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I. INTRODUCTION 

According to the U.S. Government Accountability Office (2011), the total 

spending on logistics by the Department of Defense in 2010 amounted to over  

$210 billion. The GAO website acknowledges that supply chain management has been, 

and continues to be, one of the Department of Defense’s (DoD) “key weaknesses” (GAO, 

2012) every year dating back to 1990. The latest report by the GAO came out in July of 

2011, and it provides that the DoD “does not have the performance measures that assess 

the overall effectiveness and efficiency of the supply chain across the enterprise” (GAO, 

2011). Because Supply Chain Management is listed as a key weakness for DoD, their 

supply chain management practices have been placed on a watch list and Congress has 

charged DoD with correcting this problem. DoD’s latest response is the 2010 Logistics 

Strategic Plan (GAO, 2011).   

The Logistics Strategic Plan seeks to find areas to reduce DoD’s excess 

inventories. The DoD solution to reduction of inventory, however, is not aimed at across 

the board cuts, but instead finding inventory efficiencies through the improvement of 

requisition tracking and information. These are enterprise solutions that pertain beyond 

any one service. Adding asset visibility and real time requisition capabilities can reduce 

such factors as customer wait time (CWT), which correspondingly will reduce 

maintenance down time (MDT). Asset visibility aids DoD in knowing how much 

inventory it has on hand and in the transportation pipeline at any one time. As demand 

data, asset visibility, and CWT information is refined, DoD is in a better position to 

predict its required inventory per period of time. The first step to achieving these types of 

inventory reductions is the implementation of the right measures of effectiveness. 

On December 14, 2000, the USD AT&L released DoD Instruction 4140.61 

entitled Customer Wait Time and Time Definite Delivery that directed all services to 

implement the use of CWT to measure the responsiveness of their systems. The 

instruction defined CWT as “a measurement of the total elapsed time between the 

issuance of a customer order and satisfaction of that order” (DoD Instruction, 2000, p. 2). 

This directive was all encompassing, and charged each service with taking the necessary 
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steps to fully implement and report the use of CWT as a performance measure (DoD 

Instruction, 2000). CWT allows for the computation of lead-time and serves to aid DoD 

agencies in establishing accurate levels of safety stock to satisfy demand.   

The relationship between CWT and operational availability (Ao) is the focus of this study.   

There are three potential benefits to using CWT to measure performance.   

First, CWT can be used to determine lead-time in the Economic Order Quantity (EOQ) 

and other common inventory stocking methodologies. Secondly, CWT can be used to 

measure effectiveness of the supply chain. Through the effective implementation of 

CWT, DoD can show whether or not supply support agencies are meeting their customer 

service goals.   Lastly, the relationship between Ao and CWT can show how forward 

positioned inventories lend to reductions in the equipment down time and improved 

equipment readiness.   According to Girardini, Lackey, and Peltz (2007), the key to high 

equipment readiness is the proper stocking methodologies of Supply Support Activities.   

The Supply Support Activity for the Marine Corps is Supply Management Unit 

(SMU).   The SMU is an intermediate retail activity that is responsible for sustaining a 

Marine Expeditionary Force (MEF) for 60 days while in a forward deployed 

environment.   The SMU’s tasks include “requirements determination, stock 

replenishment, issue and redistribution actions, inquiry response, and excess/disposal 

determination” (USMC, 1984). In the continental United States (CONUS), this 

responsibility remains unchanged, and the SMU focuses on sustaining training and 

operations of units and at home station as well as abroad. 

Although each SMU activity independently supports operations of its 

respective MEF, CWT metrics in the Marine Corps are aggregated by Marine Corps 

Logistics Command (MarCorLogCom), in Albany, Georgia instead of being tracked at 

each of the intermediate supply activity level (IG, 2007). This poses problems in 

identifying the effectiveness of each SMU, and developing best practices. The Marine 

Corps has intermediate supply activities at each of the MEFs and it is the measurement of 

each SMU’s performance that matters most.   
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A. THE PROBLEM 

 Certain critical repair parts are consistently shown to have longer customer wait 

times, and are common contributors long periods of delay when equipment is not mission 

capable, or deadlined. The intuitive understanding that a decrease in CWT will have a 

positive effect on Ao can be quantified through the mathematical formula for Ao which 

shows that CWT is one of several factors that determine Ao. However, turning this 

intuition into a precise, actionable quantification involves a detailed study of the 

relationship between CWT and Ao over time, because CWT and the other factors that 

determine Ao are stochastic, and may not have a stable distribution over time (they may 

not be stationary). Since the factors determining Ao are stochastic, then although an 

investment in CWT may on average have a given effect on Ao the return on that 

investment will itself be stochastic as well. In addition, since the factors may not be 

stationary, then an investment made in reducing CWT in 2012 based on 2011 data may 

not have the predicted effect in 2013. 

 Hence, the precise actionable relationship between CWT is an empirical question 

that cannot be simply quantified by examining the average values of the factors involved 

and resorting to the formula. The quantification instead requires an analysis of the 

distributions of the random variables involved and their stability over time. To be useful, 

such quantification would need to predict an associated improvement in Ao at varying 

amounts of investment in critical consumable repair parts along the supply chain, and 

provide some estimate of the riskiness of such an investment. Therefore, this study was 

started based on the following research questions: 

1)  What is the impact to Ao when we reduce CWT for repair parts that deadline 

equipment?  

2)   What levels of investment can we make to reduce CWT in a cost-effective 

way? 

B. PRE-POSITIONING CRITICAL REPAIR PARTS 

One of the main purposes of the SMU is to reduce the amount of time it takes the 

operating forces to receive supplies.   To do this the SMU forward positions inventory in 
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it warehouses fulfills customer orders out of stock first.   The purpose of this study is to 

determine what benefit, if any, forward positioned stock has on Ao. To narrow the scope 

of our basic research questions, we limit our investigation to forward positioned stock as 

the solution. With this possible solution in mind, we established the following secondary 

research questions that will drive our study: 

1) Can we model the variability in CWT for critical parts? 

2) Can we capture the stochastic relationship between variability in CWT and Ao 

for deadlining parts in a simulation model? 

3) How can we determine the validity of our simulation model? 

4) What CWT thresholds should we examine for target reduction? 

5) What should our desired service level be for part stocking criteria? 

6) What improvements in terms of Ao will we realize on our investment in CWT 

reduction, and what is the riskiness of that investment? 

As we build our methodology into a simulation model, we answer these questions 

in order to demonstrate the nature of the relationship between CWT and Ao. 
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II. BACKGROUND 

 The relationship between CWT and Ao relies on understanding a myriad of supply 

and maintenance terms, definitions, concepts, and processes. We first provide 

background information to lay a foundation for the link between CWT and Ao. 

A. TERMS AND DEFINITIONS 

1. Customer Wait Time 

Customer Wait Time can be expressed as the time between all supply chain 

processes from the initial induction of a repair part into a requisition system to the receipt 

of the part by the initiating customer.   The customer is the maintenance organization that 

will utilize the repair part to restore a Principal End Item (PEI) to a serviceable condition. 

For this study, the customer is either the organic level maintenance personnel at the 

operational battalion/squadron or the intermediate level maintenance organization when 

maintenance actions are passed to them. The final customer in the maintenance cycle is 

the battalion/squadron commander who is responsible for employing the PEI in the 

performance of assigned missions.  

2. Equipment Readiness (R) and Operational Availability (Ao)  

The terms operational availability and equipment readiness are closely related, yet 

are not exactly synonymous. These terms are used as indicators of the total amount of 

equipment that is available for use by the battalion/squadron commander. The readiness 

rate is defined as the state of a pool of assets that is available and ready to use in 

performing its intended functions, and is stated as the percentage of all assets that are 

fully mission capable (FMC) at a given time. The Marine Corps generally uses the term 

readiness, or R-Rating, to determine the percentage of equipment that is available for use. 

Readiness in the Marine Corps is determined using the following equation:  

Readiness % (R) Possessed Deadlined
Possessed

−
=  
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 While readiness measures the number of assets available for use at a point in time, 

Ao is a measurement of the percentage of time an item is available under certain 

operating conditions (Jones, 2006). Both of these measures will change over time as 

operating conditions change and as items are brought in and out of a mission capable 

status. Ao is a function of the mean time between failure (MTBF) of an asset (or uptime), 

and the time that an asset is not available (or downtime) as follows (DoN, 2003): 

o
UptimeA

Uptime Downtime
=

+
 

For our study, this maintenance downtime (MDT) is considered to be the time that 

an asset is not operational due to deadlining maintenance requirements. MTBF is 

calculated as the average number of days that an asset was operationally available for use 

between repairs. Downtime is measured as the mean time to repair (MTTR) plus 

administrative delay time (ADT) plus the time that the customer must wait for repair 

parts to arrive in order to conduct maintenance (CWT). MTTR includes all maintenance 

action time from the time that critical repair parts have been received and the date that an 

Equipment Repair Order (ERO) is downgraded to a non-deadlining ERO or the date that 

the ERO is closed. ADT includes time waiting for technical data, maintenance personnel 

and equipment availability, inspection time, time awaiting further actions, and the time 

lost due to human error. Bearing these factors in mind total downtime is calculated as 

follows (DoN, 2003): 

Downtime MTTR AD CWT T= + +  

Therefore, the Ao equation can be extended as shown below:  

o
MTBF

MTBF MTTR ADT CWT
A =

+ + +
 

3. National Stock Number (NSN) 

Each repair part is assigned its own thirteen-digit National Stock Number. The 

critical repair parts that are required to ensure operational readiness are primarily Class 

IX, which is defined as “all repair parts and components, including kits, assemblies, and 
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subassemblies (reparable and non-reparable) required for maintenance to support all 

equipment” (MCO 4400.15E, p. 8–7).   

4. Consumable Repair Part 

This is a classification of Class IX which includes all items that are non-reparable 

and are discarded after use, and all items that are expended when used (Jones, 2006, 

p.18.1). This study will primarily focus on consumable repair parts that deadline 

equipment. 

5. Secondary Reparable (SECREP) 

Secondary Reparables (SECREP) are major components to end items that are 

repairable at appropriate maintenance echelons. While SECREPs are considered to be 

Class IX, this study will focus on consumable repair parts due to the varying stock 

determination methods between SECREPs and consumables as well as the varying 

general availability between SECREPs and consumables. SECREPS are also typically 

part of the initial sparing calculation provided in the contract when a PEI is fielded. 

Because SECREPs are not under the same cognizance as consumables, the scope of our 

study is limited to consumable repair parts. We desire a realistic representation of the 

impact that can be obtained by only pre-positioning consumables, given the impact that 

SECREPs also have upon readiness. Thus, we included SECREPs in the overall 

determination of readiness; however, we excluded them from the decision criteria for 

additional pre-position stock or modifications to CWT. This exclusion is based upon the 

Source, Maintenance, and Recoverability Codes (SMRC) as described in the Joint 

Regulation Governing the Use and Application of Uniform Source Maintenance and 

Recoverability Codes. 

B. PROCESSES 

1. The Marine Corps Legacy Maintenance Process 

 When a Principle End Item (PEI) ceases to operate or perform at a level necessary 

to conduct assigned tasks (shoot, move, or communicate) it is inducted into the 

maintenance cycle. Using the Marine Corps Integrated Maintenance Management System 
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(MIMMS), maintenance personnel at the operational battalion or squadron open an 

Equipment Repair Order (ERO). When an ERO is opened it is done so with a Non-

Mission Capable Maintenance (NMCM) Indicator that identifies that the problem is now 

being determined and is in the hands of maintenance personnel. This NMCM Indicator 

signals the beginning of MDT, also commonly known as repair cycle time (RCT). 

Immediately upon induction, a maintenance technician performs a complete limited 

technical inspection (LTI) on the equipment to troubleshoot the problem with the item 

and determine what course of action is needed to repair the item. If the technician is able 

to return the item to full service, then he does so immediately. If the repairs required on 

the PEI are beyond the organic maintenance capability of a particular battalion or 

squadron, then it must be inducted to the next higher echelon of maintenance. Each MEF 

has a Maintenance Battalion where intermediate maintenance is conducted. Upon 

induction at this echelon of maintenance, the maintenance battalion technicians are 

required to open another ERO and must conduct an LTI on the equipment to determine 

the best course of action to repair the item according to their maintenance capabilities.   

 Whether at the organic (operational) or intermediate level, once the parts needed 

to restore the end item to serviceability are identified, the NSNs are recorded on an 

Equipment Repair Order Shopping List (EROSL). The maintenance technician passes 

this EROSL on to a supply clerk who signs the EROSL acknowledging receipt. The time 

it takes for the maintenance technician to deliver the EROSL to the supply clerk plus the 

time that passes before the supply clerk inducts the requisition into the supply system 

contribute to ADT. The life of this supply requisitions will be covered below, but once all 

maintenance actions are complete the ERO goes into a Non-Mission Capable Supply 

(NMCS) status indicating that the problem now lies in the hands of the supply system. 

 Once an ordered item is received, it is issued to the requesting maintenance 

section. When all needed parts ordered for one ERO are received, the status of the ERO is 

changed back to NMCM telling the commander that the equipment is still broken and it is 

a maintenance problem again. For critical repairs, maintenance personnel are required to 

return the item back to full service as quickly as possible and when all maintenance 

actions have been completed and the repair has been checked for both quality and 
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operability, the ERO is downgraded, if awaiting other less critical parts, or closed. The 

status change between NMCM and NMCS is designed to place ownership on the source 

that is responsible for the delay.  

2. The Marine Corps Legacy Supply Requisition Process 

 Upon the receipt of the EROSL, the supply clerk assigns a Military Standard 

Requisitioning & Issue Procedures (MILSTRIP) Document Number to each NSN needed 

to repair the PEI. The document number is used to track the status of the requisition from 

order to receipt. Ideally, prior to the close of business on the day the EROSL was 

received, the supply clerk will enter each document number into the Asset Tracking and 

Logistics and Supply System (ATLASS) database, which converts EROSL data into 

MILSTRIP form, and will create and send this data to the SMU for processing into the 

Supported Activities Supply System (SASSY) mainframe. This marks the beginning of 

measurable CWT. The time it takes validate EROSL’s, enter them into the ATLASS 

database, and submit them is another contributor to the ADT of the repair cycle of an 

asset. 

 The first stop for a requisition placed by units in the MEF is the SMU, which is 

the primary source of supply for repair parts. The I MEF SMU supports 86 units 

distributed across California and into Arizona. They carry over 22,000 National Stock 

Numbers (NSN) that represent more than $62 million in inventory. In their legacy supply 

interface, the SMU submitted requisitions via batch process into the SASSY mainframe 

at the end of the business cycle or once a day. This procedure adds on average one half-

day to the lead-time for these requisitions. 

The SMU stocks Class IX repair parts either based on previous demand or in 

some cases when repair parts are pushed to the SMU in anticipation of demand for newly 

fielded items. If a repair part is not stocked by the SMU, the requisition will be passed to 

the wholesale supply level within the Defense Automated Addressing System (DAAS) 

for fulfillment at one of DoD’s National Inventory Control Points (NICP’s) (Bates, 

2005). The DAAS Center (DAASC) is a huge data processing center that operates 24 

hours a day, 365 days per year and processes all requisitions for the entire DoD (Bates, 
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2005). DAASC will determine the best source of supply (SOS) to source the needed item 

and will route the requisition to that SOS for fulfillment. The NICPs include such entities 

as the Defense Logistics Agency (DLA), the General Services Administration (GSA), 

and the U.S. Army Tank-automotive and Armaments Command (TACOM). If the SMU 

stocks a repair part, but does not have the part on hand when a requisition is submitted, 

the SMU will issue a backorder for the item and issue the part when the item is 

replenished in their stocks. Once the ordering unit receives the repair part from the SMU 

or from other channels, the part is delivered to the maintenance section that ordered it. 

Measurable CWT for that particular document ends when the package exchanges hands 

and the transaction is recorded in ATLASS and submitted to SASSY. The time it takes to 

hand off the item, as well as to process the appropriate receipt transaction is another 

contributor to ADT.  
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III. LITERATURE REVIEW 

 In 2000, the Department of Defense (DoD) implemented CWT as a metric for 

measuring the end-to-end supply chain effectiveness with DoD Instruction 4140.61. 

Since then, the DoD has been trying to measure its effective implementation and has 

aimed at tying the impact of CWT’s effect on material readiness. The relationship 

between the variables is apparent; CWT resides within the denominator of the Ao 

equation. To find a starting point for measuring the benefit of forward positioned stock, a 

review of other attempts at identifying the relationship between CWT and Ao is 

necessary. There are three significant cases that aided in our determination to use 

simulation analyze the impact between Ao and CWT. 

A. DIAGNOSING THE ARMY’S EQUIPMENT READINESS:  THE 
EQUIPMENT DOWNTIME ANALYZER (EDA) 

In August of 2002, the U.S. Army sponsored a study by the RAND Corporation to 

gain some insight into how equipment readiness is affected by stock held by their Supply 

Support Activities (Peltz et. al, 2002). RAND’s study found that the Army had difficulty 

linking the logistics process to equipment readiness. To solve this problem RAND 

developed the Equipment Downtime Analyzer (EDA), which is a relational database that 

ties maintenance events to supply chain performance (Peltz et al., 2002). The focus of the 

EDA is to break down all the events that drive “broke-to-fix” time to identify problems 

so they can be resolved. The authors argue that resolving these problems will intuitively 

reduce MDT and as a result will increase readiness.  

During their study of the Army’s maintenance reporting capabilities, Peltz et al. 

(2002) found that the Army’s readiness numbers were expressed as Not Mission Capable 

(NMC) rates and were derived by taking the product of average end item repair time and 

the item failure rates. The Army’s supply and readiness reporting systems only tells what 

is broken, but does not mention how many times items have failed or the duration of their 

failure (Peltz, 2002). Like the Marine Corps’ current method of readiness reporting, the 

Army reports its readiness numbers monthly via the Defense Readiness Reporting 

System (DRRS). Solely using readiness information on a monthly basis made it difficult 
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to distinguish between operational time and garrison time (Peltz et al., 2006). As a result, 

the study deemed that finding the relationship between CWT and Readiness was 

“impossible (Peltz et al., 2002 p. Xiii)” with the data collection methods the Army was 

using. The main purpose of the EDA is to provide a means whereby the Army could 

focus resources where they had the greatest impact on equipment readiness (Peltz et al., 

2002) and that Ao is intuitively improved as we reduce CWT. 

Legacy readiness reporting in the Army is highlighted by looking at availability as 

a monthly number that is aggregated amongst all items a unit possesses. Peltz et al. 

(2006) found that daily measurements of readiness rates fluctuated dramatically around 

the averages reported. This variance showed that readiness as a reporting metric was 

misleading, and did not accurately tell a Commander what percent of his assets would be 

available during a given time period or during operations. This section of their research 

led us to look beyond averages and incorporate the use of variability of CWT into this 

project. 

In their study, Peltz et al. (2002) highlight that the demand signal for repair parts 

is not continuous within DoD due to the fact that training schedules are not continuous, 

and equipment does not have steady utilization rates. This erratic demand leads to erratic 

patterns in equipment readiness. As a result, the DoD experiences periods of intense 

ordering and maintenance, followed by lulls. Prior to an exercise, readiness tends to be 

high; conversely, following an exercise, it drops. This drop generally serves as the trigger 

for periods of aggravated demand for DoD (Peltz et al., 2002).  

Despite their model being able to identify maintenance events for repair parts that 

should be stocked, Eric Peltz and his team found that there was “no way to measure 

whether a reduction in wholesale requisition wait time (RWT) flows through the system 

to produce an equivalent improvement in equipment readiness” (Peltz et al., 2002). The 

next major study into the relationship between CWT and Readiness came in 2007, when 

the DoD Inspector General directed a commission report on the progress of DoD 

Instruction 4140.61. 

 



 13 

B. DOD IG UNIFORM STANDARDS FOR CUSTOMER WAIT TIME 

In July of 2007, the DoD Office of Inspector General submitted a report to 

Congress entitled “Uniform Standards for Customer Wait Time.”  The fact that Supply 

Chain Management has been identified as one of the high risk areas within the DoD since 

1990 is what generated the need for such a report (IG, 2007). This report serves as a 

report card on the progress of CWT implementation in DoD.  

From Operation Desert Storm, when DoD faced an average CWT of 49 days, 

through 2006, when CWT was reported to average 21 days, supply chain improvement 

has been an arduous task (Gansler, 2007). The commission’s report cited DoD’s goal for 

CWT as 15 days for both the Army and Marine Corps in 2006. Fifteen days may be 

considered unsatisfactory when compared with the civilian benchmark of 1–2 days for 

domestic CWT, and 2–4 days for international CWT (Gansler, 2007). During their 

analysis, the IG found holes in reporting requirements, and was unable to show the 

relationship between CWT and readiness.  

 To measure the effectiveness of DoD’s CWT implementation, the DoD IG 

conducted a full-blown statistical analysis that sampled 1,150 Army requisitions and 773 

Marine Corps requisitions to test conformance with CWT criteria. The study found that 

the Army conforms to DoD Instruction 4140.61 by leaps and bounds ahead of the Marine 

Corps. The Army was found to have 67% of its requisitions recorded correctly, 29% not 

recorded in a timely manner, and 4% not properly vouchered. The Marine Corps, on the 

other hand, was found to only have 3% of its total requisitions recorded properly, 86% 

recorded late, and 11% not properly vouchered. This study revealed that 6 years after the 

implementation of DoD Instruction 4140.61, the various services were still not on the 

same page when it came to supply chain management and logistics transformation.  

 The second major revelation the IG study provided was that “DoD Officials could 

not link CWT to operational Readiness” (IG, 2007). The IG Report cites the improper 

categorization of requisitions as the cause of this problem, namely the lumping of both 

high and low priority requisition together. DoD Instruction 4140.61 did more than 

establish CWT as a measurement; it directed monthly reporting of both readiness and 

CWT numbers from all services. This directive was interpreted in different ways by each 
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service, and because the directive was not supervised properly the numbers used were 

dramatically different. One example of the confusion with the directive is exemplified in 

the manner by which the Marine Corps determines CWT and submits its report. 

MarCorLogCom consolidates all requisition data across the three SMUs and submits 

their report at the enterprise level as one batched mix. They do not report CWT based on 

each of the independent supply activities they manage (IG, 2007).  

 Since all of the data the IG used to measure CWT and readiness came in different 

terms, the task of correlating the variables, and modeling the impact that CWT has on 

readiness was deemed impossible. The IG’s trouble with analyzing data and in 

correlating the variables is what led this study to solve the problem through simulation. If 

experts in the past have struggled with the data to arrive at a useful correlation based on 

reported CWT information, our study bridges the gap and uses actual requisitions from 

raw data to derive CWT, and simulate its impact on the Ao equation.   

The Marine Corps itself currently manages 5 major separate supply chains (each 

of the three CONUS SMUs, Afghanistan, and centralized SECREP management). As 

such, the correlation between Ao and CWT can truly only be tackled by isolating one of 

these supply chains, and further ascertain how that supply chain supports one weapon 

system. This approach is where our study continues beyond the point where the IG left 

off.  

C. STOCK DETERMINATION MADE EASY: THE ENHANCED DOLLAR 
COST BANDING MODEL (EDCBM) 

In the July-August 2007 edition of Army Logistician, the article “Stock 

Determination Made Easy” was published to discuss the “Enhanced Dollar Cost Banding 

Model” (Girardini, Lackey, & Peltz, 2007). The EDCBM is simply an extension of the 

EBA model. Like the EBA, the EDCBM is a relational database capable of drilling down 

to what items are needed, but then expands its capability in stock determination. The 

model is capable of taking limited resources and it prioritizes what items should be 

stocked based on weight, cube, cost and variability in wholesale lead times. This model 

focuses on CWT goals, and combines the capability of the intermediate supply support 

activity with the lead times from the wholesale supply activity to set CWT within certain 
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thresholds. To understand the model, it is helpful to know its origins. 

The U.S. Army stocks repair parts at the intermediate level called Supply Support 

Activities (SSA), where each SSA stocks the necessary NSNs outlined in an authorized 

stocking list (ASL) to support a Brigade Combat Team (BCT). Studies by the RAND 

Arroyo Center concluded that higher fill rates from the Army’s ASLs resulted in direct 

positive effects on equipment readiness. One RAND Arroyo Center study determined that 

a 10 percent improvement in the ASL fill rate resulted in a 4 percent increase in 

equipment readiness (Girardini et. al, 2007).  

  In 1998, the RAND Arroyo Center developed Dollar Cost Banding (DCB), which 

expanded the ASL focus in three areas (Girardini et. al, 2007). First, DCB did not focus 

solely on historical demand, but considered the criticality of an item as a basis for 

stocking it, even if it experienced low demand. Cost and size were also factors, with DCB 

lowering the risk of a deadline by stocking lower cost, smaller items that would affect 

readiness. DCB also moved beyond the days of supply method of stocking parts and 

considered the variability in demand of individual NSNs in order to achieve acceptable 

CWT goals. Lastly, DCB automatically excluded non-critical items or items that the 

customer could afford to wait for which focuses the SSA resources on those critical items 

that affect readiness (Girardini et. al, 2007). 

  The EDA assisted in the development of the Enhanced DCB (EDCB), which 

narrowed the list of parts that were true readiness drivers. This allowed the SSAs to focus 

even more on criticality and reduce resource allocation of storage space and initial 

inventory investment. Operation Iraqi Freedom interrupted the expansion of EDCB. 

Home-station requirements experienced variability in demand based on training exercises 

when equipment was most used. Since home-station requirements were used to develop 

ASLs for SSAs in Iraq, fill rates plummeted as deployed operations approached a steady 

state.  The deployed SSAs that implemented EDCB experienced improvements in fill 

rates and CWT over those that did not implement the program.  

  The significance of DCB and EDCB was not that fill rates increased, but that 

CWT for critical repair parts decreased along with the ability of maintenance personnel to 

repair equipment more quickly.  This ability to repair items more quickly would 
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intuitively lead to increased readiness rates.  While this clear result of refocusing the 

stocking criteria led to these ideological outcomes, there was no measurable link 

established to show how the reduction in CWT related to the increase in readiness levels. 

Our study will refer to methods of ideal stocking criteria, but will take the next step of 

showing how the identification of critical parts and pre-positioning of them in the supply 

chain will effect a decrease in CWT, and allow us to measure the relationship between 

CWT and equipment readiness. 

D. TARGETING INVENTORIES TO AFFECT GROUND EQUIPMENT 
READINESS 

The concept of targeting repair parts that add the most to equipment down time 

for stocking is no new concept. In his 2002 article entitled Targeting inventories to affect 

ground equipment readiness, Major Brandon McGowan attests that the current stock 

methodology of the SMU does not account for the fact that not all PEI’s are created 

equal. McGowan’s article loosely covers what the SMU’s current stock method is, and 

how it misses the mark for critical end items and does not address the impact of stock 

decisions on readiness.   Major McGowan is both insightful and forward thinking in his 

solution to this problem, which amounts to categorizing items based on commanders 

precedence and assign those items a higher service level for material held at the SMU. 

 According to McGowan (2002) the SMU stock policy is to stock items with a 

certain level of demand within a certain time period. Once items have passed the demand 

requirement then they are all stocked according to the same generic formula with no 

adjustment for the importance of the item they are stocked to support. The SMU’s 

inventory level accounts for both the demand and lead-time of the item from wholesale 

supply.   McGowan argues that the flaw in this logic is that when providing the same 

service to a radio, which the marine corps has an abundance of, and a tank, which is low 

density, does not address the relative importance of these items to commanders. It is clear 

that a commander would care more about the tank being deadlined or degraded than the 

radio, and McGowan believes he has an answer to this problem. 
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 McGowan’s solution to the problem is to subcategorize items using the integrated 

logistics capability (ILC) quadrant model, and to add weight to items with degraded 

readiness reporting numbers. The ILC model categorizes the importance of items based 

on their mission value and uniqueness. There are four quadrants used in the model, which 

are listed below: 

 Quad 1:  Bottleneck Items – Low mission value and low substitutability 

 Quad 2:  Critical Items –  High mission value and low substitutability. 

 Quad 3:  Leveraged Items – High value and high substitutability 

 Quad 4:  Routine Items – Low value and high substitutability. 

McGowan insists that items stocked at the SMU should be given a different service levels 

based on where they fall within this model. McGowan also provides that aside from 

equipment ILC categorization, the SMU must consider the current readiness rate of 

individual items to determine service levels. By assigning items a threshold of 

unacceptable readiness, we can target improved readiness of those items through forward 

positioning of repair parts with increased service levels. 

 Major McGowan clearly understands that the SMU has the capability of 

significantly improving readiness through stocking the appropriate critical repair parts. In 

2002, McGowan confirms that the Marine Corps already has the tools needed to measure 

MEF readiness and track supply chain performance, but his article only describes the 

relationship between CWT and Ao as intuitive. McGowan believes that when we stock 

material based on demand and ILC categorization instead of demand alone that higher 

service levels will increase MEF readiness. A model that will show the impact of our 

stock decisions on Ao would certainly lend to Major McGowan’s study. 

E. CONCLUSION 

Many attempts have been made at tying CWT to readiness. While both the EDA, 

and EDBC models were effective at improving the responsiveness of supply support 

activities, they did not provide the means whereby CWT and readiness could be married. 

In addition, the DoD IG set out to use methods that were established by their very own 

directive, and found that at the DoD level, the information is too aggregated with far too 
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much variation in the way each service goes about recording both CWT and readiness.  

Based on what we know about past attempts to correlate readiness and CWT, this 

study will take a different approach to solve this complicated problem. The remainder of 

this report aims to solve this problem at the lowest echelon possible; this issue is not one 

for DoD, the Navy, the Army, or even the Marine Corps as a whole. What the EBA and 

EDCB models have shown is that this is an issue best solved through the lens of a 

singular end item operating in a specific area of operations. CWT for any given NSN will 

vary among different locations. NSN and PEI failure rates also vary among locations due 

to operational tempo and the physical climate. Therefore, our attempt at quantifying this 

relationship focuses on a specific geographical region with an individual end item, not the 

enterprise level. 

 The key to showing the relationship between CWT and readiness lies in the Ao 

evaluation itself. Using that equation and simulation modeling, this report intends to 

show that for a certain level of investment, decision makers can expect a certain level of 

readiness improvement. The remainder of the report describes how to simulate Ao, how to 

simulate the impact of investment in CWT reduction, and analyzes the results of these 

reductions.     
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IV. METHODOLOGY 

To establish the relationship between CWT and Ao, we had to compare the 

historical state using actual CWT with predictions from our model. Once the relationship 

was established, the main goal of our analysis was to predict a future state of reduced 

CWT that could be attained if our prescriptions regarding forward placement of inventory 

were followed. In so doing, we simulate and compare effects on Ao between the “As Is” 

and the “To Be” model outputs. 

A. DATA SOURCES AND COMPILATION 

This analysis is focused on identifying critical repairs for Mission Essential 

Principal End Items (PEIs) from I MEF that are the result of a deadlining event. The 

Marine Corps lists all Mission Essential Equipment within the annual Marine Corps 

Bulletin 3000 (MCBUL 3000) Table of Marine Corps Automated Readiness Evaluation 

System (MARES). Equipment listed on the MCBUL 3000 is selected by Headquarters 

Marine Corps in order to provide an appropriate measure of the equipment condition and 

preparedness for the Marine Forces (MCBUL 3000, 2011). We thus narrowed our 

selection of candidate PEIs based on the MCBUL 3000. 

 In September 2011, the Commandant of the Marine Corps, General James Amos, 

provided a memorandum to Secretary of Defense Leon Panetta. With future defense 

capability reduced in a world that presents increasing threats to the national security of 

the United States, General Amos highlighted the ongoing need for the expeditionary and 

amphibious nature of the United States Marine Corps (CMC, 2011). As the withdrawal 

from Iraq is complete and preparations begin for the withdrawal from Afghanistan, the 

Department of Defense has shifted its focus to the Pacific Area of Operations. As a result, 

the Marine Corps will increase its focus on amphibious operations and training. 

Therefore, we selected the Marine Corps Amphibious Assault Vehicle (AAV), delineated 

under the Table of Authorized Material Control Number (TAMCN) E0846, to conduct 

our analysis. This weapon system will likely see increased usage in the near future, and 

its operational availability will become critical to operational commanders. 
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Data for this study came from several resources, including the Navy Supply 

Systems Command (NAVSUP) Birdtrack database, the Marine Corps Equipment 

Readiness Information Tool (MERIT), the I MEF SMU aboard Camp Pendleton, CA, as 

well as MIMMS and SASSY databases. Data from the latter two systems has been 

consolidated by Marine Corps Logistics Command (MarCorLogCom) into the Master 

Data Repository (MDR). Data from MIMMS provided the necessary maintenance 

information to determine how long equipment was deadlined, i.e., unavailable. Data from 

SASSY gave us the requisition receipt dates for all parts ordered on ERO that were 

opened in MIMMS. Birdtrack provides inventory positioning, asset visibility, and 

customer wait time analysis that allowed us to obtain additional observations of critical 

NSN wait times, namely all requisitions that were passed to one of the National Inventory 

Control Points (the wholesale supply level).  

MarCorLogCom and Marine Corps Systems Command (MarCorSysCom) 

developed the Life Cycle Modeling Integrator (LCMI) that contains various tools to 

analyze readiness and maintenance factors for Marine Corps ground equipment. One tool 

within LCMI is the System Operational Effectiveness (SOE) application that allows 

commanders and logistics personnel to analyze data retained in the MDR. The SOE 

provides current and historical maintenance and supply information that can assist 

decision makers in identifying trends, averages, and variability for maintenance and 

supply actions. The SOE can also assist in analysis of past events that can be applied to 

forecasting decisions on maintenance and supply actions. The SOE can thus be used as a 

Decision Support Tool. The SOE provides data in several formats that allows for specific 

analysis that we discuss throughout this study.   

Beginning in 2010 the Marine Corps began its transition to an enterprise resource 

management system known as Global Combat Support System – Marine Corps (GCSS-

MC). This study covers all maintenance actions and corresponding requisitions for 

critical repair parts for all deadlining events of AAVs in I MEF from January 1, 2009 

through December 31, 2011. While the new system provides real time and up to date data 

information, our data was obtained primarily from the pre-GCSS-MC legacy systems 

(MIMMS and SASSY). We decided upon this course of action because GCSS-MC was 
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not fully fielded at the time of our study. The data and processes described within this 

study are based upon these legacy systems, which were in place from January 2009 

through the beginning of implementation of GCSS-MC for 3d Amphibious Assault 

Battalion aboard MCB Camp Pendleton in November 2011.   

MarCorLogCom provided us with a data set from the MDR that included all 

maintenance action and supply requisition data within I MEF from 2009 – 2011. Our 

analysis of these raw data files allowed us to identify all critical repair parts, degrees of 

variability in requisition wait times for those critical repair parts, and the effects of 

investments in re-positioning repair parts forward in the supply chain. Additionally, we 

identify the length of time an asset was deadlined relative to the CWT of the repair parts 

required to bring it back to serviceability.   The data collection of this study was limited 

to three years since stocking criteria over longer periods of time usually changes. As a 

result, CWT also changes between periods as stock methods are adjusted, and thus skews 

our analysis the further back we go. Limiting our study to three years provides sufficient 

breadth and depth to make this study relevant and applicable for future decision making, 

and allows us to capture the most recent and consistent data possible from the legacy 

systems.   

 When identifying the repair parts required to ensure operability of equipment, 

Combat Essentiality Codes (CEC) are assigned to each NSN to identify its criticality. 

Filtering requisition data by CEC was necessary in our methodology to identify only 

those NSNs that would have an impact on the operational readiness of an end item. As 

listed in the below table, we limited our data analysis to only the repair parts that had a 

CEC of 5 or 6. Failure of CEC 5 or 6 parts renders an end item unserviceable, and thus 

unable to perform its intended mission. Table 1 lists the definitions of CEC 5 and 6 

(USMC, 1984, p. 4–4–20). 
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Table 1.   Combat Essentiality Codes 
USMC, 1984, p. 4–4–20 

Code Definition 

5 

Critical Repair Part to a Combat-Essential End Item: Those parts or 
components whose failure in a combat-essential end item will render the 
end item inoperative or reduce its effectiveness below the minimum 
acceptable level of efficiency. 

6 

Critical Repair Part to a Non-Combat-Essential End Item: Those parts or 
components whose failure in a non-combat-essential end item will render 
the end item inoperative or reduce its effectiveness below the minimum 
acceptable level of efficiency. 

 

 The CEC coding system is a standard, and may not be accurate all of the time due 

to its inflexible nature. Some repair parts on the AAV are coded with CEC 6, even though 

according to UM 4400–124, these parts are intended for non-combat essential end items. 

Therefore, we combined this factor with Non-Mission Capable Supply (NMCS) 

Indicators to provide a more accurate picture to determine which assets were actually 

deadlined. Maintenance technicians are required to input the NMCS Indicator when they 

order a repair part on the Equipment Repair Order Shopping List (EROSL) to identify 

how important their supply requisitions are. NMCS indicators relate to the priority code 

of the requisition. Priority codes range from 01 to 15, with 01 being the highest priority 

for units in a combat zone and 15 being the lowest priority for routine items ordered by 

units outside the Fleet Marine Force and the Reserves. Our study limits the requisitions 

with priority codes between 01 and 06, which scopes our analysis to only critical 

requisitions for the operating forces within I MEF.  

 Definitions of NMCS Indicators are listed in TM 4700–15–1, Ground Equipment 

Record Procedures (1992). We limited our analysis to those maintenance actions with 

NMCS Indicators of 9, N, and E. NMCS code 9 refers to requisitions with a priority 

designator of 01, 02, or 03 for an OCONUS customer or a CONUS customer deploying 

overseas within 30 days. NMCS Code N refers to requisitions for deadlining items with 

priority designators of 02, 03, 04, 05, 06, 07, 08, 09 for a CONUS customer or 05 for an 

OCONUS customer. These codes identify a readiness reportable item or an item deemed 
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by the unit commander as mission essential to be in a deadlined state as a result of a 

critical repair part failure. NMCS Code E is used for requisitions with priority designators 

of 02, 03, 04, 05, 06, 07 or 08 when the PEI is expected to be deadlined in 15 days for a 

CONUS customer or within 20 days for an OCONUS customer. While NMCS Code E 

does not represent an actual deadlining event, requisitions with this code are shown to be 

critical that will result in a deadlined PEI. Thus, these items are critical to the operation of 

the vehicle and results in a deadlining event. Therefore, they are included in our analysis 

on demand and parts stocking criteria. 

 Our data analysis began with 2,315 EROs, consisting of 5,294 requisitions for all 

AAVs in I MEF during the 2009 – 2011 time period. When we filtered the data to only 

include deadlining maintenance actions, we discovered that 1,647 of those EROs were 

maintenance actions that resulted in the deadlining of an AAV. These 1,647 ERO’s 

included 3,027 requisitions for repair parts, which represented 202 NSNs. Of the 202 

NSNs identified in our study, 164 were Class IX consumables and 38 NSNs were 

SECREPs. 

 Using the SOE, we determined the mean time between failures (MTBF) for the 

AAV by extracting all deadlining maintenance events for all serial numbers within I MEF 

from 2009 - 2011. Although readiness data can be obtained daily, the Marine Corps 

reports readiness monthly in the Defense Readiness Reporting System-Marine Corps 

(DRRS-MC), a subset of DRRS. We thus chose 30 days as the basis for determining 

readiness and asset availability in our model. Subsequently, using the reliability equation, 

we determined the reliability and probability of failure of the AAV for I MEF for a 30 

day period. Thus, our simulation model represents the possible outcomes of Ao for a 30 

day period. 

 Mean Time to Repair and Administrative Down Time (MTTR + ADT) in our 

study includes all actions taken before a part is ordered, and after the repair part is 

received to bring an item back to full service. To determine MTTR and ADT, we 

obtained the total Maintenance Downtime (MDT) for deadlined assets from the data we 

obtained from MarCorLogCom for each ERO originating in I MEF between 2009 and 

2011. Without analyzing actual hard copy EROs, EROSLs, and supply documentation, 
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we were unable to derive what fraction of the elapsed time belonged to each of these 

variables separately. For simplicity in this study, we have combined MTTR and ADT 

into one variable based on actual data we have available. We then determined the 

maximum CWT for each ERO. This maximum CWT represents the amount of time it 

took to receive all repair parts ordered under one ERO. Therefore, the MTTR + ADT 

variable was determined by summing the difference between the total MDT and the 

maximum CWT for each ERO, then dividing this sum by the total number of EROs.   

( max )MDT CWTMTTR ADT
n

∑ −
+ =  

Where n = number of EROs. 

Table 2 displays the results of our calculations for MTBF, reliability probability, 

probability of failure, and MTTR + ADT. 

 

Table 2.   Maintenance Variables 
I MEF, 2009 – 2011 

TAMCN Nomenclature MTBF   
(in days) 

Reliability 
(30 days) 

Probability 
of Failure  
(30 days) 

MTTR + ADT  
(in days) 

E0846 

Assault 
Amphibious 
Vehicle, 
Personnel 
AAVP7A1 

188.5 85.29% 14.71% 7.36 

 

The data from the MDR obtained from MarCorLogCom contained all requisitions 

for deadlining maintenance events for AAVs from 2009 – 2011. To create our model, we 

identified each critical repair part NSN that I MEF received for the AAV. Since some 

NSNs were received from both the SMU and the wholesale level for different 

requisitions, the CWT from each source varies. Thus, we determined the average and 

standard deviation of CWT based on the weighted average of the requisitions filled by the 

intermediate and wholesales supply levels, which we discuss in greater detail later in this 

chapter.   
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B. MODEL 

After an analysis of the data, the next step in demonstrating how changes in CWT 

impact Ao was the creation of a simulation model. This was our chosen method because 

the previous attempts by the RAND Corporation and the GAO were unable to quantify 

these two variables. The model we created is intended to demonstrate how varying 

amounts of investment in reducing CWT will improve Ao. Our model was built using 

Microsoft Excel and Oracle’s Crystal Ball® simulation software, which is a Monte Carlo-

based simulation software that can be used for predictive modeling, forecasting, and 

optimization. Crystal Ball® is also used in this analysis to estimate the reduction of risk 

associated with the pre-positioning of critical repair parts.   

The model incorporates actual data and the Ao equation to show the “As-Is” 

process and compares it with the “To-Be” position (based on hypothetical re-positioning 

of repair parts based on historical data). Since readiness is reported monthly via the 

DRRS-MC data repository, our model likewise is a snapshot of readiness and failures per 

month. To feed the model, we created a data set that contains all required historical 

maintenance and supply actions from 2009 – 2011. Next, we describe the simulation 

model inputs and output measures in detail.   

1. Model Inputs 

 In this section we discuss the key input fields to our model and provide some 

clarity regarding why we used these fields, and how they can be used to manipulate the 

model. 

a. Mean Time Between Failure (MTBF) 

  The MTBF for an AAV was derived from the SOE as stated above. The 

MTBF calculation is particularly important to any model used to calculate Ao, since it is 

used to predict what the systems reliability will be in the time period the model is set to 

cover. Every effort should be made to ensure this data comes from the most reliable 

sources. 
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b. Probability of Failure 

 According to the Operational Availability Handbook, the average failure 

rate of an asset, or λ, identifies the expected number of failures within a given time 

period, and is determined by 1/MTBF (DoN, 2003). Reliability of a system is commonly 

assumed to follow an exponential distribution, so reliability over a period of time t can be 

expressed with the cumulative exponential probability at time t (Blanchard, 1998, p. 38): 

 -( ) exp tR t λ=  

Since this is a cumulative probability, this is the probability the system has not failed 

before time t. The probability the system will fail after a period of time t is determined by 

the complement, or 1 – R(t). The probability of failure of an asset determines how often 

an individual asset fails. Based on operating conditions, the reliability of a system rises 

and falls and can be adjusted for known changes in operations commitments.  

To determine the probability of failure of an asset during a month under 

normal operating conditions we used the reliability equation, R(t) = e-λt , where t 

represents usage in days. For our model we represented t as 30 days; however, this rate 

can be altered without affecting the accuracy or reliability of our model. Using the 

probability of failure in this manner allows for this model to accurately predict Ao under 

varying operating situations.  

c. MTTR + ADT 

  In this portion of the header we input the average MTTR + ADT that was 

derived as described in the data section above. To capture the variability in MTTR + 

ADT, we attempted to use goodness of fit statistics to apply to the data we obtained. 

However, no distributions suitably fit the MTTR + ADT values in our data. While the 

lognormal distribution was often determined to be the best fit of those tested, no single 

distribution was determined to provide a sufficiently accurate fit. This caused us to err on 

the side of a more conservative and penalizing assumption. Therefore, we used the 

exponential distribution for MTTR + ADT. The exponential distribution is conservative, 
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in that it is unlikely to understate the risk of a long wait, since it has a high coefficient of 

variation (CV). The parameter for the exponential distribution is the reciprocal of the 

MTTR + ADT.   

d. Data Set 

 The data set we created to build our model consists of 202 NSNs with 

information that is both predictive and informative. For this section we focus primarily on 

the informative nature of the data set. More details pertaining to the data set are discussed 

in the simulation portion of the model description. 

(1) Header Information. The header information used for this 

model includes fields for NSN, Nomenclature, Unit of Issue (UI), Unit Price in dollars 

(UP$), SMRC Code, and CEC Code for each item. 

(2) Probability of Requisition Lookup Columns. In order to 

create a situation where the simulation randomly selects an NSN based on its likelihood 

of being requisitioned, we created a cumulative lookup column using Excel’s “lookup” 

function. To do this, we determined the probability that an NSN would be ordered by 

dividing the number of times the item was ordered by the total number of documents 

requested. We then created a cumulative field that returns the sum of all probabilities, and 

created a column labeled “lookup” to search within the column based on Excel’s random 

number function. We discuss the use of this column in the CWT calculator section below. 

(3) SMU and Wholesale CWT Data. The next pieces of 

information we needed were the actual SMU and wholesale CWT data for all AAVs in I 

MEF from 2009 - 2011. These fields contain the count of total requisitions ordered, the 

quantity demanded at both intermediate and wholesale level, the average customer wait 

time (ACWT), the StDev of CWT, and the coefficient of variation (CV) for CWT at each 

level. This is the information that we later use to predict how CWT affects the system as 

it currently is. One problem we encountered was applying a valid StDev for instances 

when we had less than 10 observations of CWT. Whenever there were less than 10 

observances for CWT, we used the CV of all valid observances to determine the StDev of 
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CWT for those instances. In this manner, we set the average variability of parts lacking 

sufficient observations to the average variability for parts that had sufficient observations. 

 (4) Additional Wholesale CWT Data: In addition to those 

documents for AAVs that passed through the SMU to the wholesale level that we 

captured above, we also pulled in all requisitions for our identified deadlining NSNs that 

reached the wholesale level for all customers and end items using NAVSUP’s Birdtrack 

database. The CWT from this data was then entered into our model so that we would 

have a clearer picture of what to expect at the wholesale level in regard to service and 

wait times. Like the CWT data used above, this data included document number count, 

total quantity ordered, ACWT, StDev of CWT, and CV.  

2. Simulating the present (“As Is”) 

 To properly show how CWT affects Ao we use random variables to simulate how 

the different components of the Ao equation change within the different levels of the 

supply chain. In this next section we discuss the central formulas used to build our model. 

In addition to simulating the present, there are certain shared fields between the present 

and the future that will be discussed in detail below.  

a. End Item Field 

 Our model begins with a simulation of the operational availability of an 

individual AAV. The Logistics Management 2nd Generation (LM-2) Unit Report data as 

reported in MIMMS provides historical readiness rates for the MARES Reportable 

Assets and also identifies the number of assets on hand in I MEF during the time period 

of 2009 – 2011. These numbers fluctuated during our analysis period, so we used the 

average number of AAVs possessed by I MEF as the quantity for our model, which is 

216 AAVs. Our simulation is based on this pool of assets, representing the real 

population of AAVs. Each of the 216 AAVs is represented in one row within the model. 

The model simulates the effects upon each individual AAV for the “As Is” and “To Be” 

Ao and R Ratings during a simulated 30-day period. To replicate these fields for other 

assets under real conditions, one can simply modify the number of rows to match the 

number of assets that the target unit possesses. 
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b. Failure Simulator 

 The next column in the model is the failure generation column. Using the 

probability of failure of an AAV based on the 1 – R(t) equation, we set failure 

determination to randomly occur using Excel’s random number generator function 

(RAND). The equation used in our model to trigger failures is as follows: 

( () ( ),1,0)if RAND P FAILURE= <  

This Excel function is used to determine whether an asset failed or not within our 

simulated 30 day period. The random variable function delivers a random number 

between 0 and 1 for each step of the simulation. The Excel IF function then determines if 

the asset on each row fails during a 30 day period. If a random number above the failure 

probability is randomly selected within Excel, the model simulates that an asset did not 

experience a deadlining event in that month, and thus did not fail. If an asset does not fail 

during the month, the model places a numeral 0 in the cell. No further changes are made 

across this row for this individual asset during this step of the simulation. If a random 

number below the failure probability is selected, the model simulates that an asset 

experiences a deadlining event, and thus has failed. If the asset fails, a numeral 1 is 

placed in the column and thus signals additional actions in subsequent cells to determine 

MDT. This field is incorporated into both the “As Is” and “To Be” models. 

c. CWT Look Up 

 In the data section, we discussed that there are 202 different NSNs that are 

reported to have caused AAV failures between 2009 and 2011 with each having a 

probability of being ordered. When an AAV is determined to fail based on the failure 

generator above, the model uses the Excel random function to determine which NSN is 

selected to be requisitioned. The model uses the lookup function to identify the NSN row 

associated with this random number that is in the lookup column. The values in the 

lookup column are derived based on the probability of that NSN being ordered and the 

cumulative distribution discussed above. This method allows us to randomly select NSNs 

when an item fails within the model.   This function signals that any time an item 
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fails during the month, the model looks up a random number, and return the CWT of the 

item that corresponds to the random value selected within the cumulative distribution.   

Table 3 is an illustration of how the lookup table is set up. For example, 

suppose that the random number selected by Excel is .0588, the lookup function finds the 

value within the lookup column that corresponds to this value. To accomplish this, the 

model will first find the two values that this random number falls between. It then selects 

the lower value, which in this case belongs to NSN 2520–01–459–7021. Once the 

identified row is selected, the lookup function returns the CWT value associated with the 

selected NSN (11.45 days in this case) to be input into the CWT cell for the AAV that 

failed during this simulated month. More detail is forthcoming in the Calculated Ao 

section below. 

Table 3.   Excel Lookup Function Example 

 

 

NSN Nomenclature Doc # Count P(Requisition) Cumulative Lookup CWT

1240013876727 PERISCOPE BODY ASSE 4 0.00132 0.00132 0 17.78

1240013876728 PERISCOPE HEAD ASSE 21 0.00694 0.00826 0.00132 7.42

1240013876729 PERISCOPE ELBOW ASS 14 0.00463 0.01288 0.00826 30.33

1240015535866 THERMAL SIGHTING SY 2 0.00066 0.01354 0.01288 10.42

1240015535870 HEAD ASSEMBLY,AAV 54 0.01784 0.03138 0.01354 46.22

1240015536111 INTERMEDIATE BODY 24 0.00793 0.03931 0.03138 4.38

1240015536957 THERMAL IMAGER SDU 17 0.00562 0.04493 0.03931 122.44

1240015541735 THERMAL ELBOW 41 0.01354 0.05847 0.04493 43.24

2520014597021 YOKE,UNIVERSAL JOIN 3 0.00099 0.05946 0.05847 11.45

2520014597028 YOKE,UNIVERSAL JOIN 1 0.00033 0.0598 0.05946 10.98

2520014597041 UNIVERSAL JOINT,VEH 6 0.00198 0.06178 0.0598 14.25

2520014723051 TRANSMISSION ASSY,5 15 0.00496 0.06673 0.06178 24.26

2520014726681 TRANSMISSION AND CO 116 0.03832 0.10505 0.06673 5.4

2520014728956 TORQUE CONVERTER 2 0.00066 0.10572 0.10505 2.63

2530011024540 TRACK ADJUSTER 23 0.0076 0.11331 0.10572 3.78

2530011024713 WHEEL,SOLID RUBBER 34 0.01123 0.12455 0.11331 16.08

2530011024714 WHEEL,SOLID RUBBER 9 0.00297 0.12752 0.12455 23.15

… … … … … …

6150015783251 WIRING HARNESS 10 0.0033 0.99835 0.99504 4.66

6150015858583 WIRING HARNESS,BRAN 3 0.00099 0.99934 0.99835 78.82

6350014307176 SENSING ELEMENT 2 0.00066 1 0.99934 16.54

1
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Like the failure simulator, the probabilities are based on historical 

observations, not the assumption of any arbitrary probability distribution. So, this method 

places a higher weight on parts with higher demand as the distribution of the lookup 

selection is larger for those items, and smaller for low demand items. The weights are set 

in the exact proportions that demand occurred in the historical data. Once the NSN that 

fails is selected, the model uses Crystal Ball® to determine the actual CWT value to place 

in the CWT field. Data for this field is built in under the Data Set for each NSN to return 

a random variable, as discussed in the following section.   

d. Consolidated CWT “As Is”  

 In order to gain an accurate picture of what CWT to expect under the past 

conditions, we separated all requisitions based on the source of supply, whether from the 

SMU or the wholesale supply chain. We then calculated actual fill rates, total document 

count, total quantity ordered, weighted average CWT (based on fill rate for each NSN), 

and finally a Crystal Ball Assumptions Cell. In the following sections we discuss each in 

greater detail. 

(1) Actual SMU Fill Rate. The actual fill rate used was derived 

from the SMU perspective by taking the number of requisitions filled by the SMU, and 

dividing that number by the total number of requisitions made for that NSN.  

(2) Total Document Count. This field was built simply by 

adding the documents that were filled by the SMU and the Wholesale Inventory levels 

during our 3 year research period. 

(3) Total Document Quantity. This field is derived by taking 

the sum of quantities fulfilled at both the SMU and wholesale level over our 3-year 

research period.  

(4) Consolidated ACWT. To arrive at a consolidated ACWT, 

we had to take the ACWT from the SMU and add it to the ACWT experienced when a 

requisition passes to the wholesale level. The formula used for weighting and adding 

ACWT’s is as follows: 

Consolidated ACWT = (SMU Fill Rate)*ACWT (1 (SMU Fill Rate))*ACWTSMU WH+ −  
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(5) Crystal Ball® Random Variable Generator. This field 

requires the use of Crystal Ball® Monte Carlo simulation software to generate a 

fluctuating value for CWT in each step of the simulation. Again we attempted to use 

goodness of fit statistics to apply to all CWT values; however, no distributions suitably fit 

the CWT values across the NSNs that had more than 30 document numbers associated 

with them. While the lognormal distribution was often determined to be the best fit of 

those tested, no distributions were considered reliable fits. Therefore, we choose to apply 

the exponential distribution to the CWT, because it serves as a more conservative 

measure by overstating CWT values. The parameter for the exponential distribution is the 

reciprocal of the average CWT. Once completed, we repeated this process for each of the 

202 NSNs in our study. At each iteration in our simulation, each cell (one for each NSN) 

randomly generates a CWT based on the exponential distribution for that NSN. When the 

same NSN is selected for more than one AAV during one iteration Crystal Ball® returns a 

discrete CWT value for each simulated requisition of that NSN that is based on the 

exponential distribution. 

e. MTTR + ADT Add In 

 This field is created to add in the MTTR + ADT as computed for the 

model. This random variable is applied to each AAV that fails in our simulation. Based 

on another IF function, Excel will input the MTTR+ADT value into this field if the AAV 

in this row was simulated as deadlined.  

f. Days Available/Days Deadlined 

  The next two columns list the number of days the asset was available 

and/or deadlined. If the asset was deadlined during the month, we simply subtract the 

MDT from 30 to find the needed value for the number of days available. On the other 

hand, if the item is not deadlined during one step in the simulation, then it was available 

for the entire month, or 30 days. This means that the item was available 100% of the 

month for use. 



 33 

g. Calculated Ao 

  The next step was to simply calculate Ao. Within the model we used the 

following modified equation to compute the Ao during one simulation: 

   -   
  o

Total Time Available Deadline Downtime
Total Time Available

A =  

Since our model uses a one-month period for each simulation step, our Ao equation is: 

(30  )
30o

Days DeadlinedA −
=  

 This equation allows us to simulate Ao in relation to time. The current readiness 

reported rates for the Marine Corps are snapshots in time that state the current fully 

mission capable (FMC) status at a particular point in time, whereas Ao considers the 

entire time an asset is available. We thus created columns for both readiness and Ao. By 

dividing the number of days an asset was deadlined by 30, we determined the percentage 

of a month that an asset was mission capable in the readiness column. The mean of a 

measure of readiness over time is, in effect, the same as average Ao. 

 One issue that we had to address is that this model appears to assume that all 

assets automatically return to full service at the end of the month. So, we had to make 

sure that we were properly accounting for those times when MDT exceeded 30 days. 

Since our simulation is based on Ao over a 30 day period, whenever days deadlined 

exceeds 30 days for a particular asset, Ao will be identified as negative. For instance, 

when the total days deadlined is 72 days, the model penalizes the Ao calculation by 

factoring in the additional downtime above 30 days. The total impact to Ao lasts for 2.4 

months, which is represented by a negative Ao. Ao for the month in which the item was 

deadlined would have been 0%. Since Ao in the second month would also have been 0%, 

the equation provides a negative 100% availability along with a negative 40% to account 

for the 12 days of the third month. Thus, in our simulated month, Ao for this particular 

AAV is negative 140%. Table 4 demonstrates a simulated step in the model, displaying 

two instances where MDT exceeded 30 days. Hence, although the model appears to 



 34 

assume that all parts are working at the beginning of every month, the effect of down 

times longer than a month is properly captured.  

 

Table 4.   Simulated Month - Ao  

 

Pool of AAVs Failure? CWT MTTR+ADT Days DL Days Avail Ao

1 0 0 0 0 30 100.00%
2 1 9 8 17 13 43.33%
3 1 14 8 22 8 26.67%
4 0 0 0 0 30 100.00%
5 0 0 0 0 30 100.00%
6 1 20 8 28 2 6.67%
7 0 0 0 0 30 100.00%
8 0 0 0 0 30 100.00%
9 0 0 0 0 30 100.00%
10 1 16 8 24 6 20.00%
11 0 0 0 0 30 100.00%
12 0 0 0 0 30 100.00%
13 0 0 0 0 30 100.00%
14 0 0 0 0 30 100.00%
15 1 64 8 72 -42 -140.00%
16 1 6 8 14 16 53.33%
17 0 0 0 0 30 100.00%
18 0 0 0 0 30 100.00%
19 1 25 8 33 -3 -10.00%
20 0 0 0 0 30 100.00%
21 0 0 0 0 30 100.00%
22 0 0 0 0 30 100.00%
23 0 0 0 0 30 100.00%
24 0 0 0 0 30 100.00%
25 0 0 0 0 30 100.00%
26 0 0 0 0 30 100.00%
27 0 0 0 0 30 100.00%
28 0 0 0 0 30 100.00%
29 1 12 8 20 10 33.33%
30 0 0 0 0 30 100.00%

… 216 1 11 8 19 11 36.67%
86.70%One Month Simulated Ao = 
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As our model simulates the Ao for each AAV, we applied the Ao equation to each 

end item row. To derive Ao across all 216 AAVs, we took the average of Ao from the 

entire fleet of vehicles to determine what Ao would be during one iteration of the 

simulation. The final step in completing this part of the simulation was to use Crystal 

Ball® to track the simulated Ao, and capture the distribution of this outcome variable.   

We ran our model for 100,000 iterations, representing 100,000 simulated 30-day 

periods. This high number of iterations allows those NSNs with the lowest demand to be 

represented at least 30 times on average within each trial of our simulation. Crystal Ball® 

displays a probability distribution for results of the simulated Ao. Both the “As Is” 

simulation and the “To Be” simulation have forecasts defined in order to return a 

distribution for each scenario in order to measure the differences between the two. The 

“To Be” simulation scenario is discussed below. 

3. Simulating the future (“To Be”) 

 To properly simulate changes in Ao, we had to devise a method for simulating a 

scenario for what CWT would have been if the SMU had stocked the needed items. In 

order to do this, we found it necessary to establish the criteria for which items would be 

stocked based on CWT thresholds and build in service levels into the model that would 

incorporate a failure-based stocking methodology. A service level is defined as the 

percent chance that the SMU will not stock out during a given inventory cycle. This 

section discusses how we incorporated service levels into the model, what stock 

methodology was used for this model, and ultimately the impact the stock method and 

service levels have on CWT. All these variables can be modified in order to deliver 

results under various scenarios, other than the scenarios we examine in this thesis. In 

other words, the tool we have developed can be used for ‘what-if’ analysis on other 

scenarios. These methods are at the heart of what makes this model work.   

a. CWT Threshold 

 The model provides a cell (input parameter) that allows the user to input 

any value for the average CWT that is desired: a ‘threshold.’  The value that is placed in 

this cell identifies those NSNs from our data set with average CWT above the threshold 
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and select them as candidates for moving forward in the supply chain. The data set is 

arranged so that any SECREP that would be a candidate is not moved forward because 

(as previously explained) SECREPs are outside the scope of this analysis. 

 In establishing these thresholds, we can incorporate new CWTs for those 

repair parts with lead times longer than our established thresholds. The first determinant 

factor is identifying the CWT that is too long, or unacceptable. If CWT is determined to 

be too long, then we must determine how much to stock at the SMU (forward positioned) 

in order to ensure these parts are delivered with the reduced CWT.   

b. Model Stock Determination 

 Our model does not seek to determine optimal stocking criteria for the 

SMU; however, in order to demonstrate improvements in Ao and determine a quantifiable 

relationship between CWT and Ao in monetary terms (i.e., in order to know how much 

our recommendations would cost to implement), we had to apply a stocking methodology 

for the SMU. Due to the variability in both demand and lead time we chose the Re-Order 

Point (ROP) stock determination model. Within our model, the ROP stock method 

determines the appropriate stocking levels by applying a user-selected service level with 

the historical demand pattern for critical repair parts from 2009 to 2011. ROP must also 

be accompanied by an Economic Order Quantity (EOQ); however, optimal order 

quantities are not addressed in this paper and we assume that as an order is placed by the 

customer and fulfilled, an order for replenishment must also be placed by the SMU. The 

formula used to determine ROP in the model is as follows: 

* * ltdROP D CWT Z σ= +  

where: 

D = Average daily demand 

CWT = Lead time in days 

Z = Number of standard deviations above the mean 

σltd = Standard deviation of lead time demand 
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To identify a stocking quantity, we determined safety stock requirements 

in addition to demand during the CWT period. Safety stock is determined by multiplying 

the Z score by the standard deviation of demand during lead time (CWT). A Z score value 

identifies the number of standard deviations an occurrence is from the mean. The Z score 

relates to the service level by indicating the corresponding point on the X-axis on the tail 

of a distribution curve. To obtain a Z score, we used the Excel function of 

NORMSINV(service level). Of course, use of a Z score assumes that demand during lead 

time follows a Normal distribution, a frequently used approximation, and we see no 

reason why it should be controversial. As service level increases, the Z score will also 

increase. The determination of values for our model was relatively straight forward, but 

to ensure that our model took variation in both demand and lead time we applied the 

following equation for σltd: 

2 2 2
ltd l dD Lσ σ σ= +  

where: 

D = Average daily demand 

𝜎𝑙 =  Standard deviation of CWT 

L = Average CWT 

𝜎𝑑 = Standard deviation of daily demand 

c. Service Level to Fill Rate Conversion   

The method we propose to decrease CWT is to pre-position critical repair 

parts forward in the supply chain, hence increasing safety stock levels at the intermediate 

supply activity to ensure those critical repair parts are readily available when they are 

needed. To gain a true picture of system wide wait time it is necessary to consider the 

delivery capabilities of the intermediate and wholesale supply activities within the supply 

chain. Intermediate supply activities do not make, or set, the stocking criteria at the 

wholesale supply level, and consequently when they experiences a stock out, their 

customers are subject to the delivery capabilities of the wholesale network. The charge 

for the SMU is to buffer the MEF against unacceptable lead times. This applies to both 
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CONUS and OCONUS operations, and when done correctly is a key component of 

mission success. Changes to the type and quantities of items stocked at the intermediate 

supply activity is one action that can be taken within a supply chain to reduce MDT while 

long term can be implemented.  

As mentioned, this analysis of improving availability of readiness drivers 

does not provide an optimal stocking methodology for the SMU; however, by applying 

the ROP stock methodology we have created a model that is sensitive to service level 

changes to illustrate the impact of those changes on Ao. Service level is the probability 

that the SMU does not stock out during a cycle. Higher service levels result in higher fill 

rates, which will aid in buffering the impact of unacceptable CWT levels at the wholesale 

supply activities. Fill rates are not exactly the same as service levels. The fill rate from 

the SMU tells us the percentage of demand fulfilled from SMU stock.   

Having a model that uses service level to determine the appropriate stock 

level at the SMU creates an interesting dilemma, as DoD reports performance based on 

fill rates. To align our research with this standard and to derive accurate Ao calculations, 

our “As Is” and “To Be” models were also built to incorporate fill rates into their 

calculations. The “As Is” model uses the actual data between 2009 and 2011 to form the 

consolidated CWT based on the fill rate of those NSNs over that period. Where the “To 

Be” model differs is in its application, which delivers a more accurate forecasted Ao 

calculation. The “To Be” model assumes that at higher service levels, the SMU can 

deliver according to their optimal delivery capabilities. Since our model uses fill rates to 

weight the CWT experienced from both the intermediate and wholesale supply levels, the 

optimal delivery capabilities of the SMU will decrease CWT that will result in benefits to 

Ao. Therefore, we converted the service level used in our ROP stock determination to a 

fill rate in order calculate forecasted Ao.   

To determine what fill rate is experienced from a particular service level, 

we had to determine the percentage of stock outs that are expected per cycle and compare 

that number to demand over lead time. In the process of determining fill rate, all terms 

were converted into daily terms in order to correspond to the CWT measurement that is 

in days. There are two critical components to finding the number of expected stock outs, 
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which are the standard deviation of lead-time demand and the standard normal loss 

function. The standard deviation of lead time demand for service level to fill rate 

conversion is the same as discussed in the model stock determination method above. The 

equation for finding the number of expected stock outs per cycle is as follows: 

( ) ( ) ltdN R L z σ=  

where:  

N(R) = The number of expected stock outs 

L(z) = The standard normal loss function 

σltd = The standard deviation of lead time demand 

The standard normal loss function represents what the expected value of 

losses will be, given that we experience a loss. The expected value of our loss is driven 

by the Z value that our stock method is based on. Selection of a desired service level as 

an input to the model provides a Z score. Anytime the input for service level is changed, 

the Z score in the model will update. Using the Z score, we can formulate a loss function 

that provides us with a conditional expectation of stock outs. To derive the standard 

normal loss function we use the following equation: 

( ) ( ,0,1, ) *( ( ))L z NORMDIST z FALSE z NORMSDIST z= − − ) 

Once the standard deviation of lead-time demand and standard normal loss 

function have been computed, the number of expected stock outs per cycle can be 

calculated. By multiplying the standard deviation of lead time demand by the loss 

function, or L(z), the number of expected stock outs per cycle is determined. The fraction 

of requisitions that are not filled is then derived by dividing the number of expected 

shortages per cycle by the expected demand during lead time. This fraction is then 

subtracted from 1 to provide the “To Be” fill rate. This allows the model to confirm that 

as service levels increase, the quantity to be stocked increases. As a result, the number of 

expected stock outs decreases and thereby increases the fill rate.  

( )Fill Rate 1
*

N R
D L

= −  
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 Figure 1 is a notional chart that depicts a service level with safety 

stock comprising Point X to Point Y, with Point X representing average expected 

demand. The probability of a stock out is represented by the area under the curve that is 

greater than point Y. Higher service levels will result in the requirement to increase 

safety stock to increase the probability that demand is met. This depicts the impact that 

service level has on inventory levels, and is at the heart of determining the fill rate 

discussed above. 

 

Figure 1.   Probability of Stock Out 

d. New System CWT Metrics for the “To Be” model   

The final step in simulating the “To Be” conditions of the model is to use 

the new fill rate to determine what CWT would be under these altered conditions. When 

fill rates are set at different thresholds, then “To Be” CWT is derived using these new 

metrics in the same fashion as was described under section B.2.d Consolidated CWT “As 

Is” of this chapter. While the methods are the same, the data sources are different. The 

new weighted average for our scenario is derived from the new fill rate, and pulls its 

CWT data from Birdtrack’s wholesale CWT data and SMU delivery times under ideal 

conditions. For those items that the model selects to be pre-positioned at the SMU under 
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our “To Be” analysis, the CWT for those items from the SMU is changed to 2.67 which 

is the average CWT experienced by the SMU when backorders are removed. This 

average is consolidated with the CWT from DLA and modeled as an exponential random 

variable to account for deviations in delivery to units aboard Marine Corps Air Station, 

Yuma, Arizona and the Marine Air Ground Combat Center in Twenty-nine Palms, 

California. We selected these values based on data received from the I MEF SMU in 

Camp Pendleton. We included this data as an input for the “To Be” conditions in the 

model that can be adjusted based on the time it takes for the intermediate supply activity 

to deliver to their customer.   

Another area where the “To Be” differs from the “As Is” model is that not all 

NSNs are impacted by our stocking methods. Based on the threshold for moving items 

forward, the fill rate, ACWT, and StDev of CWT for the new model were left unchanged 

for items that did not meet the criteria for forward positioning. This applies to items like 

SECREPS, which are left unchanged in our study, as well as any NSN that has a CWT 

threshold less than the threshold set during the input process.  

4. Model Outputs 

 In addition to simulated Ao and readiness for both the “To Be” and “As Is” 

scenarios, there are four additional outputs required to fully measure the benefit of 

forward stock positioning. These outputs include the number of FMC systems under both 

conditions, how many NSNs are impacted by our stock methods, how much money is 

required in total outlay, and how much of our recommended addition to forward-

positioned inventory is at risk of not being used. These variables provide a final 

dimension whereby we can measure the cost of CWT reductions. Once the cost of our 

material stock decision is realized, measuring the impact our investments will have on Ao 

becomes more apparent. 

a. Mission Capable Systems “As Is” and “To Be” 

 The first output we built into the model was a measure of the total FMC 

systems expected under both the “As Is” and “To Be” conditions. To derive this 

information, we multiplied the Ao during one month by 216 to return the total number of 
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expected AAVs available during that month. Using Monte Carlo simulation we can 

determine not only the average number of FMC systems, but the probability distribution 

of likely outcomes for FMC systems. These distributions can be used to answer post-hoc 

analysis questions such as “How likely is it we will have at least 185 mission capable 

AAVs?”  The distributions are generated for both the “As Is” and “To Be” alternatives, 

so that they can be compared on the basis of risk, and not just average performance. 

b. NSNs Moved Forward 

 The second additional input we needed was the number of NSNs impacted 

by our CWT threshold. The model sums the total number of NSNs that are candidates for 

pre-positioning and displays the information in the output section.   

c. Total Outlay 

 To place this relationship in monetary terms, we must first identify the 

investment required to stock those NSNs that are pre-positioned in terms of total outlays. 

As discussed previously, the desired service level will determine the quantity of each 

NSN that requires investment. Intuitively, lowering CWT at various thresholds and/or 

raising the service level results in varying levels of additional investment. Modifications 

of these variables will demonstrate the relationship under our “To Be” analysis. Total 

investment outlay is determined by taking the unit price and multiplying the desired 

quantity stocked, as in the following equation: 

$*i iK UP n=  

where 

Ki = Total outlay of NSNi purchased if CWT threshold is exceeded  

UP$i = Unit Price of NSNi 

ni = Recommended SMU stocking level for NSNi 
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d. Monetizing the Relationship between CWT and Ao with CIVaR  

Total outlay paints the picture for the one-time cost of our stocking 

methodology, but does not account for the likelihood that what we stock will be ordered. 

What is or is not ordered is important because when items are ordered, the SMU is 

reimbursed for the item by the unit ordering it. To fully grasp the relationship between 

CWT and Ao, we must determine the cost of reducing Ao, and thus monetize the 

relationship. There are two general components to the ROP-based stocking method 

recommended in this study:  the cycle stock and safety stock. On average, the SMU 

assumes the entirety of risk associated with the safety stock they hold, because it is above 

and beyond the average number of expected items demanded. Cycle stock, however, is 

expected to be used but has the potential of not being used based on fluctuations in 

demand. If these critical repair parts are projected to be ordered sometime throughout the 

fiscal year, then there is limited budgetary concern for that fiscal year.   

It is important to know the likelihood that SMU-stocked items will not be 

used, because this provides a true measure of what the real cost our stock method has due 

to uncertainty. When an item is stocked at the supply activity (e.g., SMU) but not used, 

then the supply activity is penalized for the overage. This overage is essentially the 

holding costs and opportunity costs of money that was tied up in excess inventory. To 

compute the penalty for items that may not be demanded, we use a variant of the 

conditional value-at-risk (CVaR) metric proposed by Rockafellar & Uryasev (2000). For 

the purpose of this study, we call this the conditional inventory value-at-risk (CIVaR) and 

it will show the true cost of our material stock decisions based on risk. Within our 

analysis, the CIVaR will include the safety stock and the cycle stock needed to achieve 

various service levels and reduce CWT. This study serves to identify the potential penalty 

of inventory cost in nominal dollar terms for safety stock and cycle stock, but does not 

identify ongoing holding costs or the SMU’s opportunity costs of using those funds for 

other purchases. In other words, we are providing an approximate measure of the budget 

impact to the SMU, assuming they currently carry no local stock of the item. We are not 

attempting to measure the incremental cost, because that would require a detailed 
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knowledge of the current stocking methodology, and a prescription for the “To Be” 

stocking methodology. 

To determine the probability of demand for repair parts at various 

quantities, we had to apply a distribution to demand. The Poisson distribution can be 

applied when occurrences are independent of each other and the average number of 

occurrences for a given time period is known (Hu, 2008). Demand for repair parts meets 

the Poisson distribution requirements, and thereby it was chosen as the distribution of 

future demand in our model.   Using the Poisson distribution we computed the average 

demand during lead time which serves as the mean in our CIVaR calculation. The model 

uses the probabilities that demand equals incremental values during lead time to calculate 

CIVaR. Thus, the model calculates CIVaR for those items chosen as candidates for 

forward positioning at the SMU. 

We used the Excel “Poisson” function to determine the probability that 

demand will be less than the “To Be” stocking level (in which case, the extra stock would 

be excess). The CIVaR is calculated for each incremental occurrence of possible demand 

below our stocking level by first multiplying the probability that demand is equal to a 

value X by the difference between the recommended stock and demand x by the unit price 

of the NSN. Then, the sum of each incremental value x gives us the CIVaR. The equation 

used to calculate the CIVaR is derived as follows: 

0
Conditional Inventory Value at Risk (CIVaR) ( )*( )*( $)

t

t

N

x
P X x N x UP

=
= = −∑  

where  

Nt = “To Be” stocking level 

X = Projected value of actual future demand during lead time 

x = Target value of demand during lead time 

UP$ = Unit price of the NSN selected 

  An example of the CIVaR concept is graphically depicted in Figure 2. 

Based on the assumption of Poisson demand, the average quantity demanded is 5 for this 

notional NSN. At the 90% service level, the ROP stocking methodology recommends a 
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notional stocking posture of 8. The shaded area represents the probability that demand is 

between 0 and 8. The CIVaR will be equal to the sum of the probability at each value 

from 0 to 8 multiplied by the difference between the stock quantity and each potential 

demand value from 0 to 8 multiplied by the unit price of this notional NSN.  

 

 

Figure 2.   Notional CIVaR Depiction 

Equally important to how the model calculates CIVaR is its relationship 

with total outlay. The CIVaR changes as service levels and CWT thresholds are modified 

since stocking levels correspondingly change. The model also simulates the impact of 

these changes by dividing the CIVaR by total outlay, which tells us the percent of our 

investment that is at risk of not being used. Intuitively, as service levels are increased so 

does the CIVaR. 

C. MODEL VALIDATION 

The model described above is designed to show the impact of reductions in CWT 

on Ao, and it accomplishes that task by comparing the operating conditions of the past 

with an alternative stock policy. With this in mind and before the model could be used, 



 46 

the first step was to validate the simulated “As Is” scenario comparing it with the 

historical readiness data. To make our comparison, we looked at the historical LM2 Unit 

Report data that identified readiness rates on a weekly basis from 2009 – 2011. We then 

conducted simulations using Crystal Ball (100,000 trials) which created the “As Is” 

simulation Ao and readiness data. A comparison of the results of our simulation and the 

actual readiness rates are in Table 5. 

 

Table 5.   Comparison of Actual and Simulated Readiness 

I MEF, 2009–2011 

TAMCN Nomenclature Avg # of 
Assets 

Avg R% 
(historical) 

σ of R%  
(historical) 

Avg R% 
(simulated) 

σ of R%  
(simulated) 

E0846 
Assault Amphibious 
Vehicle, Personnel 

AAVP7A1 
216 87.39% 5.23% 86.55 % 5.8% 

  
  

While the historical readiness mean and standard deviation are similar to the “As 

Is” simulated readiness mean and standard deviation, we further validate the model by 

examining the entire distribution of Ao. To accomplish this, we examined our simulated 

results using the method that the Marine Corps uses to report readiness levels. Marine 

Corps Order 3000.13, Marine Corps Readiness Reporting Standard Operating 

Procedures, directs that units report their readiness information monthly via DRRS.   The 

criteria set forth by this directive are as follows: 

R1  –  R  ≥ 90% 

R2  –  70% ≤ R ≤ 89% 

R3  –  60% ≤ R ≤ 69% 

R4  –  R < 60% 

 These levels indicate that if a unit’s equipment readiness is above 90%, that unit 

will have a R1 rating. If the unit’s equipment readiness is above 70% and below 90%, 

that unit will have a R2 rating, and so forth. Referring to our historical readiness data, the 

tails of that distribution revealed that under current operating conditions 34.6% of the R 
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values were in R1, 65.4% in R2, 0% in R3, and 0% in R4. Our simulation of 100,000 

iterations revealed that the data under continuous use falls out in a similar fashion with 

30.6% of all observances occurring on R1, 67.9% in R2, 1.3% in R3, and 0.2% in R4. 

This data is presented in Table 6. 

 

Table 6.   Historical and Simulated Readiness DRRS Comparisons 

Threshold Level Historical Readiness Simulated Readiness 

R1 34.6% 30.6% 
R2 65.4% 67.9% 

R3 0% 1.3% 

R4 0% 0.2% 
 

 The small disparities between the historical data and our simulation output 

support the validity of our model. Moreover, even these small disparities can be 

explained by the way that DoD uses equipment. Peltz et al. (2002) describes DoD 

equipment usage and demand for repair parts as being tied to unit operational 

commitments and training schedules. Hence, readiness rates are driven as a result of the 

operational tempo of the unit. According to operations and maintenance personnel at 3d 

AAV Battalion in Camp Pendleton, CA, the current operating tempo in CONUS for 

AAVs is a 3:1 ratio between field training and garrison usage. In other terms, the 

battalion conducts field exercises during one week per month on average, which accounts 

for approximately 25% of a month. During field training, AAVs operate approximately 

8–10 hours during the week on average. While in garrison, the AAVs are exercised 

approximately 1.5 hours per week. Thus, most failures result from heavier usage of the 

AAVs during 25% of the month.   

As the AAVs are used during field training, failures result more often than when 

they are only minimally operated in a garrison environment. Therefore, demand for repair 

parts occurs at a higher rate near the end or after a field exercise. During limited 

operations in garrison, when preventive maintenance primarily occurs, demand for 

critical repair parts is diminished. The result is “lumpy” demand patterns. Although our 
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model demonstrates the effects on Ao over time, it assumes continuous use of assets. As a 

result, we expect to see fewer occurrences near the 100% readiness level and 

subsequently fewer occurrences above 90%, and ultimately a greater proportion of 

observations closer to the mean. In this manner, our model marginally overstates 

readiness risk of asset availability on the right side of the Ao distribution tail. 

On the left side of the data we also observe more items reaching R3 and R4 in our 

simulation model than in the historical data. The lack of observations in the historical 

data in the R3 and R4 thresholds is indicative of maintenance actions taken outside of the 

normal supply channels, known as workarounds. These workarounds are actions such as 

selective interchange and part swapping between units that allow the maintainer to repair 

equipment without having to wait for supply support. However, our model marginally 

understates readiness risk on the left side of the distribution’s tail. Because of this 

underestimation, we do not expect improvements to Ao or changes throughout the 

distribution to be directly derived from the difference between the historical conditions 

and the model outputs. The benefits of this model will instead be measured based on the 

changes seen between the “As Is” and “To Be” simulation outputs.   

 Based on the similarities in the historical data and our simulated “As Is” data, we 

conclude that our model has high fidelity in capturing the relationship between Ao and 

CWT. We believe that our model is valid for demonstrating the effects on Ao as we make 

changes to CWT for critical repair parts. There is no reason to believe that the 

distribution of the actual data and the simulation are different, but this cannot be 

validated without an operational test. When conducting our “To Be” analysis, we must 

consider these biases as we compare results and present them for advice in decision 

making. 
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V. ANALYSIS & RESULTS 

 In the Methodology chapter, we provided a means of simulating Ao based on 

historical CWT and failure data. Within these simulations, adjustments can be made to 

the input variables in the model that will provide different scenarios in the “To Be” 

portion of the model. The model is versatile in its capability of comparing the “To Be” Ao 

with the “As Is” scenario to show the benefit of various material stock decisions based on 

changes in the input criteria. This model bridges the gap found by the RAND 

Corporation, the DoD Inspector General, and other DoD agencies looking to quantify the 

impact of material decision on Ao by narrowing the focus to one end item down one 

supply chain. This model then serves as a decision tool to aid leaders in making stock 

decisions based on both cost and benefit. The analysis is designed to answer the 

remaining research questions: 

1) What CWT thresholds should we examine for target reduction? 

2) What should our desired service level be for part stocking criteria? 

3) What is the likely return (in terms of Ao) on our investment in CWT, and what 

is the riskiness of that return on investment? 

To answer these research questions it was necessary to alter the “To Be” CWT 

data experienced in the system to that of the conditions the SMU experiences under 

optimal conditions. Our analysis begins with testing the model’s impact on Ao at various 

inputs for both Service Level and CWT thresholds. In addition to improvements in Ao, 

Monte Carlo simulation reveals that there are benefits found throughout the distribution 

of Ao, such as in improvements in DRRS-MC reporting categories. The distributional 

benefit requires further discussion, and reveals that material stock decisions serve to not 

only improve upon the average, but they improve upon our readiness risk. Having 

explored the benefits, we then discuss the total investment at risk, which demonstrates to 

decision makers the costs of various material stocking options. Lastly, we look at the 

limitations of this model, and discuss the relevance of our model under these conditions.  
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A. CWT THRESHOLDS AND SERVICE LEVEL ANALYSIS 

The objective of this research is to use simulation modeling to show the impact 

that CWT reductions (via various material stock decisions) have on Ao. The model 

produces results based on the desired service level and CWT threshold inputs. To test the 

possible outcomes, we ran simulations of the model based on the service levels of 0.8, 

0.9, 0.95, 0.99 with CWT thresholds of 30, 20, 15, and 10 days in a 4x4 factorial design. 

That is, we simulated all 16 scenarios resulting from the combinations of four service 

levels with four CWT thresholds. These levels represent a range of acceptable service 

levels and CWT thresholds. We did not specifically test for interaction (that is, we did not 

test to see if simultaneous changes to CWT threshold and service level had a 

multiplicative effect), although the Ao results would incorporate any interactive effect 

(implicitly in the simulation). 

As we ran the model using these possible scenarios, we found significant and 

quantifiable improvements to average Ao. Table 7 illustrates how Ao responds to CWT-

based material stock decisions. 

 
Table 7.   Impacts on Ao at Various SLs and CWT Thresholds 

 

 

When comparing the model results to our simulated “As Is” Ao of 86.54% against 

a policy that sets a .80 service level with a CWT threshold of 30 days, the model 

recommends that we alter our stock methodology for 25 NSNs, and that we can expect a 

1.07% improvement to Ao. On the other end of that spectrum, at the .99 service level, 

when the CWT threshold is set to move forward all items that have a CWT greater than 

Observed Ao (Mean, StDev, 100,000 trials): CWT and Service Level Martrix
"As Is" Ao: 86.54%, StDev:  5.81%

Result Cells: Ao StDev Ao StDev Ao StDev Ao StDev
 SL - 0.80 87.41% 5.52% 87.48% 5.51% 87.81% 5.48% 88.37% 5.46%
 SL - 0.90 87.62% 5.51% 87.74% 5.51% 88.14% 5.50% 89.02% 5.44%
 SL - 0.95 87.68% 5.55% 87.85% 5.54% 88.35% 5.48% 89.27% 5.41%
 SL - 0.99 87.76% 5.53% 87.93% 5.51% 88.43% 5.49% 89.43% 5.39%
NSN - MOVED FORWARD

CWT > 30 CWT > 20 CWT > 15 CWT > 10

25 38 59 106
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10 days, the model recommends to alter the stock method for 106 NSNs and provides that 

we can expect an improvement of nearly 3% to Ao. The difference between 1 and 3 

percent when put in terms of weapons systems is quite significant. What these numbers 

actually represent is the addition of between 2.16 and 6.48 additional FMC systems on 

average. In the case of an AAV battalion, this represents the ability to get an additional 

42 or 126 Marines into the fight.  

Figure 3 demonstrates the impact that various service levels have on Ao based on 

a 10-day CWT threshold.   

 

 

Figure 3.   Impacts to Ao at 10-day CWT Threshold and Various SLs 

When increasing service levels, we intuitively expect the mean to move up 

significantly, but there is actually little impact to Ao. CWT threshold, on the other hand, 

appears to have a more significant impact on Ao. Using the .90 SL, Figure 4 displays how 

Ao improves with each CWT threshold reduction. 
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Figure 4.   Impacts to Ao at .90 SL and Various CWT Thresholds   

Figures 3 and 4 demonstrate that the very act of targeting critical NSNs for CWT 

reduction results in significant gains to Ao. As we throw more and more material at the 

problem we find that the gains are marginally increasing, but there is another benefit that 

must be analyzed before we can capture the complete benefits of forward positioning 

stock. This turns our analysis from changes in the average Ao to identifying how much 

risk can be reduced through material stocking decisions. 

B. REDUCTION OF READINESS RISK 

According to Kang, Doerr, and Sanchez (2006) and Kang, Doerr, Apte, and 

Boudreau (2010), readiness risk measures the probability that Ao will fall below, or 

between, identified ranges. In addition to being able to measure the benefit to 

improvements in the average Ao, Crystal Ball’s Monte Carlo simulation software allows 

us to dissect the distribution of Ao. Using Crystal Ball to analyze the simulated 

distribution allows us to measure differences in Ao at various ranges in the distribution, 

which lends to the quantification of readiness risk. This analysis will compare readiness 

risk between the “As Is” and the “To Be” scenarios to derive an expected benefit. 

Crystal Ball® allowed us to track the observations of the data based upon their 

likelihood of occurrence. For example, when using inputs of a service level of .9 and 
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CWT threshold of 10, Crystal Ball allowed us to estimate the probability of Ao falling 

below 85%, as shown by Figure 5. 

 

 

Figure 5.   Probability of Ao below 85% (.90 SL and 10-day CWT Threshold) 

This chart tells us that there is a 18.69% probability that Ao will be below 85% under 

these conditions. This is compared to the 32.37% probability that Ao falls below 85% in 

the “As Is” simulation, as depicted in Figure 6. 
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Figure 6.   Probability of Ao below 85% (“As Is” Simulation) 

In addition to the left tail of the distribution, we can look at how the distribution 

shifts by setting the lower bound to .9 without an upper bound to show the probability of 

Ao occurring above 90% as shown in Figure 7. 

 

 

Figure 7.   Probability of Ao above 90% (.90 SL and 10-day CWT Threshold) 
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Focusing on the right tail allows decision makers to measure the probability of readiness 

falling within the R1 threshold of DRRS-MC. Additionally, when missions dictate that a 

minimum level of readiness or a minimum number of FMC systems is required, the 

model can provide a forecasted probability of attaining a desired goal. The information 

that Figure 7 reveals that we can be 51.01% certain that Ao will be above 90% in a given 

month.   

 Crystal Ball’s frequency chart provides the means whereby the entirety of our 

simulated distribution can be sampled and measured against the base case to show the 

benefit of material stock decisions. To demonstrate the impact of readiness risk, we 

recorded the probability of Ao being lower than 85%, as well as the probability of Ao 

falling within the DRRS reporting R1, R2, R3, and R4 ranges. The results of this analysis 

are found in Table 8. These are quantile estimates provided by Crystal Ball® after a 

simulation run of 100,000 iterations. We did not seek to qualify these estimates in any 

way (for example, by building a confidence interval around the estimates), but simply 

present them as descriptive statistics. 

 

Table 8.   Impacts to DRRS-MC R-Levels at Various SLs and CWT Thresholds 

 

CWT TH SL P(R < 85%) DRRS R1 DRRS R2 DRRS R3 DRRS R4
30 0.80 26.64% 36.79% 62.08% 0.99% 0.14%
30 0.90 25.45% 38.66% 60.27% 0.93% 0.15%
30 0.95 25.06% 39.40% 59.54% 0.91% 0.15%
30 0.99 24.66% 40.03% 58.92% 0.89% 0.16%
20 0.80 26.29% 37.68% 61.20% 0.98% 0.14%
20 0.90 24.89% 39.83% 59.14% 0.91% 0.12%
20 0.95 24.27% 41.07% 57.87% 0.93% 0.14%
20 0.99 23.87% 41.68% 57.29% 0.92% 0.12%
15 0.80 24.41% 40.37% 58.60% 0.92% 0.12%
15 0.90 22.83% 43.43% 55.58% 0.88% 0.12%
15 0.95 21.72% 45.41% 53.64% 0.83% 0.12%
15 0.99 21.46% 46.17% 52.95% 0.77% 0.11%
10 0.80 21.79% 45.53% 53.59% 0.78% 0.11%
10 0.90 18.79% 51.01% 48.18% 0.71% 0.10%
10 0.95 17.18% 53.30% 45.96% 0.66% 0.09%
10 0.99 17.35% 54.54% 44.76% 0.61% 0.09%
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Figure 8 further demonstrates the reduction of risk in terms of the probability of 

Ao occurring below 85% at various CWT thresholds and service levels. 

 
 

 

Figure 8.   Probability of Ao below 85% at Various SLs and CWT Thresholds  

Within the confines of financial capability, this model provides a means whereby 

decision makers can choose an option based on service level and CWT threshold that best 

meets the operational requirements of the future. The benefits of reducing CWT must 

include both measurements of the average and the distributional gains related to those 

decisions.   This type of analysis makes the benefit of reductions in CWT easy to 

understand, but we must also address the monetary implications of material stock 

decisions. Seeking the most value for the investment should drive DoD’s material stock 

decisions, and due to funding constraints there are always points where cost outweighs 

the benefit. This model does not identify these points where cost outweighs benefit, but 

instead provides a tool for decision makers to determine the value of improvements to Ao 

and risk reduction.   
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C. INVESTMENT RISK ANALYSIS 

A true cost analysis of our model’s recommendation from the Navy’s perspective 

would require examining the cost of holding stock (at all echelons) against the cost of 

deadlining events (somehow monetized). This is clearly beyond the scope of this thesis. 

Instead, as we have done with our analysis of Ao and CWT, we maintain our 

perspective at the SMU level. Even here, we cannot really calculate the incremental cost 

of our policies, because we do not have the data (current stocking levels and policies) to 

calculate the cost of the status quo, and hence, cannot calculate the incremental costs of 

the changes we are recommending. 

However, we can provide a limited estimate of the one-time budgetary impact of 

our recommendations on the SMU. There are two financial measures used in this research 

to show the budgetary impact of stock level decisions. The first of these is the total 

outlay, or the total cost of purchasing all material recommended by our model. However, 

estimating the budgetary impact on total outlay is inadequate, as there is a portion of the 

investment which will be used and thereby the SMU will be reimbursed for the cost of 

those items. The true budgetary impact to the SMU is the stock moved forward in the 

supply chain that is not used in the current budget year. In hindsight, this would seem to 

represent an unnecessary expenditure to the SMU in the current budget year. However, 

we cannot call this a cost, because the material will eventually be used, and the SMU will 

eventually be reimbursed (given that the items have sufficient shelf life and do not 

become obsolete). The point is that, in hindsight, the SMU did not need to expend the 

funds this year.   

The CIVaR described in the methodology chapter provides an answer to how 

much our material stock decisions impact the budget. We understand that actual cost 

would also need to incorporate the savings from reductions in expedited part shipments; 

after all, the SMU can order its needed inventory at a lower priority and thereby forego 

expedited shipments, but for the purpose of this project we assume the shipping cost to be 

constant. Finally, note that since we do not know the current stocking allowances at the 

SMU, we cannot really be sure about the incremental expenditure required to raise 
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service levels or reduce CWT to the desired threshold. Hence our CIVaR estimates are 

best considered as upper bounds, or maximum additional expenditures required, rather 

than estimates of average expenditures required. The CIVaR associated with each service 

level and CWT threshold are provided in Table 9. 

 

Table 9.   CIVaR:  CWT and Service Level Matrix 

 

 

Figure 9 graphically demonstrates the CIVaR at various CWT thresholds and 

service levels. 

 

 

Figure 9.   CIVaR Analysis 

CIVaR: CWT and Service Level Matrix
 

CWT > 30 CWT > 20 CWT > 15 CWT > 10
Result Cells:
SL - 0.80 $57,770 $61,104 $85,650 $138,018
SL - 0.90 $79,501 $83,124 $119,965 $192,978
SL - 0.95 $95,056 $99,860 $143,036 $232,277
SL - 0.99 $132,908 $138,133 $198,108 $319,002
NSN - MOVED FORWARD 25 38 59 106
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Intuitively as we increase the service level, the CIVaR also goes up. This is the 

inevitable result of increasing the amount of safety stock in the system as service levels 

rise. The CIVaR can then be used as the measurement of budgetary impact as compared 

to the benefit in Ao, and thus these results can be measured in terms of return on 

investment of the SMUs limited budgetary dollars. 

We also examined our results in terms of the monetary relationship in terms of 

CIVaR and the resultant Ao. Figure 10 graphically depicts this relationship. 

 

 

Figure 10.   Monetized Relationship between Ao and CWT 

This graph demonstrates the marginally exponential nature of a monetary solution, 

in terms of pre-positioning inventory in order to reduce CWT, and its subsequent impact 

upon improving Ao. As initial investments in pre-positioning inventory are made, 

substantial improvements to Ao result. As inventory investment continues to increase for 

additional NSNs representing additional CWT thresholds, we begin to see a diminishing 

benefit to Ao. Figure 10 can be used by decision makers to determine the most cost 

effective way to achieve a desired end state in terms of Ao. 

In Table 7, we illustrated how increasing stock positions at the various CWT 

thresholds through an increase in service levels tends to increase Ao. Table 10 now 

illustrates the budgetary cost and benefit of material stock decisions at each CWT 
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threshold and Service level in terms of improved Ao, CIVaR, readiness risk, as well as 

from a mission capable unit basis. 
 

Table 10.   Cost / Benefit Matrix 

 
  

When we sort the data according to the number of additional FMC systems we 

can expect, the model is an excellent tool for the decision makers in regard to material 

stock decisions. In such cases when the required number of additional FMC systems is 

our metric, decision makers can select the option that provides that measure at the lowest 

cost. For example, assume that decision makers require 5 additional FMC AAVs above 

their current average number of FMC AAVs. Using the table above, they can simply 

scroll from the bottom to the top of the MC Unit Column until they find a scenario that 

provides the needed mission capable systems. If the end state is a system where we 

require 5 additional FMC systems, then the lowest cost solution is to stock based on a 

CWT threshold of 10 days at the .80 service level. This model provides a flexible system 

whereby stock decisions can be made based on the impact those stock decisions will have 

on the number of FMC systems.   

 Decision makers at the MEF or the SMU can use the CIVaR to measure how 

much of the stocking investment is at risk, which depicts the budgetary impact to them, in 

order to make a fully informed risk/reward decision. Additionally, this information can 

provide decision makers with the cost/benefit of CIVaR in relation to benefits in Ao as 

CWT TH SL "To Be" Ao CIVaR P(R < 85%) DRRS R1 BENEFIT (Ao) FMC UNIT CIVaR/UNIT
30 0.80 87.41% $57,770 26.64% 36.79% 0.87% 1.88 $30,653
30 0.90 87.62% $79,501 25.45% 38.66% 1.08% 2.33 $34,071
30 0.95 87.68% $95,056 25.06% 39.40% 1.15% 2.47 $38,412
30 0.99 87.76% $132,908 24.66% 40.03% 1.22% 2.64 $50,314
20 0.80 87.48% $61,104 26.29% 37.68% 0.95% 2.05 $29,875
20 0.90 87.74% $83,124 24.89% 39.83% 1.21% 2.61 $31,870
20 0.95 87.85% $99,860 24.27% 41.07% 1.31% 2.84 $35,163
20 0.99 87.93% $138,133 23.87% 41.68% 1.39% 3.01 $45,908
15 0.80 87.81% $85,650 24.41% 40.37% 1.27% 2.74 $31,239
15 0.90 88.14% $119,965 22.83% 43.43% 1.61% 3.47 $34,571
15 0.95 88.35% $143,036 21.72% 45.41% 1.81% 3.91 $36,587
15 0.99 88.43% $198,108 21.46% 46.17% 1.89% 4.08 $48,516
10 0.80 88.37% $138,018 21.79% 45.53% 1.84% 3.97 $34,756
10 0.90 89.02% $192,978 18.79% 51.01% 2.48% 5.37 $35,967
10 0.95 89.27% $232,277 17.35% 53.30% 2.73% 5.90 $39,348
10 0.99 89.43% $319,002 17.18% 54.54% 2.89% 6.25 $51,034
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well as the DRRS-MC R-rating levels. A complete account of all results of our 

simulation using all SLs and CWT thresholds is depicted in Table 11. 

 

Table 11.   Summary of Ao / CWT / CIVaR Analysis 

 

SERVICE LEVEL .80
"AS IS" CWT > 30 CWT > 20 CWT > 15 CWT > 10

Ao 86.54% 87.41% 87.48% 87.81% 88.37%
Ao - StDev 5.81% 5.52% 5.54% 5.48% 5.46%
% Chance Ao < 85% 32.23% 26.64% 26.29% 24.41% 21.79%
% Change 5.59% 5.94% 7.82% 10.44%
NSN - MOVED FORWARD  25 38 59 106
Total Outlay  $81,986 $85,728 $121,506 $193,423
Value at Risk  $57,770 $61,104 $85,650 $138,018
% AT RISK 70.46% 71.28% 70.49% 71.36%
R1 - R > 90% 30.60% 36.79% 37.68% 40.37% 45.53%
R2 - 70% < R < 90% 67.88% 62.08% 61.20% 58.60% 53.59%
R3 - 60% < R < 70% 1.31% 0.99% 0.98% 0.92% 0.78%
R4 - R < 60% 0.21% 0.14% 0.14% 0.12% 0.11%

SERVICE LEVEL .90
"AS IS" CWT > 30 CWT > 20 CWT > 15 CWT > 10

Ao 86.54% 87.62% 87.74% 88.14% 89.02%
Ao - StDev 5.81% 5.51% 5.51% 5.50% 5.44%
% Chance Ao < 85% 32.23% 25.45% 24.89% 22.83% 18.79%
% Change 6.78% 7.34% 9.40% 13.44%
NSN - MOVED FORWARD  25 38 59 106
Total Outlay  $103,874 $107,905 $156,263 $248,906
Value at Risk  $79,501 $83,124 $119,965 $192,978
% AT RISK 76.54% 77.03% 76.77% 77.53%
R1 - R > 90% 30.60% 38.66% 39.83% 43.43% 51.01%
R2 - 70% < R < 90% 67.88% 60.27% 59.14% 55.58% 48.18%
R3 - 60% < R < 70% 1.31% 0.93% 0.91% 0.88% 0.71%
R4 - R < 60% 0.21% 0.15% 0.12% 0.12% 0.10%

     

SERVICE LEVEL .95
"AS IS" CWT > 30 CWT > 20 CWT > 15 CWT > 10

Ao 86.54% 87.68% 87.85% 88.35% 89.27%
Ao - StDev 5.81% 5.55% 5.54% 5.48% 5.41%
% Chance Ao < 85% 32.23% 25.06% 24.27% 21.72% 17.35%
% Change 7.16% 7.96% 10.50% 14.88%
NSN - MOVED FORWARD  25 38 59 106
Total Outlay  $119,532 $124,752 $179,445 $288,326
Value at Risk  $95,056 $99,860 $143,036 $232,277
% AT RISK 79.52% 80.05% 79.71% 80.56%
R1 - R > 90% 30.60% 39.40% 41.07% 45.41% 53.30%
R2 - 70% < R < 90% 67.88% 59.54% 57.87% 53.64% 45.96%
R3 - 60% < R < 70% 1.31% 0.91% 0.93% 0.83% 0.66%
R4 - R < 60% 0.21% 0.15% 0.14% 0.12% 0.09%

     

SERVICE LEVEL .99
"AS IS" CWT > 30 CWT > 20 CWT > 15 CWT > 10

Ao 86.54% 87.76% 87.93% 88.43% 89.43%
Ao - StDev 5.81% 5.53% 5.51% 5.49% 5.39%
% Chance Ao < 85% 32.23% 24.66% 23.87% 21.46% 17.18%
% Change 7.57% 8.36% 10.77% 15.05%
NSN - MOVED FORWARD  25 38 59 106
Total Outlay  $157,406 $163,047 $234,598 $375,137
Value at Risk  $132,908 $138,133 $198,108 $319,002
% AT RISK 84.44% 84.72% 84.45% 85.04%
R1 - R > 90% 30.60% 40.03% 41.68% 46.17% 54.54%
R2 - 70% < R < 90% 67.88% 58.92% 57.29% 52.95% 44.76%
R3 - 60% < R < 70% 1.31% 0.89% 0.92% 0.77% 0.61%
R4 - R < 60% 0.21% 0.16% 0.12% 0.11% 0.09%
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D. LIMITATIONS OF THE MODEL 

 Our model involves looking to the past to forecast the future. Our analysis 

centered on the NSNs whose failures resulted in deadlining events. Based on the failure 

rates of these NSNs, we expect to see similar failures in the future, given the same 

operating conditions (operational tempo, operating climate, consistent maintenance 

personnel skill levels, etc.). If these factors change, then NSN failure rates will also 

change. Additionally, the model does not incorporate other NSNs that will potentially 

have future failures that our analysis did not capture based on historical failures. Better 

forecasting tools would ameliorate this problem, but the examination of forecasting tools 

is beyond the scope of this thesis.  

The model does not incorporate the possibility of a single AAV failing, being 

returned to a mission capable status, and then followed by another failure all within the 

same simulated month. Such occurrences would result in additional CWT as well as a 

corresponding increase in maintenance workload associated with multiple repairs. While 

this is a limitation of the model, we do not believe that this limitation alters the results of 

the simulation in such a manner that will be significant. We have limited support for this 

belief in the fidelity shown by our “As Is” model against the real data. 

As previously discussed, our model assumes continuous use of the PEIs. Even 

though MTBF is determined over time that captures both high and low operational 

tempos, failures will occur more often during periods of high usage. MTBF will be 

determined by the variable use of the weapon system, and will change as ranges in time 

periods are examined. Reliability of the system is thus directly related to operational 

tempo. Further refinement of the model using additional simulation software products 

could possibly demonstrate the results on Ao with sporadic patterns of PEI usage and 

resultant demand for repair parts, as well as multiple failures within a given month.   

As previously stated, our goal did not consist of determining a proper or adequate 

stocking methodology for the SMU. Our use of historical demand data is one such 

methodology that we chose to demonstrate a possible stock posture. Applying other 

proven stocking methodologies based on other criteria could potentially refine the model. 



 63 

As such, this is not necessarily a limitation since our model could be extended to consider 

optimal stock postures. But for the purposes of our study, we limited the determination of 

the relationship between CWT and Ao based on this stocking methodology alone. 

Additionally, our model does not account for the non-unique nature of some 

NSNs. Numerous NSNs are applicable to multiple PEIs. Our stocking methodology for 

this study is based solely on the historical demand for repair parts for the AAV. Stocking 

for some NSNs at the SMU incorporates demand that results due to failures of these 

NSNs on other PEIs, at which point risk pooling of those NSNs will alter the total stock 

quantities. Therefore, our study does not incorporate the stock quantities that the SMU 

already stocks. 

The value determined for CIVaR is based off of the ROP stock model and uses 

this value as the average inventory value during lead time (all of which must be acquired 

incrementally by the SMU to implement this policy). Since we have not tracked current 

allowance levels at the SMU (let alone determined the part of that allowance level which 

could be considered safety stock) we cannot estimate the incremental budgetary 

expenditure. Additionally, our model is only determining CIVaR for one end item, even 

though many of these NSNs are shared across multiple PEIs. The current stocking 

methodology for every PEI that the SMU supports would need to be considered before 

true incremental budgetary impact could be estimated. Hence, we believe that our limited 

‘upper bound’ or ‘maximum’ budgetary impact CIVaR analysis is sufficient for the 

purposes and limited scope of this thesis. 

 Ultimately, our model is limited in that it provides results based on the inputs that 

we have available. Human error in data input into supply and maintenance systems 

affects abilities to use historical data for a picture of actual occurrences. During our 

research, we used the most relevant and accurate data that we obtained to ensure the most 

precise representation of our “As Is” and “To Be” simulations. With additional data 

demonstrating the distribution and variability of MTTR, ADT, and MTBF, the model 

could be updated to demonstrate the effects to Ao across the entire maintenance and 

supply spectrum. Nonetheless, our research using available data indicates that there is a 

quantifiable and demonstrable relationship between CWT and Ao. Yet, as we have 



 64 

learned throughout our research, “a model should not be considered an adequate 

substitute for good judgment” (Phillips et al., 1987, p. 370).  
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VI. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 
FOR FURTHER STUDY 

This chapter presents the conclusion of our project, recommendations, and areas 

which should be considered for further research. In this study, we sought to demonstrate 

the intuitive nature between decreasing CWT and the resultant increase in Ao, as well as 

how improvements in Ao inevitably come at a cost. In the fiscally constrained 

environment we are inevitably facing in the future it is imperative to have a tool such as 

this model to show how significant the impact material stock decisions have on 

equipment availability. As we exhibit in the analysis of our research, that cost of material 

stock decisions will vary depending on the methods used to stock material with long lead 

times and the desired end state.   

Through the conduct of simulations with various CWT and service level 

parameters, this study has ultimately presented evidence to substantiate that there is a 

quantifiable relationship between CWT and Ao, albeit a non-linear one. The nature of 

these two variables must be evaluated against the costs of achieving a desired Ao because 

the benefit is not always worth the investment needed to achieve it. The value of the 

relationship can only be determined by the decision makers’ desired end state, whether in 

such terms as a desired Ao, higher probability of required FMC systems, or a certain level 

of risk reduction, all coupled with budgetary constraints. 

A. SUMMARY 

To identify the relationship between CWT and Ao, we determined that we had to 

model that relationship from the most basic perspective. To do this, we examined one 

type of PEI (the AAV) within one supported region (I MEF). This was a different 

approach than other studies in the past that aimed to quantify the relationship between Ao 

and CWT, which were focused on how the aggregate of all parts pertained to the 

aggregate of all equipment in DoD. At its root, the model we created in this project is a 

computer simulation using the Monte Carlo method to show the probabilistic impact that 

changes in CWT have on Ao. To accomplish this task, we took the Ao equation and 
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dissected it into its associated components. Based on historical data of the reliability of 

the AAV, MTTR, ADT, and CWT, our model provides probability distributions of Ao to 

aid decision makers in understanding the likelihood of outcomes. Since the variables that 

make up Ao are not deterministic in nature, it was essential that we study the behavior of 

these variables and assign stochastic values. This added touch of realism ultimately 

allowed us to model the past in a manner where the output of the model was nearly 

identical to the historical data. To arrive at some future end state, the model allows us to 

modify the conditions that affect CWT in order to determine the resultant changes in the 

distributional outcome of Ao.   

This model uses the ROP stock method to set SMU stock quantities at a point 

where fill rates are aligned with user configured service levels, and measure the changes 

in Ao as material with unacceptable CWT thresholds are targeted for forward positioning 

at the SMU. In addition to its adjustability, the model measures the budgetary impact 

such stock methods pose to the MEF through a measure we have coined CIVaR, which 

measures the likelihood that a part is stocked and not used during the budget cycle. For 

the conduct of our simulation, we ran the model for 100,000 simulations at each possible 

combination of service levels of 0.8, 0.9, 0.95, 0.99 and CWT thresholds of 30, 20, 15, 

and 10 days. By demonstrating the differences in Ao under current conditions compared 

to Ao under alternative conditions of CWT thresholds and service levels, our model 

demonstrates the level of significance that reducing CWT has on improvements to Ao. 

Our study revealed that, when using various inputs, the associated outputs can be 

recorded to allow decision makers to base the service level and CWT threshold on 

desired Ao end states, given budgetary constraints. 

B. RECOMMENDATIONS FOR FURTHER STUDY 

1. Impact of Additional Variables on Ao 

 While this analysis may provide a foundation for quantifying a relationship 

between CWT and Ao, it is limited in its ability to demonstrate the entire effect on of all 

variables that impact total asset availability. This study primarily focused its analysis on 

supply-based issues and possible adaptions in supply policy that would reveal the 
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quantitative effects in monetary and readiness terms. While we have demonstrated a non-

linear relationship between CWT and Ao, this study is incomplete in providing an 

understanding of how other variables have a role in impacting Ao. CWT analysis alone 

will reveal some of the measures that can be taken to improve readiness; however, to 

come to a holistic approach to improving Ao, further statistical analysis is necessary to 

show the degree to which other variables also impact Ao (MTBF, MTTR, ADT).  

 Such analysis must center on specific improvements to these variables. Improving 

the maintenance process itself, whether through lean initiatives, improved personnel 

management, or improved training, could reveal a decrease in MTTR and ADT, both on 

within the maintenance and supply communities. Additionally, since MTBF of an asset 

relies on the engineering aspects of an asset, analysis conducted on improvements to the 

initial acquisition or engineering aspects of equipment could result in higher levels of 

readiness. As with this study, a cost-benefit analysis would be necessary to determine if 

the received benefit of improved Ao is worth the costs. 

2. Maintenance Capacity 

 Reducing CWT will deliver critical repair parts to the customer, the maintenance 

personnel, at a faster pace; however, this does not inevitably equate to the maintenance 

personnel having the ability to keep pace with improved arrival times of the parts. Further 

analysis is necessary to determine the sufficiency of maintenance capacity in personnel 

and equipment. 

3. Distinct MTTR 

 Our model used the exponential distribution for time to repair. In reality, each 

NSN has its own MTTR with its own distribution. Further analysis is necessary to assign 

a time to repair distribution for each NSN. The associated time to repair distribution for 

each NSN could be incorporated into a final model that would demonstrate the complete 

repair cycle with  more fidelity. 
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4. Wholesale Level Stocking Methodology 

 A secondary approach to this study would be to address the modification of 

stocking methodology at the NICPs at the wholesale level that would decrease CWT for 

critical repair parts. As previously stated, DoD’s goal for average CWT is 15 days. When 

examining the AAV data we used for our research, DLA’s average CWT for critical 

repair parts was 26.24 days. If such wholesale entities as DLA desire to improve 

customer service, a study of their stocking criteria in relation to CWT should be further 

explored in order to demonstrate possible courses of action that can be taken at that level 

to reduce the burden on the services. Further, if the NICPs ensure they address their 

stocking methodology based on the ILC quadrant model discussed by McGowan (2002), 

and couple it with improved service levels, average CWT for critical repair parts at the 

wholesale level should witness a reduction that will result in benefits to Ao. 

5. Repair Part Reliability 

Our study is centered on affecting the impact of CWT for repair parts. Demand 

for repair parts is driven by the rate at which each NSN experiences a failure. While 

supply professionals at the intermediate level can affect the stocking posture of NSNs, a 

further examination by DoD strategic supply professionals may be warranted to seek out 

the acquisition of more reliable repair parts. A study of the comparison between 

investment in pre-positioning repair parts and investment in more reliable repair parts 

may demonstrate the most cost effective method for improving Ao. 

6. Re-posturing of Forces in the Pacific 

 As U.S. forces begin to focus on the Pacific Area of Operations, an increased 

presence in Australia will require investment to ensure a sufficient readiness posture. The 

Australian quarantine process takes up to 3 months for all incoming cargo. Simply 

relying on a robust distribution network to bring critical repair parts to forces operating in 

Australia is clearly inadequate. Pre-positioning the requisite amount and type of repair 

parts will be critical to the success of these forces. Due to the Australian quarantine, 

additional time must be considered when calculating lead time. Our model can assist in 

determining the impact of such investment; however, further analysis is required to 
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determine the unique situation of deploying to Australia and the stocking of additional 

parts that factor in the additional lead time due to the quarantine. 

C. CONCLUSIONS 

As we approach the age of reduced budgets, the notion of decreasing inventory, 

especially excess, becomes even more pertinent. Replacing inventory with information 

has become an axiom in logistical arenas, but supply professionals must continue to seek 

intelligent ways to maintain higher levels of readiness while reducing inventory costs. 

This study lays out the first part of this charge, but at significant upfront costs. Supply 

chain analysis must include establishing stronger partnerships between intermediate and 

wholesale supply activities to improve information sharing. In so doing, the very goal of 

each activity of providing logistical support for equipment readiness will become aligned. 

The resultant effects will be higher readiness at lower costs. 

As intermediate supply activities seek to stock the right repair parts in the right 

quantities based on high levels of demand, they will ensure higher fill rates for high 

turnover items. To replace these highly demanded items, intermediate supply activities 

provide high demand to the wholesale level. Variability in demand must be considered 

whether based on seasonality, operational tempo, or some other identifiable factor. 

Without proper communication, both the intermediate and wholesale levels may stock 

unnecessarily high amounts of these items. Consequently, commercial vendors who 

supply the wholesale supply chain also maintain high levels of these items. 

With proper communication between the intermediate and wholesale level, the 

amount of inventory stocked at the intermediate level for these high demand items could 

potentially be reduced. The same can be said for the relationship between the wholesale 

and commercial vendor levels. Such information sharing will reduce the need for upfront 

investments for stocking items that have acceptable CWT from the next echelon in the 

supply chain, resulting in fiscal resources that can be used for items with longer CWT or 

higher uncertainty based on the variability in demand. Therefore, the DoD cannot only 

look at the high demand of critical repair parts in stock determination, but must identify 

those critical assets with long and varying CWT. As the relationship between criticality 
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and CWT is applied, investment in those items can be evaluated using a model such as 

ours to determine the effect on readiness. 

With an understanding that all PEIs and NSNs are not equally important, as 

McGowan (2002) discussed in his article, we can identify that both the intermediate and 

wholesale levels of supply are not addressing the impact that CWT has on Ao. This is 

happening because, without models like this one, there is no clear understanding of the 

relationship between these variables. Our model reveals that arbitrarily assigning service 

levels to tackle the problem will not always produce desired results, and that the gains to 

Ao are rendered irrelevant at certain points due to the high investment of achieving those 

service levels. This study is quantifiable proof that reducing customer wait time will 

improve readiness and readiness risk when the focus of material stock decisions is placed 

on critical repair parts. 
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