
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

THE EFFECTS OF ACCELERATOR FREQUENCY AND
ELECTRON BEAM FOCUSING IN FREE ELECTRON

LASERS

by

Adrian S. Laney

December 2012

Thesis Co-Advisors: Joseph Blau
William Colson

Approved for public release; distribution is unlimited



THIS PAGE INTENTIONALLY LEFT BLANK



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD–MM–YYYY)2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

6–12–2012 Master’s Thesis 2012-03-01—2012-12-31

The Effects of Accelerator Frequency and Electron Beam Focusing In Free
Electron Lasers

Adrian S. Laney

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: N/A

Lowering the frequency in a superconducting accelerator for a free electron laser (FEL) has the potential to reduce the size,
cost, and power consumption of the FEL system. A lower frequency also enables the use of longer pulses, which has been
shown to improve FEL performance. Using simulation codes developed at the Naval Postgraduate School, the performance of
FEL amplifiers and oscillators at several accelerator frequencies is investigated. The results show that both FEL amplifier and
oscillator performance can be improved by lowering the accelerator frequency. In addition, a simulation has been developed
that tracks electron trajectories through several quadrupole magnets and an FEL undulator. Electron trajectories can directly
impact FEL performance, and stray electrons may cause damage or harmful radiation if they strike beamline components. This
simulation has potential as a future research and design tool.

FEL, free electron laser, directed energy, superconducting linear accelerator frequency, quadrupole focusing, betatron motion.

Unclassified Unclassified Unclassified UU 84

i



THIS PAGE INTENTIONALLY LEFT BLANK

ii



Approved for public release; distribution is unlimited

THE EFFECTS OF ACCELERATOR FREQUENCY AND ELECTRON BEAM
FOCUSING IN FREE ELECTRON LASERS

Adrian S. Laney
Lieutenant, United States Navy

M.S., Computer Science, Texas A&M University, 2007
B.S., Computer Engineering, Texas A&M University, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN PHYSICS

from the

NAVAL POSTGRADUATE SCHOOL
December 2012

Author: Adrian S. Laney

Approved by: Joseph Blau
Thesis Co-Advisor

William Colson
Thesis Co-Advisor

Andres Larraza
Chair, Department of Physics

iii



THIS PAGE INTENTIONALLY LEFT BLANK

iv



ABSTRACT

Lowering the frequency in a superconducting accelerator for a free electron laser (FEL) has the
potential to reduce the size, cost, and power consumption of the FEL system. A lower frequency
also enables the use of longer pulses, which has been shown to improve FEL performance.
Using simulation codes developed at the Naval Postgraduate School, the performance of FEL
amplifiers and oscillators at several accelerator frequencies is investigated. The results show
that both FEL amplifier and oscillator performance can be improved by lowering the accelerator
frequency. In addition, a simulation has been developed that tracks electron trajectories through
several quadrupole magnets and an FEL undulator. Electron trajectories can directly impact
FEL performance, and stray electrons may cause damage or harmful radiation if they strike
beamline components. This simulation has potential as a future research and design tool.
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CHAPTER 1:

Introduction

The free electron laser (FEL) is a promising source of directed energy (DE) for the United
States Navy (USN) to counter emerging and existing threats such as antiship missiles (ASMs)
and unmanned aerial vehicles. A DE weapon delivers energy at the speed of light, eliminating
the effectiveness of high-g maneuvers by supersonic missiles. Recently, the effectiveness of
solid state lasers has been demonstrated in a maritime environment at tens of kilowatts, but
solid state lasers are not expected to provide the megawatt power levels that the USN requires
for ASM defense [1, 2].

The primary advantages of FELs over other types of lasers are that they have excellent optical
mode quality, are tunable, and have the potential for good wall plug efficiency [2]. However,
significant challenges remain before an FEL weapon system can be deployed on a ship. One of
these challenges is the overall size and complexity of the FEL [1].

The electron beam used by an FEL is produced in a linear accelerator (linac) powered by radio
frequency (RF) radiation. The current in the electron beam, the frequency of the accelerator, and
the electron beam quality are all related and impact FEL performance. There are engineering
trade-offs associated with any choice of accelerator frequency; e.g., using a lower accelerator
frequency has the potential to reduce the size, power requirements, complexity, and cost of
the linac subsystem [2]. Chapter 3 describes a study I conducted on the effects of accelerator
frequency on FEL performance. The results of this study will encourage increased consideration
of lower accelerator frequencies in the design of new FELs.

Electron beam generation, acceleration, and transport systems for FELs are designed to deliver
high quality electron beams that will result in the best performance. One way to focus the
electron beam is to use magnetic quadrupoles before the beam enters the section of the FEL
where the laser light is produced (called the undulator). Once in the undulator, the electrons
undergo another type of focusing called betatron motion. Chapter 4 describes a simulation that
I developed to track the trajectories of electrons as they are focused through a set of quadrupole
magnets and in the undulator. This simulation could be useful for future research or the design
of focusing systems for a future FEL.

First, however, I will provide an introduction to FELs and the theory of their operation.
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CHAPTER 2:

Free Electron Laser Theory

2.1 What is an FEL?
A free electron laser (FEL) is a laser which has a gain medium composed of free electrons—
electrons that are not bound in atoms or molecules. This distinguishes FELs from the thousands
of other laser designs and gives FELs some unique properties and advantages not found in
conventional lasers.

2.1.1 Conventional Lasers
The term laser is an acronym for Light Amplification by Stimulated Emission of Radiation.
Stimulated emission is a quantum-mechanical process in which excited electrons emit photons
with a certain energy and phase in the presence of other photons with the same energy and
phase. Stimulated emission is closely related to another quantum-mechanical process called
spontaneous emission, which occurs when an electron transitions to a lower energy level spon-
taneously and emits a photon with a random phase [3].

A simplified conventional laser consists of an energy source, a gain medium, and an optical
resonator. The energy source excites the electrons in the gain medium to begin the process of
spontaneous emission. The resulting photons resonate in the optical cavity, providing feedback
and driving stimulated emission, amplifying coherent electromagnetic radiation. Usually, one
side of the optical resonator will be partially transmissive to outcouple the laser beam [3].

The gain medium determines the optical properties of the laser, such as its wavelength, and it
also might limit the amount of power that can be produced before the gain medium is damaged.

2.1.2 FEL Attributes
An FEL, on the other hand, can be designed for any wavelength from microwaves to x-rays and
is not power-limited by damage to its gain medium, which is an electron beam that is continually
replenished at the speed of light. FELs are also more flexible than conventional lasers because a
single design is tunable over a larger range of wavelengths than any other laser; a conventional
laser has a fixed wavelength or small range of wavelengths determined by the energy levels of
the gain medium [1].
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The primary disadvantages of FELs are their size and cost. Laboratory FELs are typically
several meters long, depending on their wavelength and configuration. Cost will vary depending
on application, desired output power, and other factors, but the cost per engagement is low (the
cost of a few gallons of ship fuel, for example) [4].

2.1.3 Naval Applications
The primary naval application of an FEL is antiship missile defense (ASMD). Antiship missiles
(ASMs) pose a significant threat to the surface navy, and as they become faster, harder to detect,
and increasingly deadly, a similarly advanced and capable defensive weapon is required [1].

FELs deliver lethal energy at the speed of light—almost instantaneously—eliminating the ad-
vantage gained by maneuvering to evade defensive measures. Many ASMs evade current de-
fensive systems by performing high “g” maneuvers in their terminal phase; such maneuvers are
easily countered by a system that delivers its ordinance at the speed of light [1].

FELs are able to destroy incoming missiles or aircraft quickly and surgically. Supersonic ASMs
can cover the distance from the horizon to their target in less than a minute. A megawatt-class
FEL will achieve an active kill in a matter of seconds, allowing the weapon to quickly engage
other threats. Targeting and tracking speeds are limited only by the radar and director systems
in use, allowing rapid target switching and surgical delivery of lethal energy.

An FEL might also be used against a target requiring a graduated response, such as an incoming
small craft. Low power levels could be used to deliver a warning, with increased energy levels
disabling the craft or detonating ordinance on a suicide craft, for example [4].

2.1.4 Major Components
An FEL consists of three primary components (shown in Figure 2.1): an injector, where the
electron beam is produced at a cathode; a linear accelerator (linac) where the electron beam is
accelerated to highly relativistic energies; and an undulator, where the FEL interaction produces
laser light [2].

Injector. The injector consists of the cathode, which produces the free electrons, and an accel-
erating cavity which quickly accelerates the electrons up to relativistic speeds (∼5MeV) and
into the linac [2].
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Figure 2.1: An FEL consists of three major components: an injector, a linac, and an undulator.
An FEL oscillator has an optical cavity created by two mirrors, one of which outcouples a small
amount of the light. In an FEL amplifier, a seed laser is used to generate the initial laser beam
and there is no optical cavity. After [4].

Linac. The linac further accelerates the electrons until they are highly relativistic (∼100MeV
for an infrared weapons-class FEL). The linac usually consists of a series of radio frequency
(RF) cavities through which the electrons are continuously accelerated by the alternating electric
fields. In order to increase the efficiency and gradient of the RF cavities, superconducting
materials are often used to construct the cavity walls, and a cryoplant is required to cool the
cavity walls to superconducting temperatures (2 K to 4 K in this case) [2].

Undulator. An undulator (also called a “wiggler”) is made up of permanent magnets or elec-
tromagnets that create a transverse periodic magnetic field along its length. The transverse
magnetic fields cause electrons passing through it to oscillate and emit radiation. The light that
is emitted in this process has a much shorter wavelength than the period of the magnetic field in
the undulator [2].

2.2 Types of FELs
There are two primary classes of FELs: oscillators and amplifiers. Each has its own advantages
and disadvantages, and both FEL oscillators and FEL amplifiers are in use at research facilities
throughout the world [5].
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2.2.1 Oscillators
An FEL oscillator has an undulator within an optical cavity. The light in the optical cavity is
repeatedly amplified by the FEL gain process over many passes. In order to outcouple a portion
of the light, one of the cavity mirrors is typically partially transparent [2].

FEL oscillators have a few notable advantages over amplifiers. Perhaps most important for
naval application is that they require significantly shorter undulators than amplifiers—often by
an order of magnitude for the same output power [2]. Oscillators have superior optical mode
quality at their output, which improves beam propagation through the atmosphere to a target
[1]. Simulations have shown that oscillators tolerate vibrations better, which is a significant
advantage for a shipboard application [6]. Finally, oscillators are less sensitive to electron beam
quality due to their shorter undulators.

There are a few notable disadvantages of oscillators related to their optical cavities. The first
is that a suitable material must be found for the optical cavity mirrors that can tolerate high
power radiation at the wavelength of the FEL; this is especially true for the outcoupling mirror.
Second, it is typically necessary to provide cooling to the mirrors at high optical power [2]. The
third disadvantage is that the choice of mirror material might limit the tunability of the FEL if
the reflectivity of the material varies significantly in the range of wavelengths of interest [1].

2.2.2 Amplifiers
FEL amplifiers have no optical cavity; instead, a seed laser is used to inject an initial optical
beam. The seed laser fixes the wavelength of the FEL, making it untunable (unless the seed laser
is changed). A longer undulator is also required in order to achieve significant amplification of
the optical field over a single pass [2].

Without an optical cavity, an amplifier has the advantage that there is no outcoupling mirror to
damage at high power. However, an optical element must be used at some point nearby to direct
the output beam, so amplifiers actually share many of the disadvantages related to the optical
cavity of an oscillator [2].

2.3 FEL Theory
2.3.1 Electron Equations of Motion
We will begin our foray into the classical FEL theory by deriving the equations of motion
and the energy equation for the electrons in the undulator. It is assumed that the reader has a
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basic understanding of relativity and classical electromagnetism. The relativistic Lorentz force
equation for a particle with charge q and mass m is1

d (γβββ )

dt
=

q
mc

(
E+βββ ×B

)
, (2.1)

where γ is the Lorentz factor, βββ = v/c is the particle’s relativistic velocity vector, c is the speed
of light, E is the electric field vector, and B is the magnetic field vector. The work done on an
electron by the fields of the undulator and laser light is given by

γ̇ =
q

mc
E ·βββ . (2.2)

To take these equations any further, we will need to specify the electric and magnetic fields
inside the undulator, which are a result of both the undulator fields and the light. The most
commonly used undulator in practice is a linear undulator in which a series of alternating pole
faces create a sinusoidal and transverse variation in the magnetic field along the undulator.
However, the field created by a helical undulator is much easier to deal with analytically. A
helical undulator creates a magnetic field that spirals along the undulator and has the form2

Bu = B0 [cos(k0z)x̂+ sin(k0z)ŷ] (2.3)

where λ0 = 2π/k0 is the period of the undulator field (usually a few cm), and z is the longitudinal
position in the undulator [2]. The light produced in such a helical undulator will be helically
polarized and will have electric and magnetic fields

E = E (cosψ x̂− sinψ ŷ) , (2.4a)

Bl = E (sinψ x̂+ cosψ ŷ) , (2.4b)

where ψ = kz−ωt and k = 2π/λ . The terms λ and ω are the usual optical wavelength and
angular frequency, respectively.

We can now insert Equations (2.3), (2.4a), and (2.4b) into Equation (2.1). After a bit of algebra
(applying the assumption that βz ≈ 1), we arrive at equations for the transverse and longitudinal

1This is the Lorentz force equation in Gaussian units (which are used throughout this thesis). For the reader un-
familiar with this system of units, the classic graduate electromagnetism text by Jackson [7] provides a reasonable
primer.

2We will orient the undulator along the z axis with the electron bunches traveling in the positive ẑ direction.

7



motion of the electrons:

d(γβββ⊥)
dt

=− e
mc

[
−βzB0 sin(k0z)x̂+βzB0 cos(k0z)ŷ

]
, (2.5a)

d(γβz)

dt
=− e

mc

{
βx
[
B0 sin(k0z)+E cosψ

]
−βy

[
B0 cos(k0z)+E sinψ

]}
, (2.5b)

where we defined βββ⊥ ≡ (βx,βy) and βββ = (βββ⊥,βz) We also substituted q = −e, where e is
the elementary electron charge magnitude. Integrate Equation (2.5a) by inspection to get the
transverse electron velocity vector,

βββ⊥ =−K
γ
[cos(k0z)x̂+ sin(k0z)ŷ] , (2.6)

where K ≡ eB0λ0/2πmc2 is the dimensionless undulator parameter. For most FELs, K is near
unity [2]. By inserting Equations (2.4a) and (2.6) into Equation (2.2) we get the rate of change
of the electron energy in the undulator of an FEL:

γ̇ ≈ eKE
γmc

cos(ζ +φ), (2.7)

where we defined the electron phase, ζ ≡ (k0+k)z−ωt, and φ is the optical phase. The electron
phase describes the position of the electron on the scale of an optical wavelength. Note that

ζ = (k0 + k)z−ωt =
(

2π

λ0
+

2π

λ

)
z−ωt ≈

(
2π

λ

)
z−ωt

because λ0� λ . The term ζ thus has two significant terms: (2π/λ )z, which gives the phase of
the electron relative to an optical wavelength, and ωt, which accounts for the changing electric
field of the optical wave.

2.3.2 The FEL Resonance Condition
We are now poised to derive one of the most important equations in FEL physics: the resonance
condition. The FEL resonance condition gives the approximate wavelength of the light an FEL
will produce.

Electron-Photon Race
Figure 2.2 shows the path of an electron as it oscillates through one period of the undulator. The
electron will emit roughly one wavelength of light over each of these periods, and because the
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Figure 2.2: The electron-photon race. As the electron passes through roughly one undulator
period it emits one wavelength of light. This combined with the difference between the electron
and photon velocity leads to the resonance condition.

electron is traveling slightly slower than the light, it slips back by a distance λ relative to the
light over each undulator period.

The difference between the photon and electron velocity is c(1− βz) and the duration of the
race over one undulator period is ∆t = λ0/βzc. The winning distance is then

λ = c(1−βz)∆t

= c(1−βz)
λ0

βzc
,

or
λ = λ0

(1−βz)

βz
, (2.8)

which is the FEL resonance condition. This expression is exact, but a simple approximation
results in a more useful form. Recall that γ = 1/

√
1−β 2 and β 2 = β 2

x +β 2
y +β 2

z so we can
write

1
γ2 = 1−β

2 = 1− (β 2
x +β

2
y +β

2
z ) = 1−β

2
⊥−β

2
z = 1− K2

γ2 −β
2
z

where we used Equation (2.6) to get the squared magnitude of βββ⊥. Solving for βz, we get
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(applying a binomial expansion with the assumption that γ � 1)

βz =

√
1− (1+K2)

γ2 ≈ 1− (1+K2)

2γ2 . (2.9)

Substituting Equation (2.9) into Equation (2.8) we have

λ = λ0
(1−βz)

βz

≈ λ0

{
1−
[

1− (1+K2)

2γ2

]}
,

or

λ ≈ λ0
(1+K2)

2γ2 . (2.10)

From Equation (2.10) we see that the electron beam energy (γmc2) and the undulator parame-
ters (λ0, K) determine the wavelength of an FEL. The undulator parameter, K, is usually near
unity and since γ � 1, it follows that the wavelength of the light produced by an FEL will be
significantly shorter than the undulator period, λ0 [2]. The resonance condition also highlights
the tunability of FELs: it is relatively easy to change γ (and in some cases K) to produce a range
of wavelengths with a single device, something traditional lasers cannot do [8].

2.3.3 The FEL Pendulum Equation
The FEL pendulum equation describes how electrons evolve in phase space. In order to simplify
our work, we define a few dimensionless quantities.

We define the dimensionless “time,” τ , so that τ = ct/L where L is the length of the undulator.
As an electron traverses the undulator, τ goes from τ = 0 to τ = 1. We make use of a special
notation for a derivative with respect to dimensionless time; an open circle is used instead of a

solid dot, like
◦

( · · ·)≡ d( · · ·)/dτ .

The electron phase velocity, ν , is the derivative of the electron phase with respect to dimension-
less time and is

ν ≡ dζ

dτ
=
◦
ζ =

L
c

d
dt

[
(k0 + k)z−ωt

]
= L
[
(k0 + k)βz− k

]
, (2.11)

since ż = βzc and k = ω/c. We can take another derivative with respect to dimensionless time

10



and get
◦
ν =

L
c

dν

dt
=

L2

c

(
k0 + k

)
β̇z ≈

L2

c
kβ̇z, (2.12)

because k� k0. Taking a time derivative of Equation (2.9), we get

β̇z =
(
1+K2) γ̇

γ3 . (2.13)

Near resonance, we can write

k ≈ 2π

[
2γ2

λ0(1+K2)

]
. (2.14)

By plugging Equations (2.13) and (2.14) into Equation (2.12) we get

◦
ν ≈ L

c
4πN

γ̇

γ
. (2.15)

Substituting Equation (2.7) into Equation (2.15), gives the FEL pendulum equation [9]

◦
ν ≈ |a|cos(ζ +φ), (2.16)

where we defined the dimensionless optical field

|a|= 4πNeKL |E|
γ2

0 mc2 , (2.17)

where we replaced γ with γ0, assuming that the electrons do not lose much energy over the
length of the undulator.

Exploring the Pendulum Equation
The pendulum equation describes how electrons in the undulator evolve over time in dimen-
sionless phase space, and helps in gaining an intuitive sense of the FEL interaction between the
light and the electrons.

Electron phase. The electron phase, ζ , is a measure of the position of the electron with respect
to the optical wave on the scale of an optical wavelength, λ . A real electron bunch has on the
order of 106 electrons that are initially randomly positioned in each optical-wavelength-thick
“slice.”
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(a) Small closed orbit.

𝜃  
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(b) Large closed orbit.

𝜃  

𝜃 

(c) Open orbit.

Figure 2.3: Phase space plots for the motion of a pendulum. For small amplitude oscillations,
the phase space orbit will be closed as in (a). If the pendulum swings with amplitude great
enough to reach the top but not go over, the phase space orbit will still be closed, and will look
like (b). If the pendulum swings up and over to the top, its phase space orbit will be open, as in
(c).

Phase velocity. The rate of change of the electron phase, ν , is

ν =
◦
ζ = L [(k0 + k)βz− k] ,

and from Equation (2.15) we can approximate

∆ν ≈ 4πN
∆γ

γ
. (2.18)

Note that the change in electron phase velocity is proportional to a change in electron energy.
To transfer energy from the electrons to the optical field, the average energy of the electrons3

must decrease, which corresponds to a requirement that 〈∆ν〉< 0.

Phase space trajectories. There are two types of trajectories in phase space: open and closed.
Consider a classical pendulum with the well known equation of motion

θ̈ =−g
l

sinθ ,

where g is the acceleration due to gravity and l is the length of the pendulum. For relatively
small oscillation angles, the pendulum will have a closed trajectory in phase space. If the
pendulum is swinging with enough energy to continue swinging over the top of its anchor,
however, it will have an open orbit. Examples of each of these cases are shown in Figure 2.3 [4].

3We will use the notation 〈· · ·〉 to indicate an average over a number of sample electrons throughout this thesis.
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Figure 2.4: The separatrix for the electron phase space of an FEL separates the open and closed
phase space orbits. The separatrix is shown as a blue dashed line, and the electron orbits are
shown in red.

It is useful to define the separatrix, which separates the open and closed orbits in phase space
for a particular system. Initial system conditions determine whether the pendulum (or electron)
is inside or outside the separatrix with a closed or open phase space path, respectively. An FEL
has a separatrix [8] defined by

ν
2
s = 2 |a|

[
1+ sin(ζs +φ)

]
, (2.19)

where the subscript “s” indicates that these values of ν and ζ lie along the separatrix. An FEL
separatrix with open and closed phase space orbits is plotted in Figure 2.4.

We note that the separatrix depends on the dimensionless optical field, |a|, and the optical phase,
φ . These values will change in a typical FEL over time and as the electrons travel through the
undulator, so the separatrix is not fixed. In fact, it can be changed intentionally to improve the
performance of some FELs, a technique we will discuss in Section 2.4.3.

Phase space trajectories of multiple electrons. Now that we know how individual electrons
evolve in phase space, we consider how the∼106 electrons in each λ -thick optical slice behave.
An FEL needs two things to lase: the electrons must lose energy to the optical field on average
(giving power to the optical field) and they must bunch on the scale of the optical wavelength
(emitting coherent radiation) [2].
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(a) Electron evolution at resonance.
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(b) Electron evolution above resonance.

Figure 2.5: Electron evolution in phase space. When electrons enter the undulator at resonance
(ν0 = 0), the FEL will have no gain because half of the electrons will lose energy while the other
half gain energy as in (a). If electrons are injected into the undulator slightly above resonance
as in (b), where ν0 =

√
a, they bunch and lose energy on average (∆ν/ν ≈−0.04 in this case).

To produce these phase space plots, 21 sample electrons were allowed to evolve according to
the pendulum equation, Equation (2.16). Initial (τ = 0) and final (τ = 1) electron positions are
shown in green and blue, respectively. The electron paths are shown in a gradient from yellow
to red, and the separatrix is shown as a dashed black line.

Consider an FEL in which all of the electrons enter the undulator on resonance (ν0 = 0). As
shown in Figure 2.5a, though the electrons bunch on the scale of an optical wavelength and
have maximum energy exchange, there is virtually no net energy exchange and the FEL will
not work.

However, if the electrons are injected slightly above resonance (ν0 > 0), as shown in Fig-
ure 2.5b, the electrons still bunch as desired but now lose energy on average. Injecting the
electrons below resonance (ν0 < 0) would also cause the electrons to bunch, but they would
gain energy from the optical field instead of giving their energy to it.

2.3.4 Optical Field Evolution
We have now described in some detail the motion of electrons in the undulator of an FEL and
how they exchange energy with the optical field. We are missing the equations governing the
evolution of the optical field in an FEL—the FEL wave equation. With it, we will have a more
complete picture of the FEL interaction.
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Low Gain in Weak Optical Fields

Before deriving the FEL wave equation, we consider a special case: low gain in weak optical
fields. From conservation of energy, we know that the energy lost by the electrons in the undu-
lator is gained by the optical field. To find the change in the electron energy, we iteratively solve

ζ =
∫

νdτ

◦◦
ζ =

◦
ν ≈ |a|cos(ζ +φ).

A second-order solution in |a| is required, and the result is derived in [9] as

〈∆ν〉 ≈ |a0|2
ν3

0

[
cos(ν0τ)−1+

1
2

ν0τ sin(ν0τ)

]
(2.20)

which is valid for low gain (when a≈ a0 does not change much) and weak fields (a0� π). The
total electron energy change per bunch is[

average energy lost per electron
]
×
[
number of electrons

]
=
[
〈∆γ〉mc2

]
×
[
ρV
]
,

where ρ is the electron density and V is the volume occupied by the bunch. The energy in the
optical field is E2V/4π and the gain is the total energy change divided by the energy in the
optical field:

G =

(−γ 〈∆ν〉
4πN

mc2
)(

ρV
)( 4π

E2V

)
≈ −γmc2ρ

NE2 〈∆ν〉 ,

where we used Equation (2.18) to approximate 〈∆γ〉 and inserted a minus sign to make the gain
positive when the optical field grows (when ∆ν is negative). Inserting Equation (2.20) into the
above expression gives

G≈ γmc2ρ

2NE2
|a0|2
ν3

0

[
2−2cos(ν0τ)−ν0τ sin(ν0τ)

]
≈ γmc2ρ

2NE2
16π2N2e2K2L2E2

ν3
0 γ4(mc2)2

[
2−2cos(ν0τ)−ν0τ sin(ν0τ)

]
≈ 8π2Ne2K2L2ρ

ν3
0 γ3

0 mc2

[
2−2cos(ν0τ)−ν0τ sin(ν0τ)

]
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Figure 2.6: Gain curve in weak fields (|a| < π) with low gain ( j < π). Optical gain (G) is
plotted versus average initial electron phase velocity (ν0). The gain curve is antisymmetric
about v0 = 0 and has a maximum around v0 ≈ 2.6.

where we replaced γ with γ0, the initial electron energy, since we are assuming low gain (the
electrons lose very little energy over the length of the undulator). Define the dimensionless
current density

j ≡ 8π2Ne2K2L2ρ

γ3
0 mc2

(2.21)

and we have
G≈ j

ν3
0

[
2−2cos(ν0τ)−ν0τ sin(ν0τ)

]
. (2.22)

The plot of Equation (2.22) in Figure 2.6 reveals what we knew already: there should be no
gain if all of the electrons are at resonance (ν0 = 0). Note that the gain curve is antisymmetric
and that the maximum gain occurs at ν0 ≈ 2.6 [4].

Development of Coherence
Coherent light in an FEL is produced by electrons radiating in phase and at the same wavelength.
The development of coherence in FELs requires that the electrons bunch on the scale of an
optical wavelength and lose energy (on average) in order to transfer energy to the optical field
[2].

In an FEL oscillator, the initial field is broadband radiation from spontaneous emission, and
coherence develops by mode competition over many passes through the undulator [10]. For
example, in weak fields and with low gain, the strong peak in the gain curve plotted in Figure 2.6
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means electrons at that energy would lose more average energy than those at lower or higher
energy,4 ensuring that over many passes, a strong peak would develop in the corresponding
optical spectrum.

Unlike an oscillator, an amplifier does not have an optical cavity that allows coherence to de-
velop over many passes [9]. An amplifier is seeded with an optical pulse that has a finite spread
in wavelengths, and this pulse is critical in determining the output wavelength and coherence.
However, amplifiers are not reliant on spontaneous emission, and with quality seed pulses, they
are capable of producing highly coherent pulses [11].

Ultimately, the coherence of a pulse will be limited by its length, which is related to the electron
pulse length and the slippage distance, Nλ . Fourier analysis gives a fundamental limit on
the frequency content of a pulse with a given length which requires that ∆trms∆ωrms ≈ 1/2,
where ∆trms is the root mean square (rms) pulse duration and ∆ωrms is the rms spectral width.
When the spectrum of a pulse is as narrow as possible, the pulse is said to be “transform-
limited” [1, 11, 12].

FEL Wave Equation
In Section 2.3.4 we developed an expression for low gain in weak fields. For more general cases,
a wave equation is required to describe the evolution of the optical field. As is common in laser
physics, we make the assumption that the electric field envelope is slowly varying in space on
the scale of its wavelength and slowly varying in time compared to the optical frequency. This is
called the “slowly-varying envelope” approximation [9]. We begin with Maxwell’s full vector
wave equation in the Coulomb gauge,5(

∇∇∇
2− 1

c2
∂ 2

∂ t2

)
A(x, t) =−4π

c
J⊥, (2.23)

where ∇∇∇
2 is the Laplacian operator and A(x, t) is the vector potential from which we can recover

the electric and magnetic fields using

E =−1
c

∂A
∂ t

B = ∇∇∇×A.

4The electron energy is closely related to its phase velocity, ν .
5Again, in Gaussian units. See [7] for information on this system of units.
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The term on the right side of Equation (2.23) is the transverse current density,

J⊥ =−ec∑
n

βββ⊥δ
(3)(x− rn).

where βββ⊥ is the velocity of the electron at position rn and δ (3)( · · ·) is the Dirac delta function.
We will expand the current density term (J⊥) using the equations of motion derived for the
electrons in Section 2.3.1. The current density is

J⊥ =−ec∑
n

βββ⊥δ
(3)(x− rn)

=−ec∑
n

[−K
γ

(cos(k0z)x̂+ sin(k0z)ŷ)
]

δ
(3)(x− rn)

=−ec∑
n

Re
{−K

γ
ie−ik0z

εεε

}
δ
(3)(x− rn)

= ecK Re
{

iεεε ∑
n

e−ik0z

γ
δ
(3)(x− rn)

}
or

J⊥ ≈ ecKρ Re
{

iεεε
〈

e−ik0z

γ

〉}
, (2.24)

where εεε = −ix̂+ ŷ is the complex polarization vector of a circularly polarized source (such as
that produced by a helical undulator), we used Equation (2.6) and we defined ρ as the number
of electrons per unit volume for a small volume element dV at (x, t). The volume element
dV is large enough to contain a significant number of electrons but small enough to span only
a few optical wavelengths where the field envelope is constant. The summation is over the
n electrons in the volume element. In Equation (2.24) we made an approximation where we
averaged over all of the electrons in the volume element dV ; this is consistent with the slowly
varying amplitude and phase approximation we are using for the laser light.

For now, we ignore diffraction (we discuss diffraction in Section 2.4.5) and assume the follow-
ing complex solution to Equation (2.23):

A(x, t)≈ A(z, t)≈ E(z, t)
k

ei(kz−ωt)
εεε,

where we made the approximation that the solution is independent of the transverse coordinates
since we are ignoring diffraction. The Laplacian term on the left hand side of Equation (2.23)
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simplifies considerably now that A = A(z, t) is not a function of x or y. We define

Ψ =
1
k

ei(kz−ωt)

so that A = EΨεεε and we have

∂A
∂ z

=
∂E
∂ z

Ψεεε +E
∂Ψ

∂ z
εεε

=

(
∂E
∂ z

+ ikE
)

Ψεεε

∂ 2A
∂ z2 =

(
∂ 2E
∂ z2 + ik

∂E
∂ z

)
Ψεεε +

(
∂E
∂ z

+ ikE
)

ikΨεεε

=

(
2ik

∂E
∂ z
− k2E +

∂ 2E
∂ z2

)
Ψεεε

≈
(

2ik
∂E
∂ z
− k2E

)
Ψεεε,

where we dropped the second-order spatial derivative term because it is small compared to the
first derivative term with the slowly varying envelope assumption. Similarly, the temporal term
is

∂A
∂ t

=

(
∂E
∂ t
− iωE

)
Ψεεε

∂ 2A
∂ t2 =

(
−2iω

∂E
∂ t
−ω

2E +
∂ 2E
∂ t2

)
Ψεεε

∂ 2A
∂ t2 ≈

(
−2iω

∂E
∂ t
−ω

2E
)

Ψεεε,

where we have dropped the second-order time derivative term since it is small compared to the
first derivative term with the slowly varying envelope assumption. Inserting the spatial and time
derivatives of A(z, t) as well as the current density from Equation (2.24) into Equation (2.23),
we get (

2ik
∂E
∂ z
− k2E +

2iω
c2

∂E
∂ t

+
ω2

c2 E
)

Ψεεε =−4π

c
ecKρiεεε

〈
e−ik0z

γ

〉
2i
(

∂

∂ z
+

1
c

∂

∂ t

)
Eei(kz−ωt)

εεε =−4πeKρiεεε
〈

e−ik0z

γ

〉
where we used the complex forms of A(z, t) and J⊥, recognizing that physical quantities are
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represented by real parts of each. The polarization vector εεε appears on both sides, so all of the
components on each side must be equal. If we multiply both sides by ke−i(kz−ωt) and drop the
polarization vectors, we get

2k
(

∂

∂ z
+

1
c

∂

∂ t

)
E =−4πekKρ

〈
e−i[(k+k0)z−ωt]

γ

〉
. (2.25)

where we brought the term e−i(kz−ωt) inside the average because we agreed that the volume
element dV is small enough to only span a few optical wavelengths, and the optical parameters
are slowly varying on this scale. We simplify Equation (2.25) further using a technique called
the “method of characteristics” where we introduce a coordinate u = z− ct which follows the
light [9]. This allows us to eliminate the partial derivative with respect to z and Equation (2.25)
simplifies to

2k
c

∂E
∂ t

=−4πekKρ

〈
e−i[(k+k0)z−ωt]

γ

〉
. (2.26)

which describes how the electric field changes with time in response to the distribution of
charge. We previously defined ζ ≡ (k+ k0)z−ωt and the dimensionless time τ ≡ ct/L. We
substitute and get

2kc
cL

∂E
∂τ

=−4πekKρ

〈
e−iζ

γ

〉
∂E
∂τ

=−2πeKLρ

〈
e−iζ

γ

〉
.

Multiplying both sides by 4πNeKL/γ2
0 mc2,

∂

∂τ

(
4πNeKLE

γ2
0 mc2︸ ︷︷ ︸

a

)
=−

(
8π2Ne2K2L2ρ

γ2
0 mc2︸ ︷︷ ︸

jγ0

)〈
e−iζ

γ

〉
.

So
◦
a =

∂

∂τ
a =− jγ0

〈
e−iζ

γ

〉
, (2.27)

where
◦

(· · ·) ≡ ∂ (· · ·)/∂τ is a partial derivative with respect to dimensionless time, γ0 is the
initial electron energy, a is the dimensionless optical field and j is the dimensionless current
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density. If we make the assumption that the electrons do not lose much of their energy as they
travel through the undulator (γ0 ≈ γ ) we can simplify Equation (2.27) to

◦
a =− j

〈
e−iζ

〉
, (2.28)

which is the FEL wave equation [9].

2.3.5 Understanding the FEL Wave Equation
The FEL wave equation reveals the interaction between the optical field and the electrons in
the undulator. It shows how the dimensionless optical field changes based on the dimensionless
current density and the bunching term,

〈
e−iζ

〉
. We will now examine the effects of each of

these terms in detail.

Dimensionless Current Density
The dimensionless current density was defined in Equation (2.21) as

j ≡ 8π2Ne2K2L2ρ

γ3
0 mc2

.

From Equation (2.28) we see that the larger j is, the faster a changes. The dimensionless current
density has the following dependencies:

• j ∝ K2

• j ∝ L3 ∝ NL2 (since L = Nλ0)
• j ∝ ρ

• j ∝ γ
−3
0 .

These dependencies have significant ramifications in the design of FELs. Recall that from the
resonance condition, Equation (2.10), λ ∝ γ−2. Increasing the electron beam energy (γmc2) is
the primary means for shortening the wavelength of an FEL [13]. Doing so, however, comes
at a significant cost to j, since the dimensionless current density is proportional to γ−3. The
dimensionless current density must be large for a strong interaction to occur, so in most cases
it is necessary to increase L, the length of the undulator, to compensate for increases in γ . For
example, the SPRING-8 x-ray FEL in Japan has a wavelength of∼1Å and an undulator section
that is ∼100m in length [5].
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Dimensionless Field
The dimensionless optical field was defined in Equation (2.17) as

a≡ 4πNeKLE
γ2

0 mc2 .

Like the complex electric field E = |E|eiφ , a is also complex, and has an amplitude and phase:

a = ar + iai = |a|eiφ ,

where ar and ai are the real and imaginary parts of a, respectively; φ = tan−1(ai/ar) is the phase

of a (and E); and |a|=
√

a2
r +a2

i . The rate of change of a is

◦
a =

◦
|a|eiφ + |a|eiφ i

◦
φ =− j

〈
e−iζ

〉
,

where the last equality is from Equation (2.28). Rearranging, we have

◦
|a|+ i

◦
φ |a|=− j

〈
e−i(ζ+φ)

〉
=− j 〈cos(ζ +φ)〉+ i j 〈sin(ζ +φ)〉 .

By equating the real and imaginary parts we get

◦
|a|=− j 〈cos(ζ +φ)〉 (2.29a)
◦
φ =

j
|a| 〈sin(ζ +φ)〉 . (2.29b)

Bunching Term
Assuming that the optical phase φ ≈ 0 for simplicity, we investigate how the bunching term〈

e−iζ
〉

affects the optical gain. At the start of the undulator, the electrons will be randomly
positioned, and 〈

e−iζ
〉
≈ 1

2π

∫ 2π

0
e−iζ0dζ0 ≈ 0

so there will be essentially no change in a and no gain.

As the electrons pass through the undulator they will begin to bunch according to the pendulum
equation, Equation (2.16), and the bunching term will be nonzero. If the electrons bunch near
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ζ = π , then from Equation (2.29a) we see that

◦
|a|=− j cosπ = j,

which implies that the optical field will grow [2]. On the other hand, if the electrons bunch near

ζ = 0, then
◦
|a| = − j and the optical field amplitude will decrease. Similarly, if the electrons

bunch near ζ =±π/2 there will be no change in the amplitude of the optical field; instead, the
optical phase will evolve according to Equation (2.29b) [14]. This result shows what was stated
in Section 2.3.3 without proof: electrons must bunch on the scale of an optical wavelength and
lose energy for an FEL to work.

FEL Wave Equation and the Pendulum Equation
The pendulum equation, Equation (2.16), and the FEL wave equation, Equation (2.28), form a
pair of coupled differential equations that describe the feedback that occurs between the elec-
trons and the light in the undulator. The pendulum equation describes how the amplitude of the
optical field drives the evolution of the electrons in phase space, and the FEL wave equation
reveals how the optical phase and amplitude will evolve in response to the distribution of the
electrons in phase space.

2.4 Practical Design Considerations
When designing an FEL, issues can arise that are not addressed by the basic theory we have
discussed up to this point. In this section we consider some of these practical design concepts,
and in a few cases, discuss methods to address them.

2.4.1 Electron Beam Quality
The development of high quality, high current (∼1A) electron beams is an area of active re-
search for FELs. Major challenges exist in the design of the cathode, injector, and accelerator
systems involving component lifetime, cooling, structural integrity and vibration tolerance [2].

The quality of the electron beam can affect FEL performance considerably. The evolution of the
optical field depends strongly on the electron density, as we showed in Section 2.3.5; as such,
poorly formed electron bunches result in degraded performance. Similarly, spectral quality of
the optical pulse depends on the energy spread of the electrons. Electron beam quality will be
discussed more carefully in Chapter 3.
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2.4.2 Betatron Motion
Electrons passing through an undulator undergo a slower betatron motion in addition to the fast
“wiggling” motion caused by the transverse periodic magnetic field in the undulator. This beta-
tron motion is caused by the transverse variation of the magnetic field strength in the undulator.
The equation of motion is that of a simple harmonic oscillator and has the form [15]

◦◦
y =−

(
Kk0L

γ

)2

y =−ω
2
β

y,

where we define the dimensionless betatron frequency as

ωβ =
Kk0L

γ
=

2πNK
γ

.

Typical betatron frequency values are on the order of 2π , corresponding to one oscillation over
the length of the undulator (τ = 0 −→ 1). We will discuss betatron motion in more detail in
Chapter 4.

2.4.3 Tapered Undulators
In strong fields (|a|> π), it is possible for the gain to saturate due to over-bunching of electrons.
When |a| is large, many electrons can become trapped in the separatrix6 and begin to take
back energy from the optical field. Left unchecked, the electrons will evolve according to the
pendulum equation, executing synchrotron oscillations and alternating between giving energy
to the light and taking it away [8, 9].

To prevent over-bunching, we can alter the resonance condition along the undulator, which
results in a new form of the pendulum equation and changes the shape of the separatrix. The
most straightforward method of achieving this is to change the undulator parameter (K) along
the length of the undulator by decreasing the magnetic field on axis along its length [8, 9].

Such a scheme effectively adds a phase acceleration term δ to the pendulum equation,

◦◦
ζ =

◦
ν = δ + |a|cos(ζ +φ), (2.30)

6The peak-to-peak height of the separatrix is 4
√
|a|.
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Figure 2.7: Tapered FEL phase space. An FEL with a linearly tapered undulator has an altered
pendulum equation and separatrix. If δ/ |a| = 0, there is no taper and Equation (2.30) reduces
to Equation (2.16). As δ/ |a| increases, the separatrix will contract, decreasing the area of the
region in phase space with closed orbits.

where the phase acceleration is given by

δ =

0 if τ < τs

−4πN K2

1+K2
∆K
K

1
(1−τs)

if τ ≥ τs

∆K/K is the fractional rate of change of the undulator parameter, and τs is the dimensionless
location along the undulator where the taper starts. The instantaneous separatrix with a linear
taper rate has the form [9]

ν
2
s (ζ ) = 2δ (ζs−ζ0)+2 |a| [sin(ζs +φ)− sin(ζ0 +φ)] ,

where ζ0 ≡ 2π− cos−1(−δ/ |a|)−φ .

When δ = 0 there is no taper, and the separatrix equation reduces to Equation (2.19). As δ

increases from zero, the separatrix becomes distorted as in Figure 2.7 and the closed orbit region
decreases. This reduction in size of the closed orbit region can increase gain by preventing
electrons from regaining significant amounts of energy from the light. When δ/ |a| > 1, there
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are no closed orbits and electrons cannot be trapped in phase space. Tapering works best when
the phase acceleration from taper exceeds the maximum untapered deceleration in strong optical
fields. Estimating the maximum deceleration from the height of the separatrix, we require that
δ > 4

√
|a|. When the aforementioned requirements are combined, we see that

4
√
|a| ≤ δ < |a| .

Tapering is commonly used in FEL amplifiers, and we will use tapering to optimize an FEL
design in Chapter 3 [2, 9].

2.4.4 Short Pulse Effects
Another practical matter to consider when designing FELs is the effect of short pulses. Both the
electron bunch and the light pulses must be synchronized as they travel through the undulator,
but the electrons are traveling slightly slower than the light. At resonance, the electron bunch
slips back relative to the light by about one optical wavelength per undulator period. We define
the slippage distance, Nλ , as the total distance the electron bunch falls back relative to the
optical pulse over the length of the undulator.

If the electron bunch (and the optical pulse) is significantly longer than the slippage distance,
we do not expect short pulse effects to be significant, because most longitudinal slices of the
optical pulse will have seen the same charge density over the length of the undulator. On the
other hand, if the electron bunch length (σp) is on the order of the slippage distance, or

σp

Nλ
/ 1,

then we will expect short pulse effects to be significant.

For example, an effect called “optical lethargy” occurs due to uneven amplification of the optical
pulse over the length of the undulator. Consider the relatively short electron bunch and optical
pulse in Figure 2.8. As the electron bunch and optical pulse enter the undulator, the electrons are
not yet well bunched and are thus not radiating coherently and amplifying the light significantly.
As the light and electrons travel through the undulator, the electrons begin to bunch, radiate
coherently, and amplify the light. The strongest amplification of the light occurs near the end
of the undulator, when the electron bunch has slipped back by ∼Nλ . This uneven amplification
shifts the centroid of the optical pulse, so the light envelope appears to slow down [13, 14].
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Figure 2.8: Optical lethargy in FEL oscillators. Optical lethargy occurs when the tail of the
optical pulse is amplified more than the head, causing the centroid of the optical pulse to travel
slower than the speed of light. This happens because at the beginning of the undulator (τ = 0),
the electrons (shown in red) are not well bunched and are not yet significantly amplifying the
light (shown in blue). As the electrons start to bunch around τ ≈ 0.5, they have slipped back
relative to the optical pulse by half the slippage distance (Nλ/2) and they amplify the middle
of the optical pulse moderately. Near the end of the undulator as τ → 1, the tail of the optical
pulse is strongly amplified by the well bunched electrons. After [4].

If the electron and optical pulses are exactly synchronized in an FEL oscillator, then over many
passes the optical lethargy will cause the light pulse to evolve outside of the electron pulse.
Without good overlap with the electrons, the FEL interaction is weak, and there is little to no
gain. To compensate, we can slightly shorten the optical path length by bringing the resonator
mirrors closer together. This technique is referred to as desynchronism and we define the di-
mensionless parameter

d ≡−2∆S
Nλ

,

where ∆S is the amount by which the optical cavity is shortened to compensate for optical
lethargy. Values of ∆S are usually quite small—typically less than 5 µm in an infrared FEL
[14]. The optimum amount of desynchronism varies, but values up to d ≈ 0.05 are usually
viable [9, 10].

2.4.5 Diffraction
When we derived the FEL wave equation in Section 2.3.4, we ignored diffraction in order to
simplify the derivation. When we include diffraction, the wave equation gets another term, and
has the form [9]

◦
a =

1
4

∇∇∇
2
⊥a− j

〈
e−iζ

〉
, (2.31)
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where ∇∇∇
2
⊥ is the transverse Laplacian and the second term on the right is the same as in Equa-

tion (2.28). Again, this solution assumes that the optical field is slowly varying in amplitude
and phase along the direction of propagation.

If we ignore the source term in Equation (2.31), a solution is

a(x,y,τ) = a0
e−r2/[z0(1+i(τ−τw)/z0)]

1+ i(τ− τw)/z0
=

a0

w(τ)
e−r2/[z0w2(τ)]eiφ ,

where r2 = x2 + y2 is the radial distance from the axis squared, w2(τ) = 1+(τ− τw)
2/z2

0 is the
square of the optical radius, τw is the location of the optical waist, z0 = Z0/w0 is the dimension-
less Rayleigh length,7 φ =− tan−1[(τ−τw)/z0]+ r2(τ−τw)/[z2

0+(τ−τw)
2] and a0 is the field

amplitude at the optical waist [4].

The above solution is the fundamental Gaussian mode; higher-order Gaussian mode solutions
are also possible [16]. Low-gain FEL oscillators tend to operate in the fundamental Gaussian
mode. High gain amplifiers can have significant higher-order mode content. Tilts and shifts of
the electron beam or cavity mirrors can also lead to optical mode distortion [17].

Short Rayleigh Length Oscillators
In an FEL oscillator, we can control the transverse mode structure using the optical cavity
mirrors. In particular, we can control the dimensionless Rayleigh length (z0). When z0 is small,
the beam expands quickly from its waist. This is advantageous for two reasons. First, by
allowing the optical mode to spread prior to reaching the cavity mirrors, the intensity on the
mirrors is decreased—an important feature for high power designs [2, 18]. Second, since the
FEL interaction is most pronounced where |a| is large, a single optical wavefront is amplified,
resulting in good beam quality [2, 19].

The FEL interaction in the undulator requires good overlap between the electron beam and
the light. A typical FEL has z0 ≈ 0.4, which usually allows for the best overlap between the
light and the electrons over the length of the undulator [19]. The short Rayleigh length (SRL)
oscillator with z0 ≈ 0.1– 0.2 was proposed in order to reduce the optical intensity on the cavity
mirrors by allowing the beam cross section to expand more rapidly than longer Rayleigh length
oscillators. Though the region of overlap between the electron beam and the light is reduced

7The Rayleigh length Z0 is defined as the distance from the mode waist (where the radius is w0 by definition) at
which the cross-sectional area of the beam is doubled. If w(z) is the radius of the mode at z, and Z0 is the Rayleigh

length, then w(z) = w0

√
1+ z2/Z2

0 as described in [3, 14].
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at the ends of the undulator in SRL oscillators, the enhanced interaction at the center tends to
dominate [18]. In order to increase the performance of SRL oscillators further, the electron
beam can be focused in the center of the undulator.
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CHAPTER 3:

Linear Accelerator Frequency Study

In this chapter I will describe the study I conducted to determine the effect of accelerator fre-
quency on FEL performance. I begin with a detailed discussion of electron beam generation
and transport, followed by a motivation for the study. I then describe three models for how
beam quality is effected by accelerator frequency, the simulations I conducted using these mod-
els, and the results of these simulations. Finally, I consider the implications of this study and
provide recommendations for future work.

3.1 Electron Beams
The goal of electron beam generation for FELs is to create a tightly-packed, relativistic bunch
of electrons with low energy and angular spreads. The compensation for Coulomb repulsion
between electrons—and other engineering challenges—makes generation of such quality beams
more difficult as the bunch charge increases. The quality of an electron beam is determined by
many factors, and every component in the generation, acceleration, and transport process plays
a role in shaping the final beam that is delivered to the undulator of an FEL [1].

3.1.1 Generation, Acceleration, Transport
The electron beam begins at a cathode and is rapidly accelerated to relativistic energies by an
injector into the linac, where it is further accelerated to the required energy of the FEL design.
Magnetic quadrupoles and dipoles are used throughout the beamline to focus and direct the
beam.

Cathode. There are currently two popular cathode technologies used to generate the free elec-
trons that form the electron beams for FELs: thermionic- and photocathodes. In a thermionic
cathode, heat provides the energy necessary to eject electrons from the surface of the cath-
ode [2]. The recommended cathode for a USN FEL is a photocathode where incident photons
from an ultraviolet or visible laser eject electrons by the photoelectric effect [1].

Injector. Upon emission from the cathode, the electrons are quickly accelerated to relativistic
speeds (on the order of 5 MeV) in order to “freeze” their positions relative to one another. This
freezing effect is a result of relativistic time dilation; in the lab frame, the relativistic electron
bunch has a slower clock and therefore exhibits slower spreading due to Coulomb repulsion [2].
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Accelerator. A linear accelerator is used to accelerate the electron bunches to the ∼100MeV
required for an infrared FEL. In an RF linac, a series of conducting cavities store RF radiation;
the resulting field gradient accelerates the bunches of electrons as they pass through.

It is widely agreed that high-power FELs will require superconducting radio frequency (SRF)
linacs, as they are more compact, lose less energy in the cavity walls, and can handle higher
average current. One major disadvantage of SRF linacs is that they require a cryoplant and
must operate at temperatures as low as 2 K [2].

Transport, focusing. Dipole and quadrupole magnets are used to direct and focus the elec-
tron beam throughout the beamlines of FELs. For example, prior to entering the undulator
of a short Rayleigh length (SRL) oscillator, the electron beam is focused to the center of the
undulator—using quadrupole magnets—where the optical mode is also focused, enhancing the
FEL interaction there [18–20]. In an FEL amplifier, the electron beam is typically “matched”
so that its average radius remains constant as it passes through the undulator; this is necessary
due to the longer undulators required by amplifiers. Quadrupole focusing will be discussed in
detail in Chapter 4.

3.1.2 Characteristics
From the perspective of FEL performance, an electron beam has many important characteristics
that can be quantified.

Energy. The electron energy is typically specified either directly in electron volts or by the rel-
ativistic Lorentz factor γ, as discussed in Chapter 2. An FEL operating at infrared wavelengths
will require an electron beam of ∼100MeV with a corresponding Lorentz factor of γ ≈ 200.

Frequency. In RF linacs, electron beams are not continuous streams of electrons—they are
pulsed so that the electrons are delivered in bunches. The pulse repetition frequency (prf) must
either be equal to or a submultiple of the accelerator frequency in the cavities in order for the
bunches to experience the appropriate RF phase for acceleration [21].

Bunch charge. The average current in an electron beam is determined by the amount of charge
in each bunch (pulse) and the prf. For the same average current, an electron beam with a lower
prf will have more charge per bunch, and vice versa. High-power FELs require bunch charges
on the order of a nanocoulomb.
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Pulse length (duration). Each bunch of electrons is spread over some distance along the direc-
tion of travel; this spread is referred to as the pulse length or duration. Together with the bunch
charge, the pulse duration (and shape) determines the peak current of the electron beam. The
pulse duration for a high-power FEL is usually on the order of a picosecond.

Radius. The radius of the electron beam is measured perpendicular to the direction of travel,
and is usually about a tenth of a millimeter. Smaller radii increase the Coulomb repulsion
forces between the electrons but can also strengthen the FEL interaction, resulting in increased
performance.

Emittance. Beam quality is quantified by emittance. Longitudinal emittance is the product of
the bunch length and energy spread and is typically specified in units of keV·ps. Transverse
emittance is the product of the beam radius and the angular spread in the electron velocities; it
is typically given in units of mm·mrad [8, 21].

3.2 Motivation
In the preferred electron beam source for naval application—the SRF linac—electrons are ar-
ranged in bunches with lengths on the order of picoseconds which are typically separated from
each other by a few nanoseconds [1]. As discussed above, the accelerator frequency is the
frequency at which the electric fields in the superconducting cavities vary, and this frequency
determines the maximum repetition rate at which the electron bunches can be delivered.

There are engineering trade-offs associated with any choice of accelerator frequency. At present,
high-power FEL designs utilize frequencies from a few hundred megahertz to well over one gi-
gahertz [5]. Given an average current requirement, higher frequencies have lower bunch charge
are require smaller accelerating cavities. Lower frequencies result in more charge per bunch
and require less refrigeration; in fact, lower frequency designs might be operated at 4 K (higher
frequency SRF linacs require refrigeration to 2 K) [22].

We will not consider the benefits of a higher or lower accelerator frequency from an engineering
standpoint in great detail—that is beyond the scope of this thesis. It is reasonable to postulate,
however, that designing an FEL system with an SRF linac that operates at 4 K instead of 2 K
(twice the absolute temperature) could reduce the overall size, cost, complexity, and power
requirements of the FEL system [2]. As such, it would be prudent to consider the effects of
accelerator frequency on FEL performance to reveal any trade-offs and inform future design
decisions.
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3.3 Emittance Scaling Models

To perform a meaningful comparison between the different accelerator frequencies that we wish
to investigate, we must hold as many variables constant as possible. Most importantly, we will
need to keep the peak and average currents fixed, as current plays a critical role in determining
FEL performance. As we change the frequency, this will require us to adjust the bunch charge
accordingly. Doing so will have some effect on the beam emittance, so we will need some sort
of model for how the emittance will scale with accelerator frequency.

Scaling laws for emittances are difficult to derive analytically (or determine numerically). With
the assistance of Prof. T. Smith at Stanford University, we have developed three simple models
of how the electron beam’s emittance might scale as the frequency of the accelerator is changed,
given a fixed average and peak current.

In Figure 3.1 we outline the rationalization behind these models. Given an electron bunch of
charge Q from an operating FEL/linac pair with bunch length L, radius R, accelerator frequency
f , transverse beam emittance ε⊥ ≡ ε ′⊥ and longitudinal beam emittance εl ≡ ε ′l (Figure 3.1a),
we note that if the accelerator frequency is halved, we must double the charge per bunch in order
to keep the average current constant. We can lengthen the pulse and keep the charge density
the same (which satisfies the constraint that we keep the peak current fixed) by placing two
bunches, each with charge Q, end to end. This will keep the average current fixed with a new
accelerator frequency f/2. The transverse beam emittance should be unaffected by this change,
so we must determine how the longitudinal emittance will be affected.

In the worst case, we might expect the longitudinal emittance to double if the bunch length dou-
bles and the average energy spread remains the same, as shown in Figure 3.1b (this corresponds
to our model where εl ∝ 1/ f ). However, it is reasonable to assume that the electrons in the
middle of the combined bunch 2Q will be distributed in energy space as shown in Figure 3.1c,
resulting in a longitudinal emittance εl where ε ′l < εl < 2ε ′l .

The rationalization in Figure 3.1 motivated us to run our simulations using three models for the
scaling of longitudinal emittance with accelerator frequency. In all of the models we assume
that the transverse emittance is unaffected by changing the accelerator frequency. In the first
model—the “worst case” model—we assume that the longitudinal emittance scales inversely
with the frequency. This model corresponds to Figure 3.1b. In the second model—the “com-
promise” model—we assume that the longitudinal emittance scales inversely with the square
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Figure 3.1: Rationalization of the longitudinal emittance scaling models. The longitudinal
emittance of a beam is related to the energy spread of its constituent electrons and will vary
with the accelerator frequency. Here we outline the rationale behind our longitudinal emittance
scaling models by showing how the energy spread of an electron bunch might change when the
accelerator frequency is halved. After [22].

root of the frequency. This model corresponds to the case shown in Figure 3.1c. We refer to
this model as the “compromise” model because in the third model—the “best case” model—we
assume that the longitudinal emittance of the beam is independent of the accelerator frequency.

The worst case and best case models provide a lower and upper bound estimate on the per-
formance effects we should expect from changing the accelerator frequency. The compromise
model is what we consider to be the most realistic case, and is based on a physical model
developed by Prof. T. Smith [22].

3.4 Amplifier Simulations
A previous study conducted by Prof. J. Blau, Prof. W. B. Colson, Prof. K. Cohn, Prof. T. Smith,
and Matt Stanton investigated the effect of varying the accelerator frequency on FEL amplifiers.
In that study, amplifier simulations were run at three beam energies using the compromise model
we described above. I extended that study to include the best case and worst case models.
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εεε lll (keV·ps)
fff (MHz) ∝ 1/ f ∝ 1/

√
f constant

300 320 226 160
400 240 196 160
500 192 175 160
600 160 160 160
700 137 148 160
800 120 139 160
900 107 131 160

Table 3.1: The longitudinal emittances used in the oscillator and amplifier simulations. A ref-
erence beam quality of 160 keV·ps was chosen at 600 MHz, and the emittances at the remaining
frequencies were calculated using each of the three models described in Section 3.3. The results
of the simulations are summarized in Figure 3.3 and Figure 3.5.

Simulations were run for frequencies from 300 MHz to 900 MHz with an electron beam energy
of 100 MeV, average beam current of 80 mA, and a peak current of 1 kA. A reference electron
beam with a longitudinal emittance of 160 keV·ps was chosen at 600 MHz, the middle of the
RF range considered in the study. The emittances at lower and higher frequencies were then
computed using each of the models described in Section 3.3. The longitudinal emittances that
were used in the simulations are listed in Table 3.1. The undulator taper rate, taper start location,
and initial electron phase velocity were all optimized for each accelerator frequency.

3.4.1 4D Amplifier Simulation Programs
Prof. J. Blau and Prof. W. B. Colson have developed a suite of FEL simulation software at NPS.
One of the programs, fel4d1 (and its optimization variant, fel4d1v) provides 4D simulation of
an FEL amplifier; it simulates the optical wavefronts and electrons in a fully three-dimensional
(x, y, z) space as they evolve in time. The fel4d1 and fel4d1v programs were used to run the
FEL amplifier simulations for this study.

Both fel4d1 and fel4d1v track the evolution of the optical wavefronts using the electromag-
netic wave equation (derived from Maxwell’s equations), and they follow the evolution of the
electrons using the Lorentz force equation as described in Chapter 2.

The programs use parallel computing to reduce run time, executing on ∼100 CPU cores at a
time. In fel4d1 and fel4d1v, each core handles the simulation of a longitudinal “slice” of
the optical pulse. Each slice is stored on a transverse grid of around 200× 200 points and is
populated with approximately 30,000 sample electrons.
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The transverse grid and longitudinal slices allow the programs to model sophisticated effects
such as transverse optical modes and slippage. For example, as each slice of the optical pulse
travels down the undulator, the slower-moving electrons are successively handed off to the
following optical slice. By the end of the undulator, the electron bunch will have slipped back
by one slippage length (Nλ ) relative to the optical pulse.

The simulations require a plain text input file with the desired parameters of the FEL design be-
ing tested. Upon completion, the simulation is summarized in a graphical format. An example
of the program output is shown in Figure 3.2. The output includes a list of dimensionless phys-
ical parameters and multiple plots which characterize the performance of the FEL. In addition
to the graphical output that is shown in Figure 3.2, text output is provided, including: numerical
parameters used in the simulation, final gain, extraction, energy spread, and other diagnostic
values.

The fel4d1v program is an optimization variant of fel4d1 which uses a nearly identical in-
put file, with one exception: the fel4d1v input file includes a parameter that indicates which
variables should be optimized. This allows both the taper rate and taper start location in the
undulator to be optimized with very little user effort. Other variables that can be optimized
include the initial electron phase velocity and the spread in phase velocities due to the electron
energy spread.

The top section of the output shown in Figure 3.2 includes the dimensionless physical parame-
ters used to run the simulation. In the plots, a color bar ranging from dark blue to cyan is used
to indicate, depending on the plot, amplitude or value: dark blue is used for an amplitude or
value of zero and cyan is used for a maximum amplitude or value. The top section of the output
includes four column plots; each column has a horizontal axis corresponding to one of x, y, z,

or ν and shows the evolution of the electron beam and optical mode for τ = 0→ 1. The top
of each column contains a plot at τ = 1, while the bottom has a plot at τ = 0. The first two
columns show cross section slices in x and y of the optical amplitude (as a color plot) and the
electron beam envelope (in red). The third column shows the optical and electron pulse shapes
in the longitudinal (z) direction, and the final column shows a power spectrum (in ν).

The bottom row of graphs in the output begins on the left with an electron phase velocity
distribution plot for τ = 0→ 1. In the next plot, the final electron phase space (at τ = 1) is

plotted in the dimensionless ζ and ν =
◦
ζ coordinates. Often it is easy to observe electron

bunching and energy loss (or the lack thereof) here. The last two graphs show a surface plot
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Figure 3.2: Sample 4D simulation program output (fel4d1). This output was generated for the
600 MHz oscillator with an assumed εl ∝ 1/

√
f dependency. A list of dimensionless physical

parameters is provided at the top. In the middle, the electron bunch and optical pulse structure
are shown in x, y, and z along with a power spectrum (in ν). At the bottom, an electron phase
velocity distribution, phase space plot, and optical mode surface plots are shown.

of the transverse optical amplitude at the end of the undulator and at the first optical element
beyond the undulator.

The fel4d1 output provides all the information required to evaluate the performance of a given
FEL amplifier configuration. In particular, we are concerned with extraction of light and final
energy spread in the electron beam. Higher extraction allows for a lower average current in the
electron beam for a desired output power and a lower energy spread allows for more efficient
energy recovery from the electron beam [2].
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3.4.2 Computing
The amplifier portion of this study required approximately 1800 complete simulations. At each
accelerator frequency, many simulations were run to optimize the initial electron phase velocity,
undulator taper rate and taper start location. Each simulation required ∼250 minutes of CPU
time on a cluster computer.

We ran the amplifier simulations on the FEL group cluster, phfel.ern.nps.edu (in the original
study, the simulations were run on the NPS cluster, hamming.uc.nps.edu). The simulations
were run over a period of several weeks, and required over 7500 CPU hours to complete.

3.4.3 Amplifier Results
The results of the amplifier simulations are plotted in Figure 3.3. The red line (circles at each
data point) represents the extraction versus accelerator frequency when the longitudinal emit-
tance scales inversely with the accelerator frequency; this was the worst case model. Even in
the worst case, we noted that the amplifier performance increased slightly as we lowered the
accelerator frequency. The performance increases are attributable to reduced energy spread and
pulse slippage effects (a benefit of the longer pulse) in all three cases.

The green line (triangles) represents the amplifier extraction versus accelerator frequency when
the longitudinal emittance scales inversely with the square root of the accelerator frequency.
This model is the most realistic and suggests that significant performance gains could be real-
ized by reducing the accelerator frequency of a given system. Over the range of frequencies
included in this study, the extraction appears to increase linearly as the accelerator frequency
is lowered. The blue line (squares) represents the extraction versus accelerator frequency when
the longitudinal emittance is held constant and represents an upper bound on the performance
increase that could be realized by reducing the accelerator frequency of a given FEL.

3.5 Oscillator Simulations
Simulations were also run for an FEL oscillator to determine the effect of changing the acceler-
ator frequency on performance. As in the amplifier study, simulations were run for frequencies
from 300 MHz to 900 MHz with a beam energy of 100 MeV, average beam current of 80 mA,
and a peak current of 1 kA. The same reference electron beam that was used for the amplifier
study was used for the oscillator study—a beam with a longitudinal emittance of 160 keV·ps
at 600 MHz. The emittances at lower and higher frequencies were then computed using each
of the models described in Section 3.3 and are listed in Table 3.1. The beam radius, Rayleigh
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Figure 3.3: Predicted FEL amplifier extraction versus accelerator frequency for the three longi-
tudinal emittance models. The extraction increases as the accelerator frequency decreases in all
three models. The performance gains are largely due to reduced energy spread and slippage ef-
fects as the electron bunch length increases. All three models have identical performance at the
600 MHz reference frequency since the electron beam emittance was set to 160 keV·ps there.

length, optical cavity quality factor, number of undulator periods, and optical intensity on the
cavity mirrors1 were all optimized for each accelerator frequency.

3.5.1 3D Oscillator Simulation Program
The wavevnm program provides 3D simulation of an FEL oscillator; it simulates the optical
wavefronts and the electron bunch in the transverse (x,y) dimensions and time. The wavevnm

program was used to run the FEL oscillator simulations for this study. Like fel4d1 and
fel4d1v, wavevnm follows the evolution of the optical wavefronts and the electrons using
Maxwell’s wave equation and the Lorentz force equation.

Unlike the 4D programs, wavevnm follows only a single longitudinal slice of the optical pulse

1An engineering limitation requires that the optical intensity on the mirrors be less than ∼100kW cm−2 to
prevent damage or distortion to the mirrors [1, 2].
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and electron bunch. This amounts to an assumption that most slices of the optical pulse are iden-
tical and see roughly the same current density. This assumption is valid for cases where the pulse
length is long compared to the slippage distance, as it is for the FEL oscillators studied here.

The simulations use parallel computing to reduce run time, executing on many CPU cores at a
time. In wavevnm, each core runs the simulation with a different average initial electron phase
velocity, ν0. The electron phase velocity corresponds to an optical wavelength, so running the
simulation for multiple values of ν0 is equivalent to running the simulation with multiple optical
wavelengths. In an actual FEL, mode competition determines which value of ν (which optical
wavelength) dominates. The simulation requires that the user examine the output to determine
which value of ν0 resulted in the greatest extraction; this would be the dominant wavelength in
an actual FEL.2

The simulation requires a plain text input file with the desired parameters of the FEL design
being tested. Upon completion, the simulation is summarized in a graphical format. An example
output is shown in Figure 3.4. The output includes a list of dimensionless physical parameters
and multiple plots which characterize the FEL performance. In addition to the graphical output
that is shown in Figure 3.4, text output is provided, including: numerical parameters used in the
simulation, final gain, extraction, energy spread, and other diagnostic values.

The upper right section of the output shown in Figure 3.4 includes the dimensionless physical
parameters used to run the simulation. In the plots, a color bar ranging from dark blue to cyan is
used to indicate, depending on the plot, amplitude or value: dark blue represents an amplitude or
value of zero and cyan represents a maximum amplitude or value. In the upper left, a cross sec-
tion of the optical wavefront at the output mirror is shown versus the pass number. To the right
of this, the optical wavefront is shown as a surface plot at the output mirror on the final pass.

In the second row of plots, a cross section of electron positions, optical amplitude (in the un-
dulator) and optical mode shapes (at the mirrors) are all plotted on the final pass. A random
sampling of electrons is shown as red dots and mode shapes are plotted on both ends of the
undulator (a fundamental Gaussian is shown in magenta and the optical mode shape for the
simulation is shown in yellow).

2A 4D oscillator simulation is able to run just one simulation which self-consistently evolves to the dominant
wavelength. It is worth noting that in an amplifier, it is not necessary to consider very many initial values of ν0, as
the seed laser is the dominant factor in determining the output wavelength.
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Figure 3.4: Sample 3D simulation output (600 MHz oscillator, εl ∝ 1/
√

f ). A list of dimen-
sionless physical parameters in provided in the upper right. In the upper left, a plot of the
optical mode amplitude at the output mirror is shown. In the middle, the electron beam and
optical mode are shown in the undulator. At the bottom, an electron phase velocity distribution,
phase space plot, power in the optical cavity, and gain plots are shown.

The last row of plots begins with an electron phase velocity distribution versus the pass number.
The next plot is a phase space plot of a random sampling of the electrons in the dimensionless

ζ and ν =
◦
ζ coordinates. In the lower right, the optical power in the cavity and optical gain are

both plotted versus pass number.

The wavevnm output provides all the information required to evaluate the performance of a given
FEL oscillator configuration. In particular, we are concerned with extraction and mode quality.
Higher extraction allows for a lower current in the electron beam for a desired output power and
mode quality affects the propagation of the laser beam through the atmosphere to the target.
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3.5.2 Computing
The oscillator portion of this study required approximately 240 complete simulations. At each
accelerator frequency, many simulations were run to manually3 optimize the resonator cavity
output coupling factor, number of undulator periods, optical Rayleigh length, initial electron
phase velocity, and electron beam waist radius. Each simulation required ∼240 minutes of
CPU time on a cluster computer. The oscillator simulations were run on the FEL group cluster,
phfel.ern.nps.edu. The simulations were run over a period of several weeks and required
around 960 CPU hours to complete.4

3.5.3 Oscillator Results
The results of the oscillator simulations are plotted in Figure 3.5. As with the amplifier re-
sults, the red line (circles at each data point) represents the extraction versus accelerator fre-
quency when the longitudinal emittance scales inversely with the accelerator frequency, the
green line (triangles) represents the extraction versus accelerator frequency when the longitudi-
nal emittance scales inversely with the square root of the accelerator frequency, and the blue line
(squares) represents the extraction versus accelerator frequency when the longitudinal emittance
is held constant.

It is immediately apparent from Figure 3.5 that FEL oscillators are not as sensitive to changes
in the accelerator frequency as amplifiers. Even in the best case model (in blue) the extraction
increases only slightly as we reduce the accelerator frequency. FEL oscillators are not as sensi-
tive to beam quality as amplifiers due to their shorter undulators. Though the increase in pulse
length as the accelerator frequency is lowered does reduce the negative effects of energy spread,
the effect on the extraction is not as marked as it is for amplifiers.

3.6 Conclusion
Motivated by the potential engineering advantages of lowering the frequency of an FEL linac, I
conducted a study to determine the effect this would have on FEL performance. I used several
models for how longitudinal emittance scales with accelerator frequency and applied each of

3At the time of this writing, there was no automatic optimization variant of wavevnm available.
4The astute reader might notice a seeming discrepancy in the CPU time and number of simulations required

to complete the oscillator simulations versus the amplifier simulations. In the oscillator study, most of the opti-
mization work was done “by hand,” reducing the number of simulations required, whereas the amplifier program
fel4d1v optimizes by brute force, running many more simulations than is strictly necessary (but requiring less
offline calculation).
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Figure 3.5: Predicted FEL oscillator extraction versus accelerator frequency for the three lon-
gitudinal emittance models. In the worst case (red line), the extraction is constant; in the other
cases, the extraction increases slightly as the accelerator frequency decreases. All three mod-
els have identical performance at the 600 MHz reference frequency since the electron beam
emittance was set to 160 keV·ps there.

those models to simulate high-current FEL designs in both oscillator and amplifier configura-
tions using the NPS FEL simulation suite.

The amplifier simulations suggest that significant performance gains might be realized by using
a lower accelerator frequency. In what is the most realistic emittance model, FEL performance
increased linearly as the accelerator frequency was lowered from 900 MHz to 300 MHz. The
performance gains were driven largely by a lengthening electron pulse and the commensurate
reduction in energy spread and slippage effects.

Oscillators are not as sensitive to electron beam quality as amplifiers, so it was not surprising
that the performance effects of changing the accelerator frequency were not as dramatic in the
oscillator simulations. The simulations were 3D, so they did not account for short pulse effects,
but short pulse effects are not as important in oscillators as they are in amplifiers. The oscillator
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designs performed well at all of the frequencies in this study, so the engineering advantages
of a lower accelerator frequency alone should provide motivation to consider building FEL
oscillators that use lower accelerator frequencies.

In summary, I believe that lowering the accelerator frequency of both FEL oscillators and am-
plifiers (particularly those utilizing SRF linacs) is worthy of consideration due to the potential
for improved performance and reduction in size, complexity, cost, and power requirements of
the linac system. Both the oscillator and amplifier designs that I simulated had more than suffi-
cient performance at lower frequencies to justify the design of new FELs that utilize SRF linacs
with lower frequencies.

3.7 Future work
There are opportunities for additional work to be done to extend this study, such as running
the simulations for amplifiers and oscillators at other wavelengths (such as optical, terahertz,
and x-ray) to verify the conclusions of this study at those wavelengths. Running the oscillator
simulations on the 4D oscillator code that was recently developed by Prof. J. Blau at NPS could
provide validation to both the 4D oscillator code and these 3D results. It could also be beneficial
to run start-to-end simulations using energy recovery linacs and optimizing the electron beam
transport using codes like PARMELA, ELEGANT, GPT, DIMAD, and FELSIM. With these
start to end simulations, we could more accurately determine how the accelerator frequency
affects the longitudinal and transverse emittance.
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CHAPTER 4:

Electron Trajectories in Quadrupoles and an Undulator

Every electron beam will have a spread in electron positions and velocities transverse to the
axis of the beamline. Without external focusing, the electron beam will inevitably expand ra-
dially due to the spread in transverse velocities, decreasing the electron density and potentially
resulting in electrons striking beamline components.

This is undesirable for many reasons, including reduced FEL gain, potential damage to beam-
line components, and the production of unwanted x-ray and background radiation [2]. Magnetic
quadrupoles, like those shown in Figure 4.1, are used to focus the electron beam and prevent
spreading as the bunches make their way from the cathode through the various beamline com-
ponents and to the FEL undulator [21].

Figure 4.1: A quadrupole triplet in the beamline of the x-ray FEL at SACLA in Japan.
Quadrupole focusing is essential to keep the highly energetic electrons confined to the beam
pipe on their long journey to the undulator section. The yellow structure shown here supports
each quadrupole, and the brown coils are the electromagnets that produce the quadrupole field.
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In the undulator of an FEL, the electrons undergo the betatron oscillations introduced in Sec-
tion 2.4.2. These oscillations cause a different type of focusing, and I will describe them in
detail in Section 4.2.

Section 4.4 describes the simulation that I developed to track the trajectories of electrons as they
are focused by magnetic quadrupoles and the FEL undulator. I will conclude this chapter by
discussing potential applications of the simulation and opportunities for future work.

4.1 Quadrupoles
The fields of a magnetic quadrupole are created with four hyperbolic pole faces arranged as
shown in Figure 4.2. There are two planes of symmetry created by this arrangement, and the
approximate fields near the quadrupole axis are given by

Bx = BQ
y
a

(4.1a)

By = BQ
x
a

(4.1b)

where a is the radial distance from the axis to the pole face as shown in Figure 4.2 and BQ is the
component of the field strength measured when x = a (or y = a) [21].

NORTH 

y 

a 

NORTH SOUTH 

SOUTH 

x 

Figure 4.2: Fields of a magnetic quadrupole. The fields have two planes of symmetry: the
y = x plane and the y = −x plane. An electron traveling in the z direction (into the page) will
be focused in the y direction and defocused in the x direction. After [21].
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It is also possible to use axially symmetric electrostatic or magnetic focusing fields, such as
those produced by an electrostatic circular aperture or a magnetic solenoid, but the focusing
strength of their fields is usually an order of magnitude weaker for relativistic beams than the
focusing strength produced with magnetic quadrupoles [21].

4.1.1 Equations of Motion
To derive the equations of motion for electrons in a quadrupole with the fields of Equation (4.1),
we begin with the relativistic Lorentz force equation:

d (γβββ )

dt
=

q
mc

(
E+βββ ×B

)
.

In a magnetic quadrupole the electric field is zero, and magnetic fields do no work, so γ̇ = 0 and
we have (with Bz = 0 in an ideal magnetic quadrupole)

β̇ββ =
q

γmc
βββ ×B,

=
q

γmc

[
−βzByx̂+βzBxŷ+(βxBy−βyBx) ẑ

]
.

In an FEL, q =−e and the electrons are highly relativistic, so we use the approximations βz ≈ 1
and βx ≈ βy� βz and we get

β̇x ≈
e

γmc
By

v̇x ≈
e

γm
By

ẍ≈ eBQ

aγm
x

ẍ≈ ω
2
Qx

β̇y ≈−
e

γmc
Bx

v̇y ≈−
e

γm
Bx

ÿ≈− eBQ

aγm
y

ÿ≈−ω
2
Qy

(4.2)

where ω2
Q ≡ eBQ/aγm and we substituted the quadrupole fields from Equations (4.1a) and

(4.1b). The possible solutions are x=Acosh(ωQt)+Bsinh(ωQt) and y=C cos(ωQt)+Dsin(ωQt)

where A, B,C, and D are constants that will depend on initial conditions. Thus, this quadrupole
is focusing in the y direction and defocusing in the x direction [21].

4.1.2 Quadrupoles as Lenses
It is often possible to treat the quadrupole as a thin lens that acts more or less instantaneously.
Before showing this, we convert Equations (4.2) to dimensionless time; define 1/dt2 = c2/L2

Qdτ2
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and write
ẍ≈ eBQ

aγm
x

◦◦
x ≈

eL2
QBQ

aγmc2 x

◦◦
x ≈ κx

ÿ≈− eBQ

aγm
y

◦◦
y ≈−

eL2
QBQ

aγmc2 y

◦◦
y ≈−κy,

(4.3)

where LQ is the width of the quadrupole field and κ ≡ eL2
QBQ/aγmc2.

To show how the quadrupole can act like a lens, we consider an electron with a transverse
velocity vx (which we have assumed to be very small compared to its longitudinal velocity). As
the electron enters the quadrupole, it will obey Equations (4.3), so we can write

vx f ≈ vxi +
∫

τe

τs

◦
vxdτ

≈ vxi +
∫

τe

τs

◦◦
x dτ

≈ vxi +
∫

τe

τs

κxdτ,

where vx f and vxi are the velocity before and after entering the quadrupole, respectively, and
τs and τe are the dimensionless times corresponding to the start and end of the quadrupole
fields.1 We have assumed that vx is small and the width of the quadrupole field is small, so x

is more or less constant for the duration of the transit through the quadrupole fields. With this
approximation we get

vx f ≈ vxi +
∫

τe

τs

κxdτ

≈ vxi +κ(τe− τs)x

≈ vxi +(κ∆τ)x.

where ∆τ = τe− τs. We define 1/ f ≡ κ∆τ and write

vx f ≈ vxi +
x
f

vy f ≈ vyi−
y
f
. (4.4)

1Clearly the fields do not start and end abruptly as we imply here. However, for a first order approximation,
this calculation will suffice. For any given field, a hard-edge approximation can be found [21].
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Equations (4.4) describe the action of a lens with focal length f that is focusing in y and defo-
cusing in x (where f > 0 in this case since κ∆τ is always positive).

4.1.3 Quadrupole Doublets and Triplets
Two quadrupoles with focal lengths f1 and f2 separated by short drift space of length s form a
quadrupole doublet with an equivalent focal length given by

1
F

=
1
f1
+

1
f2
− s

f1 f2
. (4.5)

If the quadrupoles are of equal strength and oriented so f1 = f and f2 =− f , then Equation (4.5)
becomes

1
F

=
s
f 2 . (4.6)

A quadrupole triplet is made up of a quadrupole with a focal length f surrounded by two
quadrupoles, each with a focal length of −2 f [21].

4.2 Betatron Motion
As discussed briefly in Chapter 2, in addition to the fast “wiggling” motion caused by the
transverse periodic magnetic field in the undulator of an FEL, the electrons also undergo a
slower betatron motion which is caused by the transverse variation in the magnetic field strength
of the undulator. In a linear undulator, for example, the field strength will increase as the
electron gets closer to the magnetic pole faces. Consider the field of such a linear undulator:

B = B0 sin(k0z)cosh(k0y)ŷ+B0 cos(k0z)sinh(k0y)ẑ, (4.7)

where the undulator is oriented so the pole faces are in the y direction. If we expand Equa-
tion (2.1) assuming that there is no light in the undulator (so γ̇ = 0), we get

β̇ββ =
−e
γmc

[
(βyBz−βzBy) x̂−βxBzŷ+βxByẑ

]
, (4.8)
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where By and Bz are the components of Equation (4.7). We get βx by integrating the x-
component with respect to time:

β̇x =
−eB0

γmc2

[
ẏcos(k0z)sinh(k0y)− żsin(k0z)cosh(k0y)

]
,

=
−eB0

γmc2
1
k0

d
dt

[
cos(k0z)cosh(k0y)

]
,

=⇒ βx =
−eB0

k0γmc2 cos(k0z)cosh(k0y)+C,

where C is a constant of integration. For “perfect” injection into a sinusoidal path, C = 0, and
we will assume that this is the case for simplicity. We will also assume that the excursions made
by the electrons from the axis of the undulator are small so k0y� 1. The undulator parameter
for a linear undulator is

K =
eBrmsλ0

2πmc2 =
eB0√

2k0mc2

where Brms = B0/
√

2 for a linear undulator, B0 is the peak magnetic field strength, and the
undulator period is λ0 = 2π/k0. Using K, we simplify the expression for βx to

βx ≈−
√

2K
γ

cos(k0z)≈−
√

2K
γ

cos(k0ct), (4.9)

where we made the approximation that z≈ ct. We integrate again to get x:

βx =
vx

c
≈−
√

2K
γ

cos(k0ct)

=⇒ vx ≈−
√

2Kc
γ

cos(k0ct)

=⇒ x≈−
√

2K
k0γ

sin(k0ct)+ x0.

Where x0 is the x displacement at t = 0. We assumed perfect injection into a sinusoidal path, so
x0 = 0. Recall that k0 = 2π/λ0, so we can write

x≈− Kλ0√
2πγ

sin(k0ct). (4.10)

This is not the slow betatron motion (the argument of the sine function is k0ct)—this is the fast
“wiggling” motion that produces light. We will need this expression to solve for the betatron
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motion, however. The y-component of Equation (4.8) is

β̇y =

√
2K
γ

k0ẋcos(k0z)sinh(k0y)

=
−2cK2

γ2 k0 cos2(k0z)sinh(k0y)cosh(k0y)

=
−cK2k0

γ2 cos2(k0z)sinh(2k0y).

The average value of cos2(k0z) over a period is 1/2, so the average value of the previous ex-
pression is

β̇y =−
cK2k0

2γ2 sinh(2k0y).

Again, we assume that the excursions made by the electrons from the undulator axis are small
(k0y� 1) so sinh(2k0y)≈ 2k0y and we can write

cβ̇y = ÿ≈−c2K2k2
0

γ2 y,

which is a differential equation describing simple harmonic motion. We convert to dimension-
less time (τ = ct/L) and get

◦◦
y =−

(
Kk0L

γ

)2

y =−ω
2
β

y, (4.11)

where we have defined the dimensionless betatron frequency as

ωβ =
Kk0L

γ
=

2πNK
γ

. (4.12)

In a typical FEL, N ≈ 100, K ≈ 1, and γ ≈ 100, so betatron frequency values are on the order
of 2π . This corresponds to one oscillation over the length of the undulator (τ = 0→ 1). Solve
for y(τ) by integrating twice with respect to dimensionless time, and we get

y(τ) = y0 cos(ωβ τ)+
Lθy

ωβ

sin(ωβ τ), (4.13)

where y0 is the displacement at τ = 0, θy is the angular displacement of the electron velocity
from the undulator axis at τ = 0, and Lθy is the rate of change of y with respect to dimensionless
time at τ = 0 [10, 15]. We can get a feeling for the magnitude of these betatron oscillations
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compared to the fast wiggling motion by inserting some typical values into Equation (4.10) and
Equation (4.13). If we take K = 1, N = 100, λ0 = 2cm, γ = 100, y0 = 1mm, and estimate the
angular spread as θy ≈ 2y0/L, we get the maximum amplitude of the fast wiggling motion to be

xmax ≈
(1)(2cm)

(
√

2π)(100)
≈ 50µm.

To estimate ymax, the maximum amplitude of the slow betatron motion, we note that the factor
multiplying the sine in Equation (4.13),

L
θy

ωβ

≈ 2y0

ωβ

≈ y0γ

πNK
≈ y0

π

is about three times smaller than y0 (which multiplies the cosine in Equation (4.13)), so we
approximate ymax ≈ 1mm. It appears that the betatron oscillations are roughly an order of mag-
nitude greater in amplitude than the fast wiggling motion.

4.3 Previous Work
The simulation I developed is based on two existing programs: quad and betaxy. They were
written by Prof. W. B. Colson and Prof. J. Blau using the C programming language, use plain
text input files or interactive keyboard input, and generate an output graphic that summarizes
the results of the simulation.

4.3.1 Quadrupole Simulation
The quad program simulates electron trajectories through a single quadrupole that is modeled
as a thin lens. The program requires two sets of input parameters: one to describe the electron
distribution and another to describe the quadrupole. The initial electron distribution is assumed
to be Gaussian with zero mean in both position and angular spread in the x and y directions, and
has no longitudinal structure (all electrons are assumed to lie in the same x-y plane). There are
thus four input parameters for the electron beam:

• σx, the standard deviation of the electron x-coordinates;
• σy, the standard deviation of the electron y-coordinates;
• σθx , the standard deviation in the angular spread in the x direction; and
• σθy , the standard deviation in the angular spread in the y direction.
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These parameters are specified at τ = 0 (the starting point of the beam in the simulation). All
input parameters are normalized to be dimensionless.

Figure 4.3: Sample output of the quadrupole simulation program (quad). A single quadrupole
with a focal length f = 0.5 is placed at τ f = 0.7. The electron distribution has an angular
spread of σθx = σθy = 0.05 and a transverse spread of σx = σy = 0.1. The electron trajectories
are plotted in both x and y as τ = 0→ 1.

The quadrupole focusing strength is specified by entering the focal length, f . A positive value
for f produces focusing in x and defocusing in y, and vice versa when f is negative. The position
is indicated with τ f , the dimensionless time at which the electrons encounter the quadrupole.

The program produces a graphical output containing the results of the simulation, an example
of which is shown in Figure 4.3. The output includes a list of the physical input parameters
as well as plots of the electron trajectories x(τ) and y(τ). Note that the quadrupole placed at
τ f = 0.7 with a focal length of f = 0.5 is focusing in x and defocusing in y.

4.3.2 Betatron Motion Simulation
The betaxy program simulates the betatron oscillations of electrons as they pass through an
FEL undulator. Like quad, the program requires two sets of input parameters: in betaxy, one
describes the electron distribution and another describes the undulator. The electron distribution
is described using the same input parameters as quad (along with the same assumptions regard-
ing its electron distribution). An additional parameter, τβ , indicates the position in the undulator
at which the electron beam distribution parameters are given. The undulator is described by its
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betatron frequency, which was defined in Equation (4.12). Both ωβx and ωβy can be specified,
so there can be unequal betatron motion in x and y.

Figure 4.4: Sample output of the betatron motion simulation program (betaxy). The undulator
in this simulation has a betatron frequency of ωβx = ωβy = π . The electron distribution param-
eters are specified at τβ = 0.5 and give an angular spread of σθx = σθy = 2.0 and a transverse
spread of σx = σy = 0.1. The electron trajectories are plotted in both x and y as τ = 0→ 1.

The program produces an output graphic containing the results of the simulation, an example
of which is shown in Figure 4.4. The output includes a list of the physical parameters used
as well as a plot of the electron trajectories x(τ) and y(τ). In this simulation, τβ = 0.5 and
ωβx = ωβy = π , so the betatron oscillations complete only a half cycle over the length of the
undulator and are focused at τ = 0.5.

4.4 Electron Trajectory Simulation Program
The quadbeta program that I developed combines the functionality of quad and betaxy. It
allows the simulation of electron trajectories through up to three quadrupole magnets as well as
the undulator of an FEL.

4.4.1 Program Structure
The program begins by reading in the required parameters from either the command line or
an input file. The program then initializes by seeding the random number generator, preparing
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the graphical package to receive output data, and initializing variables. The input parameter
window is also drawn at this time.

Next, the electron trajectories are plotted in x. Sample electrons are generated with a Gaussian
distribution in position and transverse velocity. The electron beam parameters are specified in
the undulator, so the trajectories are first drawn there using a form of the analytical solution
we determined in Equation (4.13). The electron trajectories are then plotted back through the
quadrupoles, which are each modeled as a lens as we described in Section 4.1.2. The plot
of x(τ) is completed by drawing the quadrupoles as vertical purple lines and the start of the
undulator as a vertical green line. The plot of y(τ) is drawn in a similar fashion.

Input Parameters
As we mentioned above, the program can either read the required input parameters from the
command line or an input file. Table 4.1 contains a list of the required input parameters with
descriptions.

Parameter Description
ωβx , ωβy Betatron oscillation frequency in undulator (x and y)

τβ Position in undulator at which beam parameters are specified
σx, σy Standard deviation in electron displacement from axis (x and y)

σθx , σθy Standard deviation in electron transverse velocity (x and y)
f1, f2, f3 Focal length of quadrupoles 1, 2, and 3

τf1, τf2, τf3 Position of quadrupoles 1, 2, and 3

Table 4.1: The input parameters required by quadbeta. These are either entered at the com-
mand line or provided in an input file. All input parameters are dimensionless.

The undulator is specified by the parameters ωβx and ωβy , which give its betatron frequency in x

and y. The electron beam parameters are specified at the position τβ with parameters describing
the spread in positions (σx, σy) and transverse velocities (σθx , σθy).

The quadrupoles are described by their focal lengths (f1, f2, f3) and positions (τf1, τf2, τf3). A
quadrupole that is not used can be given a very large focal length (such as f1 = 1×109), which
effectively removes any effect on the electron trajectories.

Other parameters which can be controlled include the number of sample electrons to be simu-
lated, the plot resolution of the output graphic, and the seed of the random number generator.
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Simulation Output
I have provided two sample outputs of the simulation: one modeling the effect of a quadrupole
doublet and another modeling the effect of a quadrupole triplet. In both simulations I have
specified that the focal point of the betatron oscillations occurs at τ = 0.5, halfway through the
undulator. This is often desired in practice—particularly in an FEL oscillator, since the light is
usually focused near the center of the undulator by the optical cavity mirrors. With the betatron
oscillations also focused there, the FEL interaction is enhanced, increasing performance.

The quadrupole doublet in the first sample simulation is formed by two magnetic quadrupoles
with equal strength arranged so that one focuses in x and the other focuses in y. A short drift
space separates the quadrupoles, as was described in Section 4.1.3. This results in a net focusing
effect in both directions, as can be seen in Figure 4.5.

The simulation output in Figure 4.6 shows how a quadrupole triplet is formed. The outer
quadrupoles are focusing in y and are half the strength of the inner quadrupole, which is fo-
cusing in x. This configuration also results in net focusing in both directions.

Both quadrupole doublets and triplets are used in the beamlines of FELs. Though a doublet can
provide net focusing in both planes, a triplet provides equal focusing in both planes, which is
sometimes important [23].

4.5 Future Work
This program has potential as a future design tool; it could be used to assist in the placement of
quadrupole magnets for optimization of the betatron oscillations in the undulator of an FEL, for
example. It could also be useful as a tutorial application for future students learning about FELs.

There are several ways that the program might be improved to increase functionality and po-
tential applications. Adding the simulation of dipoles would be a step toward extending the
program to simulate a full beamline. Allowing more complex beam distributions would enable
the study of effects like beam halo (unwanted electrons well outside the primary core of the
beam, where they might strike beamline components, potentially causing damage and harmful
radiation). The simulation currently models the quadrupoles as thin lenses and the fields in the
undulator as having a hard edge. Simulating fields with finite spatial extent and soft edges would
allow the study of phenomena like fringe field effects for both the quadrupoles and the undu-
lator. The program might also be extended to plot a beam envelope using the beam envelope
equation in the quadrupoles and the undulator.
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Figure 4.5: Sample output of the electron trajectory simulation program (quadbeta). A
quadrupole doublet is formed with two quadrupoles separated by a small gap. Here f2 = −f3
and the net focusing effect in both the x and y directions is evident (the first quadrupole is ef-
fectively “turned off” by letting f1 = 1×109). A list of input parameters is provided at the
top, and below are plots of the electron trajectories x(τ) and y(τ). The quadrupole positions are
indicated with vertical purple lines, and the start of the undulator is indicated with a green line.
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Figure 4.6: Another sample output of the quadbeta program. A quadrupole triplet consists
of a single quadrupole with a focal length f surrounded by two quadrupoles with focal lengths
−2 f . Just as in the quadrupole doublet case, properly selected focal lengths and quadrupole
separation results in a net focusing effect in both directions.
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CHAPTER 5:

Conclusion

The study I conducted on the effect of accelerator frequency on FEL performance shows that
both amplifiers and oscillators perform well at lower accelerator frequencies. As the frequency
is decreased, the average and peak electron beam currents are kept constant by increasing the
length of the electron bunch, which is beneficial to both amplifiers and oscillators. Operating at
a lower linac frequency also has the potential to reduce the overall cost, size, complexity, and
power requirements of the FEL due to engineering advantages, including potential operation of
an SRF linac at 4 K. This study was conducted for infrared FELs, but it could be extended to
compare the applicability of these results at other wavelengths (e.g., terahertz, optical, or x-ray).

Electron beam quality is critical to FEL performance, as the accelerator frequency study demon-
strated. Beam quality can also affect how well the beam can be focused by quadrupole magnets
throughout the FEL beamline. At the beginning of the undulator, quadrupoles can be used to
focus the electron beam and ensure that the focal point of the betatron oscillations is near the
center of the undulator to improve performance. The simulation I wrote to model electron trajec-
tories in this process could be useful in the design of focusing systems for a new FEL—perhaps
one that utilizes a lower linac frequency as suggested here.

The FEL has the potential to provide the USN with the megawatt-class DE weapon it needs to
deliver lethal energy at the speed of light in order to counter threats such as supersonic high-
g-maneuvering ASMs. Significant advancements have been made since the USN first showed
interest in DE weapons in the late 1960s, but many challenges remain. Continued research in
key areas will be necessary before an FEL can be deployed on a ship. I hope that the work I
have completed is a step towards making such a deployment a reality in the near future.

61



THIS PAGE INTENTIONALLY LEFT BLANK

62



REFERENCES

[1] Committee on a Scientific Assessment of Free-Electron Laser Technology for Naval
Applications, National Research Council, Scientific Assessment of High-Power Free-
Electron Laser Technology. The National Academies Press, 2009. [Online]. Available:
http://www.nap.edu/openbook.php?record_id=12484

[2] J. Blau, K. Cohn, and W. B. Colson, “High average power free-electron lasers,” Optical
Engineering, vol. 52, no. 2, 2012. [Online]. Available: http://dx.doi.org/10.1117/1.OE.52.
2.021013

[3] A. E. Siegman, Lasers. University Science Books, May 1986.

[4] W. B. Colson, “Electric ship weapon systems,” class notes for PH4858, Department of
Physics, Naval Postgraduate School, Monterey, CA, Oct. 2011.

[5] J. Blau, K. Cohn, W. B. Colson, A. Laney, and J. Wilcox, “Free electron lasers in 2012,” in
Proceedings of the 34th International Free-Electron Laser Conference, Nara, Japan, 2012.

[6] J. A. Beauvais, “Fel mirror response to shipboard vibrations,” M.S. thesis,
Naval Postgraduate School, Monterey, CA, 2011. [Online]. Available: http:
//edocs.nps.edu/npspubs/scholarly/theses/2011/December/11Dec_Beauvais.pdf

[7] J. D. Jackson, Classical Electrodynamics, 3rd ed. Wiley, Aug. 1998.

[8] K. R. Cohn, “Free electron laser physics,” class notes for PH4055, Department of Physics,
Naval Postgraduate School, Monterey, CA, July 2012.

[9] W. B. Colson, C. Pellegrini, and A. Renieri, Eds., Free Electron Laser Handbook. The
Netherlands: North-Holland Physics, Elsevier Science Publishing Co. Inc., 1990, ch. 5.

[10] W. B. Colson, “Fundamental free electron laser theory and new principles for advanced de-
vices,” in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,
vol. 738, 1988, pp. 2–27.

[11] W. A. Barletta, J. Bisognano, J. N. Corlett, P. Emma, Z. Huang, K. J. Kim, R. Lind-
berg, J. B. Murphy, G. R. Neil, D. C. Nguyen et al., “Free electron lasers: Present status
and future challenges,” Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 618, no. 1, pp.
69–96, 2010.

[12] D. J. Griffiths, Introduction to Electrodynamics, 3rd ed. Addison Wesley, Jan. 1999.

[13] W. B. Colson, “Tutorial on classical free electron laser theory,” Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and As-
sociated Equipment, vol. 237, no. 1, pp. 1–9, 1985.

63



[14] W. B. Colson and A. M. Sessler, “Free electron lasers,” Annual Review of Nuclear and
Particle Science, vol. 35, no. 1, pp. 25–54, 1985.

[15] W. B. Colson, “Betatron motion,” notes on the derivation of electron motion in the undu-
lator of an FEL, Naval Postgraduate School, Monterey, CA, Oct. 2011.

[16] R. Vigil, “Hermite-gaussian modes and mirror distortions in the free electron laser,”
M.S. thesis, Naval Postgraduate School, Monterey, CA, 2006. [Online]. Available:
http://edocs.nps.edu/npspubs/scholarly/theses/2006/Jun/06Jun%5FVigil.pdf

[17] B. W. Williams, “Higher-order modes in free electron lasers,” M.S. thesis,
Naval Postgraduate School, Monterey, CA, 2005. [Online]. Available: http:
//edocs.nps.edu/npspubs/scholarly/theses/2005/Sep/05Sep%5FWilliams.pdf

[18] W. B. Colson, J. Blau, R. L. Armstead, P. P. Crooker, R. Vigil, T. Voughs,
and B. W. Williams, “Short Rayleigh length free electron lasers,” Phys. Rev.
ST Accel. Beams, vol. 9, p. 030703, March 2006. [Online]. Available: http:
//link.aps.org/doi/10.1103/PhysRevSTAB.9.030703

[19] W. B. Colson, J. Blau, and R. L. Armstead, “The free electron laser interaction with
a short-Rayleigh-length optical mode,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 507, pp. 48–51, 2003. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0168900203008350

[20] P. P. Crooker, W. B. Colson, J. Blau, D. Burggraff, J. S. Aguilar, S. Benson, G. Neil,
M. Shinn, and P. Evtushenko, “Short Rayleigh length free electron laser: Experiments
and simulations,” Phys. Rev. ST Accel. Beams, vol. 11, p. 090701, Sept. 2008. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevSTAB.11.090701

[21] M. Reiser, Theory and Design of Charged Particle Beams, 2nd ed. Wiley-VCH, May 2008.

[22] T. I. Smith, “Frequency optimization of special purpose energy recovering linear accel-
erators,” presentation to FEL Theory Group, Naval Postgraduate School, Monterey, CA,
Nov. 2011.

[23] R. Swent, private communication, Nov. 2012.

64



Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. CAPT (ret) Roger McGinnis
Office of Naval Research
Arlington, VA

4. Dr. Lewis DeSandre
Office of Naval Research
Arlington, VA

5. Quentin Saulter
Office of Naval Research
Arlington, VA

6. Sarwat Chappell
Office of Naval Research
Arlington, VA

7. Chairman, Physics Department
Naval Postgraduate School
Monterey, CA

8. Professor William B. Colson
Naval Postgraduate School
Monterey, CA

9. Professor Joseph Blau
Naval Postgraduate School
Monterey, CA

10. Professor Keith Cohn
Naval Postgraduate School
Monterey, CA

65



11. Professor Todd Smith
Stanford University
Stanford, CA

12. CDR Sean Niles
NAVSEA / PMS 405
Washington, D.C.

66


