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Model-Based Fault Diagnosis in Electric Drives
Using Artificial Neural Networks

M. Abul Masrur', ZhiHang Chen’, BaiFang Zhang?, Hongbin Jia’, Yi L. Murphey?,
u.s. Army RDECOM-TARDEC, *Department of Electrical and Computer Engineering, The University of Michigan-Dearborn

Abstract--A model based fault diagnostics study of the power electronics inverter based
electrical drive is proposed. The power electronics inverter is considered to be the weakest
link in such a system, hence the focus of the work is initially on fault conditions of the
inverter. A faulted model for the inverter and the motor is used to generate various fault
condition data, which are then compared against data generated by a normally functioning
model. An artificial neural network is used to detect these faults based on features
extracted from signals. The technique is viable for quick fault detection, and also the time
of a fault. The concepts introduced in the paper can be effectively applied for real-time
fault diagnostics in electric and hybrid vehicles, and other applications where electrical
drives are used.

Key words — model-based diagnostics, power electronics, inverter, motor, electric drives, neural network, fuzzy
techniques, electric vehicle, hybrid vehicle, field oriented control.

I. INTRODUCTION

The automotive industry has been paying significant attention for over a decade on
electric vehicles (EV) and hybrid electric vehicles (HEV) [1,2]. These vehicles help reduce
harmful emissions and also contribute to fuel economy. The main components in these vehicles
are the electric drive and the power electronics based inverter, together with the necessary
control system. The trend in the industry is to use 3-phase induction motor for the electric drive,
since this is a very robust motor [1]. However, controlling these motors to provide precise
torque has been made possible due to the power electronics based control, using in particular the
Field Oriented Control or FOC [3-7] techniques. The control is realized by switching the solid
state electronic switches (e.g. IGBT, MOSFET etc.) on or off, generally using some form of
pulse width modulation (PWM) technique [8]. Essentially the concept is that, in response to
some control algorithm, a reference voltage is generated, and the inverter tries to synthesize this
voltage reference command using some PWM technique. In addition, there is the space-vector
modulation technique, which uses an optimal switching mechanism to realize the voltage
reference command [4]. Either way, the ultimate result is that the solid-state switches are turned
on or off, depending on the gating signals to the switch. Obviously, if the switches fail to
function in the way it was intended to, the voltage synthesis process will be impaired, which will

lead to failure in getting the proper voltage at the motor terminals, and hence the failure in
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obtaining the requisite torque at the motor shaft. The failure of the switches can take place in the
form of “open circuit” or “short circuit” faults. The reverse diodes in the switches can fail too,
although we will focus in this work on the forward switches, in order to illustrate the
methodology and without loss of generality.

In addition to the inverter, the motor itself can fail as well. The motor, however, is a
more robust device compared to the inverter. The motors windings can, however, deteriorate
with time, and become either open or shorted, fully or partially. If the motor windings open or
get shorted, it will fail to generate the proper shaft torque or even no torque at all, in spite of the
fact that the inverter is in good condition and is applying the proper voltage input to the motor.
Hence, it is apparent that the electrical drive can malfunction depending on whether the inverter
or the motor is faulty. Of course, other problems like controller malfunctioning due to hardware
or software problems can also take place. However, in this work we will focus primarily on the
inverter problems, since as noted earlier, the inverter can be considered to be the weakest link in
the system. In this work, for illustration, we will specifically consider open circuit and short
circuit faults (rather, post-short-circuit fault, to be more precise) in an inverter switch. Post-
short-circuit fault implies that if a particular switch of the inverter is short circuited, very shortly
thereafter the other inverter switch located on the same limb will be gated to become on, leading
to a complete short circuit of the limb. Thus, the end result will be that the complete limb of the
inverter where the short circuit occurred will burn out and become open. We will also assume
that only one switch can fail at a time, and that the probability of multiple failures at an instant is
only of 2™ or higher order, in terms of importance. The goal of the work is to be able to
diagnose the problem, locate the fault, and point towards the possible cause.

To perform the above, this work proposes a model based diagnostics. In order to achieve
this, a model of the power electronics based inverter and the 3-phase induction motor, along with
its control system, is developed using the Matlab-Simulink software. An open circuit (and later
on a post-short-circuit) fault is introduced in one of the switches. It should be noted that in
diagnostic work, the objective is not to do some fast control, rather to find out the problem, in an
off-line mode if necessary. Although not a part of this work, in some cases it is possible to
reconfigure the system based on the nature of the fault, so that a gracefully degradable [9-10]

operation of the drive is possible.



A. State of the art

There exists a good amount of work in the literature [11,12] on model-based diagnostics
of internal combustion (IC) engine vehicles. However, for electric or hybrid vehicles, the
information is not as abundant. The main reason for this is that the experience of the automotive
industry with such vehicles is relatively small, compared to IC engine vehicles. Some limited
amount of work on electrical system diagnostics is available in the literature [13-15]. One of
these [13] is about a brushless dc machine and uses a black box type of model and tries to
develop the model using a polynomial differential-algebraic equation type of scheme. The idea
in this work is to estimate the parameters of the system under normal and faulted conditions, and
if there is any discrepancy, then a fault condition is declared. However, parameter-estimated
model of this kind can easily lose the intuitive focus of the system, and in general cannot point
towards the specific problem and its location. In addition, sometimes the model can encounter a
topological change after a fault, and hence the premises based on which the model was originally
developed and the parameters estimated, may not hold anymore. The work described in [14] is
basically based on the direct comparison of voltages measured at certain key points of the system
and pertains to an electric drive with open loop control. Although the work indicated above are
excellent contributions to the technology, there are certain important qualitative attributes in the
system, which ought to be considered in order to make a reasonable diagnostic study. It is the
belief of the authors that since the direct measurement of data in electric drives is a time
consuming and costly mechanism, to create a fault diagnostic algorithm it is important to resort
to physical model based system. In addition, the authors believe that the model should
preferably be physics based rather than black-box type parameter estimation models, in order to
have good intuitive focus on the mechanism undergoing in the system.

The work described here pertains to a closed loop field oriented control electric drive,
and uses a multiple qualitative attributes of various signals, like the maximum and minimum
values of the voltages and currents in all phases, the average of the voltages and currents in all
phases, and torque. Since these information will change depending on the exact location and
type of the fault (it should be noted that the faults can pe “similar”, e.g. an open fault in phase
“A” is “similar” to an open fault in phase “B”, but not “same”), using these information, the
neural network can detect the cause and location of the problem, assuming it is trained over a

reasonable amount of operating space under different fault conditions. The authors feel that this
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work will add to the existing state of the art, and they plan to extend it further in future by
considering other faults, besides those in the inverter (e.g. motor and controller), and come up

with reconfiguration methodologies which can lead to graceful degradation of the system rather

than complete failure.

B. Statement of the problem and brief outline of the work

In order to acquire data for fault diagnosis, it is necessary to have sensors to collect the
data. In the inverter, for the open circuit fault condition, if there were current sensors
corresponding to every single switch and reverse diode, then one could immediately tell whether
a particular switch is faulty or not, as well as the fault location, assuming that the sensor did not
fail as well. In that case one would not need any sophisticated fault diagnostics algorithm.
However, since the real-life inverters do not contain sensors in that way, which will not be
cost/weight effective (and in general, only 3 output terminals are made available from an
inverter, with no internal sensors), the goal of the work is to use only minimal amount of current
and voltage sensors in the system. Voltage sensors being less costly, it would be ideal if the use
of voltage sensors could replace the current sensors for the purpose of diagnostics, but
sometimes that is not possible. In our system model we will assume that there are current
sensors in series with any two of the inverter output lines (which, in our case, is same as the
motor phases), and two voltage sensors across any two of the output terminals of the inverter
(same in our case to the terminals of the induction motor). We will also assume a Y-connected
3-phase induction motor stator, without any return connection from the neutral of the Y. It
should be noted that in a 3-phase Y-connected system, only two current and voltage sensors are
sufficient, since the three currents or voltages add up to zero. Additional current or voltage
information besides these two will not be independent in that case. However, in artificial neural
network based solutions, sometime it is beneficial to simultaneously provide both dependent and
independent information as the input to the neural network, which can lead to better results in
classification problems. With this background, the statement of the core of our problem can be
worded as follows: “For a 6-switch inverter driven 3-phase induction motor, given two current
sensors in the output inverter lines, and two voltage sensors across the lines, identify the faulty

inverter switch among the six switches, assuming the switch has a fault, and that only one out of

six switches can fail at a time”.



For this purpose, we have developed a model based diagnostic framework, using signal
analysis and artificial neural network. Two sets of experiments have been conducted involving
the closed loop field oriented control with sine triangle PWM. The simulation model of the
electric drive was performed at selected (reference commanded) torque-speed operating points,
at both normal and faulty conditions. One experiment shows the diagnostic performance of the
neural network system when one inverter switch in open circuit condition, and another
experiment shows the performance during post-short-circuit condition. It should be noted that
the chosen inverter PWM scheme and the control mechanism (open or closed loop) significantly
influence the signature of the output data (voltage, currents, torque etc.). Hence it is believed
that the neural network approach taken in this work will lead to a generalized methodology,
which can be used in different situations involving different drive control schemes. Although the
present work is focused on closed loop FOC drives, the methodology is equally applicable for
other situations as well, and we will report those in our future publications.

Various data, e.g. instantaneous values of the voltages, currents, and torques have been
collected and processed in order to extract certain qualitative attributes of these signals, namely
the maximum, minimum, mean, standard deviation, average, and zero-frequency component of
the power spectrum for these variables in all three phases. We have developed a multi-class
neural network system that has the capability of classifying normal operation conditions, as well
as six faulty conditions. We will show that the neural network system performs extremely well,
not only on the operating points where the training data were generated, but also on the other
operating points in the torque speed space. It should be noted that in our future work, which is
currently ongoing, we will be introducing other types of faults besides those noted earlier, and
the artificial neural network methodology will be used to diagnose those faults, along with their

location. The methodology indicated in this work is generic enough for the purpose.

II. MODEL OF THE ELECTRIC DRIVE SYSTEM FOR FAULT-DIAGNOSTICS STUDY
The structure of the electric drive system in an EV or HEV using an induction motor is
shown in Figure 1, which shows a closed loop system. Only a brief description will be given
below, and the details of the control are omitted, since those are not within the scope of this work
and our emphasis is on the results related to fault inception and diagnosis. The reader is referred

to the citations in the references [1-8].



Speed input (or load torque input)

(Mech. source/sink)
3-phase _
motor voltage, j&

DC voltage >

3-phase
voltage ref.

Reference flux

Reference torque

Figure 1. The block diagram of the electric drive system

In this system, the inputs are the dc voltage, reference torque, reference air gap magnetic
flux in the induction motor, and the mechanical source/sink input in the form of shaft speed or
load torque in the shaft. The actual electromechanical torque is the only feedback variable,
which is compared against a reference, and the control action is taken accordingly. The
controller is a FOC [3-7], which processes an algorithm and generates a reference 3-phase
voltage. This reference voltage is then fed to the inverter pulse width modulation algorithm,
which can be a sine triangle, space vector, or variable frequency bang-bang type etc. [4, 8]. In
the open loop configuration, the feedback torque loop shown in Figure 1 is not used, and the
controller simply generates a voltage and frequency reference, using a scheme such as a constant
volts per hertz (V/Hz) type of control. The output of the controller will then go to the
modulation block preceding the inverter.

The motor electrical system is described by the following set of differential and algebraic
equations [3, 5-7]:
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In equations (1) to (3), the variables are: V,, Vy, = direct (x) and quadrature (y) axis stator

frame of reference components of the instantaneous a,b,c stator phase voltages. A 4 A b5, A 4
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Ay are the stator and rotor flux linkages where the subscripts a and b refer to direct and
quadrature axis voltages. Ty is the load torque, P is the number of poles in the machine, J is the
moment of inertia, B is the friction coefficient, and ® is the electrical speed in radian/sec. R,
R;, Ls, L; are the stator and rotor resistances and inductances respectively, and Ly, is the mutual
inductance.

In order to solve for currents based on equation (1), the derivative of current i is written

in terms of the derivative of the flux linkage} as follows:
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This equation is then numerically solved for currents, by implementing the model using Matlab-
Simulink.

In our model, the sine-triangle PWM is used. Specifically, we intend to simulate various faults
for the six-switch scheme shown in Figure 2. The various states of the switches and the

corresponding voltage applied to the motor are indicated in the following tables.
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Figure 2. A six-switch inverter scheme.

Table 1 shows the normal operation of the scheme shown in Figure 2. The numbers in
the voltage columns are to be multiplied with the dc voltage V, in order to obtain the true voltage
applied to the motor phase windings between line and neutral. In the implementation, we
assume that a gating signal 1 to a switch implies that the switch is turned on, and 0 implies that
the switch is turned off. We also assume that if the upper switch A is on, then the lower switch

A’ will be off, and vice versa, to prevent any possibility of direct short circuit of the dc voltage

source.



Table 1:

Switching table for normal operation of the switches

STATE # SWITCH A SWITCH B SWITCHC Van/V Vbn /V Ven/V
Null o 0 0 0 0 0

1 0 1 0 -3 213 -3

2 0 1 1 -213 13 13

3 0 0 1 -1/3 -1/3 213

4 1 0 1 173 -2/3 173

5 1 0 0 213 13 -13

6 1 1 0 13 1/3 -2/3
Null 1 1 1 0 0 0

If the switch A is open-faulted, then the corresponding switching table will be as shown in Table
2. In this case, even though switch A (upper limb) is supposedly turned on, in reality it will

remain off, since it has an open-circuit fault.

Table 2: Switching table for the faulted operation in which Switch A is open permanently

STATE # SWITCH A SWITCHB SWITCHC Van/V Vbn/V Ven/V
Null 0 0 0 0 0 o]

1 0 1 0 -1/3 213 -1/3

2 0 1 1 -213 13 13

3 0 0 1 -1/3 -1/3 213

4 1 0 1 0 -1/2 1/2

5 1 0 0 0 0 0

6 1 1 0 0 12 -112
Null 1 1 1 0 0 0

In the previous tables, the symbol V4, means voltage between line “A” and the neutral point “n”
of the Y winding, and similarly for the other lines. It should also be noted that if there were any
remnant current already existing in the winding which was faulted, and if the fault occurred
suddenly, then that remnant current will have to continue for a while (since current through the
motor winding inductance cannot change abruptly), and it will find a continuity path through
either the bottom diode or the top diode of a limb, depending on the direction of the current
immediately preceding the fault. Hence, during a brief period, there can be a reverse flow of
power from the motor to the battery, depending on the direction of the current which was
existing in the circuit at the moment when the fault occurred. However, without a source of

regeneration (mechanical regenerative braking etc.) there will not be net a regenerative power in
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the steady state, and the current in the faulted winding will not have a resultant regenerative
component over a full cycle.

The results corresponding to these are provided in the section 3. In addition to the 6
states shown in the tables (with numbers 1 to 6), where all the states of the switches are not
identical, we also have two null states corresponding to all switches being on or off
simultaneously. These null states amount to short circuiting of the motor terminals.

It should be noted that in the case of sine triangle PWM scheme, the scheme individually
compares the phase voltages a,b,c against some reference, and immediately switches the
corresponding switch on or off, if a certain threshold is crossed [8]. This does not take into
perspective the situation of the other phases, before making any transition. So, this method,
though simple, may not be a good switching strategy in all situations. The consequence of such

switching, with switch A faulted, is provided in the section 3.

[II. SIMULATION OF FAULTS IN ELECTRICAL DRIVES
This section presents the simulation results of normal and various faulty conditions generated by

using the sine triangle PWM, with closed-loop FOC model.

Table 3: The operating conditions used in the sine-PWM-closed-ioop model

Variable name Description Value
Voe DC voitage provided by battery 500V
PWM Carrier Frequency Frequency of the sine wave 8 kHz
Speed Fixed running speed of the motor 60, 300, 600, 900, 1800 rpm
Reference torque command Mechanical torque desired from the motor | 10, 50, 100, 200 Nm
Simulation time Simulation Time 6.25s
Trigger Time Time point to trigger the fault condition 0.25s
Sampling rate Sampling rate to get the output data. 0.001s
Points of data Points of data 6000

Figures 3 and 4 show the simulated signals generated under the normal operation condition in a
sine-triangle PWM based inverter, using a closed-loop FOC of the induction motor. In Figure 3,
the step function is the command torque, and the actual torque is seen to ultimately follow the

command with some delay depending on the controller settings.
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Figure 3. Torque signal in the normal condition in a sine-PWM-closed-loop model
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Figure 4. Ia, Ib and Ic (sine-PWM-close-loop model, normal condition)

Figures 5 and 6 show the signal behaviors with the switch A (with reference to Fig. 2) open

circuited at time 0.1 secs.
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PWM inverter, using closed loop FOC control for the induction motor.

Figures 7 and 8 show the signal behaviors with both switch A and A’ (with reference to Figure 2)

open circuited at time 0.25 secs. Note that this is the post-short-circuit condition described
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earlier, i.e. the effect of short circuiting switch A, since very soon after the short circuit, when A’
is gated to be on, there will be a direct short circuit of the source through A and A’, leading to a

burn out and complete opening of the whole limb consisting of A and A’.
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model.
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Figure 8. Ia, Ib, Ic signals signal with the switch A and A’ open circuited simulated using a sine-

triangle PWM inverter with closed loop FOC control for the induction motor.

IV. ELECTRICAL DRIVE FAULT DETECTION USING SIGNAL ANALYSIS AND
ARTIFICIAL NEURAL NETWORK

As we have shown in the previous section, the faulty conditions manifest in output signal
traces. Fault diagnostics in electrical drive can be performed by developing an intelligent system
that has the capability of detecting signal faults under various faulty circuit conditions. The fault
diagnostic problem can be modeled as a general classification problem. The input space consists
of relevant signals (e.g. voltages and currents among others) from the electrical drive system, and
the output space consists of class labels, {fy, fi, ..., f}, where fy is considered the normal
operational condition, and fj through fi are the k faulty conditions in the electrical drive, which
in our case correspond to the 6 switches, one open at a time. Figure 9 illustrates the
computational steps involved in our signal fault detection system, where the input consists of the
input voltages Va, Vin, Vcn to the motor, the currents I, Iy, I, and the motor electro-magnetic
torque T.. The first computational step is to segment the signals and extract the signal features
from each segment. The signal segments are then analyzed by the artificial neural network to

determine whether they contain any faults.
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Figure 9. Computational steps in a signal fault detection system.

A. Signal Segmentation and Feature Extraction

Fault detection is performed on a segment-by-segment basis. All input signals are
segmented using the same fixed sized segments and the two adjacent segments are overlapped in
1/3 of the segment in order to maintain continuity of information flow between segments. The
basic frequency of the signals were over 80 Hz, and sampling frequency is chosen to be 1000,
which is sufficient for the purpose. We chose to use 16 samples in each segment, with the
overlap of 5 samples between two adjacent segments. For a signal of 3000 data samples, it is
segmented into 272 segments. Figure 10 illustrates the segmentation scheme. Each blue line
indicates the beginning of a segment, and the first subsequent red line indicates the ending of the
previous segment and the second one indicates the ending of the current segment. The signal
between a red line and the subsequent blue line is the overlap portion of the two adjacent

segments.
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Figure 10. Segments on a signal

Each signal segment is represented by the following features:
Max: Maximum magnitude of the signal within the segment
Min: Minimum magnitude of the signal within the segment
Median: median of the signal within the segment
Mean: mean of the signal within the segment
Standard deviation: standard deviation of the signal segment

Zero-frequency component of the power spectrum

Since we have 7 signals (3 voltage signals, 3 current signals, and 1 torque signal) the
detection of signal faults within a time period requires one segment from each signal, and each
segment is represented by the 6 features listed above. Therefore, the combined feature vector to
represent a particular fault in the electrical drive at a particular time segment is a vector of 42
dimensions. The feature vector is the input to a neural network classifier that detects whether the

7 signals within this time period manifest any fault.
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B. Fault Detection using Neural Network

Artificial neural networks are capable of capturing underlying numerical or logical
relationships on the basis of training examples. Neural networks have been successfully applied
to a broad range of problems including engineering diagnosis, pattern classification, intelligent
manufacturing, control problems and computer vision [16-21]. A neural network architecture
using feedforward backpropagation consists of the specification of the number of layers, the
number of units in each layer, the type of activation function of each unit, and the connection
weights between different units, which are determined by a machine learning algorithm.
According to Huang et al. [22], two-layer or sometimes called one-hidden layer perceptrons, can
implement either convex open or closed decision regions. Therefore, we chose to use a one-
hidden-layer architecture for signal fault detection. The number of nodes in the output layer is
determined by the number of classes to be classified in an application problem. Most research in
neural networks has been focused on binary classifier, which requires one output neuron to
indicate to which class the input pattern belongs. We developed a multi-class neural network
classifier for object recognition. Most of the research in neural networks has been in the
development of learning and training algorithms for binary classifiers, i.e. classifiers with one

output node that represent classes 0 and 1. The most common approaches in multi-class neural

networks have been to use a group of binary neural networks with a decision rule to integrate the
results of neural networks [23-24]. Such approaches require the separated training of each neural
network and each trained neural network generates a decision boundary between one class and
all others. For classification, an input feature vector is sent to all k neural networks, and a
decision module combines the output from all the neural networks to produce the final
classification result. A popular decision strategy is implemented by using the methodology
known as Winner-Take-All (WTA) [25]. The most noticeable limitation is that the decision
boundaries generated by different binary neural network classifiers can overlap or miss regions
in the feature space [26]. For the feature vectors that fall into an overlapped region in the feature
space, more than one binary classifiers can claim the input as their classes, resulting in
ambiguity. For the feature vectors falling into the regions that are not claimed by any neural

networks are rejected by all neural networks. As a result the resulting system does not generalize

well.
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We developed a single neural network system for detecting multi-class signal faults.
Figure 11 illustrate the architecture of the system. One important issue in a multi-class neural
network classifier is how to encode the classes in the output nodes of the neural network. We
choose to use a “one-hot spot” method described as follows. For a k-class classification
problem, we need a k-bit output layer, each class is aésigned a unique binary string (codeword)
of length k. For example if it is a five-class classification problem, class 0 is assigned a
codeword of 00001, class 1 is assigned a codeword of 00010, class 2 is assigned of a codeword
00100, etc. The advantage of this encoding is that it gives enough tolerance among different

classes. We use the back propagation to train the neural network.

¢ ¢ ¢ Input layer
O O ..

W

O .0
v v

Figure 11: A neural network architecture for multi-fault detection.

Output

C. Experiments

We conducted experiments with data generated from various operating points represented
in the speed and torque space. Figure 12 shows the operating condition points used in training
and test generated in the speed and torque space (corresponding to Figures 3 to 6). The training
data were generated at the points shown in blue color, and test data at the points shown in pink

and red colors. At each operation condition point, we ran the simulation for about 6 seconds to
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generate seven time series signals, one is normal signal series, and each of the other six series is
the result of one of the six switches (see Figure 2) being in open circuit condition. Each signal

consists of 6000 samples.

NN Training/Test on different operating condition point

@ Training Point
@ Test (all correct)
A Test(not all correct)

Speed

0 100 200 300 400
Torque

Figure 12. Operation condition points used to generate training and test data for 1-switch

broken diagnostics.

We used a neural network architecture of 42 input nodes, 7 output nodes representing the
normal case and 6 faulted cases, and 1 hidden layer with 20 hidden nodes. The neural network
was trained on the data generated at the 8 operating condition points shown in the blue diamond
symbols, and tested on all the points shown in the pink squares and red triangles in Figure 12.
The neural network performed with 100% accuracy on all the signals generated at the blue and
pink points. A signal is considered 100% correctly classified by the neural network, if all the
“normal” segments on the signal are detected by the neural network as “normal”, and all the
“faulty” segments on the same signal are detected as the “faulty” class that matches the faulty
condition used in data generation. Figure 12 showed that the neural network did not reach 100%
on the test data generated at two operating points, (Torque=10, Speed=60) and (Torque=200,

Speed=300). The performances of the neural network at these two operating points are shown in
Table 5 and 6.
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Table 5. Blind Test result at condition Table 6. Blind test result at condition
Torque =10 Speed =60 Torque =200 Speed =300

Condition | Correct Rate (%) Condition Correct Rate (%)
Normal 73.90 Normal 100

Fault 1 98.16 Fault 1 91.18

Fault 2 97.79 Fault 2 94.49

Fault 3 98.53 Fault 3 100

Fault 4 100 Fault 4 100

Fault 5 100 Fault 5 100

Fault 6 100 Fault 6 74.26

Total 95.48 Total 94.28

In both cases, the system performed very well on all classes except one.

The second experiment was conducted on the post-short-circuit cases in the six-switch
inverter scheme shown in Figure 2. Three faulty classes were simulated, where each class was
generated by making one vertical switch pair open at a time, namely, the pairs A and A’, B and
B’, and C and C’ respectively. We used a neural network architecture of 42 input nodes, 4
output nodes representing the normal class and 3 faulted classes, and 1 hidden layer with 20
hidden nodes. The neural network was trained on the data generated at the 8 operating condition
points shown in the blue diamond symbols, and was tested on all the points shown in Figure 13,
where the pink squares and red triangles represent the operating points at which the test data
were generated. The neural network performed with 100% accuracy on all the signals generated
at the blue and pink points. Figure 13 also showed that the neural network did not reach
accuracy of 100% (but greater than 90%) on the test data generated at two operating points,
(Torque=10, Speed=60) and (Torque=50, Speed=60). The performances of the neural network at
these two operating points are shown in Table 7 and 8. The neural network performed quite well

on all classes.
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NN Training/Test on different operating condition point
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Figure 13. Operation condition points used to generate training

and test data for post-short-circuit fault diagnosis.

Table 7. Performance of neural network at
Torque =10 Speed =60

Table 8. Performance of neural network at
Torque =50 Speed=60

Condition | Correct Rate (%) Condition | Correct Rate (%)
Normal 100 Normal 100

Fault 1 90.44 Fault 1 90.44

Fault 2 100 Fault 2 100

Fault 3 98.90 Fault 3 98.90

Total 97.33 Total 97.33

V. SUMMARY, DISCUSSION OF RESULTS, AND FUTURE DIRECTIONS

A model based study of the fault diagnosis scheme for an electric drive system using a
three phase induction motor has been performed in this work. The first part of the work involved
the Matlab-Simulink model of the inverter motor combination, along with its control mechanism
under both normal, and faulted conditions. For illustration of the methodology, a closed loop
field oriented control was used. We used the sine-triangle PWM method for synthesizing the
reference voltage command generated in the FOC. The model was used to capture the signatures
of the various sensor quantities under different fault conditions, which are otherwise costly and
time consuming, if done experimentally. The simulated sensor signals were segmented and
processed offline, and key features were extracted. The extracted features were then processed
by an artificial neural network to classify the faults and locate them.

The results indicate that the methodology is very effective in detecting electric drive

faults and their location. It is therefore seen that the trained neural network can detect the faults
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satisfactorily over a very large portion of the torque-speed domain with very high degree of
accuracy. Only at two points, at very low speeds, the results predicted rate were around 75% for
the open-circuit fault, and above 90% for the post-short-circuit fault. Although this result is
quite good, we intend to find the cause of this and report our findings in our future work.
Among other reasons, it may be related to the number of intermediate perceptrons used or the
coding scheme used in the output layer, and the training data. In addition, the data segmentation
mechanism can influence the results.

In any event, the overall results of the work are very encouraging and imply that the once
a neural network has been properly trained, the algorithm can be easily implemented in a real-
time automotive system using an inexpensive processor.

The main contribution of this work is as follows. The study of inverter fault diagnostics
on electric drives with closed loop control, which has not been traced by the authors in the
existing literature, hence this work is an addition to the topic. The closed loop control system
tends to change the whole dynamics of the current and voltages during a fault condition, due to
the fact that the control system works on the basis of a pre-designed algorithm for dealing with
normal operating conditions. Under faulted condition, the controller tries to continuously follow
some reference, without success. This leads to continuous raising or lowering of input voltage
command to the inverter, until some saturation point is arrived. This makes the diagnostic
problem difficult. Open loop systems are relatively easy to deal with, since the controller does
not have much role to play in this case during a fault. Secondly, this study has shown that the
neural network can successfully identify and locate both open and post-short-circuit faults with a
high degree of precision. Post-short-circuit fault studies, which have been done in this work,
have also not been traced by the authors in the current literature. Finally, this work has led to a
generalized methodology of fault diagnostics, which can be applied under different conditions
and for real-time applications, regardless of the nature of the fault, and this is where the authors
believe a major merit of the work lies.

Future work - Several items which have not been completed as of now, and are intended
for future, are as follows. The authors plan to introduce noise in the simulated data, prior to
feeding the data to the neural network. They also plan to extend this model based study further,
to cover other subsystems in a vehicular electric power system, namely, the battery, alternator,

power management systems, and combine the same with IC engine fault diagnostics scheme, to



get a comprehensive fault-diagnostics methodology for the hybrid electric vehicle and the
vehicular electrical power system in general. In addition, future studies will cover the effect of
other kind of inverter modulation schemes on the fault diagnostics. Furthermore, it is the
intention of the authors to use the results of the findings here to devise possible automatic
reconfiguration of the electrical system architecture in order to lead to a graceful system
degradation, which can avoid complete and, sometimes, catastrophic failures.  Finally, the
authors also intend to study the effect of using multiple neural networks to diagnose various
subsystems and then combine the results for the whole system diagnostics, as opposed to a single

neural network to capture the complete system fault diagnostics, in terms of accuracy, number of

perceptrons, and hidden layers needed.
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