
Patterns and Conflicts for the Specification and Verification of Cognitive Models
F. Mili, A. MacKlem
Oakland University,

Rochester, MI48309-4478
mili@oakland.edu

C. Adams, S. Dungrani
RDECOM/TARDEC
Warren, MI 48397-5000

Abstract

Cognitive modeling is the creation of computer-based processes that mimic
human problem-solving and task execution using existing cognitive theories.
Cognitive modeling remains a labor-intensive and error prone activity with little
theoretical and tool support. In particular, we propose an approach to capturing
specifications for cognitive models in an incremental and modular way. We then
discuss ways of proving that that a cognitive model meets its specification.

Introduction
Cognitive modeling is the creation of computer-based processes that mimic human
problem-solving. Knowledge-based cognitive models capture task-specific knowledge.
They are built to run on cognitive architectures, which are virtual machines capturing
general-purpose regularities in human cognition, such as knowledge acquisition
(learning), knowledge use (problem solving), and knowledge decay (forgetfulness).
Cognitive architectures are an embodiment of cognitive theories. The most notable
cognitive theories and associated architectures are Soar and ACT-R. They both originated
at Carnegie Mellon: SOAR was developed by Newell et al.; ACT-R was developed by
Anderson et al. The two architectures have many common aspects and components
(cognitive processor, memories, and buffers) and some differences in the processes by
which they learn, use, and forget knowledge and in the processes that capture various
behavioral moderators such as fatigue, fear, and other emotional factors. Cognitive
models are used in the laboratories for experimental research in cognitive science and in
industrial applications to play a role traditionally played by a human (e.g. automatic
piloting), for simulation and training (e.g. war gaming) and in the entertainment industry
to create virtual actors, and credible computer game characters. Because architectures are
by design low-level virtual machines, cognitive models for non-trivial tasks are lengthy
and complex. Models created to perform a single task easily exceed thousands of rules.
Because the state of the art in the software engineering of cognitive models is still in its
infancy stage, models are typically created from scratch; a model created for one
architecture cannot be used with another; the validation of models is exclusively done
through extensive testing; there is little reuse taking place, and when models are reused,
the process of adapting and combining models is still tentative, manual, and ad hoc. One
of the major impediments to progress on the above aspects is the absence of formal
specifications and formal definition of model correctness. In this paper, we focus on
specification and verification. In section 2, we propose a language and a methodology for
writing specifications for cognitive models. In section 3, we define the semantics of
cognitive models in terms of trace languages. In section 4 we formulate the problem of
model correctness as a comparison between context-free languages. In section 5, we
show a heuristic graph-based verification method. We use the towers of Hanoi problem
as a running example.

mailto:mili@oakland.edu

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
24 MAY 2004

2. REPORT TYPE
Journal Article

3. DATES COVERED
 24-04-2004 to 24-05-2004

4. TITLE AND SUBTITLE
Patterns and Conflicts for the Specification and Verification of Cognitive
Models

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
A. MacKlem; F. Mili; C. Adams; S. Dungrani

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC ,6501 E.11 Mile Rd,Warren,MI,48397-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER
#14100

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#14100

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Cognitive modeling is the creation of computer-based processes that mimic human problem-solving and
task execution using existing cognitive theories. Cognitive modeling remains a labor-intensive and error
prone activity with little theoretical and tool support. In particular, we propose an approach to capturing
specifications for cognitive models in an incremental and modular way. We then discuss ways of proving
that that a cognitive model meets its specification.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

Public Release

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2. Specification Methodology and Language
2.1 Challenges to cognitive models specifications
Although specification and verification of traditional sequential programs are no longer
research issues, they have been almost absent in cognitive models in particular, and
artificial intelligence programs in general. Two main inhibitors to formal specification
and verification can be identified:

1. Tasks for which cognitive models are developed are ill-structured and hard to
specify especially that their requirement is that they perform the task at hand in a
human-like manner. As a result, cognitive models have been validated mostly
through testing by comparing their traces to results generated from human
experimentation [1, 2, 11, 12, 14] to show that they emulate human performance.

2. Because cognitive models emulate the processes of human problem solving, they
cannot be adequately captured with the most widely used specification languages
and formalisms, which are state-based (precondition, post-condition) [6].

These two above inhibitors, while real, can be overcome as follows:
1. The ill-structured nature of the tasks can be addressed by using a specification

formalism that allows for an incremental formulation of the specification.
2. The fact that cognitive models’ mission is to emulate humans performing a task

reflects different components of the requirements: (i) perform the task (ii) perform
it in a human-like manner. The “human-like” requirement is typically qualified
further by specifying the specific aspects for which the model must be similar to a
human. This may include: decisions made and actions taken, rationale used for the
decisions, type of errors made, frequency of errors, learning taking place, timing
characteristics, task switching, etc. Both components of the requirements: (i) and
(ii) need to be captured explicitly before hand.

3. Research in the area of software specifications has generated a wealth of
specification languages adapted to capturing requirements of a variety of systems
including history-based systems such as concurrent processes and real time
systems. Some of these specification formalisms can be adapted to the
specification of cognitive models.

In other words, the specification of cognitive models must encompass:

• The specification of functional requirements, i.e. capture the requirement that the
task be realized.

• The specification of other aspects of cognitive behavior such as timing, errors,
task switching, etc.

The specification language must be able to:
• Capture state-based behavior (pre-condition, post-condition).
• Capture history-based behavior.

The specification language and methodology must support:
• The modular specification of tasks in an incremental way.

2.2 Running Example

We use the example of the Tower of Hanoi throughout this paper. In this problem, there
are three pegs A, B, and C and three disks of three different sizes: small, medium, and
large placed on the pegs. The object of the task is to transfer all three disks from peg A
to peg B with the constraint that the disks must be moved one at a time and that no disk
can be placed on top of a smaller one.

Initial Configuration Final Configuration
Figure 1: Towers of Hanoi

A state-based specification of this task would consist of a transcription of the information
in Figure 1. Obviously, this information is insufficient. A complete specification of the
task would include the definition of legal moves as well as the definition of the specific
aspects that need to be human like and how.

2.3 Multi-layered specification
For the sake of separation of concerns and reusability, we recommend distinguishing
between at least two separate layers in the specification:

• Functional layer: in which we capture what constitutes a valid execution of the
task at hand. For example, the functional layer specification of the Tower of
Hanoi specifies that disks are moved one at a time, that no disk is placed on top of
a smaller one, and that eventually the disks are all placed on peg B in their final
configuration.

• Cognitive-layers: these layers capture specific aspects of the trace that make it
human-like. The aspects of interest vary depending on the underlying architecture
and depending on the application at hand. The underlying architectures enable the
mimicking of some aspects of human behavior; for example, ACT-R is tuned to
duplicating the exact timing with which humans make decisions at the 50ms level
and tuned to predicting some type of errors. On the other hand, EPIC focuses on
emulating the process by which humans interleave the processing of data from
different sensors (vision, hearing, touching) and motor actions. The domain of
application dictates the characteristics that are of particular interest. Emotional
accuracy maybe more critical than intelligent behavior to make a computer game
character compelling. For the Tower of Hanoi problem, the cognitive layers
would capture such things as: the occurrence of trial and error; the occurrence of
learning by not repeating the same mistake; the average time with which the task
is executed.

There are a number of advantages to separating the different layers of the specification.
On the one hand, this allows us a separation of concerns and facilitates the elicitation of

specifications. On the other hand, by capturing the functional layer separately, the same
functional specification can be used for a model regardless of the architecture under
which it is being implemented and of the application in which it is used. Similarly, some
aspects of the cognitive specification can be captured in a generic way and reused for
different tasks. Another benefit of the separation is modularity. Even if some aspects of
the cognitive layer can be hard to formalize, we can at least capture the functional level
and verify the model’s functional correctness. The other aspects can, then, be left for
testing.

2.5 Specification Language
The specification of what constitutes a valid execution of a task can be though of as a set
of constraints on the traces generated by the execution. The trace of an execution is the
sequence of observable events perceived by or initiated by the agent (model) executing
the task. Some constraints are best defined positively, such as “every pick-up-disk must
be followed by a put-down-disk”. Some constraints are best defined negatively such as
“Must not place disk x on top of disk y where y<x”. Positive constraints are labeled
patterns; negative constraints are conflicts.
Before defining the specification language formally, we illustrate it by showing patterns
and conflicts from the specification of the Tower of Honoi:
Functional Specifications of the Tower of Hanoi:

Pattern P1. Eventually, all disks, the Large, then the Medium, then the Small must
be placed on peg B in that order. This pattern is represented by the finite state
automaton below. The initial state labeled with an arrow head represents the
beginning of the pattern. The final state labeled with a dot inside the circle represents
the (successful) completion of the pattern. The labels of the arcs (state transitions)
represent the event that triggers the transition.

S0

Figure 2: Pattern P1

<, place large disk on peg B>

S1 S2

<, place medium disk on peg B>

<, place small
disk on peg
B>

<,remove large disk
on peg B>

<,remove medium
disk from peg B> <, any move,

any disk >

<, any move,
any disk >

λ

∑

We will ignore for now the first transition labeled with the empty action, λ and the
loop that follows it. The pattern starts when the large disk is placed on peg B taking
us to state S1. From S1, three events can take place:

• The medium disk is placed on peg B, which takes us to the next state, S2.
• The large disk is removed from peg B, which takes us back to state S0.
• Any other move which leaves us looping on the same state S1.

The final state is reached as soon as the small disk is placed on peg B (on top of the
medium and the large).
Pattern P2. Every <remove disk x from peg _> must eventually be followed by a
<place disk x on peg _>. This pattern ensures that no disks are removed; they can
only be moved. If we want to insist that the removal of a disk must be immediately
followed by a placement of the same disk, we need to disallow all other actions until
it is placed. This is the subject of conflict C2 below.

Conflict C1. Pattern P1 ensures that eventually disks are placed on peg B. Yet,
pattern P1 does not guarantee that when the model stops all disks are still on peg B.
We add the requirement that states that any disk movement that follows that point is a
conflict.

Figure 3: Conflict C1

<, place large disk on peg B> <, place medium disk on peg B>

<, place small
disk on peg
B>

<,remove large disk
on peg B>

<,remove medium
disk from peg B> <, any move,

any disk >

<, any move,
any disk >

<, any move,
any disk >

As can be seen above, patterns and conflicts are represented in the same way.
Whereas patterns state what should happen, i.e. we want to reach the final state;
conflicts state what should not happen, i.e. their final states represent conflicts that
should not be reached.

Conflict C2. After <remove disk x from peg _>, any operation other than <place disk
x on peg _> represents a conflict. This conflicts disallows picking up 2 or more disks
before placing any of them back which violates the rules of the game.

The above two patterns and conflicts are a representative sample of the functional
requirements of the task Tower of Hanoi. They also illustrate the following
characteristics of this specification approach:

• Modularity: Writing a specification consists of adding patterns and conflicts until
we are satisfied that we have captured all the aspects of interest.

• Separation of Concerns: Using patterns and conflicts, the specifier can capture
functional requirements and cognitive requirements independently.

• Encompasses State-based: Pattern P1 and Conflict C1 together capture the
requirement that when the task is done, the post-condition of having the three
disks in the correct order placed on peg B. This illustrates the fact that this

approach allows us to capture state-based requirements, in addition to history-
based requirements (sequence of events).

• Methodological support: In the methodology subsection we discuss
methodological support for this activity.

We are ready now to define the specification language.

Definition, Specification.
A task specification S is defined by the definition of:

 an alphabet SA,
 a set of languages (called pattern languages) PL1, PL2 , …PLk on SA, and
 a set of languages (called conflict languages) CL1, CL2 , …CLl on SA,

This specification defines the language SL on alphabet SA where
SL= PL1 ∩PL2 ∩ … PLk ∩CL1 ∩CL2 …∩CLl.

▄

The specification alphabet SA is the set of “observable events” of interest to the specifier.
For example, the Specification Alphabet for the tower of Hanoi is SA={<REMOVE,
disk, peg>, <PLACE, disk, peg> | disk in {small, medium, large} and peg in {A,B,C}}.

The traditional approach to defining a language is by defining its underlying grammar. A
grammar G is formally defined as a quadruplet G= <T, N, ∑, P> (Denning et al.1978)
where: T is the alphabet (finite set of terminal symbols); N is a finite set of non-
terminals; ∑, a sentence symbol not in N or T and P is a finite set of productions of the
form α →β.
When the productions are all of one of the following forms
A → w
 where A is a non-terminal symbol and w is a non-empty string from N ∪ T.
∑ → w
∑ → λ
 where λ is the empty string,
the language is qualified as context-free.

The relationship between the grammar and the associated language is defined as
follows:

Definition: derivation
Given a grammar G, a production α →β, and two strings ω= ϕ α ψ and
ω’= ϕ β ψ, we say that ω’ is immediately derived from ω in G. This is
denoted by ω ⇒ ω’. When ω1, ω2, …ωn is a sequence of strings such that
each is immediately derived from the predecessor, we say that ωn is
derivable from ω1. This is denoted by ω1 ⇒* ωn.

▄
Definition: Language L(G)
The language L(G) generated by a formal grammar G is the set of
terminal strings derivable from ∑:

L(G)= { ω| ∑ ⇒* ω }
▄

Pattern Grammars
The interpretation of grammars provided above is the traditional one. Grammars
can also be interpreted as defining patterns. For example, consider the grammar
G =<T, N, P, ∑ > where T={read, write}, N={A}, and P consists of the
following two productions:

∑ → read A
A → write.

The traditional interpretation of this grammar defines the language consisting of a
single sentence: “read write”, i.e. L(G)={“read write”}.
By contrast, the pattern interpretation of this grammar defines the constraint that
every read must eventually be followed by a write. The following sentences
satisfy the above pattern:

1. read write read write read write
2. display
3. write write write
4. read read read write
5. open read write read write close

In each of the sentences above, every read is eventually followed by a write. Sentence 1
illustrates the fact that a pattern may occur any number of times in a sentence therefore
the beginning (end) of a pattern is not necessarily the beginning (end) of the sentence.
Sentences 2 and 3 illustrate the fact that a pattern can be vacuously met; the sentences do
not include read (prefix of the pattern), thus vacuously satisfy the pattern. Sentence 4
illustrates the fact that different occurrences of a pattern can overlap within the same
sentence and share some of their symbols; the pattern here appears three times (3 reads)
all of which are terminated with a common occurrence of the symbol write. Sentences 2
and 5 illustrate the fact that the sentences’ alphabet is not restricted to that of the pattern,
but is generally a superset of it.

We use a two-step process to define this interpretation of grammars. 1. The grammar
defines a pattern (which is a language as specified in previous section). 2. The pattern in
turn defines a language. For example, given the pattern grammar “read write” above, and
the alphabet {“read”, Write”}, it defines the pattern read-write which defines the set of all
sentences that meet the pattern, i.e. (read+write+ ∪ write*)*.

 Definition, Pattern Grammar:
A Pattern Grammar, PG is defined by a quadruplet PG =<T, N, P, ∑ > as
defined for languages in general.

▄

Definition, Pattern:
The language P generated by a Pattern Grammar PG is called a Pattern.

▄
Definition, Pattern prefix occurrence, complete pattern occurrence:
Given a pattern sentence ps= s1, s2, … sp and given a sentence ω= ω1, ω2,
…, ωn, sentence ω is said to contain a pattern prefix occurrence (of size

j) of pattern sentence ps at position i if there exists an injective mapping f
from [1..j] where j≤p into [i...N] such that

• f(1)=i the pattern occurrence starts at position i,
• ∀ k:1..n: ωf(k) = sk mapped positions contain the same symbols.
• ∀ k,l:1..n, if k>l, f(k)>f(l). The symbols of ps must appear in w in

the same order as they do in ps, i.e. the mapping f must be
monotonous.

• ∀ k:2..n, ∀ j:f(k-1)..f(k)-1 ωj ≠sk the mapped position must be the
first occurrence of sk in ω after the occurrence of sk-1.

When ω contains a pattern prefix occurrence of size p, we say that ω
contains a complete pattern occurrence.

▄

Example of pattern prefix occurrence:
Given the pattern sentence: ps= 369 and the sentence ω =1234567867, ω
contains a prefix of ps at position 3. The mapping is shown in the bolded, red
symbols in ω. There is at most one pattern prefix occurrence starting from one
given position; the second 6 in ω cannot be part of a pattern prefix because it is
not the first occurrence of 6 that follows 3.

In the definition of pattern prefix occurrence, prefixes have a size of at least one.
There are cases where we need to allow a prefix of size zero. Consider again
pattern P1 for the tower of Hanoi. If the pattern were to start at state S0 (instead of
∑), the pattern would state that “once the large disk is placed on B, eventually,
the medium then the small, must also be placed on peg B”. In other words, if the
large disk is never placed on peg B, the requirement is irrelevant. Because the
pattern starts at ∑ with initial transition λ, what it states instead is “once nothing
(λ), eventually, the large, then the medium, then the small disks must be placed on
peg B”. In other words, the pattern P1 must always be met. To allow these
unconditional patterns, we amend the definition of prefix by allowing empty
prefixes for patterns whose first transition is a λ transition.

Definition, Pattern Language:
Given a Pattern Grammar PG =<T, N, P, ∑ >, and an alphabet A such that
T ⊆ A, we define the pattern language PL(PG,A)={ω| ω∈ A* : every
prefix occurrence of a pattern string in ω is a complete pattern occurrence
of a pattern string (not necessarily the same) in ω.}

▄

Definition, Compliance with a pattern:
A language L with alphabet A is said to be compliant with a pattern
defined by grammar PG iff L ⊆ PL (PG, A).

▄

Conflict Grammars

In the same way that patterns define what must happen, conflicts are used to
define what must not happen. For example, the grammar G =<T, N, P, ∑ >
Where T={close, read}, N={A}, and P consisting of the following two
productions:

∑ → remove (f) A
A → open (f)

The language defined by this grammar is L(G)={“remove (f) , open (f)”}.

The conflict defined here is that once an object (f) is removed, it cannot be
opened.

 Definition, Conflict Grammar:
A Conflict Grammar, CG is defined by a quadruplet CG =<T, N, P, ∑ > as
defined for languages in general.

Definition, Conflict:
The language C generated by a Conflict Grammar CG is called a Conflict.

▄
Definition, Conflict Language:
Given a Conflict Grammar CG =<T, N, P, ∑ >, and an alphabet A, T ⊆ A,
we call the conflict language CL(CG,A)={ω| ω∈ A* : there is no complete
occurrence of any conflict sentence in ω.}

▄

Definition, Compliance with a conflict:
A language L with alphabet A is said to be compliant with a conflict iff L
⊆ CL (CG, A).

We revisit the definition of specification given in the beginning of this chapter by stating
how the pattern and conflict languages are defined.

Definition, Specification by pattern and conflict grammars.
A task specification S is defined by the definition of:

 an alphabet A,
 a set of pattern grammars PG1, PG2 , …PGk on A, and
 a set of conflict grammars CG1, CG2 , …CGl on A,

This specification defines the language SL on alphabet A:
SL= PL(PG1 , A) ∩ … PL(PGk ,A) ∩ CL(CG1 , A) …∩CL(CGl, A).

▄

2.6 Specification Methodology.
Capturing the right specifications is at the same time critical and challenging. The
literature in software specifications is rich with lists of qualities that specification
processes must possess and that software specifications must have. In (Mili et al. 1994),
we capture the process qualities of a specification by two properties: completeness and
minimality. A specification is complete if it captures all of user’s requirements. A

specification is minimal if it captures nothing but the user’s requirements. Completeness
and minimality cannot be formally proven. They can only be established through
redundancy. We define a software specification lifecycle that generates redundancy and
uses it to establish the completeness and minimality of a specification. We organize the
specification lifecycle along two orthogonal axes: phases, which define a chronological
structuring of the process (what gets done when?); and activities, which define an
organizational structuring of the process (who does what?). We identify two phases, two
activities. The partners who participate in the lifecycle are the user group, the specifier
group, and the verification and validation group. The two activities in the specification
lifecycle are:

• specification generation. This activity is carried out by the specifier group with
input from the user group. It consists of generating the specification from the user
concept, possibly adjusting in light of feedback from the verification and
validation group.

• Specification validation. This activity is carried out by the verification and
validation group. It consists of generating redundant requirements information
from the user concept, then using it to certify the generated specification or to
correct it.

The two phases in the specification lifecycle are:
• Specification generation. During this phase, both the specifier group and the

verification and validation group are interacting with the user group to elicit
requirements from it.

• Specification Validation. During this phase the verification and validation group
checks whether the specification derived by the specifier group satisfies the
properties generated by the verification and validation group. Corrective actions
are taken accordingly.

The overall process is summarized in Figure 4 below.

 Specification Generation
Activity

Specification validation activity

Specification
Generation phase

Generating specification Generating redundant
requirements information

Specification
Validation phase

Updating the specification in
light of V&V feedback

Matching the specification
against Validation information.

Figure 4. The Specification Process.

The generic specification process above applies for the specification of cognitive models
as well, with each of the activities tailored. We discuss them in turn:

Generating Specifications.
As stated earlier, the specification of a task can be divided into function-level
specification and cognitive-level specifications. The process described here can be
applied to each of the levels individually or to all of them combined.

The generation of the specification consists of generating individual patterns and
conflicts. The relative independence between the patterns and the conflicts allows their
generation to be performed independently. The process of generating patterns and
conflicts can be supported by tools. We are currently developing a tool that generates
traces consistent with patterns and conflicts provided by the specifier. Traces generated
allow the specifier to tighten the specification by incrementally adding patterns and
conflicts or refining the ones provided. We illustrate this with the scenario shown in
Figure 5.

Specifier: enters pattern P1 starting it at state S0

Tool: generates string
<place small disk on peg B>

 Explanation: P1 met because not triggered.
Specifier: edits pattern P1 by adding ∑ and associated transitions.
Tool: generates string
<place large disk on B, place medium disk on B, place small disk on B, place small disk on C>
 Explanation: P1 met complete occurrence at position 1.
Specifier: adds constraint C1.
Tool: generates string …

Figure 5: Specification Generation support

Generating Redundant Requirements Information.
The role of the Verification and Validation group is to capture properties that can be used
to check the completeness and minimality of the specification generated by the specifier
group.
The verification and validation group focuses on generating two types of properties:

1. Completeness properties: These are properties that the verification and validation
group suspects the specifier group might have missed, making the specification
not complete. The verification and validation group can capture such information
with patterns and conflicts. Because these properties need to be matched with the
specifications, it is best to keep them as simple as possible. Completeness
properties can be captured through negative examples: set of traces that should
not be allowed by the specification generated. If the specification generated
allows these traces, then it is incomplete because too permissive. Examples of
completeness properties for the Tower of Hanoi are shown in Figure 6.

NE1: <place large disk on peg B, place medium disk on peg B, place small disk on peg B>
 Explanation: No disk can be placed before it is removed.

NE2: <remove large disk, remove medium disk, place large disk on peg B, …>
 Explanation: Once a disk is removed, it must be placed immediately.

Figure 6: Sample Completeness properties (Negative Examples)

2. Minimality properties: These are properties that the verification and validation
group suspects that the specifier group might have included (when they should not
have) making the specification not minimal. The minimality properties can also
best be captured using examples, positive in this case. These positive examples
must be allowed by the specification generated; if they are not, this would indicate
an over-specification. Examples of minimality properties are shown in Figure 7.

PE1: <remove small disk, place small disk on peg B, remove small disk, …>
 Explanation: Trial and error should not be disallowed.

Figure 7: Sample of minimality properties (positive examples)

Matching Specifications against redundant information.
During the validation phase, the specification is matched against the completeness
and minimality properties. If the specification is such that it “rejects” all negative
examples and “accepts” all positive examples, then it is certified. Otherwise, it is
reviewed and revised accordingly.

3. Semantics of cognitive models
We consider a model (program) simulating the actions of an agent executing a task.
When the model is run, it generates a trace of events (received from the environment) and
actions.

 We call MA, for model alphabet, the set of events and actions that figure in the trace.

Definition, Trace Language:
Given a model M, we define the Trace Language TL(M) as the set of
traces generated by the model. The set of symbols (events and actions)
occurring in the traces constitutes the Model’s Alphabet (MA).

▄

4. Model Correctness: theoretical formulation

Definition, Correctness:

Given a model M, with model alphabet MA, and a specification S, with
specification alphabet SA, if SA=MA, the model M is said to be correct
with respect to specification S if and only if ML ⊆ SL.

▄

The above definition holds when the two alphabets are identical. This condition is too
restrictive for two reasons:

1. Specifications are typically concerned with only one subset of the events and
actions of the model. For example, if the task is a file manipulation task, the
specification may be exclusively concerned with operations affecting the file
integrity and the correctness of the results (open, close, read, write), the actual
trace of the model is likely to include other events and actions as well such as
manipulation and use of the data read and written.

2. Specifications are often captured at a higher level of abstraction than the model’s
operations. For example, in the specification of the Tower of Hanoi we think of
move-disk as an atomic operation; in fact at the model level, this action may be
represented by the sequence “select disk; select destination, pick up disk, place
disk”. Therefore the single symbol “move-disk” in the specification alphabet is
represented by the set {select disk, remove disk, select peg, place disk on peg} in
the model’s alphabet.

The first difference can be addressed easily in light of the way the language SL is
defined. The languages PLi and CLj are defined function of the given Patterns and
Conflicts, and the alphabet A, superset of T. Therefore, it suffices to add the missing
symbols to A in order to get PLi and CLj and thus SL defined on an alphabet that contains
all symbols needed.
The second difference requires a transformation of one of the languages. We discuss both
transformations in turn:

 Transform SL defined on SA into SL’ defined on MA. The transformation
consists of:

o Mapping each SA symbol into (a) sequence of MA symbols (e.g. move-
disk-to-peg mapped to pick-up-disk; select-destination-peg; drop-disk-on-
peg.

o Substitute every occurrence of every symbol of SA in SL (or its grammar)
by each one of the corresponding sequence(s) from MA.

 Transform ML defined on MA into ML’ defined on SA’. The transformation

consists of
o Mapping each SA symbol into (a) sequence of MA symbols (e.g. move-

disk-to-peg mapped to pick-up-disk; select-destination-peg; drop-disk-on-
peg.

o Substitute every sequence of MA symbols in ML that has a mapping into
an SL symbol into its corresponding symbol.

o Leave any non mapped MA symbols as is.
This transformation is more difficult, but presents the advantage of raising the
level of abstraction of ML.

 From this point we will assume that A is the common alphabet to the specification and
the model.

Definition, Verification:
Given a model M, a specification S, the verification of correctness of M
with respect to S is the proof that the language T defined by the traces of
M is a subset of the language L defined by S.

▄
Proposition:
To prove that a model M is correct with respect to a specification S, it is
sufficient to prove that the language T generated by M is

 Is compliant with each of the patterns Pi and
 Is compliant with each of the conflicts Cj .

▄
Proof:
This proposition is a direct consequence of the definitions of correctness,
specification language, and compliance.

▄
Proposition:
The verification of a model with respect to a specification as specified in
this chapter is an undecidable problem.

▄
Proof:
Theorem about unsolvable problems for context-free languages (Denning
et al. 1978).

The fact that the correctness problem is undecidable means that there is no general
algorithmic solution for it. In the next section, we restrict the scope and seek an
approximate semi automatic approach.

5. Model Correctness: heuristic manual approach
5.1 Triggering graphs
For models written as production systems, which is the case of interest here, we can think
of the trace of a model as the sequence of productions fired during one execution. While
the set of possible sequences of productions is not easily accessible, an approximation
(superset) of it can be easily generated from the triggering graph defined below.

Given a set of productions P1, P2, …Pn where each production is a pair <condition,
action>, we say that production Pi triggers production Pj if the action of Pi makes the
condition of Pj true. For example, consider the pair
P1= if goal is A
 then (display A and set goal =to B) and
P2= if goal is B
 then (display B and set goal to C)

Because of the presence of parameters and variables in the productions conditions and
actions, the triggering of one production by another is history and context dependent.
Consider for example the following three productions:
Production P1:
If goal is place-disk
And step is start
Then
Set goal to select-move

Production P2:
If goal is place-disk
And step is select-move
and disksize is 2
Then
Set goal to check-move
Set destination to peg a

 Production P3:

If goal is place-disk
And step is select-move
And disksize is 2
Then
Set goal to check-move
Set destination to peg b

This example illustrates the fact that, in general, we cannot state with certainty whether
the execution (firing) of a production will necessarily make the condition of another true.
We are generally satisfied with the possibility that this might be the case. Furthermore,
triggering graphs are useful to the extent that they are constructed easily and provide us
with useful information. In practice, the determination that a production may trigger
another is based on only one or a few variables that are easily accessible and take discrete
values. In the example above, we would, for instance base the decision on the variable
goal alone, thus concluding that P1 triggers P1 and P2.

The triggering graph of the set of productions is defined as follows:

Definition, Triggering Graph:
Given a set of productions P= { P1, P2, …Pn }, the triggering graph of P is
the directed labeled graph <V, E A > where V, the set of vertices is P
the set of productions (i.e. there is one vertex for each production), and E,
the set of directed edges consists of the pair (vi, vj) for which production Pi
triggers Pj. The label associated with edge (vi, vj) is the action of
production Pi.

▄
P1

If A then B

We will assume that every cognitive model admits a root production, i.e. the production
that will always be executed first, not triggered by any other. This assumption is not
restrictive because if it is not met, we can always add a production that triggers all others
with a label λ.
With this assumption, the triggered graph of a model is a rooted directed graph.

P2: if B then …
P3: if B then …

1. Each production is a vertex
2. There is a directed edge

from vi to vj if and only if
production i may trigger
production j

B

3. edges are labeled with the
action of the triggering prod.

Definition, Triggering trace:
Given a triggering graph with labeling alphabet A, each path on the graph
defines a string of A symbols: the sequence of labels on the edges
traversed. The triggering trace language of a model M TTL(M, G) is the
set of strings defined by all paths on the triggering graph G of M that start
in the root of the graph.

▄
Proposition, TL(M) subset TTL(M, G):
Given a model M, a triggering graph G of M, every trace of M is also in
TTL(M,G). In other words, TL(M) ⊆ TTL(M, G).

▄

5.2 Finite State automata
We restrict this study to regular grammars. A pattern is a rooted directed labeled graph.

5.3 Correction heuristics
Formulate axioms concerning patterns and conflicts rel. triggering graph.
If pattern graph subset of triggering graph, then pattern met.

Need to look for all prefixes.

If conflict graph is not in triggering graph then conflict is met.

5.4 Graph matching

6. Summary, Conclusion

Acknowledgements
This research with partially funded by RDECOM/TARDEC. Undergraduate students
Gillian Gilmer and Caroline Ziemkiewicz contributed to this research with funding from
NSF.

References

 Peter J. Denning, Jack B. Dennis, Joseph E. Qualitz Machines, Languages, and
Computation, Prentice Hall, 1978.

1. Salvucci, D. Predicting the Effects of In-Car Interfaces on Driver Behavior using
a Cognitive Architecture. SIGCHI. Vol. 3, Issue 1, 2001, pg 120-127.

2. Chong, R. S., & Laird, J. E. (1997). Identifying dual-task executive process
knowledge using EPIC-Soar. In M. Shafto & P. Langley (Eds.), Proceedings of
the Nineteenth Annual Conference of the Cognitive Science Society (pg. 107-
112). Hillsdale, NJ: Erlbaum.

3. Krueger, C. Software Reuse. ACM Competing Surveys (CSUR). Vol. 24, Issue 2,
1992, pg. 131-183.

4. Hoare, C. A. R. An axiomatic basis for computer programming. Communications
of the ACM. Vol. 12, Issue 10, 1969, pg. 576-580.

5. Hoare, C. A. R. et al. Laws of programming. Communications of the ACM. Vol.
30, Issue 8, 1987, pg. 672-686.

6. Apt, K. R. Ten years of Hoare’s logic: A survey – Part 1. ACM Trans. Prog.
Lang. Syst. Vol. 3, Issue 4, 1981, pg. 431 - 483.

7. Bergstra, J. A., and Tucker, J. Expressiveness and completeness of Hoare’s logic.
J. Comput. Syst. Sci. 25 (1982), pg. 267-284.

8. Anderson, J. R., Bothell, D., Byrne M. D. & Lebiere, C.. An Integrated Theory of
the Mind. Psychological Review. (2002). pg. 105-172

9. Byrne, M. D., (in press). ACT-R/PM and menu selection: Applying a cognitive
architecture to HCI. International Journal of Human-Computer Studies.

10. Ritter, F. E., Shadbolt, N. R., Elliman, D., Young, R., Gobet, F., & Baxter, G. D.
Techniques for modeling human and organizational behaviour in synthetic
environments: A supplementary review. Wright-Patterson Air Force Base, OH:
Human Systems Information Analysis Center. 2003

11. Ritter, F. E., Baxter, G. D., Jones, G., & Young, R. M. Supporting cognitive
models as users. ACM Transactions on Computer-Human Interaction, 7(2),
pg.141-173. 2000.

12. Bass, E.J, Baxter, G.D., & Ritter, F.E. Creating models to control simulations: A
generic approach. AI and Simulation of Behaviour Quarterly, 93, pg.18-25. 1995.

13. Nerb, J., Ritter, F. E., & Krems, J. Knowledge level learning and the power law:
A Soar model of skill acquisition in scheduling. Kognitionswissenschaft [Journal
of the German Cognitive Science Society] Special issue on cognitive modelling
and cognitive architectures, D. Wallach & H. A. Simon (eds.). pg. 20-29. 1999 .

14. Ritter, F. E., & Major, N. P. Useful mechanisms for developing simulations for
cognitive models. AI and Simulation of Behaviour Quarterly, 91(Spring), pg. 7-
18. 1995.

15. Young, R. M., & Ritter, F. E. Report on the Second European Conference on
Cognitive Modelling. AI and Simulation of Behaviour Quarterly, 101, pg. 10-11.
1999.

16. Salvucci, D. D., & Siedlecki, T. “Toward a unified framework for tracking
cognitive processes”. To appear in Proceedings of the 25th Annual Conference of
the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum Associates.

17. Salvucci, D. D., & Lee, F. J. (2003). Simple cognitive modeling in a complex
cognitive architecture. In Human Factors in Computing Systems: CHI 2003
Conference Proceedings New York: ACM Press. 2003. pg. 265-272.

18. Kieras, D.E., Meyer, D.E., Mueller, S., & Seymour, T. “Insights into working
memory from the perspective of the EPIC architecture for modeling skilled
perceptual-motor and cognitive human performance”. In A. Miyake and P. Shah
(Eds.), Models of Working Memory: Mechanisms of Active Maintenance and
Executive Control. New York: Cambridge University Press. 1999. pg.183-223.

19. Meyer, D. E., & Kieras, D. E. “Precis to a practical unified theory of cognition
and action: Some lessons from computational modeling of human multiple-task
performance”. In D. Gopher & A. Koriat (Eds.), Attention and Performance

http://chil.rice.edu/byrne/Pubs/byrneIJHCS.pdf
http://chil.rice.edu/byrne/Pubs/byrneIJHCS.pdf
http://iac.dtic.mil/hsiac/SOARS.htm
http://iac.dtic.mil/hsiac/SOARS.htm
http://redeft.ist.psu.edu/papers/ritterBJY00.pdf
http://redeft.ist.psu.edu/papers/ritterBJY00.pdf
http://redeft.ist.psu.edu/papers/bassbr95.pdf
http://redeft.ist.psu.edu/papers/bassbr95.pdf
http://redeft.ist.psu.edu/papers/nerbRK99.pdf
http://redeft.ist.psu.edu/papers/nerbRK99.pdf
http://redeft.ist.psu.edu/papers/ritterM95.pdf
http://redeft.ist.psu.edu/papers/ritterM95.pdf
http://redeft.ist.psu.edu/papers/youngR99.pdf
http://redeft.ist.psu.edu/papers/youngR99.pdf
http://hmil.cs.drexel.edu/papers/CSC03.pdf
http://hmil.cs.drexel.edu/papers/CSC03.pdf
http://www.mcs.drexel.edu/%7Esalvucci/CHI03/
http://www.mcs.drexel.edu/%7Esalvucci/CHI03/

XVII. 1999.Cognitive regulation of performance: Interation of theory and
application (pg. 17 -88). Cambridge, MA: M.I.T. Press. .

20. Kieras, D.E., & Meyer, D.E.. “Predicting performance in dual-task tracking and
decision making with EPIC computational models”. Proceedings of the First
International Symposium on Command and Control Research and Technology,
National Defense University, Washington, D.C., June 19-22. 1995. pg. 314-325.

21. R.G. Babb and A. Mili. Workshop notes, second international workshop on
software specification and design. Technical report, Laval University, Quebec
City, Canada, March 1984.

22. R.C. Backhouse. Program Construction and Verification. Englewood Cliffs, NJ.
Prentice Hall, 1986.

23. H.K. Berg et al. Formal Methods of Program Verification and Specification.
Englewood Cliffs, NJ. Prentice Hall, 1982.

24. A. Mili. An Introduction to Formal Program Verification. New York, NY. Van
Nostrand Reinhold, 1985.

25. C. A. R. Hoare and J. F. He. The weakest prespecification, part i. Fundamenta
Informaticae, Vol. 9. 1986. pg. 51-84.

26. C. A. R. Hoare and J. F. He. The weakest prespecification, part ii. Fundamenta
Informaticae, Vol. 9 1986. pg. 217-252.

27. C. A. R. Hoare and J. F. He. The weakest prespecification, Information
Processing Letters, Vol. 24. 1987. pg 127-132.

28. Floyd, R. Assigning meaning to programs. Mathematical Aspects of Computer
Science, Vol. 19. 1967. pg. 19-32.

29. Gries, D. An illustration of current ideas on the derivation of correctness proofs
and correct programs. IEEE Trans. Software Eng. Vol. 2. 1976. pg. 238 -244.

30. Klaus-Dieter Althoff, Andreas Birk, Susanne Hartkopf, et al. “Managing Software
Engineering Experience for Comprehensive Reuse”, Proceedings of the Eleventh
International Conference on Software Engineering and Knowledge Engineering,
Kaiserslautern, Germany June 1999.

31. Musen, M.A. Dimensions of knowledge sharing and reuse. Computers and
Biomedical Research. Vol. 25. 1992. pg. 435-467.

32. Eriksson H., Shahar Y., Tu S.W., Puerta A.R., and Musen M.A. Task modeling
with reusable problem-solving methods. Artificial Intelligence Vol. 79. Issue 2.
1995. pg. 293-326.

33. Mili A., Desharnais J., Mili F. Computer Program Construction. Oxford
University Press. 1994.

34. Gries D. The Science of Programming. Springer-Verlag. 1981.
35. Lisse, S. The Phase System: Plan Representation in Soar. Presentation at the

23rd North American Soar Workshop June 25, 2003.
36. Ahmed K. Elmagarmid . Database Transaction Models for Advanced

Applications. Morgan Kaufmann; 1992.
37. Lehman, Jill Fain, John Laird, Paul Rosenbloom. A Gentle Introduction to Soar.

1993.
38. Akyurek, Aladin, and Sayan Bhattacharyya. "Keys and Boxes." 1994. Soar

Website. 17 Jul. 2003. <http://www.eecs.umich.edu/~soar/soar73.html>

ftp://www.eecs.umich.edu/people/kieras/EPIC/ComConSymp95.pdf
ftp://www.eecs.umich.edu/people/kieras/EPIC/ComConSymp95.pdf

39. "Demo4." ACT-R Tutorials, ACT-R Website. 17 Jul. 2003. <http://act-
r.psy.cmu.edu/tutorials>

