define this interpretation of grammars. 1. The grammar 
defines a pattern (which is a language as specified in previous section). 2. The pattern in 
turn defines a language. For example, given the pattern grammar “read write” above, and 
the alphabet {“read”, Write”}, it defines the pattern read-write which defines the set of all 
sentences that meet the pattern, i.e. (read+write+  ∪ write*)*. 
  

 Definition, Pattern Grammar: 
A Pattern Grammar, PG is defined by a quadruplet PG =<T, N, P, ∑ > as 
defined for languages in general. 

▄ 
 
Definition, Pattern: 
The language P generated by a Pattern Grammar PG is called a Pattern. 

▄ 
Definition, Pattern prefix occurrence, complete pattern occurrence: 
Given a pattern sentence ps= s1, s2, … sp and given a sentence ω= ω1, ω2, 
…, ωn,   sentence ω is said to contain a pattern prefix occurrence (of size 



j) of pattern sentence ps at position i if there exists an injective mapping f 
from [1..j] where j≤p into [i...N] such that  

• f(1)=i  the pattern occurrence starts at position i,  
• ∀ k:1..n: ωf(k) = sk  mapped positions contain the same symbols. 
• ∀ k,l:1..n, if k>l, f(k)>f(l).  The symbols of ps must appear in w in 

the same order as they do in ps, i.e. the mapping f must be 
monotonous. 

• ∀ k:2..n, ∀ j:f(k-1)..f(k)-1 ωj ≠sk  the mapped position must be the 
first occurrence of sk in ω after the occurrence of sk-1. 

When ω contains a pattern prefix occurrence of size p, we say that ω 
contains a complete pattern occurrence.   

 
▄ 

Example of pattern prefix occurrence: 
Given the pattern sentence: ps= 369  and the sentence ω =1234567867, ω  
contains a prefix of ps at position 3. The mapping is shown in the bolded, red 
symbols in ω. There is at most one pattern prefix occurrence starting from one 
given position; the second 6 in ω  cannot be part of a pattern prefix because it is 
not the first occurrence of 6 that follows 3. 
 
In the definition of pattern prefix occurrence, prefixes have a size of at least one. 
There are cases where we need to allow a prefix of size zero. Consider again 
pattern P1 for the tower of Hanoi. If the pattern were to start at state S0 (instead of 
∑ ), the pattern would state that “once the large disk is placed on B, eventually, 
the medium then the small, must also be placed on peg B”. In other words, if the 
large disk is never placed on peg B, the requirement is irrelevant. Because the 
pattern starts at ∑ with initial transition λ, what it states instead is “once nothing 
(λ), eventually, the large, then the medium, then the small disks must be placed on 
peg B”. In other words, the pattern P1 must always be met. To allow these 
unconditional patterns, we amend the definition of prefix by allowing empty 
prefixes for patterns whose first transition is a  λ transition. 

 
Definition, Pattern Language: 
Given a Pattern Grammar PG =<T, N, P, ∑ >, and an alphabet A such that 
T ⊆ A, we define the pattern language PL(PG,A)={ω| ω∈ A* :  every 
prefix occurrence of a pattern string in ω is a complete pattern  occurrence 
of a pattern string (not necessarily the same) in ω.} 

▄ 
 

Definition, Compliance with a pattern: 
A language L with alphabet A is said to be compliant with a pattern 
defined by grammar PG iff L ⊆  PL (PG, A). 

▄ 
 
Conflict Grammars 



In the same way that patterns define what must happen, conflicts are used to 
define what must not happen.  For example, the grammar G =<T, N, P, ∑ >  
Where T={close, read}, N={A}, and P consisting of the following two 
productions: 

∑ → remove (f) A 
A → open (f) 

The language defined by this grammar is L(G)={“remove (f) , open (f)”}. 
  
The conflict defined here is that once an object (f) is removed, it cannot be 
opened.    
  

 Definition, Conflict Grammar: 
A Conflict Grammar, CG is defined by a quadruplet CG =<T, N, P, ∑ > as 
defined for languages in general. 
 
Definition, Conflict: 
The language C generated by a Conflict Grammar CG is called a Conflict. 

▄ 
Definition, Conflict Language: 
Given a Conflict Grammar CG =<T, N, P, ∑ >, and an alphabet A, T ⊆ A, 
we call the conflict language CL(CG,A)={ω| ω∈ A* :  there is no complete 
occurrence of any conflict sentence in ω.} 

▄ 
 
Definition, Compliance with a conflict: 
A language L with alphabet A is said to be compliant with a conflict iff L 
⊆  CL (CG, A). 

We revisit the definition of specification given in the beginning of this chapter by stating 
how the pattern and conflict languages are defined. 
 

Definition, Specification by pattern and conflict grammars. 
A task specification S is defined by the definition of: 

 an alphabet A,  
 a set of pattern grammars PG1, PG2 , …PGk  on A, and 
 a set of conflict grammars CG1, CG2 , …CGl  on A, 

This specification defines the language SL on alphabet A: 
SL=  PL(PG1 , A) ∩ … PL(PGk ,A) ∩ CL(CG1 , A)  …∩CL(CGl, A). 

▄ 
 
 
2.6 Specification Methodology. 
Capturing the right specifications is at the same time critical and challenging. The 
literature in software specifications is rich with lists of qualities that specification 
processes must possess and that software specifications must have. In (Mili et al. 1994), 
we capture the process qualities of a specification by two properties: completeness and 
minimality. A specification is complete if it captures all of user’s requirements. A 



specification is minimal if it captures nothing but the user’s requirements. Completeness 
and minimality cannot be formally proven. They can only be established through 
redundancy.  We define a software specification lifecycle that generates redundancy and 
uses it to establish the completeness and minimality of a specification. We organize the 
specification lifecycle along two orthogonal axes: phases, which define a chronological 
structuring of the process (what gets done when?); and activities, which define an 
organizational structuring of the process (who does what?).  We identify two phases, two 
activities. The partners who participate in the lifecycle are the user group, the specifier 
group, and the verification and validation group. The two activities in the specification 
lifecycle are:  

• specification generation. This activity is carried out by the specifier group with 
input from the user group. It consists of generating the specification from the user 
concept, possibly adjusting in light of feedback from the verification and 
validation group. 

• Specification validation. This activity is carried out by the verification and 
validation group. It consists of generating redundant requirements information 
from the user concept, then using it to certify the generated specification or to 
correct it. 

The two phases in the specification lifecycle are: 
• Specification generation. During this phase, both the specifier group and the 

verification and validation group are interacting with the user group to elicit 
requirements from it.  

• Specification Validation. During this phase the verification and validation group 
checks whether the specification derived by the specifier group satisfies the 
properties generated by the verification and validation group. Corrective actions 
are taken accordingly. 

The overall process is summarized in Figure 4 below. 
 

 Specification Generation 
Activity 

Specification validation activity 

Specification 
Generation phase 

Generating specification Generating redundant 
requirements information  

Specification 
Validation phase 

Updating the specification in 
light of V&V feedback 

Matching the specification 
against Validation information. 

Figure 4. The Specification Process. 
 
The generic specification process above applies for the specification of cognitive models 
as well, with each of the activities tailored. We discuss them in turn: 
  
Generating Specifications. 
As stated earlier, the specification of a task can be divided into function-level 
specification and cognitive-level specifications. The process described here can be 
applied to each of the levels individually or to all of them combined. 
  



The generation of the specification consists of generating individual patterns and 
conflicts. The relative independence between the patterns and the conflicts allows their 
generation to be performed independently. The process of generating patterns and 
conflicts can be supported by tools. We are currently developing a tool that generates 
traces consistent with patterns and conflicts provided by the specifier. Traces generated 
allow the specifier to tighten the specification by incrementally adding patterns and 
conflicts or refining the ones provided. We illustrate this with the scenario shown in 
Figure 5. 

  

 
Specifier: enters pattern P1 starting it at state S0 

Tool:         generates string  
<place small disk on peg B> 

  Explanation: P1 met because not triggered. 
Specifier: edits pattern P1 by adding ∑ and associated transitions. 
Tool:         generates string  
<place large disk on B, place medium disk on B, place small disk on B, place small disk on C> 
  Explanation: P1 met complete occurrence at position 1. 
Specifier: adds constraint C1. 
Tool:         generates string … 
 

Figure 5: Specification Generation support 

 
Generating Redundant Requirements Information. 
The role of the Verification and Validation group is to capture properties that can be used 
to check the completeness and minimality of the specification generated by the specifier 
group.  
The verification and validation group focuses on generating two types of properties:  

1. Completeness properties: These are properties that the verification and validation 
group suspects the specifier group might have missed, making the specification 
not complete. The verification and validation group can capture such information 
with patterns and conflicts. Because these properties need to be matched with the 
specifications, it is best to keep them as simple as possible. Completeness 
properties can be captured through negative examples: set of traces that should 
not be allowed by the specification generated. If the specification generated 
allows these traces, then it is incomplete because too permissive. Examples of 
completeness properties for the Tower of Hanoi are shown  in Figure 6. 

 



 

NE1: <place large disk on peg B, place medium disk on peg B, place small disk on peg B> 
  Explanation: No disk can be placed before it is removed. 
 
NE2: <remove large disk, remove medium disk, place large disk on peg B, …> 
  Explanation: Once a disk is removed, it must be placed immediately. 

 
Figure 6: Sample Completeness properties (Negative Examples) 

2. Minimality properties: These are properties that the verification and validation 
group suspects that the specifier group might have included (when they should not 
have) making the specification not minimal. The minimality properties can also 
best be captured using examples, positive in this case. These positive examples 
must be allowed by the specification generated; if they are not, this would indicate 
an over-specification. Examples of minimality properties are shown in Figure 7. 
 

 

PE1: <remove small disk, place small disk on peg B, remove small disk, …> 
  Explanation: Trial and error should not be disallowed. 
 

Figure 7: Sample of minimality properties (positive examples) 

Matching Specifications against redundant information. 
During the validation phase, the specification is matched against the completeness 
and minimality properties. If the specification is such that it “rejects” all negative 
examples and “accepts” all positive examples, then it is certified. Otherwise, it is 
reviewed and revised accordingly.  

 
  
3. Semantics of cognitive models 
We consider a model (program) simulating the actions of an agent executing a task. 
When the model is run, it generates a trace of events (received from the environment) and 
actions. 
 
 We call MA, for model alphabet, the set of events and actions that figure in the trace.   
 

Definition, Trace Language: 
Given a model M, we define the Trace Language TL(M) as the set of 
traces generated by the model. The set of symbols (events and actions) 
occurring in the traces constitutes the Model’s Alphabet (MA).   

▄ 
 
4. Model Correctness: theoretical formulation 

Definition,  Correctness: 



Given a model M, with model alphabet MA, and a specification S, with 
specification alphabet SA, if SA=MA, the model M is said to be correct 
with respect to specification S if and only if ML ⊆ SL. 

▄ 
 

The above definition holds when the two alphabets are identical. This condition is too 
restrictive for two reasons: 

1. Specifications are typically concerned with only one subset of the events and 
actions of the model. For example, if the task is a file manipulation task, the 
specification may be exclusively concerned with operations affecting the file 
integrity and the correctness of the results (open, close, read, write), the actual 
trace of the model is likely to include other events and actions as well such as 
manipulation and use of the data read and written. 

2. Specifications are often captured at a higher level of abstraction than the model’s 
operations. For example, in the specification of the Tower of Hanoi we think of 
move-disk as an atomic operation; in fact at the model level, this action may be 
represented by the sequence “select disk; select destination, pick up disk, place 
disk”. Therefore the single symbol “move-disk” in the specification alphabet is 
represented by the set {select disk, remove disk, select peg, place disk on peg} in 
the model’s alphabet. 

 
The first difference can be addressed easily in light of the way the language SL is 
defined. The languages PLi and CLj  are defined function of the given Patterns and 
Conflicts, and the alphabet A, superset of T. Therefore, it suffices to add the missing 
symbols to A in order to get PLi and CLj  and thus SL defined on an alphabet that contains 
all symbols needed. 
The second difference requires a transformation of one of the languages. We discuss both 
transformations in turn: 

 Transform SL defined on SA into SL’ defined on MA. The transformation 
consists of: 

o Mapping each SA symbol into (a) sequence of MA symbols (e.g. move-
disk-to-peg mapped to pick-up-disk; select-destination-peg; drop-disk-on-
peg. 

o Substitute every occurrence of every symbol of SA in SL (or its grammar) 
by each one of the corresponding sequence(s) from MA. 

  
 Transform ML defined on MA into ML’ defined on SA’. The transformation 

consists of  
o Mapping each SA symbol into (a) sequence of MA symbols (e.g. move-

disk-to-peg mapped to pick-up-disk; select-destination-peg; drop-disk-on-
peg. 

o Substitute every sequence of MA symbols in ML that has a mapping into 
an SL symbol into its corresponding symbol. 

o Leave any non mapped MA symbols as is. 
This transformation is more difficult, but presents the advantage of raising the 
level of abstraction of ML.  



 
 From this point we will assume that A is the common alphabet to the specification and 
the model. 
 

Definition, Verification: 
Given a model M, a specification S, the verification of correctness of M 
with respect to S is the proof that the language T defined by the traces of 
M is a subset of the language L defined by S. 

▄ 
Proposition: 
To prove that a model M is correct with respect to a specification S, it is 
sufficient to prove that the language T generated by M is  

 Is compliant with each of the patterns  Pi and 
 Is compliant with each of the conflicts Cj . 

▄ 
Proof: 
This proposition is a direct consequence of the definitions of correctness, 
specification language, and compliance.   

▄   
Proposition: 
The verification of a model with respect to a specification as specified in 
this chapter is an undecidable problem. 

▄ 
Proof: 
Theorem about unsolvable problems for context-free languages (Denning 
et al. 1978). 

 
The fact that the correctness problem is undecidable means that there is no general 
algorithmic solution for it. In the next section, we restrict the scope and seek an 
approximate semi automatic approach. 

 
 
5. Model Correctness: heuristic manual approach 
5.1 Triggering graphs 
For models written as production systems, which is the case of interest here, we can think 
of the trace of a model as the sequence of productions fired during one execution. While 
the set of possible sequences of productions is not easily accessible, an approximation 
(superset) of it can be easily generated from the triggering graph defined below.  
 
Given a set of productions P1, P2, …Pn where each production is a pair <condition, 
action>, we say that production  Pi triggers production  Pj if the action of Pi makes the 
condition of Pj true. For example, consider the pair 
P1= if goal is A  
      then (display A and set goal =to B) and    
P2= if goal is B 
      then (display B and set goal to C)  



 
Because of the presence of parameters and variables in the productions conditions and 
actions, the triggering of one production by another is history and context dependent. 
Consider for example the following three productions: 
Production P1:  
If goal is place-disk 
And step is start 
Then 
Set goal to select-move 
 
 
 
 

Production P2: 
If goal is place-disk 
And step is select-move 
and disksize  is 2 
Then 
Set goal to check-move 
Set destination to peg a 
 
 

 Production P3: 
 
If goal is place-disk 
And step is  select-move 
And disksize is 2 
Then  
Set goal  to check-move 
Set destination to peg b  

This example illustrates the fact that, in general, we cannot state with certainty whether 
the execution (firing) of a production will necessarily make the condition of another true. 
We are generally satisfied with the possibility that this might be the case. Furthermore, 
triggering graphs are useful to the extent that they are constructed easily and provide us 
with useful information. In practice, the determination that a production may trigger 
another is based on only one or a few variables that are easily accessible and take discrete 
values. In the example above, we would, for instance base the decision on the variable 
goal alone, thus concluding that P1 triggers P1 and P2.  
  
The triggering graph of the set of productions is defined as follows: 

Definition, Triggering Graph: 
Given a set of productions P= { P1, P2, …Pn },  the triggering graph of P is 
the directed labeled graph <V, E A > where V, the set of vertices is P 
the set of productions (i.e. there is one vertex for each production), and E, 
the set of directed edges consists of the pair (vi, vj) for which production Pi 
triggers Pj. The label associated with edge (vi, vj) is the action of 
production Pi. 

▄ 
P1 

If A then B 

 
 
We will assume that every cognitive model admits a root production, i.e. the production 
that will always be executed first, not triggered by any other. This assumption is not 
restrictive because if it is not met, we can always add a production that triggers all others 
with a label λ. 
With this assumption, the triggered graph of a model is a rooted directed graph. 

P2: if B then … 
P3: if B then … 

1. Each production is a vertex 
2. There is a directed edge 

from vi to vj if and only if 
production i may trigger 
production j 

B 

3. edges are labeled with the 
action of the triggering prod. 



Definition, Triggering trace: 
Given a triggering graph with labeling alphabet A, each path on the graph 
defines a string of A symbols: the sequence of labels on the edges 
traversed. The triggering trace language of a model M TTL(M, G) is the 
set of strings defined by all paths on the triggering graph G of M that start 
in the root of the graph. 

▄ 
Proposition, TL(M) subset TTL(M, G): 
Given a model M, a triggering graph G of M, every trace of M is also in 
TTL(M,G). In other words, TL(M) ⊆ TTL(M, G). 

▄ 
 
5.2 Finite State automata 
We restrict this study to regular grammars. A pattern is a rooted directed labeled graph. 
  
5.3 Correction heuristics 
Formulate axioms concerning patterns and conflicts rel. triggering graph. 
If pattern graph subset of triggering graph, then pattern met. 
 
Need to look for all prefixes. 
 
If conflict graph is not in triggering graph then conflict is met. 
 
5.4 Graph matching 
 
6. Summary, Conclusion 
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