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1. Introduction 

Since the 1950s, strain has been known to control the electronic band structure of 
semiconductors (1).  This mechanism was used as a parameter to design novel semiconductor 
material technologies recently in complementary metal-oxide-semiconductor (CMOS) 
technologies to control the mobility of electrons in short field-effect transistor channels.  In 
doing so, it enabled Intel Corporation to move from 130- to 90-nm feature sizes in 2003 (2), 
which effectively enabled the continued realization of Moore’s Law and still does so today. 

Modeling, particularly with regard to the advent of strained silicon, played a significant role in 
the development of early science and breakthrough technologies.  Indeed, the basic mechanisms 
of strained silicon, and their theoretical underpinnings, were known as early as the 1950s in 
many of the historic papers that led the way for CMOS and p-type metal-oxide-semiconductor 
(PMOS) transistors (1).  Computations thus had a theoretical and mathematical framework from 
which to draw models and computable concepts. 

Today, the majority of relevant scientific papers fall into one of two basic problem groups.  
Roughly speaking, the first focuses on the determination of the electronic band structure and the 
second focuses on the time-varying nature of electron transport.  Computational research can 
likewise fit within this loose classification.  On their own, each represents large but separate 
areas of scientific endeavor.  But together, they provide a basis for robust design of 
semiconductor device materials.    

With greater access now sought for more chemical species in the periodic table of elements to be 
considered for doping, substrate design, or even the main semiconductor material, the many 
computational approaches that provide an early testing platform for materials designs demand a 
reexamination for their transferability.  Of particular connection to the Army, strain is a potential 
issue in many optoelectronic devices that are composed of multiple materials, such as 
semiconductor lasers or light-emitting diodes (LEDs).  Such materials and devices are not 
uncommon in infrared, ultraviolet, and microwave detectors and sources either sought by or 
under consideration as new concepts by the U.S. Army.  

As a specific motivation, consider the optical gain medium in quantum dot lasers composed of an 
array of indium arsenide (InAs) inclusions embedded in a gallium arsenide (GaAs) matrix that 
have relatively recently been commercialized (3–5).  The mismatch between the lattice constants 
of these two materials is substantial:  7% (6).  Strain may affect the states of optically active 
electrons through piezoelectric effects, especially for nitride semiconductor optoelectronics (7, 
8).  However, even where such effects are absent or negligible, strain still has important effects 
on the electronic properties of a device, such as the minimum energy needed to promote an 
electron from the ground state to an excited state (9, 10). 
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In this report, we perform a brief survey of various existing methods used to estimate the 
energies and quantum-mechanical wave functions of systems of electrons, how these methods 
take strain into account, and where they intersect with concepts from solid mechanics.  As such, 
we consider only the first part of the two-part problem—the accurate computational 
determination of electronic band structure in strained materials and structures.  The survey will 
predominantly cover approximate empirical approaches.  However, in order to make clear what 
impact the approximations in these approaches have had, the survey will include a brief 
discussion of the computationally expensive quantum-mechanical approaches known as ab initio 
methods, which will be contrasted with the empirical electronic structure methods.  The 
multiscale aspects of these empirical methods will be highlighted.   

The intended audience is the community of researchers with interest in accurately computing the 
electronic structure properties and, in particular, the excited state properties of materials.  
However, considering the intersection with concepts of strain, the intended community would be 
more familiar with concepts of elasticity and deformability of solids.  Thus, section 2 starts with 
a brief review of electronic structure theory, providing the mathematical starting point to which 
later assumptions are ascribed for the sake of computational feasibility.  It then briefly describes 
ab initio methods and tersely lays the foundations for first-principles approaches, including 
discussion of spin-orbit coupling.  Section 3 presents an overview of empirical atomistic 
approaches that covers the empirical pseudopotential and the Slater-Koster tight-binding 
methods.  Section 4 describes the so-called continuum methods, specifically the interrelated  
݇ ⋅  envelope function, and effective mass methods.  A potential issue for computing electronic 
structures of heterogeneous domains comprised of multiple materials—the valence band offset—
is described in section 5 within the context of the empirical approaches covered in this report.  In 
section 6, we show computed comparisons of the different methods using models of GaAs, InAs, 
and aluminum arsenide (AlAs).  Section 7 completes the report with conclusions. 

2. Background:  Electronic Structure Theory 

In principle, the electronic structure of a system of ݊ electrons and ܯ atomic nuclei, whether it 
be a bulk crystal, molecule, nanostructure, etc., is the solution of a many-body quantum 
mechanical differential equation.  For a nonrelativistic system, this equation is the (time-
independent) many-electron Schrödinger equation (11):  

ሽሻܚୣషΨሺሼ	୫ୟ୬୷ܪ  ൌ ୭୲,ܧ
 Ψሺሼܚሽሻ	, (1) 

where ሼܚሽ is shorthand for all of the electron coordinates ܚଵ, ,ଶܚ … ,   and their spinsܚ
,ଵݏ ,ଶݏ … , ୭୲,ܧ ,ሽሻ is the ݇୲୦ many-electron wavefunction, and for this wavefunctionܚ.  Ψሺሼݏ

  
is the total energy of the ݊ electrons in the system.  ܪ୫ୟ୬୷	ୣష is a differential operator called the 
many-electron Hamiltonian.  Here, the notation is such that ܧ୭୲,

  ୭୲,ଵܧ
  ୭୲,ଶܧ

 , etc., where 
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୭୲,ܧ
  is the lowest possible energy of the electrons in the system, that is, the ground-state 

energy, and Ψሺሼܚሽሻ denotes a ground-state many-electron wavefunction.  (If, for 
example,	ܧ୭୲,

 ൌ ୭୲,ଵܧ
 , then Ψଵሺሼܚሽሻ is also a ground-state wavefunction.)  Wavefunctions 

with energies higher than ܧ୭୲,
  correspond to excited states of the system.  The physical 

meaning of Ψ is such that 

 ܲ ൌ ∑   …
	
ஐమ

	
ஐభ

 |Ψሺሼܚሽሻ|ଶdଷܚଵdଷܚଶ …dଷܚ
	
ஐ௦భ,௦మ,…,௦  (2) 

is the probability that electron 1 is in the region Ωଵ, electron 2 is in the region Ωଶ, etc., provided 
that Ψ is normalized so that ܲ ൌ 1 if Ωଵ, Ωଶ, … , Ω → ∞.  The summation in equation 2 is over 
all possible spin values of the electrons.  The many-electron wavefunction must satisfy the Pauli 
exclusion principle, which states that two electrons cannot share the same state.  The principle is 
satisfied if, and only if, this wavefunction changes sign when two electronic coordinates are 
exchanged, that is, 

 Ψ୧ሺrଵ, sଵ, rଶ, sଶ, … , r୧, s୧, r୧ାଵ, s୧ାଵ … , r୬, s୬ሻ	
                     																											ൌ െΨ୧ሺrଵ, rଶ, … , r୧ାଵ, s୧ାଵ, r୧, s୧, … , r୬, s୬ሻ	. (3) 

If two electrons were to share the same state, i.e., if ሺܚ, ሻݏ ൌ ሺܚାଵ,  ାଵሻ, then Ψ would have toݏ
equal zero for equation 3 to hold. 

If the nuclei are treated as classical point particles, then ܪ୫ୟ୬୷	ୣష takes the following form (11):   

ୣష	୫ୟ୬୷ܪ ൌ ∑ ቂܘ
ෝ⋅ܘෝ

ଶ
 ܸୣ ୶୲ሺܚ, ሼ܀ሽெሻቃ


ୀଵ  ୧ܸ୬୲ୣ୰ሺሼܚሽሻ . (4)

Here, ܘෝ ൌ െi is the momentum operator, i ൌ √െ1,  ൌ  is the reduced Planck ߨ2/݄
constant,  is the del operator defined with respect to electron coordinate ܚ, ݉ is the mass of 
an electron, and 

 

ܸୣ ୶୲ሺܚ, ሼ܀ሽெሻ ൌ െ ଵ

ସగఢబ
∑ మ

|܀ିܚ|
ெ
ୀଵ  . (5)

 

୧ܸ୬୲ୣ୰ሺሼܚሽሻ ൌ
ଵ

ସగఢబ
∑ ∑ మ

หܚିܚೕห

ୀାଵ

ିଵ
ୀଵ  , (6)

where ݍ is the magnitude of the charge of an electron, ߳ is the permittivity of free space, and  
ሼ܀ሽெ is shorthand for the coordinates of all ܯ nuclei of the system ܀ଵ, ,ଶ܀ … ,  ெ and their܀
respective atomic numbers ܼଵ, ܼଶ, … , ܼெ.  ܘෝ ⋅ ෝܘ 2݉⁄  is the kinetic energy operator for electron 
݅.  The sum of ∑ ܸୣ ୶୲ሺܚ, ሼ܀ሽெሻ


ୀଵ  and ୧ܸ୬୲ୣ୰ሺሼܚሽሻ is the total electronic potential energy.  

ܸୣ ୶୲ሺܚ, ሼ܀ሽெሻ is called an external potential and accounts for the attractive electrostatic 
interactions between each electron and the nuclei, while ୧ܸ୬୲ୣ୰ሺሼܚሽሻ is an interaction potential 
accounting for the repulsions between the electrons. 
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The presence of ୧ܸ୬୲ୣ୰ሺሼܚሽሻ prevents the ݊-electron Schrödinger equation from being separated 
into ݊ individual equations, which makes an exact solution of the many-electron Schrödinger 
equation intractable for ݊  1.  Instead, the so-called independent electron approximation is 
adopted, where each electron is nominally treated as if it were independent, but the actual 
interaction of each electron with all other electrons in the system is taken into account through an 
effective external potential (12).  This leads to a one-electron Schrödinger equation, which is 

,࢘ଵୣష߰ሺܪ ሻݏ ൌ 
ෝܘ ⋅ ෝܘ
2݉

 ܸୣ ୶୲,ୣሺܚ, ,ݏ ሼ܀ሽெሻ൨߰ሺܚ, ሻݏ ൌ ,ܚ߰ሺܧ ሻ (7)ݏ

for an isolated system, or 

,࢘ሺܓଵୣష߰ܪ ሻݏ ൌ 
ෝܘ ⋅ ෝܘ
2݉

 ܸୣ ୶୲,ୣሺܚ, ,ݏ ሼ܀ሽெሻ൨߰ܓሺܚ, ሻݏ ൌ ,ܚሺܓ߰ܓܧ ሻ (8)ݏ

for a system that is periodic along one or more dimensions.  Here, ܪଵୣష is the one-electron 
Hamiltonian, ܚ and ݏ are the position and spin of the electron, ܘෝ ൌ െi is the momentum 
operator, ܘෝ ⋅ ෝܘ 2݉⁄  is the kinetic energy operator, ܸୣ ୶୲,ୣሺܚ, ,ݏ ሼ܀ሽሻ is an effective external 

potential operator, and ߰ሺܚ, ,ܚሺܓ [or ߰ܧ ,ሻݏ  are the one-electron wavefunction and [ܓܧ ሻ, andݏ
corresponding eigenenergy of electron ݅ (or ݅ܓ).  The quantity ܓ is called a Bloch wavevector, 
which will be defined and discussed later.  The effective external potential may be decomposed 
as 

ܸୣ ୶୲,ୣሺܚ, ,ݏ ሼ܀ሽெሻ ൌ ܸୣ ୶୲ሺܚ, ሼ܀ሽெሻ  ܸୣ ିୣሺܚ, ሻݏ .  (9)

Here, ܸୣ ିୣሺܚ,  and ܚ ሻ is an operator that takes into account the interaction between an electron atݏ
all the other electrons in the system.  The relationship between the one-electron wavefunction  
߰ሺܚ, ,ܚሺܓሻ, or ߰ݏ ሽሻ depends on ܸୣܚሻ, and the full many-body wavefunction Ψሺሼݏ ିୣሺܚ,  ሻ, soݏ
approximations to ܸୣ ିୣሺܚ,  ሻ lead to certain approximations to this relationship, as seen in sectionݏ
2.1 on ab initio methods.  The eigenenergies ܧ, or ܧܓ, can be viewed as a set of energy levels 
(11).  Examples of this are pictured in figure 1, which shows a schematic of these levels for an 
isolated atom with a nuclear charge of ݊ in four different configurations:  (1) ground state of the 
atom when it is neutral, i.e., the number of electrons equals the nuclear charge ݊; (2) ground state 
of the atom with an extra negative charge; (3) ground state of the atom with an extra positive 
charge; and (4) a neutral excited state of the atom.  The total electronic energies of each state are 
shown.  Because of the Pauli exclusion principle, only two electrons (one spin-up and one spin-
down) can occupy each energy level.  If ݊ is even, all the levels up to ܧୡୣ୧୪ሺ ଶ⁄ ሻ are occupied in 

the ground state of a neutral atom.  Otherwise, one of the energy levels is partially occupied, 
even in the ground state.  [The ceilሺ ሻfunction returns the smallest integer greater than or equal 
to its argument.]  Here, energy levels above the highest ground-state energy level, ܧୡୣ୧୪ሺ ଶ⁄ ሻ, are 
energies required to add an electron to the system at a certain level, so ܧୡୣ୧୪ሺ ଶ⁄ ሻାଵ ൌ ୭୲,ܧ

ାଵ 	
െܧ୭୲,

 ୡୣ୧୪ሺܧ , ଶ⁄ ሻାଶ ൌ ୭୲,ଵܧ
ାଵ െ ୭୲,ܧ

 , etc.  Energies equal to or below the highest ground-state 
energy level are energies required to remove an electron from the system, so ܧୡୣ୧୪ሺ ଶ⁄ ሻ	
ൌ ୭୲,ܧ

 െ ୭୲,ܧ
ିଵ ୡୣ୧୪ሺܧ , ଶ⁄ ሻିଵ ൌ ୭୲,ܧ

 െ ୭୲,ଵܧ
ିଵ , etc. (13).  To a first approximation, the available 
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Figure 1.  Energy levels of an isolated atom with a nuclear charge of n in four 
different configurations:  (1) ground state of the atom when it is 
neutral, i.e., the number of electrons equals the nuclear charge n, 
(2) ground state of the atom with an extra negative charge, (3) ground 
state of the atom with an extra positive charge, and (4) a neutral 
excited state of the atom, where an electron has been excited from 
level ceil(n/2) to ceil(n/2)+1.  The total electronic energies of each 
state are shown.  The ceil() function, which returns the smallest 
integer greater than or equal to its argument, accounts for the case 
where n is odd.  In the diagram shown, however, n is even. 

neutral excited states may be estimated from these energy levels that—strictly speaking—pertain 
to addition and removal of electrons.  For example, a neutral excited state may be treated as if it 
were due to an addition of an electron at a higher energy level followed by the removal of an 
electron at a lower level.  Such a state is shown in figure 1, where an electron is excited to the 
next higher energy level and increased in energy by ܧୡୣ୧୪ሺ ଶ⁄ ሻାଵ െ ୡୣ୧୪ሺܧ ଶ⁄ ሻ.  An electron in such 

an excited state will emit a photon with that amount of energy when it returns to the ground state, 
a process that is important in devices such as lasers and LEDs (14).  Naturally, however, this 
approximation is best suited for the addition or removal of electrons in the system, as opposed to 
elementary excitations such as bound states or electron-hole pairs (13, 15, 16).  Additional 
energy levels may be introduced by the attraction between an excited electron and the vacancy or 
“hole” it leaves behind in its former energy level.  These new levels cannot be predicted from the 
addition and removal energies of the independent-electron approximation.  For simplicity, the 
energy levels in the figure have been presented as if they were distinct, but this is often not the 
case.  Rather, different one-electron wavefunctions, e.g., ߰ and ߰ାଵ, can share the same energy 
eigenvalue; that is, ܧ ൌ  .ାଵ.  Such energy levels are called degenerateܧ

For periodic systems, the one-electron eigenenergy ܧܓ depends on the quantity ܓ in equation 8, 
which comes from the Bloch theorem.  This theorem states that if the potential ܸୣ ୶୲,ୣ is 

periodic, the one-electron wavefunction has the form (12)
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߰ܓሺܚ, ሻݏ ൌ e୧ݑܚ⋅ܓܓሺܚ, ሻ , (10)ݏ

where ܓ is called a Bloch wavevector, and ݑܓሺܚ, ሻ has the same periodicity as ܸୣݏ ୶୲,ୣ.  The one-

electron wavefunction, then, has the form of a traveling wave propagating in the direction of ܓ.  

The periodicity of the potential can be expressed in terms of a lattice vector ܀ഥ ൌ ∑ ݉܉
ே
ୀଵ , 

where ݉ and ܰ are integers and ܉ is a primitive lattice vector.  Accordingly, 

ܸୣ ୶୲,ୣሺܚ, ,ݏ ሼ܀ሽெሻ ൌ ܸୣ ୶୲,ୣሺܚ  ,ഥ܀ ,ݏ ሼ܀ሽெሻ , 

and 

,ܚሺܓݑ ሻݏ ൌ ܚሺܓݑ  ,ഥ܀ ሻݏ . 
(11)

If the system is periodic in all three directions, then ܰ ൌ 3 and the three lattice vectors form a 

unit cell, as shown in figure 2.  The Bloch wave vector can then point along any direction in 
space.  If the periodicity is confined to a plane, then ܰ ൌ 2 and the wave vector ܓ is also 

confined within the plane defined by the two lattice vectors ܉ଵ and ܉ଶ.  If there is only 
periodicity along one dimension, then ܰ ൌ 1 and ܓ is parallel or antiparallel to ܉ଵ (10).  For any 
value of ܰ, a reciprocal space can be defined such that its primitive vectors satisfy the 
relationship ܊ ⋅ ܉ ൌ   is the Kronecker delta.  A general vector in reciprocalߜ , whereߜߨ2

space is ܙ ൌ ∑ ܿ
ଷ
ୀଵ  ,, where ܿ may be any real number; a general reciprocal lattice vector܊

then, is ۵ ൌ ∑ ݊
ଷ
ୀଵ ഥ⋅۵܀, where ݊ is an integer.  In general, ݁୧܊ ൌ 1.  The Bloch wave vector ܓ 

exists within the subset of reciprocal space called either the first Brillouin zone or simply the 
Brillouin zone, which consists of the points in reciprocal space closer to ۵ ൌ 0 than to any other 
reciprocal lattice point (12).   

 

Figure 2.  The three primitive lattice vectors of 3-D 
crystalline unit cell, which is shown in dashed 
lines as a parallelepiped.  The origin of the 
primitive lattice vectors is shown as located at 
a corner of a unit cell of a crystal, but the 
origin is arbitrary and can be taken to be, for 
example, the center of a unit cell. 
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Figure 3d shows the Brillouin zone of a bulk crystal with a zincblende or diamond-type structure.  
These two structures are common in semiconductors such as GaAs and silicon (Si).  The 
conventional cubic unit cells of such crystal structures are shown in figures 3a and b, while the 
primitive unit cells (i.e., the smallest possible unit cells needed to specify the crystal structure) 
are shown in figure 3c.  Certain high-symmetry points in the Brillouin zone are given special 
labels.  For example, the center of the zone, where ܓ ൌ 0, is denoted σ.  The labels for other 
high-symmetry points are shown in figure 3d.  Typically, ܧܓ is plotted for values of ܓ that trace 
a path connecting several of these high-symmetry points in the Brillouin zone (17), and such a 
plot is shown in figure 4, where the path traced is from ܮ to σ to ܺ to ܭ and back to σ.  These 
plots are diagrams of the band structure of the crystal. 

 

Figure 3.  (a) Conventional unit cell of a material with a zincblende crystal structure and lattice constant ܽ.  
(b) Conventional unit cell of a material with a diamond crystal structure and a lattice constant ܽ.  The 
only difference between the zincblende and diamond structures is that the atoms in the latter are all of 
the same type.  (c) The primitive unit cells for zincblende- and diamond-type crystals.  (d) Brillouin 
zone corresponding to the primitive cells shown in subfigure (c).  The primitive lattice vectors are taken 
to be a1 = (ܽോ2) (ey + ez), a2 = (ܽോ2) (eᵡ	+ ez), and a3 = (ܽോ2) (eᵡ	+ey), where eᵡ, ey, and ez are unit vectors 
pointing along the ݕ ,-ݔ-, and ݖ-directions shown in subfigures (a) and (b) (12).  Special high-symmetry 
points in this Brillouin zone are denoted by σ, ܭ, ܹ, ܺ, ܷ, and ܮ.  The line segments connecting points 
σ and ܭ, σ and ܺ, and σ and ܮ are denoted as Є , τ, and ϋ , respectively (17). 

 

 

(a) (b) (c) 

(d) 
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Figure 4.  Band structures of (a) GaAs and (b) Si, as estimated by the method of Vogl et al. (18).  In 
each diagram, the locations of the valence band maximum and conduction band minimum are 
shown.  The zero-energy datum is taken to be the valence band maximum. 

As mentioned before, the energy levels of an isolated ݊-electron atom in its ground state are 
occupied only up to a certain maximum level ܧୡୣ୧୪ሺ ଶ⁄ ሻ.  Similarly, in a crystal in its ground state, 

only bands with energies below a certain maximum level are occupied.  For semiconductors and 
insulators, this maximum level is the valence band maximum.  Figure 4 shows the valence band 
maxima for Si and GaAs.  For an electron in these materials to be excited to the next highest 
band, called the conduction band, its energy must become at least equal to the conduction band 
minimum, which is also shown in figure 4.  The difference between the valence band maximum 
and conduction band minimum is called the band gap energy and is denoted here as ܧ; it 

governs the frequency of  the photon emitted by an excited electron as it returns to the ground 
state.  In the band structure for GaAs shown in figure 4a, the conduction band minimum and 
valence band maximum occur for the same Bloch wave vector ܓ ൌ 0, so GaAs is called a direct 
band gap material.  All that is needed, then, for an electron with such a wave vector to be 
promoted from the valence to the conduction band is to absorb an photon with energy ܧ.  The 

band structure for Si shown in figure 4b shows the conduction band minimum and valence band 
maximum occurring at different wave vector values.  In such a case, to promote an electron from 
the valence band to the conduction band it is not enough for an electron to simply absorb a 
photon with an energy equal to ܧ.  The electron must also have momentum imparted to it by 

thermal vibrations of the crystal nuclei in order to change its wave vector to that of the 
conduction band minimum.  For this reason, Si is called an indirect band gap material (12). 

(a) (b) 
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Metals, unlike semiconductors and insulators, have no band gap at all, as seen in the band 
structure of silver (Ag) in figure 5, which is why metals readily conduct.  This illustrates the 
importance of band structure in determining electronic properties. 

 

Figure 5.  Band structure of Ag, as determined via the Naval Research Laboratory (NRL) 
tight-binding code (19, 20).  Since the lattice vectors of the primitive cells of the 
diamond and zincblende structures are the same as that of the primitive cell of 
the crystal structure of Ag (face-centered cubic, or fcc), the special points along 
the horizontal axis of this diagram are the same as those in figure 3d.  The 
primitive cell of an fcc lattice has only one unit cell. 

To summarize, while the electronic structure of a system is in principle the solution of an 
intractable many-body equation, in practice it can be characterized by a picture where the 
electrons are nominally treated as independent and each have their own eigenenergies and one-
electron wavefunctions.  For nonperiodic systems, these eigenenergies are discrete values ܧ, but 
periodicity in one or more directions introduces a wavevector ܓ on which the eigenenergies, now 
denoted as ܧܓ, also depend.  Examination of these eigenenergies can shed light on various 
physical properties of the system, as shown for relatively simple examples such as isolated atoms 
and bulk crystals.  How one may obtain an effective one-electron equation from the many-
electron equation, and the relationship of the one-electron wavefunctions to the many-body 
wavefunction, will be discussed in the following section on ab initio methods. 

2.1 Ab Initio Methods 

Ab initio methods amount to ways of either approximately solving the many-electron 
Schrödinger equation or determining quantities of interest, such as ܧ୭୲,

 , without directly 
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solving the many-electron equation itself.  Often, these methods involve solving an effective 
one-electron Schrödinger equation.  Some methods are characterized by the approximations 
involved in formulating the operator ܸୣ ିୣ that take into account the interaction between 
electrons.  Other formulations may be exact in principle but still require approximations to obtain 
solutions in practice.  For the sake of simplicity, dependencies on the wave vector ܓ or spin are 
suppressed in the following briefly outlined methods. 

One of the earliest ab initio approaches, the Hartree approximation, makes calculations tractable 
through the assumption that the electrons of the system can be treated as if they were smeared 
out into a cloud with charge density െߩݍሺܚሻ, where ߩሺܚሻ ൌ 	∑ୀଵ

 |߰ሺܚሻ|ଶ.  The interaction 
potential between an electron at ܚ and all other electrons is then approximated as an integral over 
 .ሻ (11, 12)ܚሺߩ

																				
െݍ
߳ߨ4


െݍ

หܚ െ หܚ



ୀଵ

ൎ
ଶݍ

߳ߨ4
න

ሻ′ܚሺߩ
ܚ| െ |′ܚ

dଷܚ′ ൌ ܸୣ ିୣሺܚሻ . (12)

The integration is over all possible values of ܚ′, that is, over all space. 

With this approximation, the one-electron Schrödinger equation may be solved iteratively, as 
illustrated by the pseudocode in figure 6.  One begins with an initial guess for ߰ሺܚሻ, calculates 
ሻ and then ܸୣܚሺߩ ିୣ and ܸୣ ୶୲,ୣ from that guess, solves the one-electron Schrödinger equation 
using the estimated ܸୣ ୶୲,ୣ, and then checks if the value of ߰ሺܚሻ and the initial guess 

approximately match, given a certain tolerance.  If not, the more recently calculated estimate of 
߰ሺܚሻ becomes the starting guess for the next iteration.  (This iterative process could be refined 
to make it more numerically stable by, for example, using a mixture of previous guesses as the 
guess for the next iteration [21].)  This is called a self-consistent approach. 

The pseudocode shown in figure 6 does not specify the means of solving the eigenproblem in 
each iteration.  It is possible, for example, to discretize the problem via a finite-difference 
scheme (22) or by finite elements (23).  More commonly, though, the eigenproblem is solved 
through the means shown in figure 7, where the one-electron wavefunction is expanded in a 
linear combination of basis functions, such as plane waves, atomic orbitals, or Gaussians (21), 
and a matrix equation is obtained by substituting the expansion into the eigenproblem, 
multiplying through by the complex conjugate of one of the basis functions and integrating.  The 
resulting matrix equation is a generalized eigenvalue problem that may be solved numerically.  
When ܸୣ ୶୲,ୣ depends on the one-electron wavefunctions, the latter’s basis function expansions 

are substituted into it as well.
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Figure 6.  Example pseudocode for iteratively solving the one-electron 
Schrödinger equation using the Hartree approximation. 
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Figure 7.  Pseudocode for transforming a general one-electron 
Schrödinger equation into a matrix equation that can be 
solved numerically.  The superscript “†” indicates the 
complex conjugate. 

The approximation in equation 12 is fairly drastic because it implies that                    
	Ψሺሼܚሽሻ ൌ ∏ୀଵ

 ߰ሺܚሻ, which violates the antisymmetry condition for the many-electron 
wavefunction in equation 3.  The Hartree-Fock method (24) corrects this particular problem by 
assuming that Ψሺሼܚሽሻ is a Slater determinant of the one-electron wavefunctions. 

Ψሺሼܚሽሻ ൌ
ଵ

√!
ተ

߰ଵሺܚଵሻ ߰ଵሺܚଶሻ ⋯ ߰ଵሺܚሻ
߰ଶሺܚଵሻ ߰ଶሺܚଶሻ ⋯ ߰ଶሺܚሻ

⋮ ⋮ ⋱ ⋮
߰ሺܚଵሻ ߰ሺܚଶሻ ⋯ ߰ሺܚሻ

ተ . (13)

An exchange of two coordinates implies a switching of two columns of the determinant, which 
causes a change in the sign of Ψሺሼܚሽሻ.  As a consequence of this form of the many-electron 
wavefunction, ܸୣ ିୣሺܚሻ becomes (12) 

ܸୣ ିୣሺܚሻ߰ሺܚሻ ൌ ቂ మ

ସగఢబ

ఘ൫ܚᇲ൯

|ᇲܚିܚ|
dଷܚᇱቃ ߰ሺܚሻ െ

మ

ସగఢబ
∑ 

టೕ
ሺܚሻటሺܚᇱሻ

|ᇲܚିܚ|
dଷܚ′

ୀଵ ߰ሺܚሻߜ௦௦ೕ , (14)

where the superscript “†” indicates the complex conjugate and ߜ௦௦ೕ equals one if ݏ ൌ  , andݏ

zero otherwise where ݏ and ݏ are the spins of electrons ݅ and ݆.  Pseudocode for the Hartree-

Fock approximation is shown in figure 3.  One may solve the resulting eigenproblems from this 
algorithm through the method shown in figure 8.  While in the original Hartree approximation,
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Figure 8.  Example pseudocode for iteratively solving the one-electron 
Schrödinger equation using the Hartree-Fock approximation. 

ܸୣ ିୣ is simply a function of ܚ that is multiplied by ߰ሺܚሻ, in the Hartree-Fock approximation, 
ܸୣ ିୣ becomes an integral operator, and one that involves ݊ integrations for each one-electron 
wavefunction ߰ሺܚሻ.  Taking the Pauli principle into account thus entails increased 
computational expense. 

The Kohn-Sham equations of density functional theory (DFT) (25) are different from the 
previously mentioned, effective one-electron Schrödinger equations because they are essentially 
a mathematical tool to find the total energy and electron density at the ground state.  In principle, 
the total energy of the system is a functional of the electron density ܧሾߩሿ.  The value of ߩሺܚሻ that 
minimizes ܧሾߩሿ is the ground-state electron density, and the minimum value of ܧሾߩሿ is the 
ground-state total energy ܧ୭୲,

 .  However, ܧሾߩሿ cannot, in general, be expressed as an explicit, 

analytic functional of the density that can be directly minimized (21).  To work around this, 
Kohn and Sham (26) posited a fictitious auxiliary system of noninteracting electrons whose 
ground-state charge density and total energy are identical to that of the real ݊-electron system. 
For this auxiliary system, ߩሺܚሻ ൌ 	∑ୀଵ

 |߰ሺܚሻ|ଶ, and
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ܸୣ ିୣሺܚሻ ൌ
మ

ସగఢబ

ఘ൫ܚᇲ൯

|ᇲܚିܚ|
dଷܚᇱ  ܸሾߩሿ , (15)

where ܸሾߩሿ is a functional derivative with respect to ߩ of the exchange-correlation energy 
 ሿ, which takes into account the part of the electron-electron interactions not taken intoߩሾܧ
account by the first term of ܸୣ ିୣሺܚሻ.  The Kohn-Sham equations, then, are solved iteratively with 
the self-consistent approach used to solve the one-electron Schrödinger equations in the Hartree 
and Hartree-Fock approximations.  Once the equations are solved, the ground-state total energy  
may be determined as follows (25, 26): 

୭୲,ܧ
 ൌ ∑ ܧ


ୀଵ െ మ

ସగఢబ
 

ఘሺܚሻఘ൫ܚᇲ൯

|ᇲܚିܚ|
dଷܚ dଷܚᇱ െ ሻܚሺߩ ܸdଷܚ  . (16)	ሿߩሾܧ

In principle, the Kohn-Sham scheme can yield the exact values of the ground-state density and 
total energy, though in practice ܧ is not known exactly and must be approximated.  However, 
because the Kohn-Sham equations are one-electron Schrödinger equations for a fictive, auxiliary 
system of noninteracting electrons, there is no rigorous justification to treat the eigenvalues ܧ 
that come from solving these equations as addition or removal energies of electrons of the true 
݊-electron system.  This means, for example, that ܧାଵ െ   may not even be a goodܧ
approximation for the energy needed for an electron to be excited from energy level ݇ to ݇  1.  
Often, the band structure estimated from treating Kohn-Sham eigenvalues as if they were one-
electron energies will capture qualitative trends but underestimate band gaps (13). 

There are several other ab initio methods, which will be mentioned only briefly here since they 
are largely outside the scope of this survey.  The configuration interaction method builds upon 
the Hartree-Fock method and expands the many-electron wavefunction into a linear combination 
of Slater determinants rather than a single one as in equation 1 (11).  Both ܹܩ and Bethe-
Salpeter are variations of many-body perturbation theories.  The ܹܩ method is a generalization 
of the Hartree-Fock approximation that accounts for dynamic Coulomb screening and can 
represent charged excitations to yield band structures that are a closer match to experiment (13).  
The Bethe-Salpeter equation is derived from the so-called four-point Dyson equation, which 
therefore can represent excitonic effects and may be suited for accurate estimations of 
photoabsorption spectra (13, 15).  And, unlike the original DFT for time-independent systems, 
time-dependent DFT is capable of yielding excitation energies and photoabsorption spectra (15, 
27).  However, like regular DFT, it is a reformulation of the many-body quantum mechanical 
equation in terms of electron densities and is dependent on an available approximation for the 
exchange-correlation energy ܧ.  This can lead, for example, to difficulties in determining the 
excited states of nonmetallic bulk solids (27). 

The examples of ab initio methods briefly outlined have several points in common.  First, they 
are free of empirical parameters aside from fundamental constants such as  or ݉.  Second, the 
operator that each uses to account for interactions between electrons, ܸୣ ିୣሺܚሻ, 
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depends on the very one-particle wavefunctions ߰ሺܚሻ one is seeking to solve.  In principle, one 
can solve the effective one-particle Schrödinger equation self-consistently, that is, start from trial 
values of ߰ሺܚሻ and iterate.  In practice, the Hartree-Fock and Kohn-Sham equations are usually 
solved this way.  Third, any effects of strain can be taken into account entirely through changes 
in the positions of the atomic nuclei ሼ܀ሽெ, which manifest through changes in the external 
potential ܸୣ ୶୲.  Finally, these methods are all very computationally expensive and are suitable 
primarily for very small systems.  For example, as a rule of thumb, given the current state of the 
art, DFT is usually feasible for systems of up to a few hundred atoms (28), though there are some 
numerical algorithms that introduce approximations that allow DFT to be applied to systems 
with thousands of atoms (21).  The ܹܩ method is even more expensive and generally suitable 
for systems with no more than a few 10s of atoms (29, 30).  This starkly contrasts with the 
scalability of the empirical methods discussed in the following sections. 

2.2 Spin-Orbit Interaction 

In much of this survey, the effects of spin will be ignored for the sake of simplicity.  However, if 
need be, to account for spin in the one-electron picture, the wavefunction may be written as a 
spinor, where (31) 

߰ܓሺܚሻ ൌ ߰ܓ
↑ ሺܚሻ ቂ1

0
ቃ  ߰ܓ

↓ ሺܚሻ ቂ0
1
ቃ , (17)

where the symbols “↑” and “↓” denote the spin-up and spin-down states of an electron.  ߰ܓ
ற ሺܚሻ 

is, then, the Hermitian conjugate of ߰ܓሺܚሻ.  The one-electron Hamiltonian with a spin-orbit 
correction term is (32) 

,ܚଵୣషሺܪ ሼ܀ሽஶሻ ൌ
ෝܘ⋅ෝܘ

ଶ
 ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ 



ସ
మమ

ൣ ܸୣ ୶୲,ୣ ൈ ોෝ൧	, (18)

where ܿ is the speed of light and ોෝ is a vector operator whose elements are the Pauli spin 
matrices (31, 32) 

ොଵߪ ൌ ቂ0 1
1 0

ቃ	,			ߪොଶ ൌ ቂ 0 െi
െi 0

ቃ , and ොଷߪ ൌ ቂ1 0
0 െ1

ቃ . (19)

The effect of spin-orbit interaction on the band structure of GaAs is shown in figure 9.  This 
interaction introduces the split-off band, so called because it splits away from the valence band 
maximum.  This effect occurs not only in GaAs but is common in semiconductors (32).
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Figure 9.  The calculated band structure of GaAs near the Γ point (a) without and (b) with 
spin-orbit correction.  The band structures were estimated using the method and 
parameters of Boykin et al. (33). 

3. Atomistic Methods 

Empirical approaches tend to be less computationally expensive and thus scalable to relatively 
large systems, and this holds true even for the empirical methods that retain atomic-level 
resolution, such as the empirical pseudopotential (34) and tight-binding (35) methods.  
Simulations with these methods can be feasible for systems with thousands or even millions of 
atoms.  One reason for their lack of computational expense as compared to ab initio methods is 
that they do not require iterating to self-consistency.  While these methods can involve 
determining the eigenvalues of large matrices, these values only need to be determined once in 
the course of a calculation.  Another reason is that the calculation of the elements of these 
matrices is comparatively less involved than those of the matrices formed in the implementation 
of the ab initio methods.  For example, there is no need to integrate a functional of the electron 
density ߩሺܚሻ, which in turn requires a sum over ݊ one-electron wavefunctions.  There is a cost to 
this relative ease of computational expense, though.  First, these methods require parameters that 
are fit to experiment and/or previous ab initio results, and the process of fitting these parameters 
is not trivial.  As an example, Boykin et al. (33) use a genetic algorithm to fit over 30 parameters.  
Second, these methods involve various approximations, such as neglecting certain terms or 
assuming that various quantities may be expressed in certain functional forms.  Even the lack of 
iterating until self-consistency entails an approximation, one that prevents the changes in the 
positions of the atomic nuclei ሼ܀ሽெ from fully taking the effects of strain into account, a matter 
that which will be discussed in more detail in section 3.3.  Nonetheless, these empirical 
approaches are useful, especially where ab initio methods are impractical. 

(a) (b) 
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3.1 Empirical Pseudopotential Method 

The empirical pseudopotential method (34) is an approach originally used to determine the 
electronic band structure of bulk crystals (36, 37) where the effective potential is periodic.  The 
effective potential may be split up as (38) 

ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ ൌ ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ  ܸே , (20)

where	ሼ܀ሽஶ contains the set of coordinates of all the atoms of the infinite bulk crystal.  The term 
ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ is a function of position and is here called the local part of the potential, while 

the operator ܸே is a correction term that accounts for ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ not being a mere function 
of position and is called the nonlocal part.  Both terms of ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ are periodic, and 
ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ can be expanded as a complex Fourier series, 

ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ ൌ ∑ ෨ܸ

ୣ୶୲,ୣ
୪୭ୡ ሺ۵ሻe୧۵⋅۵ܚ , (21)

where (10, 39) 

܍,ܜܠ܍෩ࢂ
܋ܗܔ ሺ۵ሻ ൌ 

ષࢉ
 ܍,ܜܠ܍ࢂ

܋ܗܔ ሺܚ, ሼ܀ሽஶሻ
	
ષࢉ

ܚ܌ܚ⋅۵ܑି܍ . (22)

Here, Ω is the volume of the unit cell of the bulk crystal and the quantity ۵ is a reciprocal lattice 
vector.  Because the bulk crystal is periodic, the Bloch theorem applies, i.e., 	
߰ܓሺܚሻ ൌ e୧ݑܚ⋅ܓܓሺܚሻ.  Because of the periodicity of ݑܓሺܚሻ, it can be expanded in a complex 
Fourier series, so that 

߰ܓሺܚሻ ൌ
ଵ

ඥஐ
∑ ሺ۵ሻ۵ܓݑ e୧ሺܓା۵ሻ⋅ܚ , (23)

where 1/ඥΩ is a normalization prefactor.  Alternatively, this may be described as expanding 

߰ܓሺܚሻ in terms of plane waves, each with a wavevector ܓ  ۵.  If one (1) substitutes equation 
23 into equation 7, the one-electron Schrödinger equation, (2) multiplies both sides of the 
equation by eି୧൫ܓା۵

ᇲ൯⋅ܚ/ඥΩ, (3) integrates, and (4) substitutes equation 22, one may obtain the 

following matrix equation (10): 

 

ቈ
ଶ

2݉
ܓ|  ۵|ଶ۵۵ߜᇲ  ෨ܸ

ୣ୶୲,ୣ
୪୭ୡ ሺ۵ᇱ െ ۵ሻ  ෨ܸேሺܓ, ۵ᇱ, ۵ሻ ሺ۵ሻܓݑ

۵

ൌ  (24)	ሺ۵′ሻܓݑܓܧ

where 

෨ܸேሺܓ, ۵ᇱ, ۵ሻ ൌ
ଵ

ஐ
 eି୧൫ܓା۵

ᇲ൯⋅ܚ ܸேe୧ሺܓା۵ሻ⋅ܚdଷܚஐ
, 

and 
(25)
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۵۵ᇲߜ ൌ
ଵ

ஐ∗
 e୧൫۵

ᇲି۵൯⋅ܚdଷܚ
	
ஐ∗

ൌ ൜1, ۵ ൌ ۵′
0, ۵ ് ۵′

. (26)

Here, Ω∗ is an arbitrary volume, which for the previous derivation of the matrix equation is Ω.  
Given a value of the Bloch wave vector k, equation 24 can then be solved for the eigenvalues 
 In principle, there are infinitely many values of the reciprocal lattice vector ۵, so to solve  .ܓܧ
the matrix equation numerically, a subset of the values of this vector are used that satisfy the 
condition 

మ

ଶ
ܓ|  ۵|ଶ  ୡ୳୲ܧ , (27)

where ܧୡ୳୲ is an energy cutoff (37).  Algorithms for finding reciprocal lattice vectors within the 
energy cutoff are in appendix A. 

If spin-orbit coupling is taken into account, for each wave vector ܓ and reciprocal lattice vector 
۵ there are two plane waves, one for a spin-up electron and one for a spin-down electron.  
Equation 24 is then modified to become 

∑ ∑ ,ܓ෩ሺܪൣ ۵ᇱ, ۵ሻߜ௦௦ᇲ  ,ܓ෩ௌைሺܪ ۵ᇱ, ۵, ,′ݏ ,ሺ۵ܓݑሻ൧ݏ ሻ௦۵ݏ ൌ ,ሺ۵ᇱܓݑܓܧ  (28)	ሻ′ݏ

where ݏ, ᇱݏ ∈ ሼ↑, ↓ሽ	, 

,ܓ෩ሺܪ ۵ᇱ, ۵ሻ ൌ మ

ଶ
ܓ|  ۵|ଶ۵۵ߜᇲ  ෨ܸ

ୣ୶୲,ୣ
୪୭ୡ ሺ۵ᇱ െ ۵ሻ  ෨ܸேሺܓ, ۵ᇱ, ۵ሻ ,  (29)

 

௦௦ᇲߜ ൌ ൜1, ݏ ൌ ′ݏ
0, otherwise

 (30)

and ܪ෩ௌைሺܓ, ۵ᇱ, ۵, ,′ݏ  ሻ is a correction term for spin-orbit coupling.  In some formulations, thisݏ
term is expressed analytically as a function of 	۵ ,ܓ, and ۵’ (38), while in others, the spin-orbit 
correction is calculated in real space and then numerically converted into Fourier space (40). 

Both the nonlocal and spin-orbit correction terms may be neglected, as was done, for example, in 
the formulation by Cohen and Bergstresser (37).  Alternatively, the spin-orbit correction may be 
kept while neglecting any other nonlocal corrections, as was done by Williamson and Zunger 
(41).  Williamson et al. (42) accounted for these other nonlocal corrections not through the term 
ܸே, but by multiplying the kinetic energy operator ܘෝ ⋅ ෝܘ 2݉⁄  (or equivalently, 
ଶ ܓ|  ۵|ଶ۵۵ߜᇲ 2݉⁄ , in Fourier space), by a fitting parameter.  For the sake of simplicity, 
neither the nonlocal correction term nor the spin-orbit terms in the empirical pseudopotential 
method will be discussed further. 
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The principal approximation in the empirical pseudopotential method is to express       
෨ܸୣ୶୲,ୣሺ۵ᇱ െ ۵ሻ as a function of empirically determined parameters.  The local part of the 
effective potential ܸୣ ୶୲,ୣ

୪୭ୡ ሺܚ, ሼ܀ሽஶሻ is taken to be a sum of contributions from individual atoms 

(34),  

ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ ൌ ∑ ∑ ܚ൫ݒ െ ഥ܀ െ ൯܌

ே౦౨	ౙౢౢ
ୀଵ

ஶ
ୀଵ , (31)

where ܀ഥ is the lattice vector of the ݅୲୦ unit cell of the bulk crystal, and ܀ഥ    is the position܌
vector of the ݆୲୦ atom within this cell.  ୮ܰୣ୰	ୡୣ୪୪ is the number of atoms per unit cell.  One can 

rewrite the summation as 

ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ ൌ  ܸ൫ܚ െ ൯܌

ே౦౨ ౙౢౢ

ୀଵ

 (32)

where 

ܸሺܚሻ ൌ ∑ ܚሺݒ െ ഥሻ܀
ஶ
ୀଵ . (33)

Both ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ and ܸሺܚሻ are periodic and can also be expressed as complex Fourier 

series.  The former has already been shown in equations 21 and 22.  For the latter, one may write 

ܸሺܚሻ ൌ ∑ ෨ܸሺ۵ሻe୧۵⋅۵ܚ , ෨ܸሺ۵ሻ ൌ
ଵ

ஐ
 ܸሺܚሻஐ

eି୧۵⋅ܚdଷܚ . (34)

Substituting equation 32 into equation 22 yields 

෨ܸ
ୣ୶୲,ୣ
୪୭ୡ ሺ۵ሻ ൌ 

1
Ω

න ܸ൫ܚ െ ൯܌
ஐ

eି୧۵⋅ܚdଷܚ

ே౦౨	ౙౢౢ

ୀଵ

 

 

ൌ 
1
Ω

න ܸሺܚሻ
ஐ

eି୧۵⋅൫ܚା܌ೕ൯dଷܚ 

ே౦౨	ౙౢౢ

ୀଵ

 

 

ൌ  eି୧۵⋅܌ೕ
1
Ω

න ܸሺܚሻ
ஐ

eି୧۵⋅ܚdଷܚ 

ே౦౨	ౙౢౢ

ୀଵ

 

and 

ൌ  eି୧۵⋅܌ೕ ෩ܸሺ۵ሻ .

ே౦౨	ౙౢౢ

ୀଵ

 (35)
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෨ܸሺ۵ሻ is an atomic form factor, and in the empirical pseudopotential method, it is either an 

empirical parameter (36, 38, 43) or is expressed in terms of empirically determined parameters 
(10, 34, 37).  Pseudocode for an implementation of the empirical pseudopotential method is 
shown in figure 10.  This implementation assumes that the one-electron wavefunctions have been 
expanded in terms of plane waves, as in equation 23.  For diamond and zincblende crystals, 
equation 35 is often rewritten in terms of symmetric and antisymmetric form factors ௌܸሺ۵ሻ and 

ܸሺ۵ሻ, rather than directly in terms of the atomic form factors.  For such crystals, ୮ܰୣ୰	ୡୣ୪୪ ൌ 2, 

and if the lattice vector ܀ഥ is taken to point to the center of the unit cell, then ܌ଵ ൌ െ܌ and 
ଶ܌ ൌ ܌ where ,܌ ൌ ሺ܉ଵ  ଶ܉   ଷ being the lattice vectors shown in܉ ଶ, and܉ ,ଵ܉ ଷሻ/8, with܉
figure 3c.  Given Euler’s formula e୧ఏ ൌ cos ߠ  i sin   one may rewrite equation 35 as ,ߠ

෨ܸ
ୣ୶୲,ୣ
୪୭ୡ ሺ۵ሻ ൌ ൣ	෩ܸଵሺ۵ሻ  	෩ܸଶሺ۵ሻ൧ cosሺ۵ ⋅ ሻ܌  iൣ ෩ܸଵሺ۵ሻ െ ෩ܸଶሺ۵ሻ൧ sinሺ۵ ⋅ ሻ܌

ൌ ௌܸሺ۵ሻ cosሺ۵ ⋅ ሻ܌  i ܸሺ۵ሻ sinሺ۵ ⋅ ሻ܌ .
 (36)

The symmetric and antisymmetric form factors then become fitting parameters instead of the 
atomic form factors themselves.  The method shown in figure 10 is then modified by taking 

ௌܸሺ۵ሻ and ܸሺ۵ሻ as givens rather than the atomic form factors, and by calculating ෨ܸୣ୶୲,ୣ
୪୭ୡ ሺ۵ሻ 

through equation 36 instead of 35.  Cohen and Bergstresser (37) treated ௌܸሺ۵ሻ and ܸሺ۵ሻ as 

functions of the magnitude of ۵ in units of 
ଶగ


, where ܽ is the lattice constant of the crystal, so 

that ௌܸሺ۵ሻ ൌ ௌܸ ቀ
|۵|

ଶగ
ቁ and ܸሺ۵ሻ ൌ ܸ ቀ

|۵|

ଶగ
ቁ.  The values of their form factors for particular 

values of |۵| were fit to reflectivity and photoemission experiments.  Examples of some of these 
parameters for bulk materials Si and GaAs are shown in table 1.  For Si,	෩ܸଵሺ۵ሻ ൌ 	෩ܸଶሺ۵ሻ, which 
means ܸሺ۵ሻ ൌ 0 for this material.  If the unit cell changes size or shape while the relationship 
܌ ൌ ሺ܉ଵ  ଶ܉   ଷሻ/8 still holds, then܉

			۵ ⋅ ܌ ൌ ଵ

଼
∑ ݊܊ ⋅ ሺ܉ଵ  ଶ܉  ଷሻ܉
ଷ
ୀଵ ൌ గ

ସ
∑ ݊
ଷ
ୀଵ ; and ݊ is an integer	.  (37)

Table 1.  Example symmetric and antisymmetric form factors ௌܸሺܽ|۵|/2ߨሻ and ܸሺܽ|۵|/2ߨሻ from Cohen 
and Bergstresser (37), where ܽ is the lattice constant of the material and the form factors are in 
Rydbergs. 

Material ࡿࢂ൫√൯ ࡿࢂሺሻ ࡿࢂ൫√ૡ൯ ࢂ൫√൯ ࢂሺሻ ࢂ൫√ૡ൯ 
Si –0.21 0 0.04 0 0 0 

GaAs –0.23 0 0.01 0.07 0.05 0 

The quantity ۵ ⋅  then, is independent of strains that preserve the relative locations of the atoms ,܌
within the unit cell, such as hydrostatic strains.  However, the form factors are not independent 
of strain.  For example, Aouina et al. (43) have recalculated the symmetric and antisymmetric 
form factors for AlAs under a range of pressures, as shown in table 2.
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Figure 10.  Pseudocode for empirical pseudopotential method where the one-
electron wavefunctions are expanded in a series of plane waves. 
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Table 2.  Symmetric and antisymmetric form factors  ௌܸሺܽ|۵|/2ߨሻ and ܸሺܽ|۵|/2ߨሻ for AlAs from Aouina 
et al. (43), calculated for several pressures.  Pressure is in kilobars.  Lattice constant ܽ is in 
angstroms and the form factors are in Rydberg. 

Pressure 0 30 60 90 120 

ௌܸ൫√3൯ –0.212694 –0.212931 –0.212725 –0.211967 –0.210679 

ௌܸ൫√8൯ 0 0 0 0 0 

ௌܸ൫√11൯ 0.09275 0.099816 0.106973 0.114209 0.121637 

ܸ൫√3൯ 0.068833 0.068074 0.066888 0.065781 0.064803 

ܸሺ2ሻ 0.05 0.05 0.05 0.05 0.05 

ܸ൫√11൯ –0.0075 –0.0075 –0.0075 –0.0075 –0.0075 

Lattice constant 5.4403 5.4875 5.5406 5.6012 5.6611 ࢇ 

 
Caruthers and Lin-Chung (44) work with the atomic form factors directly in their work on a 
GaAs-AlAs superlattice consisting of monoatomically thin layers of Ga, Al, and As.  The unit 
cell of this superlattice is shown in figure 11 and consists of four atoms.  For this case, equation 
35 evaluates to 

							 ෨ܸୣ୶୲,ୣ
୪୭ୡ ሺ۵ሻ ൌ ෨ܸୋୟሺ۵ሻeି୧۵⋅܌ృ  ෨ܸ୪ሺ۵ሻeି୧۵⋅܌ఽౢ  ෨ܸୱሺ۵ሻൣeି୧۵⋅܌ఽ౩భ  eି୧۵⋅܌ఽ౩మ൧, (38)

where ܌ୋୟ, ܌୪, ܌ୱଵ, and ܌ୱଶ are the vectors indicating the positions of the Ga, Al, and two As 
atoms within the unit cell.  Caruthers and Lin-Chung take ܌ୋୟ to be zero.  Like Cohen and 
Bergstresser, they take the atomic form factors to be functions of ܽ|۵|/2ߨ and treat them as 
empirical parameters.  A sample of these is shown in table 3.  The values of these form factors 
are fitted in order to reproduce the electronic band structures of GaAs and AlAs.  These form 
factors are no less strain-dependent than those of Cohen and Bergstresser or Aouina et al.  
However, in principle, there is nothing in the scheme of Caruthers and Lin-Chung that limits ܌୪, 
 ୱଶ to their equilibrium values, and they may change in response due to distortions܌ ୱଵ, and܌
from strain.  When applying the empirical pseudopotential to more general nanostructures, the 
atoms of the structure may be regarded as being within a large unit cell, with ܌ଵ, ,ଶ܌ ,ଷ܌ … as the 
positions of the atoms forming the nanostructure.
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Figure 11.  Unit cell of GaAs-A1As 
superlattice from 
Caruthers and Lin-Chung 
(43).  ܽ is the lattice 
constant of GaAs.  The 
figure was created with 
Jmol (45). 

Table 3.  Example empirical parameters from Caruthers and Lin-Chung (44), where ܽ is the 
lattice constant of the material, and the atomic form factors are in Rydberg. 

 ሻ࣊/|۵|ࢇሺܛۯ෩ࢂ ሻ࣊/|۵|ࢇሺܔۯ෩ࢂ ሻ࣊/|۵|ࢇሺ܉෩۵ࢂ ࣊/|۵|ࢇ

0 –0.1114 –0.1056 –0.1619 
1 –0.0750 –0.0930 –0.1250 

√ –0.0560 –0.0760 –0.0970 

 
Rather than use the values of atomic form factors at particular values of ܽ|۵|/2ߨ as fitting 
parameters, one may instead express the form factors as continuous functions that contain 
empirical parameters.  For example, Wang and Zunger (46) take the form factors to be 

෨ܸሺܩሻ ൌ
ೕభ൫ீమିೕమ൯

ೕయୣ
ೌೕరಸ

మ
ିଵ
, and ܩ ൌ |۵| , (39)

where ܽଵ through ܽସ are fitting parameters.  Similarly, Mäder and Zunger (47) express the form 

factors with the following function, 

									 ෨ܸሺܩሻ ൌ Ωൣ1  ݂e
ିఉೕீమ൧∑ ܽe

ିೕ൫ீିೕ൯
మ

ସ
ୀଵ , and ܩ ൌ |۵| , (40)

where the fitting parameters are Ω, ݂, ߚ, ܽ, ܾ, and ܿ.  They also fit these parameters for a 

range of unit cell volumes, so that the fitting parameters themselves have the desired property of 
being independent of at least the hydrostatic strain.  Here, the reciprocal lattice vector ۵ is not 
normalized by a factor of ܽ/2ߨ, so changes in ܽ due to strain are reflected in ܩ.  Also, since 
these form factors are continuous functions of ܩ, the allowed values of ۵ are, at least in 
principle, arbitrary.  
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The large cell containing a nanostructure (or a representative unit cell of it) may be regarded as a 
supercell composed of smaller cells at least approximately resembling those of a bulk crystal.  
ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ, then, may be written as 

																	ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ ൌ ∑ ∑ ∑ ܚ,൫ݒ െ ഥ܀ െ ന܀ െ ̅ሺ݆ሻ൯܌

ே౦౨	ౙౢౢሺሻ
ୀଵ

ேౙౢౢ
ୀଵ

ஶ
ୀଵ 	, (41)

where ܀ഥ is the lattice vector pointing to the ݅୲୦ supercell, ܀ഥ   ന is the vector pointing to small܀

cell ݆ within supercell ݅, and ̅܌ሺ݆ሻ is the relative position of atom ߢ within small cell ݆.  As long 
as the wavefunction is expanded in terms of periodic functions—even if those functions are not 
plane waves—a summation over all the supercells tiled out to infinity is needed.  The unit cells 
are not all alike, and may have different kinds of atoms within them.  This is why ୮ܰୣ୰	ୡୣ୪୪, 
 , are denoted here as depending on the index for each small cell ݆.  These cells mayݒ ̅ሺ݆ሻ, and܌

even be distorted due to strain.  The preceding summation may also be rewritten as 

												ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ ൌ ∑ ∑ ∑ ఈܹሺ݆ሻݒఈ൫ܚ െ ഥ܀ െ ന܀ െ ఈ̅൯ఈ܌

ேౙౢౢ
ୀଵ

ஶ
ୀଵ 	, (42)

where ߙ is one of the atom types in the system, e.g., Ga, In, As, etc., and ܌ఈ̅ is now the relative 
position of an atom of type ߙ within one of the small cells of the system.  Since a given atom 
type may not be in a particular unit cell, the summation includes a weighting factor ఈܹሺ݆ሻ that is 
0 if atom ߙ is not within small cell ݆ (48, 49).  If there is no strain in the system, then it is 1 if 
there is an atom at ܌ఈ̅ (49).  Substituting equation 33 into the previous summation yields the 
decomposition of ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ found in Wang et al. (48) and Wang and Zunger (49): 

ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ ൌ   ఈܹሺ݆ሻ ఈܸ൫ܚ െ ന܀ െ ఈ൯̅܌

ఈ

ேౙౢౢ

ୀଵ

. (43)

In the formulations by Kim et al. (50) and Williamson et al. (42), the weighting factor from the 
previous equations, ఈܹሺ݆ሻ, becomes strain-dependent and has the assumed form 

ఈܹሺ݆ሻ ൌ 1  ఈTrሾࣕሺ݆ሻሿߛ , (44)

where ߛఈ is a fitting parameter and Trሾࣕሺ݆ሻሿ is the trace of the strain tensor at cell ݆.  Williamson 
and Zunger (41) have found that without an explicitly strain-dependent pseudopotential, changes 
in the band gap ܧ due to strain may be fit to experiment, but not the changes in the conduction 

band minima and valence band maxima themselves. 

While the empirical pseudopotential method has traditionally used a Fourier expansion of the 
one-electron wavefunction, other basis set expansions can be used.  For example, in the linear 
combination of bulk bands (LCBB) form of the method (48, 49), 

	߰ሺܚሻ ൌ ∑ ∑ ∑ ఙܓܥ
 ߰ܓ

ఙ ሺܚሻ,ܓఙ and ߰ܓ
ఙ ሺܚሻ ൌ e୧ݑܚ⋅ܓܓ

ఙ ሺܚሻ , (45)
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where ܥܓఙ
  is an expansion coefficient, ߰ܓ

ఙ ሺܚሻ is the one-electron wavefunction with band 
index ݉ for a bulk material ߪ (e.g., GaAs or InAs), and the values of ܓ are a sampling of points 
within the Brillouin zone of the bulk material ߪ.  Even though the one-electron wavefunction is 
no longer directly expanded in a basis of plane waves, the previously shown atomic form factors 
expressed in Fourier space, such as those in table 3 or equations 39 and 40, may still be used.  
This is because ݑܓ

ఙ ሺܚሻ is still expanded in a plane-wave basis, so that 

								߰ܓ
ఙ ሺܚሻ ൌ ଵ

ඥஐ
 ∑ ܓݑ

ఙ ሺ۵ሻ۵ e୧ሺܓା۵ሻ⋅ܚ , (46)

where Ωఙ is the volume of the primitive cell of bulk material ߪ.  The expansion coefficients 
ܓݑ
ఙ ሺ۵ሻ may be determined through applying the traditional plane-wave based empirical 

pseudopotential method to a unit cell of material ߪ for a chosen value of ܧୡ୳୲, following the 
method illustrated in figure 10.  For the case where the nonlocal part of the potential is zero and 
there is no spin-orbit correction, the matrix equation to be solved is 

												∑ ∑ ∑ ܓ′ܓ′ܪ
ఙ′ఙ ఙܓܥ


ఙܓ ൌ ′ఙ′ܓ′ܥܧ

 , (47)

where 

ܓᇲܓᇲܪ
ఙᇲఙ ൌ

ଶΩ
2݉

ݑᇲܓᇲ
ఙᇲ ሺ۵ᇱሻݑܓ

ఙ ሺ۵ሻ|ܓ  ۵|ଶܓܓߜᇲ۵۵ߜᇲ	
۵,۵ᇲ

  

 

ݑ′ܓ′
ఙ′ ሺ۵′ሻݑܓ

ఙ ሺ۵ሻ
۵,۵′

  

 

ൈ ෨ܸఈሺܓᇱ  ۵ᇱ െ ܓ െ ۵ሻeି୧ഀ̅܌⋅൫ܓା۵ିܓ
ᇲି۵ᇲ൯  ఈܹሺ݆ሻe

୧൫ܓିܓᇲ൯⋅܀നೕ

ேౙౢౢ

ୀଵఈ

. (48)

Њ  is the volume of the simulation domain, ෨ܸఈ is the atomic form factor expressed in Fourier 
space, and ఈܹሺ݆ሻ is the weighting factor of equation 43.  There is also a variant of the LCBB 
pseudopotential method called the strained linear combination of bulk bands (SLCBB), where 

the basis function ߰ܓ
ఙ ሺܚሻ is ඥܬሺܚሻe୧ݑܚ⋅ܓܓ

ఙ ൫ିଵሺܚሻ൯, where ିଵ is an inverse deformation map 

that maps coordinate ܚ in the deformed system onto its counterpart ܚ in the undeformed system, 
and dଷܚ ൌ  In a sense, the LCBB and SLCBB methods can be described as indirect  .ܚሻdଷܚሺܬ
plane wave expansions.  A one-electron wavefunction of the whole system, ߰ሺܚሻ, is expanded 
in terms of the one-electron wavefunction of its constituent bulk materials, ሼ߰ܓ

ఙ ሺܚሻሽ, which are 
then expanded into plane waves.  This indirect expansion, though, means that the dimensions of 

the matrix ቂܪᇲܓᇲܓ
ఙᇲఙ ቃ are independent of the number of plane waves used to expand ߰ܓ

ఙ ሺܚሻ. 

The overall speed of the empirical pseudopotential method can be illustrated from a couple of 
examples.  A parallel code implementing the traditional plane-wave version of the method ran on 
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a Cray-T3E900 cluster.  In this implementation, the one-electron wavefunction was taken to have 
the plane wave expansion shown in equation 23.  The atomic form factors were from Wang et al. 
(51), and the energy cutoff was set to ܧୡ୳୲ ൌ 5	Ry.  The code was used to simulate a system 
composed of an InAs quantum dot embedded in a GaAs matrix.  For a system containing 
250,000 atoms, this code took about 20 h to run on 128 processors of the cluster (52, 51).  A 
serial code implementing the SLCBB version of the empirical pseudopotential method (53) was 
able to simulate the same 250,000-atom system in about 10 h on an IBM 595 workstation, and 
the eigenvalues determined by this code were within 0.8% of those calculated by the parallel 
plane-wave code.  More details of the SLCBB simulation, such as the sampling of the Brillouin 
zone, the bulk bands chosen, etc., are in Wang and Zunger (49).  Both codes used the same 
method to determine eigenvalues of a matrix, the folded-spectrum method (46), which scales 
linearly with the dimension of the matrix.  The scalability of the empirical pseudopotential 
method is also partially determined by the choice of basis functions.  Now, both the plane-wave 
and LCBB/SLCBB forms of the empirical pseudopotential method require a sum over the atoms 
in the simulation for each matrix element, at least if spin is not taken into account.  In the 
pseudocode shown in figure 4 for the plane-wave method, this is apparent in the calculation of 
ܸୣ ୶୲,ୣ
୪୭ୡ ሺܚ, ሼ܀ሽஶሻ, where there is a summation over all the atoms in the unit cell, and it is implied 

in equation 48 for the LCBB method, where there is a summation over the ୡܰୣ୪୪ small cells that 
compose the supercell of the system and a summation over the atom types ߙ in the system.   

However, in the traditional plane-wave empirical pseudopotential method, another scalability 
concern is that the size of the matrix ൣܪ൧ whose eigenvalues are to be found is determined by 

the number of plane waves ۵ܰ	, whose reciprocal lattice vectors satisfy an energy cutoff criterion 
(i.e., equation 27).  This number may be roughly estimated from equations A-1 and A-2 in 
appendix A to be 

۵ܰ ൎ ሺ݊ଵ
୫ୟ୶ሻሺ݊ଶ

୫ୟ୶ሻሺ݊ଷ
୫ୟ୶ሻ ൌ ଵ

|య܊||మ܊||భ܊|
ቆටଶாౙ౫౪

మ
ቇ
ଷ

. (49)

This, in turn, is proportional to the volume Ω of the unit cell of the simulated system.  Since 
܊ ⋅ ܉ ൌ |܊| , the magnitude of a primitive reciprocal lattice vector isߜߨ2 ൌ ߨ2 ሺ|܉| cos ⁄ሻߠ , 

where ߠ is the angle between ܊ and its corresponding primitive lattice vector ܉.  Therefore, 

							 ۵ܰ ൎ ቀ∏
|܉| ୡ୭ୱఏ

ଶగ
ଷ
ୀଵ ቁ ቆටଶாౙ౫౪

మ
ቇ
ଷ

∝ Њ  (50)

because Њ ∝ ∏ |܉|
ଷ
ୀଵ .  This scaling with the volume holds regardless of whether the volume is 

filled with atoms, so it would apply if the plane-wave pseudopotential method were applied to, 
for example, a cluster of atoms at the center of an otherwise empty unit cell that was made large 
enough to prevent the cluster from interacting with its periodic images.  In the LCBB and SLCBB 
forms of the empirical pseudopotential method, though, the number of plane waves used to 
expand each basis function ߰ܓ

ఙ ሺܚሻ is independent of the volume or even the number of atoms in 
the simulation.  The LCBB and SLCBB methods are clearly more scalable than the plane-wave 
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version of the empirical pseudopotential method, but the matrix elements in the former two 
methods are more computationally expensive to calculate, so such methods may not be ideal for 
smaller systems.  Also, application of the LCBB and SLCBB methods requires a careful choice 
of the bulk band indices and Brillouin zone sampling (i.e., ݉ and ܓ in equations 45–48).  In 
short, there are tradeoffs between these two forms of the empirical pseudopotential method. 

3.2 Slater-Koster Tight-Binding Method 

In tight-binding methods (54–59), the one-electron wavefunction is expanded in terms of either 
atomic orbitals or functions with the same symmetries as atomic orbitals.  For a finite system of 
 atoms, one may write (56, 57) ܯ

߰ሺܚሻ ൌ ∑ ∑ ܥ
ሺሻ߶ሺܚ െ ሻ܀

ெ
ୀଵ , (51)

where  is a type of orbital symmetry, i.e.,  ∈ ൛ݏ, ,௫ ,௬ ,௭ ݀௫௬, … ൟ, ܥ
ሺሻ  is an expansion 

coefficient, and ߶ሺܚ െ  ሻ is the atomic orbital or orbital-like function centered at position܀

vector ܀, with symmetry  for an atom whose species is indicated by atomic number ܼ.   

߶ሺܚሻ is real, so ߶
ற ሺܚሻ ൌ ߶ሺܚሻ.  Also, ߶ሺܚሻ is localized and therefore decays to zero 

as |ܚ| → ∞.  For an infinite periodic system that satisfies the Bloch theorem, the wavefunction is 
expanded instead as (54, 57, 60) 

										߰ܓሺܚሻ ൌ  ܥ
ሺܓሻ߶ܓሺܚሻ



ே౦౨ ౙౢౢ

ୀଵ

 (52)

where ୮ܰୣ୰	ୡୣ୪୪ is the number of atoms per unit cell, ܥ
ሺܓሻ is an expansion coefficient, and 

߶ܓሺܚሻ is a Bloch sum, defined such that 

߶ܓሺܚሻ ൌ limேౙౢౢ→ஶ
ଵ

ඥேౙౢౢ
∑ e୧ܓ⋅൫܀ഥೕା܌൯߶൫ܚ െ ഥ܀ െ ൯܌
ேౙౢౢ
ୀଵ . (53)

Here, ୡܰୣ୪୪ is the number of unit cells in the system, ܀ഥ is the lattice vector pointing to unit cell ݆, 
and ܀ഥ    is the position of atom ݉ in cell ݆.  If one substitutes the tight-binding expansion܌

for a finite system, i.e., equation 51, into the one-electron Schrödinger equation 7, multiplies 
both sides of the equation by ߶ᇲᇲ

ሺܚ െ  ᇲሻ, and integrates over all space, then one obtains܀

the following matrix equation: 

						ܪᇲᇲܥ
ሺሻ



ெ

ୀଵ

ൌ ܧ ܵᇲᇲܥ
ሺሻ



ெ

ୀଵ

 (54)

where
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ᇲᇲܪ ൌ ᇲᇲ߶
ሺܚ െ ܚଵୣష߶ሺܪᇲሻ܀ െ ܚሻdଷ܀   (55)

and 

ܵᇲᇲ ൌ 	න߶ᇲᇲ
ሺܚ െ ܚᇲሻ߶ሺ܀ െ ܚሻdଷ܀ . (56)

Matrix equation 54 is a generalized eigenvalue problem that may be solved for ܧ.  ܵᇲᇲ is 
called the overlap matrix, and if it were diagonal, that is, if ܵᇲᇲ ൌ  ᇲ, then theߜᇲߜ
generalized eigenvalue equation would become an ordinary matrix eigenvalue equation, which is 
less computationally expensive to solve than the generalized equation.  However, if ߶ሺܚ		 

െ܀ሻ	is a true atomic orbital, that is, a one-electron wavefunction with symmetry  of an atom 
with atomic number ܼ, then, in general, ܵᇲᇲ ്  ᇲ.  Since orbitals centered by theߜᇲߜ
same atom are orthogonal to one another,  ܵᇲ ൌ  ݉ ᇲ still holds.  Also, if atoms ݉′ andߜ
are sufficiently far apart, then ܵᇲᇲ ൎ 0 because the orbitals are localized.  If ߶ሺܚ െ  ሻ܀
is a Löwdin orbital, that is, given a set of true atomic orbitals ൛߶ሺܚ െ ܚሻൟ, ߶ሺ܀ െ  ሻ܀
is such that 

߶ሺܚ െ ሻ܀ ൌ ምܵ
′′
ିଵ ଶ⁄ ߶′

′
൫ܚ െ ′൯܀

′′

 

 

 

ൎ ߶ሺܚ െ  ሻ܀
 

 

െ
1
2
൫ ምܵ′′ െ ′൯߶′ߜ′ߜ

′
൫ܚ െ 	′൯܀

′′

 (57)

and 

ሙܵ
ᇲᇲ ൌ ෘᇲᇲ߶	

ሺܚ െ ᇲሻ܀ ߶ෘሺܚ െ ܚሻdଷ܀ , (58)

where a superscript of െ1 2⁄  indicates the inverse square root of a matrix, then it can be shown 
that ܵᇲᇲ becomes diagonal and equals ߜᇲߜᇲ (61). 

The tight-binding matrix equation for an infinite periodic system is similar to that for a finite 
system, but with ୮ܰୣ୰	ୡୣ୪୪ replacing ܯ, and 

 ܪᇲᇲܥܓ
ሺܓሻ



ே౦౨	ౙౢౢ

ୀଵ

ൌ ܓܧ  ܵᇲᇲܥܓ
ሺܓሻ



ே౦౨ ౙౢౢ

ୀଵ

 (59)

where 

ܓᇲᇲܪ								 ൌ ܚሻdଷܚሺܓଵୣష߶ܪሻܚᇲሺܓᇲ߶   (60)

and 
ܵᇲᇲܓ ൌ ܚሻdଷܚሺܓሻ߶ܚᇲሺܓᇲ߶	 . (61)
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The integration here is over a unit cell of the periodic system.  ܵᇲᇲܓ is an overlap matrix 
similar to the one for the finite system ܵᇲᇲ.  In general, ܵᇲܓ ൌ  ᇲ, and if the functionsߜ
߶ሺܚሻ in the Bloch sum ߶ܓሺܚሻ are orthogonalized rather than true atomic orbitals, then 

ܵᇲᇲܓ ൌ  .ᇲߜᇲߜ

In the Slater-Koster tight-binding method, the Hamiltonian matrix elements, either ܪᇲᇲ or 
 are decomposed into sums of integrals that are neglected, become empirical ,ܓᇲᇲܪ
parameters, or become linear combinations of special two-center integrals that are functions only 
of the distance between their two centers.  These special integrals are generally not evaluated 
directly through integration, but rather are estimated through simple closed-form functions with 
empirical parameters.  The decomposition begins by decomposing the effective potential into a 
sum of per-atom contributions, such as 

							 ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽெሻ ൌ ݒೖሺܚ െ ሻ܀
ெ

ୀଵ

 (62)

for a finite system with ܯ atoms, or 

ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ ൌ  ݒೖ൫ܚ െ ഥ܀ െ ൯܌

ஶ

ୀଵ

ே౦౨ ౙౢౢ

ୀଵ

 (63)

for an infinite periodic system.  (At this point, spin-orbit coupling is ignored.)  If ݉ ് ݉′, then 
after substituting equations 7 and 62 in equation 55, one may write the Hamiltonian matrix 
element as (62, 63) 

						

ᇲᇲܪ ൌ
1
2
න߶ᇲᇲ

ሺܚ െ ᇲሻ܀ 
ෝܘ ⋅ ෝܘ
2݉

 ܚሺݒ െ ܚሻ൨߶ሺ܀ െ 	ܚሻdଷ܀

				
1
2
න߶ሺܚ െ ᇲሻ܀ 

ෝܘ ⋅ ෝܘ
2݉

 ܚሺݒ െ ሻ൨߶ᇲᇲ܀
ሺܚ െ 	ܚሻdଷ܀

				න߶ᇲᇲ
ሺܚ െ 	ᇲሻ܀

ܚᇲሺݒ െ ᇲሻ܀  ܚሺݒ െ ሻ܀

2
߶ሺܚ െ 	ܚሻdଷ܀

				  න߶ᇲᇲ
ሺܚ െ ᇲሻ܀ ܚೖሺݒ െ ܚሻ߶ሺ܀ െ .	ܚሻdଷ܀

ஷஷᇲ

			 

(64)

For the special case where ݉ ൌ ݉ᇱ, the Hamiltonian matrix element is instead 

 

								
ᇲܪ ൌ න߶ᇲሺܚ െ ሻ܀ 

ෝܘ ⋅ ෝܘ
2݉

 ܚሺݒ െ ܚሻ൨߶ሺ܀ െ ܚሻdଷ܀

						  න߶ᇲሺܚ െ ሻ܀ ܚೖሺݒ െ ܚሻ߶ሺ܀ െ ܚሻdଷ܀
ஷ

.
		 (65)
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At this point, one may begin simplifying.  First, the three-center integrals, that is, the integrals 
containing three factors, each centered around a different atomic site (i.e., ݉′, ݇, and ݉), are 
treated as if they were negligible (54).  This removes the integrals in the summation over 
݇ ് ݉ ് ݉ᇱ in equation 64.  The integrals whose potential is centered at site ݇, while the 
orbitals are centered around ݉, are neglected much as the three-center integrals are (64), which 
removes the integrals in the summation over ݇ ് ݉ in equation 65.  This leaves the two-center 
integrals, whose factors are centered around ݉ᇱ or ݉, and the onsite integrals, all of whose 
factors are centered around ݉.  As Slater and Koster themselves pointed out, the integrals that 
are neglected here are not necessarily negligible in comparison to the two-center integrals, but 
they are smaller than the two-center integrals, and their neglect will reduce the number of fitting 
parameters needed (54).  Another simplification comes from noting that an isolated atom at ܀	 
with the effective potential ݒሺܚ െ  :ሻ has the following one-electron Schrödinger equation܀

						ቂ ܘ
ෝ⋅ܘෝ

ଶ
 ܚሺݒ െ ܚሻቃ߶ሺ܀ െ ሻ܀ ൌ ܚ߶ሺܧ െ ሻ܀ , (66)

where ܧ is the eigenvalue corresponding to the orbital symmetry  for an atom with atomic 

number ܼ.  If one denotes the two-center integral containing the average of two atomic 
potentials as 

ܸᇲᇲ ൌ න߶ᇲᇲ
ሺܚ െ 	ᇲሻ܀

ܚᇲሺݒ െ ᇲሻ܀  ܚሺݒ െ ሻ܀

2
߶ሺܚ െ 	ܚሻdଷ܀  (67)

then, given the simplifications, the Hamiltonian matrix elements in equations 64 and 65 become 

ᇲᇲܪ ൎ
ாೋାாೋᇲ

ଶ
ܵᇲᇲ  ܸᇲᇲ .

ᇲܪ ൎ  ᇲߜܧ
(68)

The first expression indicates the Hamiltonian matrix element for two arbitrary orbitals ’ and  
for two different atoms ݉’ and ݉, respectively.  The second expresses the matrix element for the 
case where two different orbitals ’ and  are centered about the same atom ݉.  The atomic 
eigenvalues are fitting parameters.  Thus, the energies must be provided from another source, 
generally empirical data or through more accurate electronic structure ab initio approach.  
However, ܸᇲᇲ is not a fitting parameter.  Rather, provided that atoms ݉′ and ݉ are not so 
far apart as to make it negligible, ܸᇲᇲ is decomposed further into sums of special two-center 
integrals that depend only on the distance ܴᇲ between atomic sites ݉ and ݉′.  To do this, a 
change of coordinates ܚ → ܚ   ᇲ is applied to ܸᇲᇲ to make explicit that it depends on܀
ᇲ܀ ൌ ܀ െ  ,ᇲ, that is܀

ܸᇲᇲ ൌ ᇲᇲ߶
ሺܚሻ	

௩ೋ
ᇲሺܚሻା௩ೋ൫܀ିܚᇲ൯

ଶ
߶ሺܚ െ (69) .	ܚᇲሻdଷ܀

For brevity, the average of the two potentials at sites ݉′ and ݉ will be denoted as 
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ሻܚᇲሺݒ  ܚሺݒ െ ᇲሻ܀

2
ൌ ሻܚୟ୴ᇲሺݒ . (70)

One of the special two-center integrals centered around the two nearest neighboring sites ݉ and 
݉′ whose orbitals both have ݏ symmetry is denoted here as ௦ܸᇲ,௦,ఙ, 

௦ܸᇲ,௦,ఙ ൌ න߶௦,ᇲሺܚሻ ୟ୴ݒ
ᇲሺܚሻ߶௦,ሺܚ െ ܚᇲሻdଷ܀ . (71)

Here, because of the symmetry of the ݏ-orbitals, the direction of ܀ᇲ does not matter; only its 
magnitude matters.  Another special two-center integral involves the overlap of ݏ- and -orbitals, 
as shown in figure 12.  These two-center integrals for ܀ᇲ along the ݕ ,-ݔ-, and ݖ-directions are 

௦ܸᇲ,,ఙ ൌ න߶௦ᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶ೣሺܚ െ ܴᇲ܍௫ሻdଷܚ  

 

ൌ න߶௦ᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶൫ܚ െ ܴᇲ܍௬൯dଷܚ  

and 

													ൌ න߶௦ᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶ሺܚ െ ܴᇲ܍௭ሻdଷܚ . (72)

 

Figure 12.  Overlapping between 
  .orbitals- and -ݏ
The plus and minus 
signs indicate where 
an orbital has a 
positive or negative 
value. 

Other special two-center integrals involve pairs of overlapping -orbitals.  Figure 13 shows the 
two types of -orbital overlap.  Suppose that there are two ௫-orbitals with ߪ-type overlap, and 
the vector connecting their centers points along the ݔ-direction, that is, ܀ᇲ ൌ ܴᇲ܍௫, where 
  ௬-type overlap are of ߪ ௫ is a unit vector.  Alternatively, suppose that the two orbitals with܍
with ܀ᇲ ൌ ܴᇲ܍௬, or of ௭-type with ܀ᇲ ൌ ܴᇲ܍௭, where ܍௬ and ܍௭ are unit vectors 
pointing along the ݕ- and ݖ-directions.  By symmetry, the two-center integral in all of these cases 
has the same value (55):
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ܸᇲ,,ఙ ൌ න߶ೣᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶ೣሺܚ െ ܴᇲ܍௫ሻdଷܚ 

ൌ න߶ᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶൫ܚ െ ܴᇲ܍௬൯dଷܚ 
.

 

 
(73)

and 

  ൌ ୟ୴ݒሻܚᇲሺ߶
ᇲሺܚሻ߶ሺܚ െ ܴᇲ܍௭ሻdଷܚ . 

 

 

Figure 13.  Types of overlap between 
 orbitals.  The plus and-	
minus signs indicate where 
an orbital has a positive or 
negative value (55). 

If the two -orbitals have ߨ-type overlap and ܀ᇲ ൌ ܴᇲ܍௫, the orbitals must both be either 
 ,௭, that is ௬ or

ܸᇲ,,గ ൌ න߶ᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶ሺܚ െ ܴᇲ܍௫ሻdଷܚ  

and 

ൌ න߶ᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶ሺܚ െ ܴᇲ܍௫ሻdଷܚ . (74)

Similarly, if ܀ᇲ ൌ ܴᇲ܍௬, then the orbitals in ܸᇲ,,గ must both be of ௫ or ௭ type, and if 
ᇲ܀ ൌ ܴᇲ܍௭, then the orbitals in ܸᇲ,,గ must both be of ௫ or ௬ type.  

Many two-center integrals turn out to be zero.  For example, 

ୟ୴ݒሻܚ௦ᇲሺ߶
ᇲሺܚሻ߶ሺܚ െ ܴᇲ܍௫ሻdଷܚ

ୟ୴ݒሻܚ௦ᇲሺ߶
ᇲሺܚሻ߶ሺܚ െ ܴᇲ܍௫ሻdଷܚ

ൡ ൌ 0 . (75)

The reason can be seen in figure 14.  The interaction between the ݏ-orbital and the positive lobe 
of the -orbital is exactly canceled by a corresponding interaction between the ݏ-orbital and the 
 orbital's negative lobe.  For similar reasons, the two-center integrals associated with the kinds-
of interaction between -orbitals shown in figure 15 are also zero (65), e.g., 

ୟ୴ݒሻܚೣᇲሺ߶
ᇲሺܚሻ߶ሺܚ െ ܴᇲ܍௫ሻdଷܚ

ୟ୴ݒሻܚᇲሺ߶
ᇲሺܚሻ߶ሺܚ െ ܴᇲ܍௫ሻdଷܚ

ൡ ൌ 0 . (76)
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Figure 14.  ݏ- and -orbitals whose net overlap 
is zero.  The plus and minus signs 
indicate where an orbital has a 
positive or negative value.  The 
overlap contribution from the 
positive lobe of the -orbital is 
exactly canceled by that in the 
negative lobe. 

 

Figure 15.  Pairs of -orbitals whose net overlap is zero.  The 
plus and minus signs indicate where an orbital has a 
positive or negative value.  The bond axis runs 
through the points connected by the vector R݉݉′. 

With the special two-center integrals ௦ܸᇲ,,ఙ, ܸᇲ,,ఙ, and ܸᇲ,,గ identified, the 

decomposition of a general two-center integral ܸᇲᇲ, where ᇱ,  ∈ ൛ݏ, ,௫ ,௬  ௭ൟ, can be

shown (54, 55).  Let there be a coordinate system ݖ′ݕ′ݔ′ such that ܀ᇲ ൌ ܴᇲ܍௫ᇱ ,  and the 
transformation between from unprimed to primed coordinates is (66) 

ݔ ൌ ሺ܍௫ ⋅ ௫ᇱ܍ ሻݔᇱ  ൫܍௫ ⋅ ௬ᇱ܍ ൯ݕᇱ  ሺ܍௫ ⋅ ௭ᇱ܍ ሻݖᇱ 

ݕ ൌ ൫܍௬ ⋅ ௫ᇱ܍ ൯ݔᇱ  ൫܍௬ ⋅ ௬ᇱ܍ ൯ݕᇱ  ൫܍௬ ⋅ ௭ᇱ܍ ൯ݖᇱ 

and 

ݖ ൌ ሺ܍௭ ⋅ ௫ᇱ܍ ሻݔᇱ  ൫܍௭ ⋅ ௬ᇱ܍ ൯ݕᇱ  ሺ܍௭ ⋅ ௭ᇱ܍ ሻݖᇱ. (77)
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The -orbitals can be factored as 

 
߶ೣሺܚሻ ൌ ܴሺ|ܚ|ሻݔ 

߶ሺܚሻ ൌ ܴሺ|ܚ|ሻݕ 

and 

߶ሺܚሻ ൌ ܴሺ|ܚ|ሻݖ  (78)

where ܴሺ|ܚ|ሻ is a function dependent on the magnitude of (11) ܚ.  A ௫-orbital, then, can be 

expressed in ݖ′ݕ′ݔ′ coordinates as 

߶ೣሺ࢘ሻ ൌ ܴሺ|࢘|ሻൣሺࢋ௫ ⋅ ௫ࢋ
ᇱ ሻݔᇱ  ൫ࢋ௫ ⋅ ௬ᇱࢋ ൯ݕᇱ  ሺࢋ௫ ⋅ ௭ᇱࢋ ሻݖᇱ൧  (79)

߶ೣሺ࢘ሻ ൌ ܴሺ|࢘|ሻൣሺࢋ௫ ⋅ ௫ࢋ
ᇱ ሻݔᇱ  ൫ࢋ௫ ⋅ ௬ᇱࢋ ൯ݕᇱ  ሺࢋ௫ ⋅ ௭ᇱࢋ ሻݖᇱ൧   

and 

ൌ ߶ೣᇲ ሺܚሻሺ܍௫ ⋅ ௫܍
ᇱ ሻ  ߶ᇲ ሺܚሻ൫܍௫ ⋅ ௬܍

ᇱ ൯  ߶ᇲሺܚሻሺ܍௫ ⋅ ௭܍
ᇱ ሻ		 (79)

and similarly for the ௬- and ௭-orbitals.  Accordingly, a general two-center integral between an 

 ௫-orbital is orbital and a-ݏ

௦ܸᇲೣ 	ൌ න߶௦ᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶ೣሺܚ െ ܚᇲሻdଷ܀

																	ൌ න߶௦ᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶ೣᇲ ሺܚ െ ܴᇲ܍௫ᇱ ሻdଷܚ ሺ܍௫ ⋅ ௫ᇱ܍ ሻ

																					න߶௦ᇲሺܚሻݒୟ୴
ᇲሺܚሻ߶ᇲ ሺܚ െ ܴᇲ܍௫ᇱ ሻdଷܚ ൫܍௫ ⋅ ௬ᇱ܍ ൯

																						න߶௦ܼᇲሺܚሻݒୟ୴ᇲሺܚሻ߶ᇲሺܚ െ ܴᇲ܍௫ᇱ ሻdଷܚ ሺ܍௫ ⋅ ௭ᇱ܍ ሻ

																	ൌ ௦ܸᇲ,,ఙሺ܍௫ ⋅ ௫܍
ᇱ ሻ .

		 

(80)

A general two-center integral between two -orbitals can be expressed as a linear combination of 

ܸᇲ,,ఙ and ܸᇲ,,గ.  For example, 

ܸೣᇲೣ 	ൌ ୟ୴ݒሻܚೣᇲሺ߶
ᇲሺܚሻ߶ೣሺܚ െ   ܚᇲሻdଷ܀

 
and 

																																																ൌ ܸᇲ,,ఙ ሺ܍௫ ⋅ ௫܍
ᇱ ሻଶ  ܸᇲ,,గ ቂ൫܍௫ ⋅ ௬܍

ᇱ ൯
ଶ
 ሺ܍௫ ⋅ ௭ᇱ܍ ሻଶቃ . (81)

The directions of the ݕ′ and ݖ′ axes are arbitrary except for the constraint that they must be 
orthogonal to ݔ′ and each other, and, accordingly, the previous two-center integral can be 
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rewritten to indicate that it does not depend on ܍௬ᇱ  and ܍௭ᇱ  but rather on the direction cosines of 
ᇲ, ݈ோ܀ ൌ ሺ܍௫ ⋅ ௫ᇱ܍ ሻ, ݉ோ ൌ ൫܍௬ ⋅ ௫ᇱ܍ ൯, and ݊ோ ൌ ሺ܍௭ ⋅ ௫ᇱ܍ ሻ.  Because of the orthogonality of 

primed and unprimed coordinates, one may write (66)  

൫܍௫ ⋅ ௬ᇱ܍ ൯
ଶ
 ሺ܍௫ ⋅ ௭ᇱ܍ ሻଶ ൌ 1 െ ሺ܍௫ ⋅ ௫ᇱ܍ ሻଶ ൌ 1 െ ݈ோ

ଶ . (82)

Expressions of general two-center integrals in terms of ݈ோ, ݉ோ, ݊ோ, and the special two-center 
integrals have been tabulated in the classic paper of Slater and Koster (54).  Implementations of 
the tight-binding method can determine the decomposition of general two-center integrals 
through a look-up table based on this tabulation. 

The elements of the overlap matrix ܵᇲᇲ in equation 56 are similar in form to those of the 
general two-center integral ܸᇲᇲ of equation 69, except that ሾݒᇲሺܚሻ  ܚሺݒ െ ᇲሻሿ܀ 2⁄  

is replaced by 1.  Therefore, it is possible to decompose ܵᇲᇲ into a linear combination of 
integrals analogous to ௦ܸᇲ,௦,ఙ, ௦ܸᇲ,,ఙ, ܸᇲ,,ఙ, ܸᇲ,,గ, etc.  That is, one may define 

(19, 67) 

	ܵ௦ᇲ,௦,ఙ ൌ ሻܚ௦,ᇲሺ߶ ߶௦,ሺܚ െ ܚᇲሻdଷ܀ , (83)
 

and 

ܵ௦ᇲ,,ఙ ൌ න߶௦ᇲሺܚሻ߶ೣሺܚ െ ܴᇲ܍௫ሻdଷܚ  

                ൌ ܚሻ߶൫ܚ௦ᇲሺ߶ െ ܴᇲ܍௬൯dଷܚ  

                 ൌ ܚሻ߶൫ܚ௦ᇲሺ߶ െ ܴᇲ܍௬൯dଷܚ  (84)

and so on.  Integrals ܵᇲ,,ఙ and ܵᇲ,,గ may be defined by replacing ݒୟ୴ᇲሺܚሻ with 1 in the 
two-center integrals ܸᇲ,,ఙ and ܸᇲ,,గ.  Once these integrals are defined, decompositions 

such as the following may be done: 

ܵ௦ᇲೣ 	ൌ ܵ௦ᇲ,,ఙሺ܍௫ ⋅ ௫܍
ᇱ ሻ ൌ ݈ோܵ௦ᇲ,,ఙ , (85)

and 
ܵೣᇲೣ ൌ ܵᇲ,,ఙ ݈ோ

ଶ  ܵᇲ,,గሺ1 െ ݈ோ
ଶሻ . (86)

These example decompositions are analogous to the decompositions of ௦ܸᇲೣ and ܸೣᇲೣ 

in equations 80 and 81, respectively.  As pointed out before, if atoms ݉ and ݉′ are sufficiently 
far apart, then the localization of the orbitals ߶ᇲᇲ

ሺܚሻ and ߶ሺܚ െ  ᇲሻ entails that܀

ܵᇲᇲ ൎ 0.  This applies to the integrals ܵ௦ᇲ,,ఙ, ܵᇲ,,ఙ, etc., as well, and the localization 
of the orbitals also entails that the two-center integrals ௦ܸᇲ,௦,ఙ, ௦ܸᇲ,,ఙ, etc. decay as 

ܴᇲ → ∞. 

Accounting for spin-orbit coupling means that the number of orbital types is doubled, e.g., 
instead of ᇱ,  ∈ ൛ݏ, ,௫ ,௬ … ൟ, one has ᇱ,  ∈ ൛ݏ ↑, ௫ ↑, ௬ ↑, … , ݏ ↓ ௫ ↓, ௬ ↓, … ൟ, where 

again the symbols “↑” and “↓” denote the spin-up and spin-down states of an electron.  Let 
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 ൌ ̅ where ,ܵ̅ ∈ ൛ݏ, ,௫ ,௬ … ൟ, and ܵ ∈ ሼ↑, ↓ሽ.  An element of a tight-binding Hamiltonian 

matrix with the coupling, then, may be expressed as (68) 

ᇲܪ ൌ ௌᇲௌߜതᇲതܪ  ᇲܪ
ୗ , (87)

where ܪതᇲത is the corresponding Hamiltonian matrix element without spin-orbit correction.  
In the scheme of Chadi (69), the correction term ܪᇲ

ୗ  is zero except for the following matrix 

elements (70, 71): 

ೣ↓↓ܪ
ୗ ൌ ቀܪ↓ೣ↓

ୗ ቁ
ற
ൌ െܪೣ↑↑

ୗ ൌ െቀܪ↑ೣ↑
ୗ ቁ

ற
ൌ iߣ	 

 

 

↓ೣ↑ܪ
ୗ ൌ ൫ܪೣ↑↓

ୗ ൯
ற
ൌ െܪ↑ೣ↓

ୗ ൌ െ൫ܪೣ↓↑
ୗ ൯

ற
ൌ   	ߣ

and 

↓↑ܪ
ୗ ൌ ቀܪ↑↓

ୗ ቁ
ற
ൌ ↑↓ܪ

ୗ ൌ ൫ܪ↓ೣ↑
ୗ ൯

ற
ൌ െiߣ	 (88)

where ߣ is an empirical parameter. 

Figure 16 shows pseudocode for the tight-binding method applied to finite system.  It is assumed 
in this algorithm that the means of empirically estimating the special two-center integrals 

௦ܸᇲ,௦,ఙ, ௦ܸᇲ,,ఙ, ܸᇲ,,ఙ, ܸᇲ,,గ, etc., is already available.  So that the algorithm shown 

would fit on a single page, an optimization was left out that would be used in a more realistic 
code, which would take advantage of the fact that both ܸᇲᇲ and ܵᇲᇲ decay to zero for 
large ܴᇲ.  If atoms ݉′ and ݉ are sufficiently far apart (e.g., not nearest or, possibly, next-
nearest neighbors), then ܪതᇲത is negligible and can be immediately set to zero without an 
explicit determination of ܸᇲᇲ and ܵᇲᇲ, which would be approximately zero. 
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Figure 16.  Tight-binding method for a finite system. 
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Like ܪᇲᇲ, ܪᇲᇲܓ can be broken down into terms containing two-center integrals such as 

௦ܸᇲ,௦,ఙ, ܸᇲ,,ఙ, ܸᇲ,,గ, and ௦ܸᇲ,,ఙ.  One begins by expressing it explicitly as a double 

Bloch sum (54): 

ܓᇲᇲܪ	 ൌ lim
ேౙౢౢ→ஶ

1

ୡܰୣ୪୪
  e୧ܓ⋅ቀ܀

ഥೕା܌ି܀ഥೕᇲି܌ᇲቁ

ேౙౢౢ

ᇲୀଵ

ேౙౢౢ

ୀଵ

 
 

																								ൈ න߶ᇲᇲ൫ܚ െ ഥᇲ܀ െ ܚଵୣష߶൫ܪᇲ൯܌ െ ഥ܀ െ ܚ൯dଷ܌  

and 

												ൌ e୧ܓ⋅൫܀ഥೕା܌ି܌ᇲ൯ න߶ᇲᇲ
ሺܚ െ ܚଵୣష߶൫ܪᇲሻ܌ െ ഥ܀ െ .	ܚ൯dଷ܌

ஶ

ୀଵ

 (89)

The integral in equation 89 is essentially identical to the integral that defines ܪᇲᇲ in 
equation 55, with ܀ᇲ ൌ ܀ ᇲ and܌ ൌ ഥ܀   , and the process for decomposing this integral܌

into two- and three-center integrals is the same as that for ܪᇲᇲ.  As with finite systems, all 
of the three-center integrals are neglected.  Most of the two-center integrals are as well, 
especially the ones for which ห܀ഥ  ܌ െ ᇲห܌ ≫ 0.  This reduces the infinite summation in 

 to a finite one.  For example, in a crystal with the zincblende structure, the vectors ܓᇲᇲܪ
connecting atom ݉ ൌ 1 to its four nearest neighbors are 

ഥଵ܀  ଵ܌ െ ଶ܌ ൌ ܽ൫܍௫  ௬܍  ௭൯/4܍   

ഥଶ܀  ଵ܌ െ ଶ܌ ൌ ܽ൫܍௫ െ ௬܍ െ   ௭൯/4܍

ഥଷ܀  ଵ܌ െ ଶ܌ ൌ ܽ൫െ܍௫  ௬܍ െ   ௭൯/4܍

and 

ഥସ܀  ଵ܌ െ ଶ܌ ൌ ܽ൫െ܍௫ െ ௬܍   ௭൯/4 (90)܍

where ܽ is the lattice constant of the crystal.  If ܵ௦ଵ௦ଶ ൌ 0, then if ܓ ൌ ݇௫܍௫  ݇௬܍௬  ݇௭܍௭ and 

all but the nearest neighbors are neglected (55, 72): 

ܓ௦ଵ௦ଶܪ ൌ ௦ܸଵ,௦ଶ,ఙൣe
୧൫ೣା	ା൯/ସ  e୧൫ೣି ି൯/ସ  e୧൫ିೣା ି൯/ସ

 e୧൫ିೣି	ା൯/ସሿ. 
(91)

Also, if only nearest neighbors are taken into account, diagonal elements of ܪᇲᇲܓ are the 
atomic eigenvalues for the orbital on atom ݉, i.e., ܪܓ ൌ  .  The overlap matrixܧ

ܵᇲᇲܓ is determined much as ܪᇲᇲܓ	, i.e., 
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ܵᇲᇲܓ ൌ lim
ேౙౢౢ→ஶ

1

ୡܰୣ୪୪
  e୧ܓ⋅ቀ܀

ഥೕା܌ି܀ഥೕᇲି܌ᇲቁ

ேౙౢౢ

ᇲୀଵ

ேౙౢౢ

ୀଵ

 
 

				ൈ න߶ᇲᇲ൫ܚ െ ഥᇲ܀ െ ܚᇲ൯߶൫܌ െ ഥ܀ െ ܚ൯dଷ܌ 	 
 

and 

ൌe୧ܓ⋅൫܀ഥೕା܌ି܌ᇲ൯ න߶ᇲᇲ
ሺܚ െ ܚᇲሻ߶൫܌ െ ഥ܀ െ .	ܚ൯dଷ܌

ஶ

ୀଵ

 (92) 

The integral in equation 92 is essentially identical to the integral that defines ܵᇲᇲ in equation 
56, with ܀ᇲ ൌ ܀ ᇲ and܌ ൌ ഥ܀   .  Figure 17 shows a pseudocode implementation of the܌

tight-binding method for an infinite crystal. 
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Figure 17.  Tight-binding method for an infinite crystal. 

Here are examples of how the special two-center integrals ௦ܸᇲ,௦,ఙ, ܸᇲ,,ఙ, etc., may be 

estimated through closed-form empirical formulas.  One such formula (56) is 

ܸᇲᇲ,,ఒ ൌ ቆ
ோ
ᇲ
ሺబሻ

ோᇲ
ቇ
ఎᇲഊ

ܸᇲᇲ,,ఒ
ሺሻ , 

 

(93)

where  ∈ ሼݏ, , … ሽ, ߣ ∈ ሼߪ, ሽ, ܴᇲߨ
ሺሻ  is the distance between atoms ݉ᇱ and ݉ in the absence of 

strain, ܸᇲᇲ,,ఒ
ሺሻ  is the strain-free value of ܸᇲᇲ,,ఒ, that is, the value of ܸᇲᇲ,,ఒ evaluated at 
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ܴᇲ
ሺሻ , and ߟᇲఒ is an empirical parameter that is typically in the range of 1 to 4.  ܸᇲᇲ,,ఒ

ሺሻ  is an 

empirical parameter itself.  Another formula, from Mehl and Papaconstantopoulos (19), is  

ܸᇲᇲ,,ఒ ൌ ൫݁ᇲఒ  ݂ᇲఒܴᇲ  ݂̅ᇲఒܴᇲ
ଶ ൯eିᇲഊ

మ ோᇲܨሺܴᇲሻ	 (94)

where ݁ᇲఒ, ݂ᇲఒ, ݂̅ᇲఒ, and ݃ᇲఒ are fitting parameters, and ܨሺܴᇲሻ is a cutoff function, 

ሺܴᇲሻܨ ൌ
1

1  exp ቂቀܴᇲ െ ܴᇲ
ሺሻ ቁ/ܮቃ

. (95)

Mehl and Papaconstantopoulos typically take ܮ to be half the Bohr radius. 

Off-diagonal elements of the overlap matrix may be determined through closed-form empirical 
formulas as well.  For example, Papaconstantopoulos et al. (67) formulate this dependence as 
follows: 

ܵᇲᇲ,,ఒ ൌ ൫ߜᇲ  ܽᇲఒܴᇲ  ܾᇲఒܴᇲ
ଶ  ܿᇲఒܴᇲ

ଷ ൯ 

																												ൈ eିௗᇲഊ
మ ோᇲܨሺܴᇲሻ , (96)

where ܽᇲఒ. ܾᇲఒ, 	ܿᇲఒ, and ݀ᇲఒ are fitting parameters.  The Kronecker delta ߜᇲ ensures 
that the preceding expression is consistent with the condition ܵᇲ ൌ ᇲ (where ݉ᇱߜ ൌ ݉), 
which the overlap matrix must satisfy. 

Such formulas are a part of how the tight-binding method takes strain into account, since they 
approximately account for changes in interatomic distance due to strain.  Strain also leads to 
changes in the orientations of atoms relative to one another (i.e., the directions of ܀ᇲ for pairs 
of atoms ݉′ and ݉), and this is taken into account through the direction cosines ݈ோ, ݉ோ, and ݊ோ 
used in the decomposition of ܸᇲᇲ into linear combinations of ௦ܸᇲ,௦,ఙ, ௦ܸᇲ,,ఙ, etc. (and 
also into any decomposition of ܵᇲᇲ into linear combinations of ܵ௦ᇲ,,ఙ, ܵᇲ,,ఙ, etc.). 

It can be shown that the diagonal elements of ܪᇲᇲ or ܪᇲᇲܓ also depend on the strain.   
According to Boykin et al. (33), if ߶ሺܚ െ  ,ሻ is a Löwdin orbital as defined in equation 57܀

then 

ܧ ൌ ܧ
ሺሻ  ∑ ∑ ᇲᇲܥ

ቀ
ᇲᇲ
ሺబሻ ቁ

మ
ି൫ᇲᇲ൯

మ

ாೋ
ሺబሻ ାா

ᇲೋᇲ

ሺబሻᇲᇲ , (97)

where the superscript “ሺ0ሻ” again denotes the strain-free version of a quantity, and ܥᇲᇲ is an 
empirical parameter.  This is not the only scheme for accounting for the effects of strain on 
diagonal elements.  For example, Mehl and Papaconstantopoulos (19) take the diagonal elements 
to be 
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ܪ ൌ ܽ 	ܾߩ
ଶ/ଷ  ܿߩ

ସ/ଷ  ݀ߩ
ଶ  (98)

where ܽ, ܾ, ܿ, ܽ݊݀	݀ are fitting parameters, and 

ߩ ൌexpቀെߣᇲܴᇲቁ ሺܴᇲሻܨ
ᇲ

. (99)

The summation with index ݉′ is over the neighbors of atom ݉, and ߣᇲ  is a fitting 

parameter.  (Mehl and Papaconstantopoulos (19) fit their parameters to results from ab initio 
calculations.)  Other methods for accounting for strain on diagonal elements have been discussed 
by Jancu and Voisin (73) and Niquet et al. (74). 

The Slater-Koster tight-binding method has been used on systems with about a million atoms.  
For example, it has been used on a dome-shaped In0.6Ga0.4As quantum dot embedded in a GaAs 
matrix.  The dot was 30 nm in diameter and 5 nm in height, and the simulation domain was 
40 × 40 × 15 nm.  The dot itself contained about 718,000 atoms, with the GaAs matrix 
constituting the remainder of the million atoms in the simulation.  The distribution of the In and 
Ga cations within the dot was random.  For each cation (Ga or In) and anion (As), the set of basis 
functions contained three -orbitals (௫, ௬, and ௭) and two orbitals with ݏ-symmetry, denoted 

 Since spin was taken into account, the number of basis functions per atom doubled  .∗ݏ and ݏ
from 5 to 10.  For a given distribution of Ga and In atoms within the dot, determination of the 
energy eigenvalues of the system took about 25 min on 31 processors of a cluster of Pentium III 
933-MHz CPUs.  If the corresponding eigenvectors had been computed, the computation time 
would have doubled (56).  As seen from the pseudocode of the tight-binding implementations 
shown in figures 5 and 6, the computational resources needed for the method scales with the 
product of the number of orbitals in the basis set and the number of atoms in the system.  
Whether it scales linearly or as ܱሺܰଷሻ depends on the choice of eigenvalue solver (21, 46). 

3.3 How Non-Self-Consistency Affects How Strain Is Taken Into Account 

The atomistic methods previously described are not self-consistent, that is, their approximations 
of the effective potential of the one-electron Schrödinger equation do not depend on the charge 
density or the one-electron wavefunctions.  Computationally, this is a great advantage, since it 
means that the Schrödinger equation does not have to be solved iteratively.  However, as will be 
explained shortly, this entails a restriction on the physics that the effective potential ܸୣ ୶୲,ୣ may 
take into account.  For a system of ܯ atoms (where ܯ may be infinite), ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽெሻ may be 

written generally as  

ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽெሻ ൌ െ
1

߳ߨ4


ܼݍଶ

ܚ| െ |܀

ெ

ୀଵ


ଶݍ

߳ߨ4
න

ᇱሻܚሺߩ
ܚ| െ |ᇱܚ

dଷܚᇱ  ܸ୭୲୦ୣ୰	 (100)

where the operator ܸ୭୲୦ୣ୰ is determined by one’s choice of ab initio method.  This can be 
contrasted with the decompositions of ܸୣ ୶୲,ୣ into a sum of per-atom contributions in equation 31 
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for the empirical pseudopotential method and equations 62 and 63 for the Slater-Koster 
tight-binding method.  Despite the contrasting details in the earlier descriptions of these two 
methods, we remark that they both follow similar algorithmic and fundamental theoretical 
structures.  Namely, in the generalized effective potential in equation 100, only the first term, the 
contribution from the ܯ nuclei of the system, naturally decomposes into a sum of per-atom 
contributions.  One could decompose the second and third terms in ܸୣ ୶୲,ୣ by assuming the 

following: 

ሻܚሺߩ ൌߩሺܚሻ
ெ

ୀଵ

 (101)

and 

ܸ୭୲୦ୣ୰ ൌ ∑ ො,୭୲୦ୣ୰ݒ
ெ
ୀଵ , (102)

such that 

ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽெሻ ൌ ൝
1

߳ߨ4
ቈ
ܼݍଶ

ܚ| െ |܀
 ଶݍ න

ᇱሻܚሺߩ
ܚ| െ |ᇱܚ

dଷܚᇱ

ெ

ୀଵ

 . (103)	ො,୭୲୦ୣ୰ൡݒ

Barring an accounting of some nonlocal effects such as spin-orbit coupling (e.g., Chelikowsky 
and Cohen, [38]), this is largely what the atomistic methods described are effectively doing.  
Furthermore, in these methods, ߩሺܚሻ is generally dependent on the species of atom ݅ (i.e., 
whether it is Si, Ga, nitrogen [N], etc.) rather than its location in the system ܀.  This is a 
problem, for example, in piezoelectric systems, where an electric field due to strain may lead to 
the transfer of charge from atoms near one region of the system to atoms near another region, 
even if the atoms in each region are of the same types. 

This problem can be overcome by treating this field as if it were external and adding the 
potential due to this field, ܸݍୱ୲ୟ୲ሺܚ, ሻ, where  is the strain if the field is induced from 
piezoelectricity, to the effective potential (34, 75–78), that is, 

ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽெሻ ൌ
1

߳ߨ4
ቈ
ܼݍଶ

ܚ| െ |܀
 ଶݍ න

ᇱሻܚሺߩ
ܚ| െ |ᇱܚ

dଷܚᇱ

ெ

ୀଵ

			ݒො,୭୲୦ୣ୰

ெ

ୀଵ

 ,ܚୱ୲ୟ୲ሺܸݍ ሻ .

		 
(104)

ܸୱ୲ୟ୲ሺܚ, ሻ can be determined from a continuum mechanical calculation (75, 79, 80), provided 
that the strain  in the system has already been determined from the changes in atomic positions. 
Possible methods to determine this strain are in appendix B of this report. 
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4. The  ⋅  and Envelope Function Methods 

While the atomistic empirical methods are far less computationally expensive than the ab initio 
methods, their calculation time still scales with the number of atoms in the simulated system.  
This is not an issue for the ݇ ⋅  and envelope function methods, which do not take atomic 
positions as input at all.  The ݇ ⋅  method (81) was originally developed to estimate the 
electronic band structure of bulk periodic semiconductor crystals, especially the band structure 
near the Γ point.  The envelope function approximation, however, extends the method to systems 
that are not periodic in all dimensions, such as quantum wells, wires, and dots.  In this extension, 
the effective potential within a given material is still assumed to behave approximately as the 
effective potential would in the bulk form of the material.  Instead of taking strain into account 
through atomic positions, it is taken into account through an operator added to the effective 
Hamiltonian, an operator that takes the small strain tensor from continuum mechanics as input. 
These approximations mean that the envelope function approximation is essentially a continuum 
approach rather than an atomistic one. 

4.1 General Formulation of the  ⋅  Method for Bulk Crystal 

The ݇ ⋅  method for bulk crystal employs the Bloch theorem, so, accordingly, the one-electron 
wavefunction is expressed as ߰ܓሺܚሻ ൌ e୧ݑܚ⋅ܓܓሺܚሻ, where ݑܓሺܚሻ has the same periodicity as the 
crystal.  Substituting this expression for ߰ܓሺܚሻ into the one-electron Schrödinger, equation 8 
yields (81) 

ቂ ܘ
ෝ⋅ܘෝ

ଶ
 ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ 




ܓ ⋅ ෝܘ  మమ

ଶ
ቃ ሻܚሺܓݑ ൌ , (105)	ሻܚሺܓݑܓܧ

where ݇ଶ ൌ  ሽஶ is the set of coordinates and atomic numbers of the nuclei of the܀ଶ, and ሼ|ܓ|
infinite bulk crystal.  Alternately, equation 105 may be written as 

ଵୣషܪ
⋅ݑܓሺܚሻ ൌ ቂܪଵୣషሺܚ, ሼ܀ሽஶሻ 




ܓ ⋅ ෝܘ  మమ

ଶ
ቃ ሻܚሺܓݑ ൌ , (106)	ሻܚሺܓݑܓܧ

where ܪଵୣషሺܚ, ሼ܀ሽஶሻ is the one-electron Hamiltonian for an infinite bulk crystal.  For small ܓ, 
the operator ܪଵୣష

⋅  is “close” to ܪଵୣష, so the eigenstates of ܪଵୣష
⋅  may be expanded in terms of the 

eigenstates of ܪଵୣష at ܓ ൌ 0: 

ሻܚሺܓݑ ൌ ∑ ܿ
ሺܓሻݑሺܚሻ . (107)

These eigenstates are orthogonal, that is, 
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 ஐܚሻdଷܚሺݑሻܚᇲሺݑ
ൌ ᇲߜ , (108)

where Ω is the volume of the primitive unit cell of the crystal.  Alternatively, ݑܓሺܚሻ may be 
expanded not directly in terms of the eigenstates at the σ point but rather in terms of normalized 
orthogonal linear combinations of these eigenstates, i.e., 

ሻܚሺܓݑ ൌ ∑ ܥ
ሺܓሻܷሺܚሻ , ܷሺܚሻ ൌ ∑ ܿ ሻܚሺݑ . (109)

If one substitutes equation 109 into equation 106, multiplies the latter equation by ܷᇲ
ற ሺܚሻ, and 

integrates over a unit cell of the crystal, then one may obtain a matrix equation 

∑ ᇲܪ
⋅ ሺሼ܀ሽஶሻܥ

ሺܓሻ
 ൌ ᇲܥܓܧ

ሺܓሻ, (110)

where 

ᇲܪ
⋅ ሺሼ܀ሽஶሻ ൌ ᇲܪ

ଵୣష ሺሼ܀ሽஶሻ 



ܓ ⋅ ᇲܘ  ᇲߜ

మమ

ଶ
, (111)

 

ᇲܪ
ଵୣష ሺሼ܀ሽஶሻ ൌ  ܷᇲ

ற ሺܚሻܪଵୣషሺܚ, ሼ܀ሽஶሻܷሺܚሻdଷܚஐ
 , (112)

and 

ᇲܘ ൌ  ܷᇲ
ற ሺܚሻܘෝܷሺܚሻdଷܚஐ

. (113)

Alternately, ଶ݇ଶ/2݉ may be moved to the right-hand side of the matrix equation, so that 

ܪᇲ
⋅∗ ሺሼ܀ሽஶሻܥ

ሺܓሻ



ൌ ቆܧܓ െ
ଶ݇ଶ

2݉
ቇܥᇲ

ሺܓሻ  (114)

where 

ᇲܪ
⋅∗ ሺሼ܀ሽஶሻ ൌ ᇲܪ

ଵୣష 

݉

ܓ ⋅ ᇲܘ . (115)

ܷሺܚሻ is often chosen such that ܪଵୣష ܷሺܚሻ ൌ ܧ ܷሺܚሻ, so that ܪᇲ
ଵୣష ൌ   .ᇲ (32, 81–83)ߜܧ

If the effect of spin-orbit is taken into account, one may then replace ܘෝ in equations 106 and 
113 with ෝૈ, where (32, 82) 

ෝૈ ൌ ෝܘ  

ସమ
ൣોෝ ൈ ୣܸ ୶୲,ୣ൧ . (116)

When ܓ is small, ܓ ⋅ ෝૈ ൎ ܓ ⋅  .ෝ. (83)ܘ
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4.2 Example  ⋅  Formulations for Bulk Crystals 

In principle, the summation in the expansion of ݑܓሺܚሻ in equations 107 and 109 is infinite and, 
accordingly, so is the matrix ܪᇲ

⋅  (or ܪᇲ
⋅∗ ).  In practice, ܪᇲ

⋅  is transformed into a finite 

݇ ⋅  Hamiltonian matrix, usually one with fairly small dimensions, e.g., 6 × 6 or 8 × 8.  Two 
examples of how this may be done, the Kane and Luttinger-Kohn formulations, are shown in the 
following equations.  In the formulation by Kane (83), the transformation is done simply by 
truncating the expansion of ݑܓሺܚሻ, including only the terms corresponding to the one-electron 
wavefunctions for the three valence bands and the lowest conduction band of a semiconductor 
with a diamond or zincblende crystal structure.  When spin is taken into account, consideration 
of these four bands leads to an eight-term expansion of ݑܓሺܚሻ—four terms for spin-up and four 
for spin-down—and thus an 8 × 8 matrix.  In the Luttinger-Kohn formulation (82), the expansion 
of ݑܓሺܚሻ is infinite in principle, but the six terms pertaining to the three valence bands are 
assumed to be the dominant ones in the expansion, and the infinite matrix ܪᇲ

⋅∗  is accordingly 

transformed into a 6 × 6 matrix where the effects of the nondominant terms in the expansion of 
 ሻ are indirectly taken into account through material constants called the Luttingerܚሺܓݑ
parameters. 

Kane (83) studied the band structure of indium antimonide (InSb), whose electronic band 
structure resembles the schematic shown in figure 18.  Δ is the difference in energy between the 
maximum of the split-off valence band and the common maximum of the other two valence 
bands, labeled as “heavy hole” and “light hole.”  Those labels refer to the effective masses 
(discussed in detail in section 4.4) of the electrons or holes with energies in the corresponding 
bands.  Holes are vacancies left behind when an electron is promoted from a valence to the 
conduction band, and they act like positive charge carriers.  The expansion in equation 109 is 
truncated to include only the eight states at ܓ ൌ 0 corresponding to the bands shown in the 
figure.  The two states corresponding to the conduction band minimum, one for spin-down and 
one for spin-up, have the same radial symmetry as atomic ݏ-orbitals, and these states are 

ଵܷሺܚሻ ൌ iܵሺܚሻ ↓ , and ܷହሺܚሻ ൌ iܵሺܚሻ ↑  (117)

where 

↑ൌ ቂ1
0
ቃ , and ↓ൌ ቂ0

1
ቃ , (118)

and ܵሺܚሻ is spherically symmetric and thus depends only on the magnitude of ܚ.  Accordingly, it 
has the following parity properties: 

ܵ൫ሺݎଵ, ,ଶݎ ଷሻ൯ݎ ൌ ܵ൫ሺ|ݎଵ|, ,|ଶݎ| ଷ|ሻ൯ݎ| . (119)
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Figure 18.  Schematic band structure near ܓ ൌ 0 of a typical semiconductor with 
a diamond or zincblende crystal structure.  E݃ is the band gap energy.  
Δ is the difference in energy between the maximum of the split-off 
band and the common maximum of heavy and light hole bands.  The 
left and right halves of the horizontal axis indicate the magnitude of 
 values pointing along certain crystal directions.  (In this qualitative-ܓ
schematic, the actual directions are not important.)  While the heavy 
hole, light hole, and split-off bands are typical for such a 
semiconductor and generally have their maxima at ܓ ൌ 0 as shown, 
the actual minimum of the conduction band may be different from 
what is shown in this schematic (17). 

The six valence states at ܓ ൌ 0, which have the same symmetries as atomic -orbitals, are 

ܷଶሺܚሻ ൌ
ሺܚሻି୧ሺܚሻ

√ଶ
↑, ܷሺܚሻ ൌ െሺܚሻା୧ሺܚሻ

√ଶ
↓ , (120)

 

ܷଷሺܚሻ ൌ ܼሺܚሻ ↓, ܷሺܚሻ ൌ ܼሺܚሻ ↑ , (121)

 

ܷସሺܚሻ ൌ
ሺܚሻା୧ሺܚሻ

√ଶ
↑, ଼ܷሺܚሻ ൌ

ሺܚሻି୧ሺܚሻ

√ଶ
↓ , (122)

where the functions ܺ, ܻ, and ܼ have the following parity properties: 

ܺ൫ሺݎଵ, ,ଶݎ ଷሻ൯ݎ ൌ sgnሺݎଵሻܺ൫ሺ|ݎଵ|, ,|ଶݎ| ଷ|ሻ൯ݎ|  (123)
 

ܻ൫ሺݎଵ, ,ଶݎ ଷሻ൯ݎ ൌ sgnሺݎଶሻܻ൫ሺ|ݎଵ|, ,|ଶݎ| ଷ|ሻ൯ݎ| , (124)
and 

ܼ൫ሺݎଵ, ,ଶݎ ଷሻ൯ݎ ൌ sgnሺݎଷሻܼ൫ሺ|ݎଵ|, ,|ଶݎ| ଷ|ሻ൯ݎ|  (125)

where sgnሺݔሻ is the sign of ݔ, i.e., sgnሺേݔሻ ൌ േ1.  Kane assumed that ܓ ⋅ ෝૈ ൎ ܓ ⋅  is ܓ ෝ, sinceܘ
taken to be small.  Kane initially restricted the Bloch wave vector ܓ to points along the ݖ-
direction (i.e., the ݎଷ axis) so that the matrix ܪᇲ

⋅∗  would simplify to the following block 

diagonal format:
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ᇲܪൣ
⋅∗ ൧ ൌ ۶ୟ୬ୣ ൌ 

۶ୟ୬ୣ,ସൈସ 0
0 ۶ୟ୬ୣ,ସൈସ

൨ , (126)

where 

۶ୟ୬ୣ,ସൈସ ൌ

ۏ
ێ
ێ
ێ
ۍ
௦ܧ 0 ݇ܲ 0

0 ܧ െ Δ°/3 √2Δ°3 0

݇ܲ √2Δ°3 ܧ 0
0 0 0 ܧ  Δ°/3ے

ۑ
ۑ
ۑ
ې

, (127)

௦ܧ ൌ  ܵறሺܚሻܪଵୣషሺܚ, ሼ܀ሽஶሻܵሺܚሻdଷܚஐ
, (128)

 

ܧ ൌ න ܺறሺܚሻܪଵୣషሺܚ, ሼ܀ሽஶሻܺሺܚሻdଷܚ 
ஐ

ൌ න ܻறሺܚሻܪଵୣషሺܚ, ሼ܀ሽஶሻܻሺܚሻdଷܚ	
ஐ

ൌ න ܼறሺܚሻܪଵୣషሺܚ, ሼ܀ሽஶሻܼሺܚሻdଷܚ
ஐ



	 

(129)

 

ܲୟ୬ୣ ൌ െi

݉

න ܵறሺܚሻ ܚሻdଷܚଷܼሺ̂
ஐ

 (130)

and 

Δ° ൌ
3݄i

4݉
ଶܿଶ

න ܺறሺܚሻ 
߲ܸୣ ୶୲,ୣ

ଵݎ߲
ଶ̂ െ

߲ܸୣ ୶୲,ୣ

ଶݎ߲
ଵ൨̂ ܻሺܚሻdଷܚ

ஐ

 (131)

where ̂ is a component of vector operator ܘෝ.  ܲୟ୬ୣ is called Kane’s parameter (32).  Here, 
۶ୟ୬ୣ,ସൈସ is written under the assumption that equation 114, the ݇ ⋅  matrix equation with the 

term െଶ݇ଶ 2݉⁄  on the right side, is being used.  If ܓ points in a general direction, a 
transformation can be applied to rotate the original coordinate system so that ܓ points along the 
 ሻ is spherically symmetric, it isܚdirection, which makes ۶ୟ୬ୣ block diagonal.  Since ܵሺ-ݖ
unaffected by this rotation.  The rotation causes ܺሺܚሻ, ܻሺܚሻ, ܼሺܚሻ, ↑, and ↓ to be replaced by 
ܺᇱሺܚሻ, ܻᇱሺܚሻ, ܼᇱሺܚሻ,	↑ᇱ, and ↓ᇱ in equations 117, 120–122, 128, and 131.  If ܓ is expressed in the 
original coordinate system in spherical coordinates ሺ݇, ,ߠ ߶ሻ, the primed functions are, in terms 
of the original ܺሺܚሻ, ܻሺܚሻ, and ܼሺܚሻ, 

	ܺᇱሺܚሻ ൌ ܺሺܚሻ cos ߠ cos߶  ܻሺܚሻ cos ߠ sin߶ െ ܼሺܚሻ sin ߠ   
 

Y	′ሺܚሻ ൌ െܺሺܚሻ sin߶  ܻሺܚሻ cos߶   

and  

	ܼᇱሺܚሻ ൌ ܺሺܚሻ sin ߠ cos߶  ܻሺܚሻ sin ߠ sin߶  ܼሺܚሻ cos ߠ . (132)

The primed spinors are 
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↑ᇱൌ ቈ
eି୧థ ଶ⁄ cosሺߠ 2⁄ ሻ
e୧థ ଶ⁄ sinሺߠ 2⁄ ሻ

 , 

and	

																																																					↓ᇱൌ ቈ
െeି୧థ ଶ⁄ sinሺߠ 2⁄ ሻ
e୧థ ଶ⁄ cosሺߠ 2⁄ ሻ

 . (133)

۶ୟ୬ୣ,ସൈସ is itself in a block diagonal format, with one block containing the first three rows and 
columns and the other block being a 1 × 1 “matrix” with ܧ  Δ°/3 as its sole element.  Thus, 

one may define two eigenproblems, one for each block, as follows: 

۶ୟ୬ୣ,ଷൈଷ۱
ሺܓሻ ൌ ቀܧܓ െ

మమ

ଶ
ቁ ۱ሺܓሻ , (134)

where 

۶ୟ୬ୣ,ଷൈଷ ൌ ൦

௦ܧ 0 ݇ܲ

0 ܧ െ Δ°/3 √2Δ°3

݇ܲ √2Δ°3 ܧ

൪ , (135)

and 

൫ܧ  Δ°/3൯ܥସ
ሺܓሻ ൌ ቀܧܓ െ

మమ

ଶ
ቁ ସܥ

ሺܓሻ . (136)

In order for the highest valence band extremum to be zero, ܧ is set to െΔ°/3.  This leads to the 

following solution for ܧܓ: 

ܓܧ ൌ ܓ,ܧ ൌ
ଶ

2݉
݇ଶ . (137)

This is the heavy hole band according to the Kane formulation.  Note that this band curves 
upward as a function of ݇, which contradicts experiment (32, 83) (and the schematic band 
structure in figure 18).  This is a consequence of truncating the expansion of ݑܓሺܚሻ.  Because of 
spin, this energy band is doubly degenerate, and the periodic parts of the two one-electron 
wavefunction that corresponds to this band are, for ܓ pointing along a general direction, 

ሻܚሺܓଵݑ ൌ ܷସሺܚሻ ൌ
ᇲሺܚሻା୧ᇲሺܚሻ

√ଶ
↑ᇱ, (138)

and 

ሻܚሺܓଶݑ																																											 ൌ ଼ܷሺܚሻ ൌ
ᇲሺܚሻି୧ᇲሺܚሻ

√ଶ
↓ᇱ ,  

where the primed quantities are defined in equations 132 and 133. 

The eigenvalues of ۶ୟ୬ୣ,ଷൈଷ may be determined numerically.  However, some insight into the 

physical meanings of ܧ௦ and Δ° may be obtained by estimating closed-form expressions from 
these eigenvalues, similar to the one for ܧ,ܓ.  The characteristic polynomial of ۶ୟ୬ୣ,ଷൈଷ is 

ܓܧ
ᇱ ሺܧܓ

ᇱ െ ܓܧ௦ሻሺܧ
ᇱ  Δ∘ሻ െ ݇ଶܲଶሺܧܓ

ᇱ െ 2Δ∘ 3⁄ ሻ ൌ 0  (139)
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where ܧܓ
ᇱ ൌ ܓܧ െ ଶ݇ଶ 2݉⁄ , and the equation ܧ ൌ െΔ°/3 has already been substituted into 

۶ୟ୬ୣ,ଷൈଷ.  If ݇ ൌ 0, the solutions of the characteristic polynomial are ܧ
ᇱ ൌ ,௦ܧ 0, െΔ∘.  These 

solutions are presumed to be extrema of the energy bands.  For simplicity, these bands are also 
presumed to be parabolic in the neighborhood of ݇ ൌ 0.  Accordingly, trial solutions for this 
polynomial for ݇ ് 0 are taken to be of the form ܧܓ

ᇱ ൌ ௦ܧ  ݁݇ଶ, 0  ݁݇ଶ, െΔ∘  ݁݇ଶ, where 
݁ is a parameter to be determined (32).  If these trial solutions are substituted into the 
characteristic polynomial and, then, any resulting terms containing powers of ݇ higher than 2 are 
ignored, then for ݅ ൌ ܿ, ݈݄,  ,ݏ

݁ ൌ
ܲୟ୬ୣ
ଶ ሺܧ௦  2Δ° 3⁄ ሻ

௦ܧ௦ሺܧ  Δ°ሻ
			݁ ൌ െ

2 ܲୟ୬ୣ
ଶ

௦ܧ3
 ݁௦ ൌ

ܲୟ୬ୣ
ଶ

3ሺܧ௦  Δ°ሻ
 (140)

and the energy bands are approximately (32, 83) 

ܓܧ ൌ ௦ܧ 
ଶ

2
ቈ
1
݉


2 ܲୟ୬ୣ

ଶ ሺܧ௦  2Δ° 3⁄ ሻ
ଶܧ௦ሺܧ௦  Δ°ሻ

 ݇ଶ 

 

 

ܓ,ܧ ൌ
మ

ଶ
ቀ ଵ


െ ସే 

మ

ଷమாೞ
ቁ ݇ଶ   

and 

ܓ,௦ܧ ൌ െΔ° 
ଶ

2
ቈ
1
݉

െ
2 ܲୟ୬ୣ

ଶ

3ଶሺܧ௦  Δ°ሻ
 ݇ଶ (141)

where ܧܧ ,ܓ,ܓ, and ܧ௦,ܓ are the energies for a given ܓ in the conduction, light hole, and split-

off bands, respectively.  By comparing these results to the qualitative band structure in figure 18, 
one can confirm that ܧ௦ 	ൌ 	° and Δܧ	 ൌ Δ.  One may also note from equation 131 that if the 
spin-orbit coupling were nonexistent, parameter Δ would not exist either.  ܧ, Δ, and ܲୟ୬ୣ may 

be determined empirically, and a compilation of these parameters, along with some discussion as 
to how they have been obtained, may be found in a survey by Vurgaftman et al. (84). 

Because of spin, the energy bands ܧܧ ,ܓ,ܓ, and ܧ௦,ܓ are doubly degenerate.  For ܓ pointing 

along a general direction, the periodic parts of each one-electron wavefunction ݑܓሺܚሻ are 
determined to be 

ሻܚሺܓଵݑ ൌ ܽ ଵܷሺܚሻ  ܾܷଶሺܚሻ  ܷܿଷሺܚሻ   

 

                              ൌ ܽiܵሺܚሻ ↓ᇱ ܾ
ᇲሺܚሻି୧ᇲሺܚሻ

√ଶ
↑  ܼܿᇱሺܚሻ ↓ᇱ , 

 

 
ሻܚሺܓଶݑ ൌ ܷܽହሺܚሻ  ܾܷሺܚሻ  ܷܿሺܚሻ   

and 

ܽ iܵሺܚሻ ↑ᇱെ ܾ
ᇲሺܚሻି୧ᇲሺܚሻ

√ଶ
↓ᇱ ܼܿᇱሺܚሻ ↑ᇱ  (142)
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where ൫ ܽ, ܾ, ܿ൯ is an eigenvector of ۶ୟ୬ୣ,ଷൈଷ, and ݆ ൌ ܿ, ݈݄, ܓ When  .ݏ ൌ ሺ0,0,0ሻ, then 

ܽ ൌ 1			 	ܾ ൌ 0 ܿ ൌ 0 

ܽ ൌ 0 ܾ ൌ ඥ1 3⁄  ܿ ൌ ඥ2 3⁄ 

ܽ௦ ൌ 0 ܾ௦ ൌ ඥ2 3⁄  ܿ௦ ൌ െඥ1 3⁄ 

 (143)

 

Pseudocode of the Kane formulation of the ݇ ⋅  .method is shown in figure 19 

 

Figure 19.  Pseudocode for Kane formulation of the ݇ ⋅  .method 
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The determination of the Hamiltonian matrix ۶ୟ୬ୣ does not require a detailed knowledge of ܵ, 
ܺ, ܻ, or ܼ; rather, only the parity properties shown in equations 119 and 123–125 are required.  
This causes most of the calculated matrix elements to be zero.  The integrals that are nonzero 
become functions of empirical parameters.  This is a common feature of ݇ ⋅  .formulations 

While Kane (83) simply truncated the expansion in equation 107 to obtain a finite matrix for his 
݇ ⋅  formulation, Luttinger and Kohn (82) took a different approach that, in principle, accounted 
for all the terms in the expansion.  They broke the expansion into two sums: 

ሻܚሺܓݑ ൌܿ
ሺܓሻݑሺܚሻ





ܿ
ሺܓሻݑሺܚሻ





. (144)

The first summation is over the class ܣ eigenstates; that is, the few states whose eigenenergies 
 , are near the bottom of the band gap.  The second summation is over the class B eigenstatesܧ
which are the remaining states.  Here, ܷ ൌ  , so equations 107 and 109 are equivalent andݑ

ܿ
ሺܓሻ ൌ ܥ

ሺܓሻ.  The class ܣ states may be expressed as (32) 

ሻܚଵሺݑ	 ൌ െ
ܺሺܚሻ  iܻሺܚሻ

√2
ቂ1
0
ቃ  

ሻܚଶሺݑ																																										 ൌ െቌඨ
1
3
ቍ
ܺሺܚሻ  iܻሺܚሻ

√2
ቂ0
1
ቃ  ඨ

2
3
ܼሺܚሻ ቂ1

0
ቃ 	

ሻܚଷሺݑ																												 ൌ ቆටଵ

ଷ
ቇ ሺܚሻି୧ሺܚሻ

√ଶ
ቂ1
0
ቃ  ටଶ

ଷ
ܼሺܚሻ ቂ0

1
ቃ		

ሻܚସሺݑ ൌ
ܺሺܚሻ െ iܻሺܚሻ

√2
ቂ0
1
ቃ 		

																	 ሻܚହሺݑ										 ൌ ቆටଶ

ଷ
ቇ ሺܚሻା୧ሺܚሻ

√ଶ
ቂ0
1
ቃ  ටଵ

ଷ
ܼሺܚሻ ቂ1

0
ቃ 

and 

ሻܚሺݑ ൌ ቆටଶ

ଷ
ቇ ሺܚሻି୧ሺܚሻ

√ଶ
ቂ1
0
ቃ െ ටଵ

ଷ
ܼሺܚሻ ቂ0

1
ቃ· (145)

ܺ, ܻ, and ܼ have the same meanings they do in the formulation by Kane (83) previously 
discussed.  These states are also the periodic parts of the one-electron wavefunctions 
corresponding to the heavy hole, light hole, and split-off bands at ܓ ൌ 0, just as in the Kane 
model.  (See equations 138, 142, and 143 for comparison.)  They have the same symmetry as the 
 eigenstates of an atom where spin-orbit coupling is taken into account (85, pp. 99, 197).  The-
states in equation 145 all belong to the valence bands.  In the Luttinger-Kohn formulation, all 
conduction band states are within class ܤ.  Because of the parities of ܺ, ܻ, and ܼ, ܘᇲ ൌ 0 for 
the class ܣ states. 
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Equation 114 is rewritten in matrix form as 

ሺ۶  ۶ଵሻ۱ሺܓሻ ൌ ቆܧܓ െ
ଶ݇ଶ

2݉
ቇ۱ሺܓሻ (146)

where the elements of ۶ and ۶ଵ are such that 

ᇲܪ
 ൌ ᇲߜܧ ,  

and 

ᇲܪ
ଵ ൌ 


ܓ ⋅ ᇲ             (147)ܘ

Luttinger and Kohn (82), here, apply a canonical transformation, where 

۱ሺܓሻ ൌ e۰܁ሺܓሻ (148)

and then 

eି܁ሺ۶  ۶ଵሻe۰܁ሺܓሻ ൌ ቆܧܓ െ
ଶ݇ଶ

2݉
ቇ۰ሺܓሻ. (149)

A new matrix, ۶୰ୣୢ୳ୡୣୢ, is defined as 

۶୰ୣୢ୳ୡୣୢ 	≡ eି܁ሺ۶  ۶ଵሻe܁ 
ଶ݇ଶ

2݉
۷  (150)

where ۷ is the identity matrix and 

۶୰ୣୢ୳ୡୣୢ۰ሺܓሻ ൌ ۰ܓܧ
ሺܓሻ. (151)

The first term of ۶୰ୣୢ୳ୡୣୢ may be expanded as 

eି܁ሺ۶  ۶ଵሻe܁ ൌ ۶  ۶ଵ  ሾ۶, ሿ܁  ሾ۶ଵ, ሿ܁

					
1
2
ൣሾ۶, ,ሿ܁ ൧܁ 

1
2
ൣሾ۶, ,ሿ܁ ൧܁  ⋯ 

 
(152)

where the commutator ሾۯଵ, ଶሿۯ ൌ ଶۯଵۯ െ  is chosen so that ܁ ଵ.  The matrixۯଶۯ

۶ଵ  ሾ۶, ሿ܁ ൌ 0  (153)

and 

۶୰ୣୢ୳ୡୣୢ ൎ ۶  ଵ

ଶ
ሾ۶ଵ, ሿ܁  మమ

ଶ
۷ . (154)

This removes coupling terms between classes ܣ and ܤ that are first order in ܓ.  Given the 
definitions of ۶ and ۶ଵ, equation 153 becomes 


݉

ܓ ⋅ ᇲܘ  ሺܧᇲ െ ሻܵᇲܧ ൌ 0  (155)

and the elements of ۶୰ୣୢ୳ୡୣୢ become (81), for indices ݉′,݉ ranging from 1 to 6, the index 
values pertaining to class ܣ,
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ᇲܪ
୰ୣୢ୳ୡୣୢ ൌ ቆܧ 

ଶ݇ଶ

2݉
ቇ ᇲߜ

					
ଶ

2݉
ቈ

ሺܓ ⋅ ܓᇲሻሺܘ ⋅ ሻܘ

ܧ െ ܧ

ሺܓ ⋅ ܓᇲሻሺܘ ⋅ ሻܘ

ᇲܧ െ ܧ






	. 

 

(156)

The summation index ݈ only ranges over the class ܤ states because ܘᇲ vanishes for states in 
class ܣ.  If it is assumed that the states in class ܣ all share at least approximately the same 
eigenvalue, i.e., ܧ ൎ ᇲܧ ൌ  , then the previous equation simplifies to (32)ܧ

ᇲܪ
 ൎ ቆܧ 

ଶ݇ଶ

2݉
ቇ ᇲߜ 

ଶ

2݉


ሺܓ ⋅ ܓᇲሻሺܘ ⋅ ሻܘ

ܧ െ ܧ





 (157)

where ܪᇲ
  is called a Luttinger-Kohn Hamiltonian matrix, and 

ሻܚሺܓݑ ൎܤ
ሺܓሻݑሺܚሻ



. (158)

The summation in equation 157 containing matrix elements involving class ܤ states is expressed 
in terms of the empirically determined Luttinger parameters ߛଵ, ߛଶ, and ߛଷ.  These can be 
expressed as 

ଵߛ ൌ െ
2݉

3ଶ
ሺܣ  ሻܤ2  
	

ଶߛ ൌ െ
݉

3ଶ
ሺܣ െ  	ሻܤ
	

ଷߛ ൌ െ
݉

3ଶ
ܥ   (159)

where 

ܣ			 ൌ
ଶ

2݉

ଶ

݉
ଶ

ଵ
ሺଵሻଵ

ሺଵሻ

ܧ െ ܧ







	

ܤ ൌ
మ

ଶ
 మ


మ ∑

భ
ሺమሻభ

ሺమሻ

ாబିாబ

    

	

ܥ																																																 ൌ
ଵ
ሺଵሻଶ

ሺଶሻ  ଶ
ሺଶሻଵ

ሺଵሻ

ܧ െ ܧ





 
(160)

and 
ሺሻ is the ݅୲୦ component of the vector ܘ. 

Chuang (32) has expressed a Luttinger-Kohn Hamiltonian matrix as follows:



 55

۶ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ܲ  ܳ െܵ ܴ 0 െܵ √2⁄ √2ܴ

െܵற ܲ െ ܳ 0 ܴ െ√2ܳ ඥ3 2⁄ ܵ

ܴற 0 ܲ െ ܳ ܵ ඥ3 2⁄ ܵற √2ܳ

0 ܴற ܵற ܲ  ܳ െ√2ܴற െܵற √2⁄

െܵற √2⁄ െ√2ܳற ඥ3 2⁄ ܵ െ√2ܴ ܲ െ Δ 0

√2ܴற ඥ3 2⁄ ܵற √2ܳற െܵ √2⁄ 0 ܲ െ Δ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	, (161)

where 

ܲ ൌ െ
ଶߛଵ
2݉

ሺ݇ଵ
ଶ  ݇ଶ

ଶ  ݇ଷ
ଶሻ   

	

ܳ ൌ െ
ଶߛଶ
2݉

ሺ݇ଵ
ଶ  ݇ଶ

ଶ െ 2݇ଷ
ଶሻ	 

	

																																	ܴ ൌ െ
ଶ

2݉
൫െ√3ߛଶሺ݇ଵ

ଶ െ ݇ଶ
ଶሻ  i2√3ߛଷ݇ଵ݇ଶ൯	 

and	

ܵ ൌ െ
ଶߛଷ
݉

√3ሺ݇ଵ െ i݇ଶሻ݇ଷ . 
(162)

Unlike the Kane formulation, the Luttinger-Kohn ݇ ⋅  formulation is written for Bloch wave 
vectors ܓ of arbitrary direction, so the pseudocode for it, shown in figure 20, is trivially simple. 

 

Figure 20.  Pseudocode for Luttinger-Kohn formulation of the ݇ ⋅  
method. 

4.3 The Envelope Function Approximation 

If one substitutes the basis function expansion in equation 109 into the Bloch theorem expression 
for the one-electron wavefunction in equation 10, one obtains the following expression for the 
one-electron wavefunction: 

߰ܓሺܚሻ ൌቂܥ
ሺܓሻe୧ܚ⋅ܓቃܷሺܚሻ



ൌ ݂
ሺܓሻሺܚሻܷሺܚሻ



. (163)

Here, ߰ܓሺܚሻ is a sum of modulated periodic functions.  The functions ܷሺܚሻ are periodic 
functions with the same periodicity; that is, ܷሺܚ  ഥሻ܀ ൌ ܷሺܚሻ where ܀ഥ is a lattice vector of 
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the crystal.  The functions ݂
ሺܓሻሺܚሻ that modulate the amplitudes of the functions ܷሺܚሻ are 

envelope functions.  In general, they do not share the periodicity of the ܷሺܚሻ, i.e., ݂
ሺܓሻሺܚሻ	

് ݂
ሺܓሻሺܚ  is restricted to the first Brillouin zone, ݂ ܓ ഥሻ, and since܀

ሺܓሻሺܚሻ ൌ ܥ
ሺܓሻe୧ܚ⋅ܓ is a 

long-wavelength function that varies far more slowly than ܷሺܚሻ.  The expansion for the one-
electron wavefunction relies on Bloch theorem and thus only applies to systems that are periodic 
in all three spatial dimensions.  The general idea behind the envelope function approximation 
(86, 87), though, is that even for systems that lack periodicity along one or more directions, the 
one-electron wavefunction may still be approximately expressed as a sum of modulated periodic 
functions; that is, 

߰ఈሺܚሻ ൌ ݂ᇲ
ሺఈሻሺܚሻܷᇲሺܚሻ

ᇲ

 (164)

where ߙ is a general label for the function.  For a system that has two-dimensional periodicity, 
such as a system composed of a layer of one material sandwiched between two layers of a 
different material, the Bloch theorem still holds for planes normal to the layer, so for a normal 

direction along ݎଷ, the envelope function is ݂
ሺఈሻሺܚሻ ൌ ݂

൫ܓ∥൯ሺܚሻ ൌ ݂
ሺሻሺݎଷሻe୧ܚ⋅∥ܓ∥ where ܓ∥ ൌ

ሺ݇ଵ, ݇ଶ, 0ሻ and ܚ∥ ൌ ሺݎଵ, ,ଶݎ 0ሻ (86).  For a wire pointing along ݎଷ, ݂
ሺఈሻሺܚሻ ൌ ݂

ሺయሻሺܚሻ ൌ

݂
ሺሻሺݎଵ,  is simply ߙ ଶሻe୧యయ (88). Otherwise, there is no Bloch wave vector at all, and the labelݎ

the index ݅.  The envelope function is taken to be slowly varying in comparison to ܷ.  With the 
envelope function equation in place, a matrix differential equation analogous to the matrix 
equation 110 for the ݇ ⋅   :method for bulk crystals may be obtained 

ܪᇲ
,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ൯ ݂

ሺఈሻሺܚሻ


ൎ ఈܧ ݂ᇲ
ሺఈሻሺܚሻ  (165)

where  

ᇲܪ
,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ൯ ൌΘሺܚሻܪᇲ

 ሺሼ܀ሽஶ ሻ


 (166)

 

ᇲܪ
 ሺሼ܀ሽஶ ሻ ൌ ᇲܪ

ଵୣష ሺሼ܀ሽஶ ሻ 



መܓ ⋅ ᇲܘ  ᇲߜ

మ మ

ଶ
, 

and 
(167)

ᇲܪ
ଵୣష ሺሼ܀ሽஶ ሻ ൌ නܷᇲ

ற ሺܚሻܪଵୣషሺܚ, ሼ܀ሽஶ ሻܷሺܚሻdଷܚ
ஐ

. (168)

Here, ܓመ ൌ ෝܘ


 and ݇ ଶ ൌ መܓ ⋅ መܓ .  For a direction ݅ along which the system is periodic, ݇ ݂

ሺఈሻ	

ൌ ݇ ݂
ሺఈሻ where ݇ is an element of the Bloch wavevector.  ሼ܀ሽୱ୷ୱ is shorthand for the positions 

and species of the atoms in the system (which is, in general, not equal to ሼ܀ሽஶሻ
 , the positions, 

and species of the atoms in a bulk crystal of type ݈. 	Θሺܚሻ is a step function that is 1 if point ܚ is 
within a material of type ݈ and is zero otherwise.  Away from an interface, for a point ܚ within a 
material of type ݈, ܪᇲ

,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ൯ ൌ ᇲܪ
 ሺሼ܀ሽஶ ሻ. 
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The approximations involved in equations 165–167 may be made clear through a brief outline of 
their derivation by Burt (87).  If one substitutes the envelope function expansion, equation 164, 
into the one-electron Schrödinger equation, one may obtain the following equation: 

ቊ
ෝܘ ⋅ ෝܘ
2݉

ܷᇲሺܚሻ൨ 

݉

ሾܘෝܷᇲሺܚሻሿ ⋅ መܓ  ܷᇲሺܚሻ
ଶ ݇ଶ

2݉
ᇲ

 ܸୣ ୶୲,ୣ൫ܚ, ሼ܀ሽୱ୷ୱ൯ܷᇲሺܚሻ െ ሻቋܚఈܷᇲሺܧ ݂ᇲ
ሺఈሻሺܚሻ ൌ 0 . (169)

Since derivatives of ܷሺܚሻ have the same periodicity as ܷሺܚሻ itself, one may write, without 
approximation (81, 87), 

ෝܘ ⋅ ෝܘ
2݉

ܷᇲሺܚሻ ൌቈන ܷᇲ
ற ሺܚሻ

ෝܘ ⋅ ෝܘ
2݉

ܷሺܚሻdଷܚ
ஐ

 ܷሺܚሻ


 (170)

and 

ሻܚෝܷᇲሺܘ ൌܘᇲܷሺܚሻ


 (171)

where the sums may be infinite.  If the effective potential can be approximated as 

ܸୣ ୶୲,ୣ൫ܚ, ሼ܀ሽୱ୷ୱ൯ ൎΘሺܚሻܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶ ሻ


 (172)

then (81, 87) 

ܸୣ ୶୲,ୣ൫ܚ, ሼ܀ሽୱ୷ୱ൯߰ఈሺܚሻ ൎ

											Θሺܚሻቈන ܷᇲ
ற ሺܚሻܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶ ሻܷሺܚሻdଷܚ

ஐ




݂ᇲ
ሺఈሻሺܚሻ	

ᇲ

. (173)

Once one substitutes equations170, 171, and 173 into equation 169, the matrix differential 
equation 165 readily follows. 

The approximation of effective potential ܸୣ ୶୲,ୣ൫ܚ, ሼ܀ሽୱ୷ୱ൯ in equation 172 assumes the potential 

field is due to atoms in a regular lattice array.  This is reasonable for a point ܚ in an environment 
that locally resembles a bulk crystal, such as, for example, in the interior of a layer of a 
superlattice composed of alternating single-crystal layers, provided that the layers are sufficiently 
thick.  However, for a point ܚ near an interface, this approximation is rather crude.  In actuality, 
the interface itself can be considered a region of small but finite thickness, as illustrated in figure 
21, which shows an interface between GaAs and AlAs.  The yellow lines mark planes of Al and 
Ga atoms on either side of the interface, with a plane of As atoms in between.  Across the region 
between the planes of Ga and Al atoms, the true potential felt by the electron (i.e., equations 5 
and 6) is generally continuous, though it may rise or fall steeply across this interface. 
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Figure 21.  Interface between AlAs at top (grey 
and purple atoms) and GaAs at 
bottom (pink and purple atoms).  
The two yellow dotted lines indicate 
the planes of Al and Ga atoms on 
opposite sides of the interface.  The 
figure was created with Jmol (45). 

Since the envelope function expansion contains, in principle, an infinite number of terms, the 
matrix differential operator ܪᇲ

,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ൯ likewise has an infinite number of rows and 

columns.  One way of obtaining a finite matrix operator from ܪᇲ
,୲୭୲ is to note how 

ᇲܪ
 ሺሼ܀ሽஶ ሻ in equation 167 and ܪᇲ

⋅ ሺሼ܀ሽஶ ሻ in equation 111 are analogous, with the former 

obtainable from the latter by making the replacement ܓ → መܓ .  This replacement, then, may be 
made for a previously formulated ݇ ⋅  ,Hamiltonian matrix for a bulk crystal (86).  However 
there are problems with this approach.  Material parameters are functions of position across an 
interface, so, for example, the Luttinger parameters would become ߛሺܚሻ ൌ ∑ Θሺܚሻߛ  where 
ߛ  is the ݉୲୦ Luttinger parameter for material ݈.  While the scalar components of the Bloch 
wave vector ܓ commute with such parameters, components of the differential operator ܓመ  do not 
(89).  A work-around for this issue has been to impose a symmetrization scheme on ܪᇲ

,୲୭୲ 

(90), so that, for example, operators within it of the forms 

ሻݔሺܣ
߲ଶ

ଶݔ߲
and ሻݔሺܤ

߲
ݔ߲

 (174)

are replaced, respectively, by 

߲
ݔ߲

ሻݔሺܣ
߲
	ݔ߲

		and
1
2
൭ܤሺݔሻ

߲
ݔ߲


߲
ݔ߲

ሻ൱ݔሺܤ . (175)

This operator replacement scheme, however, is ad hoc (91) and can lead to spurious solutions 
(92). 

Instead of directly substituting ܓመ  for ܓ in a previously formulated finite-sized ݇ ⋅  Hamiltonian 
matrix, matrix differential equation 165 can itself be transformed into a matrix equation with a 
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finite number of terms, following the method of Burt (87).  In this method, the expansion in 
equation 164 is split into two sums, 

߰ఈሺܚሻ ൌ ∑ ௦݂
ሺఈሻሺܚሻ ௦ܷሺܚሻ

௦  ∑ ݂
ሺఈሻሺܚሻ ܷሺܚሻ

 . (176)

Following the notation given previously for the derivation of the Luttinger-Kohn Hamiltonian 
matrix, the states of the first sum are in class ܣ, and the states in the second sum are in class ܤ.  
The class ܣ states are not necessarily the exact same ones used by Luttinger and Kohn, but they 
are the states that contribute the most to ߰ఈሺܚሻ.  The index ݏ refers to envelope functions and 
terms corresponding to class ܣ states; index ݎ refers to envelope functions and terms 
corresponding to class ܤ states, and index ݉ refers to terms in either sum.  With this notation, 
the envelope function matrix equations may be expressed as  

∑ ቂܪ
ሺሻሺܚሻ  


መܓ ⋅ ܘ  ߜ

మ మ

ଶ
ቃ ݂

ሺఈሻሺܚሻ ൌ ఈܧ ݂
ሺఈሻሺܚሻ , (177)

and 

ቈܪ௦
ሺሻሺܚሻ 


݉

መܓ ⋅ ௦ܘ  ௦ߜ
ଶ ݇ଶ

2݉
 ݂

ሺఈሻሺܚሻ


ൌ ఈܧ ௦݂
ሺఈሻሺܚሻ  (178)

where 

ᇲܪ
ሺሻ ሺܚሻ ൌΘሺܚሻ



ᇲܪ
ଵୣష ሺሼ܀ሽஶ ሻ . (179)

Burt neglects the curvature of the class ܤ envelope functions ݇ଶ ݂
ሺఈሻሺܚሻ is, so equation 177 

becomes approximately (81) 

ܪᇲ
ሺሻሺܚሻ ݂ᇲ

ሺఈሻሺܚሻ


ᇲ

ܪ௦ᇲ
ሺሻሺܚሻ 


݉

መܓ ⋅ ௦ᇲ൨ܘ ௦݂ᇲ
ሺఈሻሺܚሻ



,௦ᇲ

ൎ ఈܧ ݂
ሺఈሻሺܚሻ	 (180)

where the sum over ݉ has been split into two sums over ݎ′ and ݏ′, where ݎ′ and ݏ′ correspond to 
classes ܣ and ܤ, and the terms ܓመ ⋅ ᇲܘ ݉⁄  are also assumed to be negligibly small (81).  If the 

class ܤ periodic functions ܷሺܚሻ are such that ܪᇲ
ሺሻ ൌ ܪ

ሺሻߜᇲ, then the class ܤ envelope 

functions are approximately (81, 87) 

݂
ሺఈሻሺܚሻ ൎ

1

ఈܧ െ ܪ
ሺሻሺܚሻ

ܪ௦ᇲ
ሺሻሺܚሻ 


݉

መܓ ⋅ ௦ᇲ൨ܘ ௦݂ᇲ
ሺఈሻሺܚሻ



௦ᇲ

. (181)

Equation 178 can be rewritten to show its dependence on ݂
ሺఈሻሺܚሻ: 
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ቈܪ௦௦ᇲ
ሺሻሺܚሻ 


݉

መܓ ⋅ ௦௦ᇲܘ  ௦௦ᇲߜ
ଶ ݇ଶ

2݉
 ௦݂ᇲ

ሺఈሻሺܚሻ


௦ᇲ

ܪ௦
ሺሻሺܚሻ 


݉

መܓ ⋅ ௦൨ܘ ݂
ሺఈሻሺܚሻ





ൌ ఈܧ ௦݂
ሺఈሻሺܚሻ .  

(182)

Equation 181 is then substituted into equation 182, but several of the resulting terms are either 
zero due to symmetries in class ܣ states or are neglected because they are only significant near 
an interface.  (Terms containing derivatives of matrix element ܪ௦ are an example of the latter, 
since these elements are constant within a bulk material, and regions away from the interface are 
presumed to be bulk-like.)  This yields the following (81, 87): 

∑ ௦௦ᇲܪ
൫ܚ, ሼ܀ሽୱ୷ୱ൯ ௦݂ᇲ

ሺఈሻሺܚሻ
௦ᇲ ൎ ఈܧ ௦݂

ሺఈሻሺܚሻ , (183)

 

௦௦ᇲܪ
൫ܚ, ሼ܀ሽୱ୷ୱ൯ ൌ ௦௦ᇲܪ

ሺଶሻሺܚሻ  ௦௦ᇲߜ
ଶ ݇ଶ

2݉

ଶ

݉
ଶܓመ ⋅ ௦ܘ

1

ఈܧ െ ܪ
ሺሻሺܚሻ

௦ᇲܘ ⋅





መܓ 	 (184)

and 

௦௦ᇲܪ
ሺଶሻሺܚሻ ൌ ௦௦ᇲܪ

ሺሻሺܚሻ  ∑
ுೞೝ
ሺబሻሺܚሻு

ೝೞᇲ
ሺబሻሺܚሻ

ாഀିுೝೝ
ሺబሻሺܚሻ


 ൎ ௦௦ᇲܪ

ሺሻሺܚሻ , (185)

where ܪ௦௦ᇲ
൫ܚ, ሼ܀ሽୱ୷ୱ൯ is called a Burt-Foreman Hamiltonian.  Here, ܘ௦ is position-independent 

and commutes with ܓመ ܪ  .
ሺሻሺܚሻ, however, is clearly not position-independent.  A Hamiltonian 

matrix derived from equations 183–185 should have the proper ordering between the operator ܓመ  
and the empirical parameters formed from the sums over ݎ (class ܤ).  One can see an example of 

such a Hamiltonian from Foreman (93).  If ܧఈ ൎ ᇲܪ  andܧ	
ሺሻ 	ൌ  ᇲ, then for a bulkߜܧ	

material, ܪᇲ
  resembles the Luttinger-Kohn Hamiltonian shown in equation 157. 

Figure 22 is pseudocode that shows the outline of how an implementation of the envelope 
function approximation may be done.  In this pseudocode, discretization refers to the use of 
either finite difference or finite-element methods to transform a matrix differential eigenequation 
۶ሺఈሻሺܚሻ ൌ ሻ, where the elements of ۶ܚሺఈሻሺఈܧ  are differential operators and the elements of 
ሻ are functions, into a matrix eigenvalue problem, ۶۴ሺఈሻܚఈሺ ൌ  ఈ۴ሺఈሻ, where the elements ofܧ
۶ and ۴ሺఈሻ are numerical values.   
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Figure 22.  Pseudocode for implementing the envelope function approximation.  The matrix differential 

operator    
1 2 3

( )k k k params, , ,H  may either be a symmetrized bulk ݇ ⋅  Hamiltonian matrix 

where the substitution ܓ → መܓ   has been made or a Burt-Foreman Hamiltonian. 
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The envelope function expansion of the one-electron wavefunction in equation 164 is not fully 
general.  In a region of a structure that is locally periodic—that is, a region composed of unit 
cells that may be tiled throughout a finite space rather than to infinity—it is physically 
reasonable.  The local periodicity is captured by the periodic functions ܷሺܚሻ, while the lack of 
full periodicity due to the presence of features such as material interfaces in the structure is 

accounted for by the envelope functions ݂
ሺఈሻ.  However, regions of structures may lack even 

approximate local periodicity, for example, if they are sufficiently inhomogeneously strained. 
(Such regions may also be regions where the potential cannot be approximated as bulk-like.)  
The significance of this can be seen in figure 23, where ܷሺܚሻ is superimposed over an 
undistorted lattice with the same periodicity as ܷሺܚሻ and a distorted lattice that lacks 

periodicity.  A slowly varying envelope function ݂
ሺఈሻ can modify the amplitude of ܷሺܚሻ, but it 

cannot stretch or compress parts of it to match the distortions in the lattice.  Also, unlike the 
periodic functions in Fourier series expansions, the periodic functions in the envelope function 
expansion of equation 164 all have the same periodicity over the whole domain Ω.  Lattice 
mismatch in a structure, though, means that different regions within the structure may have 
different local periodicities, so this would limit the envelope function expansion—at least the one 
given in equation164—to lattice-matched structures, such as those made of GaAs and AlAs. 

 

Figure 23.  Schematic of a periodic 
function Un ሺrሻ 
superimposed over a lattice 
of evenly spaced atoms (top) 
and a distorted lattice where 
the spacing between 
neighboring atoms is no 
longer the same. 

However, the envelope function approximation has, nonetheless, been applied to structures with 
significant lattice mismatch, such as a gallium nitride (GaN) dot embedded in an AlN matrix 
(94), or an InAs quantum dot embedded in a GaAs matrix (89).  Work by Foreman (95) indicates 
why this appears to lead to reasonable results in practice.  They show the one-electron 
wavefunction may be expanded as 

߰ఈሺܚሻ ൌ ∑ ∑ ᇲܨ
ሺఈሻሺ܀ഥሻߜሺܚ െ ,ܚഥሻܷᇲሺ܀ ഥሻ܀

ேౙౢౢ
ୀଵᇲ , (186)
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where ୡܰୣ୪୪ is the number of crystal unit cells in the system (which in general may not be 
identical when the system is composed of multiple materials), ܀ഥ is the position vector pointing 
to unit cell ݅, and ߜሺܚ െ  ഥሻ is defined as܀

ܚሺߜ െ ሻ܀ ൌ
ஐ

ሺଶగሻయ
 e୧݀ܚ⋅ܓଷܚ . (187)

Here, “FBZ” is the first Brillouin zone of a crystal unit cell at ܀ഥ, and Ω is the volume of this 
cell.  This function is similar to the Dirac delta function in that it peaks sharply near ܀ഥ, and is 
zero outside a neighborhood of ܀ഥ, with a volume about equal to Ω. 	ܷᇲሺܚ,  ഥሻ is the value of܀

ܷᇲሺܚሻ for a bulk crystal whose unit cell is the same as that of cell ݅. 	ܨᇲ
ሺఈሻሺ܀ഥሻ is a discrete 

envelope function defined at points ܀ഥ, and its relationship to the continuous envelope function is 

݂ᇲ
ሺఈሻሺܚሻ ൌ ∑ ᇲܨ

ሺఈሻሺ܀ഥሻߜሺܚ െ ഥሻ܀
ேౙౢౢ
ୀଵ . (188)

If ܷᇲሺܚ, ,ܚഥሻ is the same for all crystal unit cells in the system, then ܷᇲሺ܀ ഥሻ܀ ൌ ܷᇲሺܚሻ, and 
the expansion in equation 186 reduces to that in equation 164.  However, this expansion is more 
general than the original envelope function expansion and accounts for changes in the local 

periodicity.  With this redefinition of ݂ᇲ
ሺఈሻሺܚሻ, the matrix operator ܪᇲ

,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ൯ in equation 

165 becomes 

′ܪ
,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ൯ ൌ ഥܪ

′
ሺሻ ሺܚሻ 


2݉

ሻܚ′ሺܘൣ ⋅ መܓ  መܓ ⋅ ሻ൧ܚ′ሺܘ

					ߜ′
ଶ ݇ଶ

2݉



2݉

ሻܚ′ሺ۾ൣ ⋅ መܓ  መܓ ⋅ 	ሻ൧ܚ′ሺ۾

					
1

2݉
ൣܘ′ሺܚሻ ⋅ ሻܚሺ۾  ሻܚ′ሺ۾ ⋅ 	ሻ൧ܚሺܘ


				
1

2݉
۾′ሺܚሻ ⋅ ሻܚሺ۾




 

(189)

where 

ഥᇲܪ
ሺሻ ሺܚሻ ൌ ∑ Θഥሺܚሻ ᇲܪ

ଵୣష ൫ሼ܀ሽஶ ൯ , (190)
 

ሻܚᇲሺܘ ൌ ∑ Θഥሺܚሻ  ܷᇲ
ற ሺܚ, ,ܚෝܷሺܘഥሻ܀ ஐܚഥሻdଷ܀ , (191)

 
ሻܚᇲሺ۾ ൌ ∑ Θഥሺܚሻ  ܷᇲ

ற ሺܚ, ܚሺߜෝሾܘഥሻ܀ െ ,ܚഥሻܷሺ܀ ஐ	ܚഥሻሿdଷ܀ , (192)

 
and



 64

Θഥሺܚሻ ൌ ൜
1, ܚ in unit cell ݅
0, otherwise . (193)

Here, ሼ܀ሽஶ  is the set of positions and species of the atoms of a bulk crystal whose unit cell is the 
same as that of cell ݅.  The symmetry of the sum ܘᇲሺܚሻ ⋅ መܓ  መܓ ⋅  ሻ in the second termܚᇲሺܘ
of equation 189 is not due to an artificially imposed symmetrization scheme, such as the one 
discussed above and shown in equation 175.  If the structure in question is composed of locally 
periodic crystal regions separated by material interfaces, then away from an interface, ܘᇲ is 
effectively independent of ۾ ,ܚᇲሺܚሻ is zero, and ܪᇲ

,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ൯ in equation 189 reduces to 

the ܪᇲ
,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ൯ in equation 167.  The terms containing ۾ᇲሺܚሻ, then, are interfacial 

terms, which are often negligible, especially in systems composed predominantly of regions of 
bulk crystal, e.g., superlattices with thick layers (87).  The end result is that the envelope 
function matrix equation, i.e., equation 165, may be applied to structures that are not necessarily 
lattice-matched. 

4.4 Effective Mass Approximation 

Sometimes the term “effective mass approximation” is used as a synonym for the ݇ ⋅  and 
envelope function methods (32, 82, 87), but here it will be used to describe a particular 
simplification of these methods.  One can see this approximation in the solutions to the Kane 
Hamiltonian matrix for small ݇, equations 141, which all have the following form: 

ܓܧ ൌ ܧ 
మమ

ଶ
. (194)

This is a solution to the Schrödinger equation for an independent particle with mass ݉ in a 
potential with the constant value ܧ, 

ቂ ܘ
ෝ⋅ܘෝ

ଶ
 ቃܧ ߰ܓሺܚሻ ൌ ሻܚሺܓ߰ܓܧ , (195)

and because of this, ݉ is called the effective mass.  Accordingly, electrons with a small Bloch 
wave vector ܓ behave approximately as if they were free electrons with this effective mass.  
Holes generally behave approximately as if they were free electrons with a negative effective 
mass. 

In the envelope function method, the effective mass approximation amounts to an envelope 
function expansion with only one term, that is, 

߰ఈሺܚሻ ൌ ݂ሺఈሻሺܚሻܷሺܚሻ , (196)

and the envelope function matrix differential equation reduces to the following one-particle  
equation (10, 17), 

ቈܧ 
ଶ ݇ଶ

2݉
 ݂ሺఈሻሺܚሻ ൌ 

ෝܘ ⋅ ෝܘ
2݉

 ൨ܧ ݂
ሺఈሻሺܚሻ ൌ ఈ݂ܧ

ሺఈሻሺܚሻ . (197)
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Strictly speaking, equation 197 is valid only if ݉ is constant.  In a heterostructure, ݉ is at most 
piecewise constant, taking on one value in a part of the structure composed of one material and a 
different value in a part composed of a different material.  (Similarly, ܧ can at most be only 
piecewise constant.)  In such a structure, then, ݉ varies with ܚ, so the operator ܘෝ ⋅  ෝ/2݉ is noܘ
longer Hermitian, so ܧఈ is no longer guaranteed to be real.  This problem can be avoided by 
modifying the equation to become the following (10): 

ቂܘෝ ⋅ ቀ ෝܘ

ଶሺܚሻ
ቁ  ቃܧ ݂

ሺఈሻሺܚሻ ൌ ఈ݂ܧ
ሺఈሻሺܚሻ , (198)

or equivalently, 

ቂܓመ ⋅ ቀ మܓመ

ଶሺܚሻ
ቁ  ቃܧ ݂

ሺఈሻሺܚሻ ൌ ఈ݂ܧ
ሺఈሻሺܚሻ . (199)

Figure 24 shows a pseudocode outline of an implementation of the effective mass approximation 
for the case where the effective mass is either piecewise constant or, for the pure bulk case, 
constant.  In this pseudocode, Θሺܚሻ is a step function that is 1 if point ܚ is within a material of 
type ݈ and is zero otherwise.  Here, discretization refers to the use of either finite difference or 
finite element methods to transform a differential eigenequation ܪሺఈሻሺܚሻ ൌ  ሻ into aܚሺఈሻሺఈܧ
numerical matrix eigenvalue problem ۶۴ሺఈሻ ൌ  .ఈ۴ሺఈሻܧ

One use of the effective mass approximation is to supplement a ݇ ⋅  or envelope function 
implementation that only solves for the energies of valence bands.  That is, if one uses a 
Luttinger-Kohn Hamiltonian to determine the heavy- and light-hole bands, one may then use the 
effective mass approximation to estimate the behavior of the conduction band near ܓ ൌ 0.   

4.5 Accounting for Strain in the ܓ ⋅  and Envelope Function Methods ܘ

In ab initio and empirical atomistic methods, the effects of strain are at least partially taken into 
account through the atomic positions ሼ܀ሽெ that are the input of the effective potential 
ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽெሻ.  However, in the ݇ ⋅ ୣܸ method, the effect of  ୶୲,ୣ is taken into account 
indirectly through parameters such as ܧ, Δ, the Kane parameter ܲୟ୬ୣ, or the Luttinger 

parameters.  Atomic positions are not an input to the method at all.  Instead, a strain-dependent 
term is added to the effective potential operator, usually using the approach of Bir and Pikus (1). 
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Figure 24.  Pseudocode for outline of implementation of effective mass approximation for (piecewise) 
constant effective mass. 
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The positions and species of atoms in a strained bulk crystal will be denoted here as ሼ܀ሽஶ
 , and, 

accordingly, the one-electron Schrödinger equation for a strained bulk crystal where spin-orbit 
coupling is ignored is 

,ܚଵୣష൫ܪ ሼ܀ሽஶ
 ൯߰ܓሺ࢘ሻ ൌ ቂ ܘ

ෝ⋅ܘෝ

ଶ
 ܸୣ ୶୲,ୣ൫ܚ, ሼ܀ሽஶ

 ൯ቃ߰ܓሺܚሻ ൌ ܓܧ
 ߰ܓሺܚሻ	, (200)

where ܧܓ
  denotes an eigenvalue for the strained system.  The one-electron Hamiltonian for the 

strained crystal may be rewritten as 

,ܚଵୣష൫ܪ ሼ܀ሽஶ
 ൯ ൌ ,ܚଵୣషሺܪ ሼ܀ሽஶሻ  ൣ ܸୣ ୶୲,ୣ൫ܚ, ሼ܀ሽஶ

 ൯ െ ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ൧	, (201)

where ሼ܀ሽஶ here denotes the positions and species of atoms in an unstrained bulk crystal.  The 
term ܸୣ ୶୲,ୣ൫ܚ, ሼ܀ሽஶ

 ൯ െ ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ, though, cannot be regarded as a small perturbation on 

the Hamiltonian for the unstrained system, ܪଵୣషሺܚ, ሼ܀ሽஶሻ, because, as Bir and Pikus point out 
(1), this term is not generally small.  This can be illustrated in figure 25, which shows model 
undeformed and deformed sinusoidal potentials of a fictive one-dimensional crystal, denoted ݒ 
and ݒఞ, respectively, and the differences between them.  A small uniform strain ߳ is introduced 
that stretches the period of ݒ by a factor of 1  ߳ and changes its amplitude slightly by ߳ݓ, 
where ݓ is a parameter.  Although these model potentials have only slightly different periods, 
with ݒሺݔሻ ൌ ሻݔఞሺݒ and ݔ	sin	ݒ ൌ ሺݒ  ሺ1/ݔሻsinሾ߳ݓ	  ߳ሻሿ, the difference between them 
grows as ݔ increases to become on the same order as the potentials themselves. 

 

Figure 25.  Undeformed and deformed sinusoidal potentials of a one-dimensional crystal, 
and the difference between them.  v(x) = v0 sin x, and vᵡ (x)  
= (v0 + wϵ) sin [xോ(1 + ϵ)].  For the graph above, v0 = 1, ϵ = 1%, and w = –0.3. 
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In the previous one-dimensional example, one can specify a deformation map ߯ that relates the 
coordinate of the unstrained system, now denoted ݔ, to the coordinate of the strained system; 
that is, ݔ ൌ ߯ሺݔሻ ൌ ሺ1  ߳ሻݔ.  One can also observe that while the difference ݒఞሺݔሻ െ  ሻ isݔሺݒ
not small, ݒఞ൫߯ሺݔሻ൯ െ ሻݔሺݒ ൌ  .is not too large ݓ is small, provided that the parameter ߳ݓ

Similarly, the difference 

ܸୣ ୶୲,ୣ൫ሺܚሻ, ሼ܀ሽஶ
 ൯ െ ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ ൎ ܸሺܚ, ሼ܀ሽஶሻ߳  (202)

where ܚ is the coordinate vector for the unstrained system, is also small, provided that ܸ is not 

too large.  Again, the convention of summing over repeated indices is used.  For a bulk crystal 
subjected to homogeneous strain, the deformation map ሺܚሻ equals ۴ܚ ൌ ሺ۷   , whereܚሻܝ
۴ is the deformation gradient and ܝ is the gradient of the displacement with respect to the 
coordinates of the unstrained system.  If there is no rotation, the displacement gradient is 
symmetric and the small-strain tensor may be taken to be  ൌ ሻܚand  ሺ ,(66) ܝ ൌ ሺ۷  ሻܚ.  
(Use of the small strain tensor, however, implies that ܝ ൎ  is the gradient of the ܝ where ܝ
displacement with respect to the coordinates of the strained system [96].)  The coordinate 
transformation ܚ ൌ ሺܚሻ is now introduced into the one-electron Schrödinger equation for a 
strained crystal: 

,ሻܚଵୣష൫ሺܪ ሼ܀ሽஶ
 ൯߰ܓ൫ሺܚሻ൯ ൌ ܓܧ

 ߰ܓ൫ሺܚሻ൯ . (203)

The momentum operator within ܪଵୣష൫ሺܚሻ, ሼ܀ሽஶ
 ൯ needs to be expressed in terms of the 

coordinates of the unstrained system (32).  Applying the chain rule yields 

̂ ൌ
ݎ߲



ݎ߲
ሺെiሻ

߲
ݎ߲

 ൌ 
߲
ݎ߲

ሺ߯
ିଵሺܚሻሻ൨ ሺെiሻ

߲
ݎ߲

 ൌ 
߲
ݎ߲

ቀ߯
ିଵሺܚሻቁ൨ ̂

	 (204)

where ܘෝ ൌ ሺ̂ଵ
, ଶ̂

, ଷ̂
ሻ is the momentum operator of the one-electron Hamiltonian of the 

unstrained system in terms of ܚ.  For small strain, the inverse deformation map ܚ ൌ ିଵሺܚሻ is 
approximately (32, 1) 

ିଵሺܚሻ ൌ ሺ۷ െ ሻܚ  (205)

and, accordingly, 

̂ ൎ ൫ߜ െ ߳൯̂
 . (206)

Once the momentum operator is expressed in terms of unstrained coordinates, then one may 
write 
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ෝܘ ⋅ ෝܘ ൌ ̂̂ ൎ ൫ߜ െ ߳൯̂

ሺߜ െ ߳ሻ̂
   

 

ൌ ൫ߜ െ 2 ߳  ߳ ߳൯̂
̂

   

and 

ൎ ൫ߜ െ 2 ߳൯̂
̂

  (207)

where the small strain assumption means that the product of strain components is negligible.  
The one-electron Hamiltonian, then, becomes (32, 1) 

,ሻܚଵୣష൫ሺܪ ሼ܀ሽஶ
 ൯ ൌ ,ܚଵୣషሺܪ ሼ܀ሽஶሻ  ߳ܦ , (208)

where 

,ܚଵୣషሺܪ ሼ܀ሽஶሻ ൌ
ෝܘ ⋅ ෝܘ

2݉
 ܸୣ ୶୲,ୣሺܚ, ሼ܀ሽஶሻ  (209)

and 

ܦ ൌ െ
ොೕ
బොೖ

బ


 ܸሺܚ, ሼ܀ሽஶሻ . 

(210)

The one-electron wavefunction satisfies the Bloch theorem in both strained and unstrained 
coordinates.  To show this, the Bloch wave vector ܓ needs to be expressed in terms of unstrained 
coordinates.  The primitive lattice vectors and reciprocal lattice vectors in both strained and 
unstrained coordinates still satisfy the following relationships (12), 

܊ ⋅ ܉ ൌ ,ߜߨ2 and ܊
 ⋅ ܉

 ൌ ߜߨ2  (211)

where the superscript “0” indicates that a quantity pertains to the unstrained system.  Since 
܉ ൌ ሺ۷  ሻ܉

	, ܊ ൌ ሺ۷  ሻିଵ܊
	, and 

ܓ ൌ݉܊

ଷ

ୀଵ

ൌ ሺ۷  ሻିଵ݉܊


ଷ

ୀଵ

ൌ ሺ۷  ሻିଵܓ  (212)

where ݉ is a real number.  Accordingly, e୧ܚ⋅ܓ ൌ e୧ܓ
బ⋅ܚబ, and 

߰ܓሺܚሻ ൌ e୧ݑܚ⋅ܓܓሺܚሻ ൌ e୧ܓ
బ⋅ܚబݑሺ۷ାሻషభܓబ൫ሺ۷  ሻܚ൯

ൌ e୧ܓ
బ⋅ܚబݑܓబ

 ሺܚሻ ≡ ߰ܓబ
 ሺܚሻ 

 (213)

where ݑܓబ
 ሺܚሻ ≡ బ൫ሺ۷ܓሺ۷ାሻషభݑ  ሻܚ൯.  The function ݑܓబ

 ሺܚሻ has the periodicity of the 

unstrained lattice (1); that is, 
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బܓݑ
 ሺܚ  ഥሻ܀ ൌ బ൫ሺ۷ܓሺ۷ାሻషభݑ  ሻሺܚ  ഥሻ൯܀   

 

ൌ ൫ሺ۷ܓݑ  ሻሺܚ  ഥሻ൯܀   
 

ൌ ൫ሺ۷ܓݑ  ሻܚ  ሺ۷  ሻ܀ഥ൯   
 

ൌ ܚሺܓݑ  ഥሻ܀ ൌ ሻܚሺܓݑ   

and  

ൌ బ൫ሺ۷ܓሺ۷ାሻషభݑ  ሻܚ൯ ൌ బܓݑ
 ሺܚሻ (214)

where ܀ഥ and ܀ഥ are lattice vectors of the strained and unstrained crystal. 

Applying the operator ߳ܦ to ߰ܓబ
 ሺܚሻ yields 

߳ܦ߰ܓబ
 ሺܚሻ ൌ െ

e୧ܓ
బ⋅ܚబ

݉
ൣ ߳̂

̂
  ߳൫ ݇

̂
  ݇

̂
൯  ߳ଶ ݇

݇
൧ݑܓబ

 ሺܚሻ 
 

 

									 									 ߳ ܸሺܚ, ሼ܀ሽஶሻݑܓబ
 ሺܚሻ   

 

ൌ െ
e୧ܓ

బ⋅ܚబ

݉
ൣ ߳̂

̂
  2 ߳ ݇

̂
  ߳ଶ ݇

݇
൧ݑܓబ

 ሺܚሻ 
 

 

 ߳ ܸሺܚ, ሼ܀ሽஶሻݑܓబ
 ሺܚሻ   

and 

ൌ e୧ܓ
బ⋅ܚబ

߳ ቈܦ െ
2 ݇

̂


݉
െ
ଶ ݇

݇


݉
 బܓݑ

 ሺܚሻ . (215)

This leads to the following Schrödinger-like equation: 

ܪଵୣషሺܚ, ሼ܀ሽஶሻ 

݉

൫ߜ െ 2 ߳൯ ݇
̂

  ߳ܦ൨ బܓݑ
 ሺܚሻ 

ൌ ቂܧܓబ െ
మ

ଶ
൫ߜ െ 2 ߳൯ ݇

݇
ቃ బܓݑ

 ሺܚሻ . 
(216)

As before, the periodic part of the wavefunction is expanded in terms of the states where the 
Bloch wave vector is zero, i.e., 

బܓݑ
 ሺܚሻ ൌܥ

൫ܓబ൯
ܷሺܚሻ



 (217)

and a matrix equation is obtained: 

ܪᇲ
⋅∗ ሺሼ܀ሽஶ, ሻܥ

ሺܓሻ



ൌ ቈܧܓబ
 െ

ଶ

2݉
൫ߜ െ 2 ߳൯ ݇

݇
 ᇲܥ

ሺܓሻ (218)

ᇲܪ
⋅∗ ሺሼ܀ሽஶ, ሻ ൌ ᇲܪ

ଵୣష ሺሼ܀ሽஶሻ 

݉

൫ߜ െ 2 ߳൯ ݇
ᇲ

ሺሻ  ߳ܦᇲ
ሺሻ 	 (219)

ᇲ
ሺሻ ൌ න ܷᇲ

ற ሺܚሻ̂
ܷሺܚሻdଷܚ

ஐ

 (220)
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and 

ᇲܦ
ሺሻ ൌ න ܷᇲ

ற ሺܚሻܦܷሺܚሻdଷܚ 
ஐ

 (221)

with Ω being the volume of the unit cell of the crystal.  Since the strain here is taken to be 
homogeneous, ߳ is a constant and can be moved outside of any integration.   

When the basis functions ܷሺܚሻ ൌ  ሻ are the Luttinger-Kohn basis functions in equationܚሺݑ

145, then ߳ܦᇲ
ሺሻ  is such that (32) 

 

ቂ ߳ܦᇲ
ሺሻ ቃ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ ఢܲ  ܳఢ െܵఢ ܴఢ 0 െܵఢ √2⁄ √2ܴఢ

െܵఢ
ற

ఢܲ െ ܳఢ 0 ܴఢ െ√2ܳఢ ඥ3 2⁄ ܵఢ
ܴఢ
ற 0 ఢܲ െ ܳఢ ܵఢ ඥ3 2⁄ ܵఢ

ற √2ܳఢ
0 ܴఢ

ற ܵఢ
ற

ఢܲ  ܳఢ െ√2ܴఢ
ற െܵఢ

ற √2⁄

െܵఢ
ற √2⁄ െ√2ܳఢ

ற ඥ3 2⁄ ܵఢ െ√2ܴఢ ఢܲ 0

√2ܴఢ
ற ඥ3 2⁄ ܵఢ

ற √2ܳఢ
ற െܵఢ √2⁄ 0 ఢܲ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

	 (222)

where 

ఢܲ ൌ ܽ௩Tr    
 

ܳఢ ൌ
ܾ
2
ሺ߳ଵଵ  ߳ଶଶ െ 2߳ଷଷሻ  

 

 

ܴఢ ൌ െ
√3
2
ܾሺ߳ଵଵ െ ߳ଶଶሻ  i݀߳ଵଶ  

 

and 

ܵఢ ൌ ݀ሺ߳ଵଷ െ i߳ଶଷሻ . (223)

The empirical parameters ܽ௩, ܾ, and ݀ are linear combinations of the matrix elements ܦᇲ
ሺሻ , and 

they related to certain strain states (81).  If the strain is purely hydrostatic, then the valence band 
maximum is shifted by  

Δܧ௩ ൌ ܽ௩Tr  . (224)

If the strain is biaxial with ߳ଵଵ ൌ ߳ଶଶ ് ߳ଷଷ, the maxima of the heavy and light hole valence band 
are no longer the same, but are separated by 

Δܧ ൌ 2|ܾ߳ଷଷ| . (225)

If the strain is pure shear with ߳ ൌ ݁௦ሺ1 െ  ሻ, the separation becomesߜ

Δܧ ൌ 2|݀݁௦| . (226)
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The conduction band, which is not taken into account by the strain correction to the Luttinger-
Kohn Hamiltonian matrix in equation 222, also shifts due to strain.  For the case of hydrostatic 
strain, this shift is 

Δܧ ൌ ܽTr  , (227)

where (32) 

ܽ ൌ න ܵறሺܚሻܦܵሺܚሻdଷܚ
Ω

 (228)

and ܵሺܚሻ has the same definition that it does in the formulation of the Kane ݇ ⋅  Hamiltonian 
matrix.  A diagram illustrating the effects of strain on a bulk crystal band structure is shown in 
figure 26.  In general, compressive strains tend to increase the size of the band gap, tensile strains 
tend to decrease it, and strains departing from a pure hydrostatic state tend to separate the heavy 
and light hole bands (97). 

 

 

Figure 26.  Schematic band structure of a typical bulk semiconductor with a 
diamond or zincblende crystal structure, where the solid lines 
indicate the band structure of a strained semiconductor, while the 
dotted lines indicate the original band structure before the    
strain is applied.  The split-off band is not shown.  Ehl is the 
difference between the maxima of the heavy hole and light hole 
bands, which are not necessarily the same once the 
semiconductor is strained.  Ec is the shift of the conduction 
band minimum, while Ev േ Ehlോ2 is the downward shift of the 
light and heavy hole bands, respectively (81).  The left and right 
halves of the horizontal axis indicates the magnitude of ܓ-values 
pointing along certain crystal directions.  (In this schematic, the 
actual directions are not important.) 

At this point, a strain-dependent term has only been provided for the one-electron Schrödinger 
equation for an infinite periodic system.  The empirical parameters ܽ, ܽ௩, ܾ, and ݀ all pertain to 
a bulk crystal.  Furthermore, the strain is taken to be homogeneous, and the coordinate 
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transformation ܚ ൌ ሺ۷  ሻܚ implies that the deformation has no rotational component.  (See the 
discussion in appendix B of a similar approximation in the atomistic strain formulation of Pryor 
et al. [98].)  Nonetheless, when the envelope function method is applied to strained structures, 
usually what is done is to take a preexisting ݇ ⋅ መܓ Hamiltonian matrix, substitute   (i.e., ܘෝ/) 
for ܓ (possibly with an additional correction to account for Burt-Foreman operator ordering), 
and then add the same strain correction term that one would use for a bulk ݇ ⋅  ,matrix (10, 32 
81, 89).  

Blount (99) and Sham and Ziman (100) have shown how a strain-dependent term may be 
introduced into the one-electron Schrödinger equation through a coordinate transformation that 
does not imply homogeneity of the strain.  The coordinate transformation is simply the 
relationship between the strained coordinate, the unstrained coordinate, and the displacement ܝ, 
i.e., 

ܚ ൌ ሺܚሻ ൌ ܚ  ܝ . (229)

The momentum operator can be expressed as (99) 

̂ ൌ
డೕ

బ

డ
ሺെiሻ డ

డೕ
బ ൌ ቂ డ

డ
൫ݎ െ ൯ቃݑ ̂

 ൌ ቀߜ െ
డ௨ೕ
డ
ቁ ̂

 , (230)

and so for small strain (100) 

ෝܘ ⋅ ෝܘ ൌ ̂̂ ൎ ቀߜ െ 2
డ௨ೕ
డೖ
ቁ ̂

̂
 െ ቀ̂

 డ௨ೖ
డ
ቁ ̂

 . (231)

Furthermore, 

2
డ௨ೕ
డೖ

̂
̂

 ൌ
డ௨ೕ
డೖ

̂
̂

 
డ௨ೕ
డೖ

̂
̂

 ൌ
డ௨ೕ
డೖ

̂
̂

  డ௨ೖ
డೕ

̂
̂



ൌ
డ௨ೕ
డೖ

̂
̂

  డ௨ೖ
డೕ

̂
̂

 ൌ ൬
డ௨ೕ
డೖ

 డ௨ೖ
డೕ
൰ ̂

̂
 ൌ 2 ߳̂

̂

 
,
 

(232)

and 
డ௨ೖ
డ

ൌ ߳  ߱ , (233)

where ߱ is the infinitesimal rotation tensor (96).  Therefore, 

ෝܘ ⋅ ෝܘ ൎ ൫ߜ െ 2 ߳൯̂
̂

 െ ሾ̂
ሺ߳  ߱ሻሿ̂

   

and 

ൌ ൫ߜ െ 2 ߳൯̂
̂

 െ ቂ డ
డ
ሺ߳  ߱ሻቃ ሺെiሻ̂

· (234)

If both ߳ and ߱ are sufficiently slowly varying, then the second term in the above equation is 
negligible, and the remainder of the above equation coincides with the corresponding result from 
Bir and Pikus.  Also, equations 232 through 234 depend on the assumption that the small strain 
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tensor is formed from the displacement gradient with respect to the coordinates of the strained 
system, ߲ݑ ⁄ݎ߲  or ܝ, while the formulation of Bir and Pikus is derived under the assumption 
that the small strain tensor is formed from the displacement gradient with respect to the 
coordinates of the unstrained system, ߲ݑ ݎ߲

⁄  or ܝ. 

If the one-electron wavefunction is expanded according to the envelope function approximation 
in unstrained coordinates, then 

߰ఈ൫ሺܚሻ൯ ≡ ߰ఈ
ሺܚሻ ൌ ∑

݂ᇲ
ሺఈሻሺܚሻܷᇲሺܚሻᇲ . (235)

Applying ߳̂
̂

 to a term in the this envelope function expansion yields 

߳̂
̂


݂ᇲ
ሺఈሻሺܚሻܷᇲሺܚሻ ൌ ߳ൣ̂

̂
ܷᇲሺܚሻ  ܷᇲሺܚሻ̂

̂
൧ ݂ᇲ

ሺఈሻሺܚሻ

					 ߳൛ൣ̂
ܷᇲሺܚሻ൧̂

  ሾ̂
ܷᇲሺܚሻሿ̂

ൟ ݂ᇲ
ሺఈሻሺܚሻ	

ൌ ߳ൣ̂
̂

ܷᇲሺܚሻ  ଶܷᇲሺܚሻ ݇
 ݇


൧ ݂ᇲ

ሺఈሻሺܚሻ

					2 ߳ൣ̂
ܷᇲሺܚሻ൧ ݇


݂ᇲ
ሺఈሻሺܚሻ 

	 

(236)

where ݇
 ൌ ̂

/.  Following Burt (87), the following expansions may be made: 

̂
ܷᇲሺܚሻ ൌ ∑ ᇲ

ሺሻ ܷሺܚሻ , (237)
and 

̂
̂

ܷᇲሺܚሻ ൌቈන ܷᇲ
ற ሺܚሻ̂

̂
ܷሺܚሻdଷܚ

ஐ

 ܷሺܚሻ


. (238)

The effective potential may be expanded as a Taylor series about ߳ ൌ 0 and ߱ ൌ 0. 

ܸୣ ୶୲,ୣ൫ሺܚሻ, ሼ܀ሽୱ୷ୱ
 ൯

ൎ ܸୣ ୶୲,ୣ൫ܚ, ሼ܀ሽୱ୷ୱ൯  ܸ൫ܚ, ሼ܀ሽୱ୷ୱ൯߳  ܸ
ఠ൫ܚ, ሼ܀ሽୱ୷ୱ൯߱	 

(239)

where 

ܸ ൌ
߲ܸୣ ୶୲,ୣ

߲߳
ቤ
ఢೕୀ
ఠೕୀ

and ܸ
ఠ ൌ

߲ܸୣ ୶୲,ୣ

߲߱
ቤ
ఢೕୀ
ఠೕୀ

.  (240)

If the system is subject to only small rotations, then a stationary test charge is unlikely to 
experience much of a change in potential as the system rotates about it, and ܸ

ఠ is likely to be 

negligible. If one presumes that equation 172 still holds for the undeformed configuration (i.e., 
with ܚ in place of ܚ), and that 

ܸ൫ܚ, ሼ܀ሽୱ୷ୱ൯ ൎΘሺܚሻ ܸሺܚ, ሼ܀ሽஶ ሻ


 (241)

then one may treat ܸ൫ܚ, ሼ܀ሽୱ୷ୱ൯ much as Burt (87) treats ܸୣ ୶୲,ୣ൫ܚ, ሼ܀ሽୱ୷ୱ൯ in equation 173; 

that is,
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ܸ൫ܚ, ሼ܀ሽୱ୷ୱ൯߰ఈ
ሺܚሻ ൎ

											∑ Θሺܚሻ ∑ ∑ ቂ ܷᇲ
ற ሺܚሻ ܸሺܚ, ሼ܀ሽஶ ሻܷሺܚሻdଷܚஐ

ቃ ݂ᇲ
ሺఈሻሺܚሻᇲ

 . (242)

Applying the envelope function approximation, then, leads to the following equations: 

∑ ᇲܪ
,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ, ൯ ݂

ሺఈሻሺܚሻ ൎ ఈܧ

݂ᇲ
ሺఈሻሺܚሻ , (243)

where  

ᇲܪ
,୲୭୲൫ܚ, ሼ܀ሽୱ୷ୱ, ൯ ൌ ∑ Θሺܚሻܪᇲ

 ሺሼ܀ሽஶ , ሻ , (244)

and 

ᇲܪ
 ሺሼ܀ሽஶ , ሻ ൌ ᇲܪ

ଵୣష ሺሼ܀ሽஶ ሻ 

݉

൫ߜ െ 2 ߳൯ᇲ
ሺሻ ݇


  ߳ܦᇲ

ሺሻ

							
ଶ

2݉
൫ߜ െ 2 ߳൯ ݇

 ݇

 െ

1
2
ቈ
߲
ݎ߲

൫߳  ߱൯ ൬െ
i
݉

ᇲ
ሺሻ ൰ 
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ᇲܪ
 ሺሼ܀ሽஶ , ሻ and ܪᇲ

⋅∗ ሺሼ܀ሽஶ , ሻ are almost analogous, with the former obtainable from the 

latter by making the replacement ܓ → መܓ  and adding a gradient term that is the last term in the 

above equation.  This gradient term will be zero if ᇲ
ሺሻ  is zero, which happens when ܷሺܚሻ 

and ܷᇲሺܚሻ are linear combinations of ܺሺܚሻ, ܻሺܚሻ, and ܼሺܚሻ, e.g., the class ܣ basis 
functions of the Luttinger-Kohn formulation, or when ܷሺܚሻ and ܷᇲሺܚሻ are multiples of 

ܵሺܚሻ.  If ܷᇲሺܚሻ ൌ ܵሺܚሻ, ܷሺܚሻ ൌ ܼሺܚሻ, and ݇ ൌ 3, then – i ᇲ
ሺሻ ݉ൗ  is Kane’s 

parameter, ܲୟ୬ୣ, from equation 130.  Usually, the gradient term is neglected, but the envelope 
function formulation by Zhang (101) has incorporated it. 

Previously, it was mentioned that the envelope function approximation may not be valid in 
homogeneously strained regions, since local periodicity may be effectively lost in such regions.  
However, the envelope function expansion in equation 235 is in terms of the undeformed 
coordinates, and this corrects for loss of local periodicity.  This envelope function expansion may 
be rewritten as 

߰ఈሺܚሻ ൌ ݂ᇲ
ሺఈሻ൫ିଵሺܚሻ൯ܷᇲ൫ିଵሺܚሻ൯

ᇲ

. (246)

If the original undeformed system was composed of regions that are locally periodic, then the 
periodicity of ܷᇲ in the undeformed coordinate ܚ reflects this.  The function ܷᇲ൫ିଵሺܚሻ൯, 
though, is not in general periodic in ܚ, and the argument ିଵሺܚሻ allows this function to track 
departures from local periodicity.  This is illustrated in figure 27.
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Figure 27.  Schematic of a function Un(
 –1(r)) 

superimposed over a distorted lattice where 
the spacing between neighboring atoms is no 
longer the same.  The inverse deformation 
map  –1 allows the function to track the 
distortions in the lattice. 

5. Valence Band Offset 

If one is determining the band structure of a single material, the choice of zero-energy datum is 
largely immaterial.  In the example band structures shown in figures 4, 9, and 18, the valence 
band maximum was arbitrarily chosen to be this zero-energy datum.  However, if two materials 
are brought together, their one-electron energies need to be determined with respect to a common 
energy datum, and this is often expressed in terms of the valence band offset.  That is, if the 
valence band offset between materials A and B is ܧ, then the valence band maximum in bulk 
material B is set to be higher than the valence band maximum of A by ܧ.  This band offset 
may be determined by a variety of theoretical and experimental means (102), and once it is 
determined, it may be used to modify the parameters for the various methods.  For example, if 
the fitting parameters for each material lead to band structures where the valence band maximum 
for each material is zero, then in the tight binding method, the diagonal elements ܪ of the 
Hamiltonian matrix for the atoms in material B are replaced by ܪ   .  Similarly, forܧ
the envelope function method, diagonal elements ܪ

ሺሼ܀ሽஶ ሻ would be replaced by 
ܪ
ሺሼ܀ሽஶ ሻ   .  This only has to be done, however, if the fitting parameters do not alreadyܧ

take the valence band offset parameters into account.  For example, the fitting parameters from 
Boykin et al. (33) for GaAs and InAs lead to valence band maxima of 0.0 and 0.22 for each 
material, respectively, so an additional offset should not be added to ܪ when these 
parameters are used. 

6. Example Results and Discussion 

With the help of available data in the literature, we next present results of comparisons among 
the empirical methods described previously for model systems of (1) bulk GaAs, (2) a slab of 
InAs, (3) an AlAs/GaAs/AlAs quantum well, and (4) an InAs quantum dot embedded in an 
InGaAs matrix.  We use the plane-wave version of the empirical pseudopotential method of 
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section 3.1 and the Slater-Koster tight-binding method of section 3.2.  The bulk crystal results 
pertain to the effects of strain on the electronic structure at the Γ point.  These results are 
compared with the corresponding results predicted from a form of the ݇ ⋅  method that accounts 
for the effects of strain on the valence bands, as discussed in sections 4.2 and 4.5, combined with 
an effective mass method for bulk crystals, discussed in section 4.4, to account for the 
conduction band.  The particular strain Hamiltonian used for the valence bands is equation 222, 
while the change in the conduction band minimum with strain is accounted through equation 
227.  The InAs slab is modeled through the tight-binding method under arbitrary homogeneous 
strains.  And the strain-free GaAs quantum, well clad by two AlAs layers, is modeled by both the 
tight-binding and envelope-function methods.  Finally, results from the tight-binding and 
envelope-function methods are shown for an InAs quantum dot embedded in a layer of 
In0.4Ga0.6As. 

Figure 28 shows a comparison of results from the empirical pseudopotential method (EPM) by 
Mäder and Zunger (47) and a ݇ ⋅  formulation by Van de Walle (103), both applied to a bulk 
crystal of GaAs.  The ݇ ⋅ ݇ formulation used here is equivalent to using the Chuang  ⋅  
Hamiltonian in equation 161 with the deformation potential values from Van de Walle, together 
with an effective mass approximation for the conduction band.  The first subfigure shows the 
energies of conduction and valence electrons for wave vector ܓ ൌ 0, that is, the band edges 
calculated by the two methods, while the second subfigure shows the band gaps determined from 
those energies.  Agreement between the two methods is far better for the band gap results than 
for the electronic energies themselves, which illustrates the problem discussed by Williamson 
and Zunger (41), who found that without an explicitly strain-dependent pseudopotential, the 
changes in band gaps could be fit to experiment but not the changes in the band edges 
themselves.  The EPM formulation of Mäder and Zunger does not contain any explicitly strain-
dependent terms, unlike the formulation of Kim et al. (50).  The variation with strain of 
electronic energies due to this latter formulation is shown in figure 29, along with the 
corresponding ݇ ⋅  results of Van de Walle.  The latter formulation better captures the changes 
in electronic energies due to hydrostatic strain. 
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Figure 28.  For bulk GaAs, the variation with hydrostatic strain of (a) the energies of conduction and valence 
electrons for wave vector ܓ ൌ 0 and (b) the band gap, i.e., the difference between the energies of 
conduction and valence electrons, for wave vector ܓ ൌ 0.  The electronic energies are calculated 
using the empirical pseudopotential method (EPM) as formulated by Mäder and Zunger (47) and 
using a ݇ ⋅  .formulation from Van de Walle (103) 

 

 

Figure 29.  For bulk GaAs, the variation with hydrostatic 
strain of the energies of conduction and 
valence electrons for wave vector ܓ ൌ 0, 
where the electronic energies are calculated 
using the EPM as formulated by Kim et al. 
(50) and using a ݇ ⋅  formulation from Van 
de Walle (103). 
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As shown in figure 30, the strain-dependent EPM formulation of Kim, Wang, and Zunger also 
tracks changes in electronic energies due to strain states besides hydrostatic strain, such as strain 
due to a biaxial stress state in the plane normal to the (001) crystal direction of GaAs.  Here, the 
 axes and are-ݕ and -ݔ direction is taken along (001), and the normal stresses point along the-ݖ
equal in magnitude.  These stresses are either both tensile or both compressive, so that 
 ߳௫௫ ൌ ߳௬௬, and the value of ߳௭௭ is determined from the Poisson effect.  The first subfigure 

compares the EPM results with a spin-free ݇ ⋅  formulation that accounts for the heavy and 
light-hole bands (81), along with the effective mass approximation for the conduction band used 
earlier.  The second subfigure uses Van de Walle’s ݇ ⋅  formulation, which includes spin 
effects.  This particular strain-dependent EPM formulation does not account for spin-orbit 
coupling, and so it agrees better with the spin-free  ݇ ⋅  formulation, especially with regard to 
the light-hole band.  Without spin-orbit coupling, the variation of the light-hole band edge with 
strain is linear.  The tight-binding formulation of Boykin et al. (33)—which does account for 
spin—does capture the nonlinearity in the variation from strain due to spin-orbit coupling. 
 

 

Figure 30.  For bulk GaAs, the variation with biaxial stress-induced strain of the energies of conduction and 
valence electrons for wave vector ܓ ൌ 0, where the electronic energies are calculated with the EPM as 
formulated by Kim et al. (50) and also (a) a spin-free ݇ ⋅ ݇ formulation and (b) a  ⋅  formulation 
with spin.  Both ݇ ⋅   .formulations use the deformation potential values from Van de Walle (103) 
The strain along the horizontal axis is the strain in the plane normal to the (001) crystal direction.
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Figure 31.  For bulk GaAs, the variation with biaxial 
stress-induced strain of the energies of 
conduction and valence electrons for wave 
vector ܓ ൌ 0, where the electronic energies 
are calculated with the tight-binding 
formulation of Boykin et al. (33) and also a 
݇ ⋅   .formulation from Van de Walle (103) 
The strain along the horizontal axis is the 
strain in the plane normal to the (001) crystal 
direction. 

To further illustrate the effect of strain on electronic structure results, the band structures of a 
slab of InAs about 1.2 nm thick subjected to in-plane stresses are shown in figure 32.  The 
stresses are along the (100) and (010) directions, leading to a strain of ߳∥ along these same 
directions.  No stress is imposed along the (001) direction.  One-particle energies are shown for 
electrons with Bloch wave vectors pointing along the (100) and (110) crystal directions.  The 
band structure is determined through the tight-binding method.  Dangling bonds are again 
terminated with hydrogens.  Essentially, this is an idealized quantum well where electrons are 
confined not by semiconductor layers but by vacuum, and the strain is allowed to vary arbitrarily 
rather than be fixed by the lattice mismatch between the material of the well and its surrounding 
semiconductor.  The band gap narrows with increasing in-plane tensile strain and widens with 
increasing in-plane compressive strain, and increasing in-plane tensile strain also leads to the 
valence bands bunching together and crossing over one another. 
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Figure 32.  Band structure of a 1.2-nm thick InAs slab subject to stresses along the (100) and (010) directions, 
leading to a strain of ϵǁ along these same directions.  No stress is imposed along the (001) direction.  
The kǁ values to the left of zero are the negative magnitudes of Bloch wavevectors pointing along 
crystal direction (100), while the kǁ values to the right of zero are the magnitudes of Bloch 
wavevectors pointing along crystal direction (110). 

A comparison of the results of the tight-binding and envelope function methods is shown in 
figure 33.  These methods were used to find the one-particle energies of electrons with Bloch 
wave vectors pointing along the (100) and (110) crystal directions in a 5-nm-thick GaAs 
quantum well sandwiched between 30-nm-thick layers of AlAs.  Two sets of tight-binding 
results were generated with NEMO5 modeling code (35), one using parameters from Jancu et al. 
(104) and one using parameters from the NEMO5 material database.  The GaAs parameters from 

(a) ߳∥ ൌ െ7% (b) ߳∥ ൌ 7% 

(c) ߳∥ ൌ െ3.5% (d) ߳∥ ൌ 3.5% 
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Figure 33.  Comparison of results from tight-binding and envelope function methods for a 5-nm-thick GaAs 
quantum well sandwiched between 30-nm-thick layers of AlAs.  Valence bands are shown in (a) and 
conduction bands in (b).  Two sets of tight-binding parameters are used, one from Jancu et al. (104) and 
one from used in the material database of the tight-binding software code NEMO5 and attributed to one 
of its authors, G. Klimeck (35).  The 8 × 8 ݇ ⋅  Hamiltonian used by the envelope function calculations 
may be found in the documentation of nextnano (105) or Andlauer (106).  The kǁ values to the left of 
zero are the negative magnitudes of Bloch wavevectors pointing along crystal direction (100), while the 
kǁ values to the right of zero are the magnitudes of Bloch wavevectors pointing along crystal direction 
(110). 

this database may be found in Boykin et al. (33), and the AlAs parameters from this database are 
shown in table 4.  A valence band offset of between AlAs and GaAs was needed when the 
parameters from Jancu et al. were used, and the valence band maximum of AlAs was taken to be 
0.5 eV lower than that of GaAs.  However, the parameters from the NEMO5 database already 
incorporated a valence band offset.  Boundary conditions were periodic only along the directions 
in the plane of the well, (100) and (010), and dangling bonds were terminated with hydrogen 
atoms.  The envelope function results were generated from nextnano simulation software using 
an 8 × 8 ݇ ⋅  Hamiltonian matrix documented on the nextnano web site (105) and by Andlauer 
(106).  Agreement between the two methods is good for the valence bands, especially the top two 
bands.  For the conduction bands, the tight-binding results using the parameters of Jancu et al. 
only agree with the envelope function results for small wave vector values, and the tight-binding 
results using the other set of parameters lead to a conduction band minimum about 0.1 eV less 
than that predicted from the envelope function method.  For the valence bands, a similar 
agreement between tight-binding and envelope function results has been demonstrated by de 
Franceschi et al. (107), who compared tight-binding results using the parameters of Jancu et al. 
with results from envelope function results using a 6 × 6 ݇ ⋅  .Hamiltonian matrix 
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Table 4.  Tight-binding parameters for AlAs from the material 
database of NEMO5 (35).  These parameters are values of 

ܧ
ሺሻ   and  ܸᇲᇲ,,ఒ

ሺሻ  from equations 93 and 97, and the 

spin parameter ߣ in equation 88 for ᇱ,  ∈ ሼݏ, , ݀,  ሽ∗ݏ
and ݉ᇱ,݉ ∈ ሼAl, Asሽ. 

௦ఽౢܧ
ሺሻ  0.79695 

௦ܸ୪,௦ୱ,ఙ
ሺሻ ,  ௦ܸୱ,௦୪,ఙ

ሺሻ  –1.64584 

௦ఽ౩ܧ
ሺሻ  –5.17012 

ܸ୪,ୱ,ఙ
ሺሻ , ܸୱ,୪,ఙ

ሺሻ  4.53156 

ఽౢܧ
ሺሻ  6.63291 

ܸ୪,ୱ,గ
ሺሻ , ܸୱ,୪,గ

ሺሻ  –1.86816 

ఽ౩ܧ
ሺሻ  4.39708 

ௗܸ୪,ௗୱ,ఙ
ሺሻ , ௗܸୱ,ௗ୪,ఙ

ሺሻ  –1.97058 

ௗఽౢܧ
ሺሻ  12.92120 

ௗܸ୪,ௗୱ,గ
ሺሻ , ௗܸୱ,ௗ୪,గ

ሺሻ  1.67733 

ௗఽ౩ܧ
ሺሻ  13.13880 

ௗܸ୪,ௗୱ,ఋ
ሺሻ , ௗܸୱ,ௗ୪,ఋ

ሺሻ  –1.58868 

௦∗ఽౢܧ
ሺሻ  24.16590 

௦ܸ∗୪,௦∗ୱ,ఙ
ሺሻ ,  ௦ܸ∗ୱ,௦∗୪,ఙ

ሺሻ –2.84245 

௦∗ఽ౩ܧ
ሺሻ  19.80470 — — 

௦ܸ୪,ୱ,ఙ
ሺሻ  2.95309 

௦ܸୱ,୪,ఙ
ሺሻ  3.02223 

௦ܸ୪,ௗୱ,ఙ
ሺሻ  –2.64111 

௦ܸୱ,ௗ୪,ఙ
ሺሻ  –3.03196 

௦ܸ୪,௦∗ୱ,ఙ
ሺሻ  –1.88341 

௦ܸୱ,௦∗୪,ఙ
ሺሻ  –2.78690 

ܸ୪,ௗୱ,ఙ
ሺሻ  –1.02836 

ܸୱ,ௗ୪,ఙ
ሺሻ  –2.47345 

ܸ୪,ௗୱ,గ
ሺሻ  2.86419 

ܸୱ,ௗ୪,గ
ሺሻ  2.52741 

௦ܸ∗୪,ୱ,ఙ
ሺሻ  1.30469 

௦ܸ∗ୱ,୪,ఙ
ሺሻ  1.92174 

௦ܸ∗୪,ௗୱ,ఙ
ሺሻ  –1.73510 

௦ܸ∗ୱ,ௗ୪,ఙ
ሺሻ  –1.84300 

 ୱ 0.17386ߣ ୪ 0.01586ߣ

 
A comparison of the results of the tight-binding and envelope function methods is shown in 
figure 33.  These methods were used to find the one-particle energies of electrons with Bloch 
wave vectors pointing along the (100) and (110) crystal directions in a 5-nm-thick GaAs 
quantum well sandwiched between 30 nm-thick layers of AlAs.  Two sets of tight-binding results 
were generated with NEMO5 (35), one using parameters from Jancu et al. (104) and one using 
parameters from the NEMO5 material database.  The GaAs parameters from this database may 
be found in Boykin et al. (33), and the AlAs parameters from this database are shown in table 4.  
A valence band offset of between AlAs and GaAs was needed when the parameters from Jancu 
et al. were used, and the valence band maximum of AlAs was taken to be 0.5 eV lower than that 
of GaAs.  However, the parameters from the NEMO5 database already incorporated a valence 
band offset.  Boundary conditions were periodic only along the directions in the plane of the 
well, (100) and (010), and dangling bonds were terminated with hydrogen atoms.  The envelope 
function results were generated from nextnano using an 8 × 8 ݇ ⋅  Hamiltonian matrix 
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documented on the nextnano web site (105) and by Andlauer (106).  Agreement between the two 
methods is good for the valence bands, especially the top two bands.  For the conduction bands, 
the tight-binding results using the parameters of Jancu et al. only agree with the envelope 
function results for small wave vector values, and the tight-binding results using the other set of 
parameters lead to a conduction band minimum about 0.1 eV less than that predicted from the 
envelope function method.  For the valence bands, a similar agreement between tight-binding 
and envelope function results has been demonstrated by de Franceschi et al. (107), who 
compared tight-binding results using the parameters of Jancu et al. with results from envelope 
function results using a 6 × 6 ݇ ⋅  .Hamiltonian matrix 

Comparisons between tight-binding and envelope function results have also been made for a 
dome-shaped InAs quantum dot by Sengupta et al. (108).  The dot was 5 nm in height, 20 nm in 
diameter, and embedded in a 5-nm layer of In0.4Ga0.6As, which in turn was sandwiched between 
30-nm layers of GaAs.  The strain in the quantum dot was determined through two different 
atomistic valence force field (VFF) models, the harmonic Keating model (109) and an 
anharmonic model (110).  Results from the tight-binding and envelope function methods are 
shown in table 5.  The theoretical results were compared to experimental results for a similar 
quantum dot whose peak photoluminescence occurred at the wavelength ߣ ൌ  ,m (111)ߤ	1.52
corresponding to a band gap of about ܧ ൎ ߣ/ܿߨ2 ൎ 0.82	eV.  Agreement between the two 

theoretical methods, tight-binding and the envelope function approximation, is good for both 
methods of determining the strain, but agreement with experiment is much better when the 
anharmonic VFF model is used to determine strain. 

Table 5.  Results for the quantum dot studied by Sengupta et al. 
(108).  Dot is 5 nm in height, 20 nm in diameter, and 
embedded in a 5-nm layer of In0.4Ga0.6As, sandwiched 
between two 30-nm GaAs layers. 

Model Band Gap (eV) 
Envelope function, harmonic VFF 1.063 
Tight-binding, harmonic VFF 1.040 
Envelope function, anharmonic VFF 0.885 
Tight-binding, anharmonic VFF 0.828 

 

7. Conclusion 

Various methods for estimating electronic structure have been discussed, along with discussions 
of how strain is incorporated into these methods.  We did not find—among the methods both 
included and not included in this survey—a generalized and explicit treatment of continuum 
deformability.  Thus a gap exists between the methods suited to handle slowly varying elastic 
fields and fully atomistic approaches.  Atomistic approaches offer the greatest generality but lack 
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an ability to treat deformation explicitly without recourse to a minimization of atomic scale 
forces and its attendant computational expense.  They categorically require a full recalculation 
over all atomistic degrees of freedom based on each new configuration of nuclei, which therefore 
scales according to the number of atoms, electrons, or electronic wavefunctions regardless of the 
degree to which the deforming material exhibits continuum-like behavior.  Continuum-based 
methods incorporate notions of stress, but rely exclusively on linear elasticity or infinitesimal 
strain theories.  Elastic fields are, at best, mildly inhomogeneous.  Namely, finite deformation 
effects such as near dislocation or vacancy cores, particularly for complex lattices, are not 
presently possible.  Results for finite strain effects, therefore, require a separate atomistic 
calculation for verification—first to minimize the energy of the nuclear configuration in the 
deformed state and secondly, in some cases, to determine the resulting electronic structure.  For 
systems whose sizes simultaneously need to be sufficiently large to capture the convergence of 
the elastic field solution to the bulk limit while also providing the required resolution near 
features of interest, such as at interfaces and defects, single point calculations alone may be 
computationally costly and calculations over multiple mechanically deformed states may be 
prohibitive. 

In ab initio methods, strain is taken into account simply through the positions of the atoms in the 
system being simulated.  However, in atomistic empirical methods, the positions of the atoms are 
not always sufficient to fully take the effects of strain into account.  In the empirical 
pseudopotential method, a strain-dependent prefactor in the atomic form factors has been used to 
better account for the effects of strain on band edges (41).  In the tight-binding method, atomic 
positions are usually sufficient to account for the effects of strain.  However, if there is long-
range charge transfer, such as that due to piezoelectric material properties, then the resulting 
electric field has to be treated like an external field in these atomistic methods, and in the case of 
piezoelectricity, this field is determined through continuum mechanical calculations (34, 78).   

The ݇ ⋅  and envelope function methods are empirical electronic structure methods that do not 
depend at all on the positions of the atoms in the simulation.  Rather, the potential felt by an 
electron in a region of the system composed of some material is assumed to be the potential in a 
bulk crystal of the material.  Because of this, they are less computationally expensive than the 
atomistic methods, but the positions of the atoms can no longer be used to take strain into 
account.  Instead, a strain-dependent term is added to the one-electron Hamiltonian.  This term 
was originally derived by Bir and Pikus (1) for an infinite bulk subjected to homogeneous strain.  
However, the term can be derived in an alternative fashion for more general states of strain, 
though the gradient of the strain still needs to be small (100). 

Finally, examples of the results from the empirical electronic structure methods discussed have 
been shown.  Generally, when the methods are applied to the same problem and each is 
examined within the assumptions unique to each method, the results are mostly in agreement.
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Appendix A.  Finding Reciprocal Lattice Vectors Within a Given Energy 
Cutoff 

If ܓ ൌ 0, equation 27 from the body of this report may be rewritten as 

|۵|  ୡ୳୲ܩ ൌ ඨ
2݉ܧୡ୳୲
ଶ

 (A-1)

where ܩୡ୳୲ is the magnitude of the largest reciprocal lattice vector satisfying the cutoff criterion. 
Since ۵ ൌ ∑ ݊

ଷ
ୀଵ  , the largest possible value of ݊ is1܊

݊
୫ୟ୶ ൌ ீౙ౫౪

|܊|
. (A-2)

A method for finding the reciprocal lattice vectors satisfying the energy cutoff criterion for 
ܓ ൌ 0 is shown in figure A-1.  Once these vectors have been found, another method, shown in 
figure A-2, may be used to find reciprocal lattice vectors satisfying the energy cutoff criterion for 
nonzero 2.ܓ 

 

                                                 
1Kohanoff, J.  Electronic Structure Calculations for Solids and Molecules; Cambridge University Press:  New York, 2006. 
2Varga, K.; Driscoll, J. A.  Computational Nanoscience; Cambridge University Press:  New York, 2011. 
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Figure A-1.  Pseudocode for finding 
reciprocal lattice vectors ۵ that 
satisfy the energy cutoff criterion 
when ܓ ൌ 0. 
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Figure A-2.  Pseudocode for finding reciprocal lattice vectors ۵ that 
satisfy the energy cutoff criterion for nonzero ܓ. 
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Appendix B.  Calculating Strain From Atomic Positions 

 

Figure B-1.  Before the strain is applied, the 
atoms are taken to be in their ideal 
tetrahedral positions, with the 
lighter colored atom at the center 
of the tetrahedron.  After the strain, 
the tetrahedron is distorted, and 
vectors T⁰, U⁰, and V⁰ become ܂, 
 .܄ and ,܃

There is no unique method to determine the strain from atomic coordinates.  Saito and Arakawa1 
and Steiger et al.2 use the method of Pryor et al.3 to determine the strain.  Figure B-1 illustrates the 
positions of some atoms before and after strain.  The atoms are tetrahedrally coordinated, with the 
atom shown in lighter color being at the center of the tetrahedron.  After the strain is applied, this 
tetrahedron is distorted.  The vectors ܂, ܃, and ܄ are aligned to the edges of the ideal tetrahedron, 
while the vectors ܃ ,܂, and ܄ are aligned to the edges of the distorted one.  The relationships 
between these sets of vectors and the strain ߳ are taken to satisfy the matrix equation 


ଵܶ ଵܷ ଵܸ

ଶܶ ܷଶ ଶܸ

ଷܶ ܷଷ ଷܸ

൩ ൌ 
1  ߳ଵଵ ߳ଵଶ ߳ଵଷ
߳ଶଵ 1  ߳ଶଶ ߳ଶଷ
߳ଷଵ ߳ଷଶ 1  ߳ଷଷ

൩ 
ଵܶ


ଵܷ


ଵܸ


ଶܶ
 ܷଶ


ଶܸ


ଷܶ
 ܷଷ


ଷܸ

	, (B-1)

which can be inverted to find the strain, so that 


߳ଵଵ ߳ଵଶ ߳ଵଷ
߳ଶଵ ߳ଶଶ ߳ଶଷ
߳ଷଵ ߳ଷଶ ߳ଷଷ

൩ ൌ 
ଵܶ


ଵܷ


ଵܸ


ଶܶ
 ܷଶ


ଶܸ


ଷܶ
 ܷଷ


ଷܸ

 ൭

ଵܶ ଵܷ ଵܸ

ଶܶ ܷଶ ଶܸ

ଷܶ ܷଷ ଷܸ

൩൱

ିଵ

െ 
1 0 0
0 1 0
0 0 1

൩	. (B-2)

Equation B-1 is equivalent to the following set of tensor equations: 

                                                 
1Saito, T.; Arakawa, Y.  Electronic Structure of Piezoelectric In(0.2)Ga(0.8)N Quantum Dots in GaN Calculated Using a 

Tight-Binding Method.  Physica E:  Low-Dimensional Systems and Nanostructures 2002, 15, 169–181. 
2Steiger, S.; Povolotskyi, M.; Park, H.-H.; Kubis T.; Klimeck, G.  NEMO5:  Parallel Multiscale Nanoelectronics Modeling 

Tool.  IEEE Transactions on Nanotechnology 2011, 10, 1464–1474. 
3Pryor, C.; Kim, J.; Wang, L. W.; Williamson, A. J.; Zunger, A.  Comparison of Two Methods for Describing the Strain 

Profiles In Quantum Dots.  J. of Applied Physics 1998, 83, 2548–2554. 
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ܶ ൌ ൫ߜ  ߳൯ ܶ
  

 

ܷ ൌ ൫ߜ  ߳൯ ܷ
  

and 

ܸ ൌ ൫ߜ  ߳൯ ܸ
  (B-3)

Here, a repeated index implies summation from 1 to 3 over that index.  These equations are a 
more specific version of the Cauchy-Born rule, where ߜ  ߳ has replaced the deformation 
gradient ܨ.  They can be interpreted as a version of the Cauchy-Born rule that neglects rotation, 

since  

ܨ ൌ ߜ 
డ௨
డೕ

బ ൌ ߜ  ൫߳  ߱൯ ൎ ߜ  ߳ , (B-4)

where ݑ is the displacement, ݎ
 is the position vector expressed in the coordinates of the 

undeformed system, and ߳ and ߱ are 

߳ ൌ
1
2
ቆ
ݑ߲
ݎ߲

 
ݑ߲
ݎ߲

ቇ  
 

and 

߱ ൌ
1
2
ቆ
ݑ߲
ݎ߲

 െ
ݑ߲
ݎ߲

ቇ  (B-5)

Since ߱ is neglected, it is implicitly assumed that ܨ is symmetric.  If it is not, the values of ߳ 
determined from method of Pryor et al.3 will not be either. 

Another method to determine strain from changes in atomic coordinates treats deviations from 
the Cauchy-Born rule as residuals to be minimized.  Horstemeyer and Baskes take the 
minimizing function at atom ݅ to be 

߶ሺ۴ሻ ൌห܀ െ ܀۴
 ห

ே

ୀଵ

ܹሺ݆ሻ  (B-6)

where ܹሺ݆ሻ is a weighting function, ۴ is the deformation gradient, and ܀
  and ܀ are the 

vectors connecting atom ݅ to each of its ܰ neighbors in the undeformed and deformed 
configurations, as shown in figure B-2.  If the Cauchy-Born rule holds exactly at atom ݅, then 
܀ ൌ ܀۴

  and ߶ሺ۴ሻ ൌ 0.  If ܹሺ݆ሻ ൌ 1, the value of ۴ that minimizes ߶ is
, 

                                                 
Steinmann, P.; Elizondo, A.; Sunyk, R.  Studies of Validity of the Cauchy-Born Rule By Direct Comparison of Continuum 

and Atomistic Modelling.  Modelling and Simuation in Materials Science and Engineering 2007, 15, S271–S281. 
Mase, G. T.; Mase, G. E.  Continuum Mechanics for Engineers; 2nd ed., CRC Press:  Boca Raton, FL, 1999. 
Horstemeyer, M. F.; Baskes, M. I.  Strain Tensors at the Atomic Scale; In Multiscale Phenomena in Materials—Experiments 

and Modeling; Materials Research Society:  Boston, 2000. 
Zimmermann, J. A.  Continuum and Atomistic Modeling of Dislocation Nucleation at Crystal Surface Ledges.  Ph.D. Thesis, 

Stanford University, Stanford, CA, 2000. 
Zimmermann, J. A.; Bammann, D. J.; Gao, H.  Deformation Gradients for Continuum Mechanical Analysis of Atomistic 

Simulations.  International J. of Solids and Structures 2009, 46, 238–253. 
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۴ ൌ ଶ܅ଵ܅
ିଵ , (B-7)

where 

ଵ܅ ൌ൫܀ ⊗ ܀
 ൯

ே

ୀଵ

 
 

and 

ଶ܅ ൌ൫܀
 ⊗ ܀

 ൯

ே

ୀଵ

 (B-8)

 
Operator ⊗ is the dyad product.5  From ۴, several different strain tensors can be obtained. 

 

 

Figure B-2.  Relative positions of the neighbors of atom ݅ before and 
after the strain is applied. 
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