

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

NEW RESULTS ON A STOCHASTIC DUEL GAME WITH EACH
FORCE CONSISTING OF HETEROGENEOUS UNITS

by

Kyle Y. Lin

February 2013

Approved for public release; distribution is unlimited

Prepared for: U.S. Army Training and Doctrine Command (TRADOC)
 TRADOC Analysis Center TRAC-Monterey

 700 Dyer Road, Monterey, CA 93943-0692

NPS-OR-13-002

THIS PAGE INTENTIONALLY LEFT BLANK

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
26-02-2013

2. REPORT TYPE
Technical Report

3. DATES COVERED (From-To)
From 19-11-2012 To 30-4-2013

4. TITLE AND SUBTITLE

New Results on a Stochastic Duel Game With Each Force Consisting of Heterogeneous
Units

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT
NUMBER

6. AUTHOR(S)

Kyle Y. Lin

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Training and Doctrine Command (TRADOC)
TRADOC Analysis Center TRAC-Monterey
700 Dyer Road, Monterey, CA 93943-0692

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Two forces engage in a duel, with each force initially consisting of several heterogeneous units. Each unit can be
assigned to fire at any opposing unit, but the kill rate depends on the assignment. As the duel proceeds, each force—
knowing which units are still alive in real time—decides dynamically how to assign its fire, in order to maximize the
probability of wiping out the opposing force before getting wiped out. It has been shown in the literature that an
optimal pure strategy exists for this two-person, zero-sum game, but computing the optimal strategy remained
cumbersome because of the game’s huge payoff matrix. This paper gives an efficient algorithm to compute the
optimal strategy without enumerating the entire payoff matrix, and offers some insights into the special case, when one
force has only one unit.

15. SUBJECT TERMS
Stochastic duel, two-person zero-sum game, fire allocation

16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT

UU

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON
Kyle Lin

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified 19b. TELEPHONE
NUMBER (include area code)
(831) 656-2648

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

NPS-OR-13-002

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RDML Jan E. Tighe O. Douglas Moses
Interim President Acting Provost

The report entitled “New Results on a Stochastic Duel Game With Each Force Consisting
of Heterogeneous Units” was prepared for and funded by U.S. Army Training and
Doctrine Command (TRADOC), TRADOC Analysis Center TRAC-Monterey, 700 Dyer
Road, Monterey, CA 93943-0692.

Further distribution of all or part of this report is authorized.

This report was prepared by:

Kyle Y. Lin
Associate Professor
Department of Operations Research

Reviewed by:

Ronald D. Fricker Robert F. Dell
Associate Chairman for Research Chairman
Department of Operations Research Department of Operations Research

Released by:

Jeffrey D. Paduan
Vice President and Dean of Research

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Two forces engage in a duel, with each force initially consisting of several heterogeneous
units. Each unit can be assigned to fire at any opposing unit, but the kill rate depends on
the assignment. As the duel proceeds, each force—knowing which units are still alive in
real time—decides dynamically how to assign its fire, in order to maximize the
probability of wiping out the opposing force before getting wiped out. It has been shown
in the literature that an optimal pure strategy exists for this two-person zero-sum game,
but computing the optimal strategy remained cumbersome because of the game’s huge
payoff matrix. This paper gives an efficient algorithm to compute the optimal strategy
without enumerating the entire payoff matrix, and offers some insights into the special
case, when one force has only one unit.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

1 Introduction

We consider a stochastic duel model with each force consisting of heterogeneous units. Sup-
pose, at the beginning, force A has m units and force B has n units. If A’s unit i fires at
B’s unit j, then the time to kill follows an exponential distribution with rate λij. If B’s
unit j fires at A’s unit i, then the time to kill follows an exponential distribution with rate
θji. If multiple units fire at the same target, then the time to kill follows an exponential
distribution, with the rate equal to the sum of individual kill rates. Each force keeps perfect
knowledge when a unit gets killed and decides dynamically how to assign its remaining units
to fire at the opposing force’s remaining units. The goal of each force is to maximize the
probability of wiping out the opposing force before getting wiped out.

This stochastic duel model was first studied by Kikuta (1986), and it was shown that a
pure optimal strategy exists. It is, however, rather cumbersome to determine the optimal
strategy, because one needs to enumerate a huge payoff matrix. Our main contribution
in this paper is to establish a necessary and sufficient condition for a pure strategy to be
optimal, and use the condition to facilitate an efficient algorithm to compute an optimal
strategy. We also provide some insights into the special case, when one force has only one
unit.

Two special cases of the model have been reported in the literature. If each force has
homogeneous units, such that λij = λ and θji = θ for all i, j, then any policy that keeps all
units busy firing at any opposing unit is optimal. Let V (m,n) denote A’s win probability if
A has m units and B has n units, for m,n = 1, 2, A recursive equation can be derived
by conditioning on whose unit is killed next, and is given by

V (m,n) =
mλ

mλ+ nθ
V (m,n− 1) +

nθ

mλ+ nθ
V (m− 1, n),

with the boundary conditions V (m, 0) = 1 for m ≥ 1, and V (0, n) = 0 for n ≥ 1. Letting
r = λ/θ, Brown (1963) showed that

V (m,n) = rn
m∑
k=1

(−1)m−k km+n Γ(rk + 1)

(m− k)! k! Γ(n+ rk + 1)
.

When the units are heterogeneous, it makes a difference how each force allocates his fire. In
addition, the fire allocation may change as both forces lose their units during the duel.

Another special case, when m = 1, was previously studied by Friedman (1977) and Kikuta
(1983), where A needs to determine which fire order, among the n! possible fire orders, is
optimal. In many sequencing problems, when one decides in which order to process a number
of jobs, it is possible to compute an index for each job based on its own attributes, and
to obtain the optimal sequence by sorting those indices (Ross, 1983; Gittins et al., 2011).
Unfortunately, in this problem the preference between two targets depends on the other
targets still alive, which makes the problem difficult. Friedman (1977) gave a necessary
condition for the optimal order, while Kikuta (1983) strengthened the necessary condition
and gave a sufficient condition for optimality. In general, however, to find the optimal fire
order one needs to compare all n! fire orders by brute force.

1

The study of duel models dates back to the 1910s, when Lanchester (1916) proposed
differential equations that govern the strength of each force through time, which gave rise to
what later became known as Lanchester models. A stream of works extended the Lanchester
models—which are deterministic in nature—to stochastic duel models by introducing ran-
domness to shot outcomes, time between taking shots, etc.; see, for instance, Brown (1963);
Williams and Ancker (1963); Barfoot (1974); Kress (1992); and Kress and Talmor (1999).
These stochastic duel models, however, assume homogeneous units, so there is no decision
making. The focus of earlier works was to obtain expressions for win probability in various
duel scenarios. Readers interested in comprehensive surveys on combat models are referred
to Ancker (2006); Washburn and Kress (2009); and Kress (2012).

The rest of this paper proceeds as follows. Section 2 presents the main results, where
we give a necessary and sufficient condition for a pure strategy to be optimal, and then use
the condition to facilitate an efficient algorithm to compute the optimal strategy. Section 3
discusses the special case when m = 1, and gives a condition under which the preference
between two targets can be readily determined, regardless of the other targets still alive.

2 Main Results

At the beginning, force A (or player A) has a set of units SA = {1, 2, . . . ,m} and force
B (or player B) has a set of units SB = {1, 2, . . . , n}. As the duel proceeds, each player
keeps real-time knowledge about when a unit gets killed. In other words, each player has full
information about the history of the game and, at any time point, decides how to allocate his
fire on the opponent’s remaining units. Because we assume exponential kill rates, knowing
which units are still alive on both sides, the future of the game becomes independent from
its past.

At any time point, the state of the duel can be delineated by (S ′A, S
′
B), with S ′A ⊆ SA

being the set of A’s remaining units, and S ′B ⊆ SB the set of B’s remaining units. The game
belongs to the class of Markov games, because once in a state, the previous actions and
results become irrelevant to the future of the game. It is also an exhaustive game according
to the definition in Washburn (2003), because each state will be visited once at most. For
a given state (S ′A, S

′
B), the two players can be viewed as playing a single-stage game, which

ends as soon as any unit on either side is killed. In other words, by letting V (S ′A, S
′
B) denote

A’s win probability in state (S ′A, S
′
B), then the payoff to A is V (S ′A \ {i}, S ′B) if A’s unit i

is killed next, and is V (S ′A, S
′
B \ {j}) if B’s unit j is killed next. In addition, because the

player loses the game if he loses all his units, we have that V (S ′A, ∅) = 1, if S ′A 6= ∅, and
V (∅, S ′B) = 0, if S ′B 6= ∅. Consequently, if we can solve this single-stage game, then we can
compute the optimal strategy recursively on |S ′A|+ |S ′B|, beginning from 1, 2, . . ., and so on.

The rest of this section focuses on the single-stage game. Section 2.1 recounts how to
construct a single-stage game in matrix form, as was done in Kikuta (1986). Section 2.2 gives
a necessary and sufficient condition for a saddle point in this matrix, and Section 2.3 gives
an efficient algorithm to find a saddle point without enumerating the entire payoff matrix.

2

2.1 Single-Stage Game in Matrix Form

Consider the beginning of the game when the state is (SA, SB). For notational convenience,
write ai ≡ V (SA \ {i}, SB) for all i ∈ SA, and bj ≡ V (SA, SB \ {j}) for all j ∈ SB. That is,
ai is A’s win probability if he loses unit i in state (SA, SB), and bj is A’s win probability if
he kills B’s unit j in state (SA, SB).

A pure strategy in state (SA, SB) is a fire allocation. For i ∈ SA, j ∈ SB, let

xij =

{
1, if A’s unit i fires at B’s unit j,
0, otherwise.

yji =

{
1, if B’s unit j fires at A’s unit i,
0, otherwise.

The set of A’s pure strategies is

ΠA =

{
x = [xij] : xij ∈ {0, 1}, i ∈ SA, j ∈ SB; and

∑
j∈SB

xij = 1, for all i ∈ SA

}
. (1)

Because each of A’s m units can fire at any of B’s n units, the number of A’s pure strategy
is |ΠA| = nm. Similarly, the set of B’s pure strategies is

ΠB =

{
y = [yji] : yji ∈ {0, 1}, i ∈ SA, j ∈ SB; and

∑
i∈SA

yji = 1, for all j ∈ SB

}
, (2)

with |ΠB| = mn.
Given A’s pure strategy x, let

Λj(x) =
∑
i∈SA

xijλij (3)

denote the rate at which B’s unit j gets killed. In other words, the amount of time it takes
for A to kill B’s unit j follows an exponential distribution with rate Λj(x), if A uses pure
strategy x. Similarly, if B uses pure strategy y, let

Θi(y) =
∑
j∈SB

yjiθji

denote the rate at which A’s unit i gets killed.
If A chooses a pure strategy x ∈ ΠA, and B chooses a pure strategy y ∈ ΠB, then by

conditioning on which unit gets killed next, the probability that A will eventually win the
duel is given by

f(x,y) =

∑
j∈SB

Λj(x)bj +
∑

i∈SA
Θi(y)ai∑

j∈SB
Λj(x) +

∑
i∈SA

Θi(y)
, (4)

which is also the payoff to A for the pure strategy pair (x,y). The payoff to B is 1−f(x,y),
or equivalently, −f(x,y).

3

In this two-person zero-sum game in standard matrix form, A has nm pure strategies and
B has mn pure strategies. Kikuta (1986) showed that this matrix game has a saddle point.
To determine the saddle point, however, one needed to enumerate the entire payoff matrix
of size nm by mn.

Remark 1 The two-person zero-sum game discussed in this section can be regarded as a
special case of a race-to-reward game as follows. Two players, A and B, each have resources
to allocate among tasks. A has a set of resources, SA, to allocate among a set of tasks, TA,
with allocation of resource i to task k leading to a task completion rate λik, for i ∈ SA and
k ∈ TA. Similarly, B has a set of resources, SB, to allocate among a set of tasks, TB, with
allocation of resource j to task l leading to a task completion rate θjl, for j ∈ SB and l ∈ TB.
Each task has an associated reward to A, namely ak for k ∈ TA, and bl for l ∈ TB, with
ak > bl for all k ∈ TA and l ∈ TB to avoid triviality. The payoff to A is the reward of the
task that is completed first. The game is zero-sum, with A trying to maximize his expected
payoff and B trying to minimize it. If TA = SB and TB = SA, then this race-to-reward game
reduces to the single-stage duel game described in this section. Although we present our
analysis in the context of a single-stage duel game, all the results can be straightforwardly
extended to the race-to-reward game.

2.2 Necessary and Sufficient Condition for Saddle Points

Theorem 1 gives an alternative proof that the matrix game in Section 2.1 has a saddle point.
The proof also shows how to determine the optimal strategy if one knows the value of the
game, and facilitates a necessary and sufficient condition for a saddle point, which we present
in Theorem 2.

Theorem 1 Consider the two-person zero-sum game defined by pure strategy sets ΠA in
(1), ΠB in (2), and player A’s payoff function f(x,y) in (4). This game has at least one
saddle point. In particular, letting v∗ denote the value of the game, x′ ∈ ΠA a pure strategy
that maximizes ∑

j∈SB

Λj(x) · (bj − v∗), (5)

and y′ ∈ ΠB a pure strategy that minimizes∑
i∈SA

Θi(y) · (ai − v∗), (6)

then f(x′,y′) = v∗, and (x′,y′) is a saddle point.

Proof. We prove the theorem by contradiction. First, suppose that x′ maximizes (5) and y′

minimizes (6), but f(x′,y′) > v∗, or equivalently,

0 <
∑
j∈SB

Λj(x
′)(bj − v∗) +

∑
i∈SA

Θi(y
′)(ai − v∗). (7)

4

Because y′ minimizes (6), it follows that∑
i∈SA

Θi(y
′)(ai − v∗) ≤

∑
i∈SA

Θi(y)(ai − v∗), ∀y ∈ ΠB. (8)

Adding
∑

j∈SB
Λj(x

′)(bj − v∗) to both sides of the preceding, together with (7), we can
conclude that

0 <
∑
j∈SB

Λj(x
′)(bj − v∗) +

∑
i∈SA

Θi(y)(ai − v∗), ∀y ∈ ΠB,

or equivalently,
f(x′,y) > v∗, ∀y ∈ ΠB.

In other words, using the pure strategy x′, player A can guarantee a payoff strictly greater
than v∗, showing that the value of the game is strictly greater than v∗, which is a contradiction
that v∗ is the value of the game.

Second, by supposing that f(x′,y′) < v∗, we can draw a similar contradiction. Therefore,
we have shown that f(x′,y′) = v∗.

To prove that (x′,y′) is a saddle point, we need to show that f(x′,y) ≥ v∗ for all y ∈ ΠB,
and f(x,y′) ≤ v∗ for all x ∈ ΠA. To do so, note that

0 =
∑
j∈SB

Λj(x
′)(bj − v∗) +

∑
i∈SA

Θi(y
′)(ai − v∗),

≤
∑
j∈SB

Λj(x
′)(bj − v∗) +

∑
i∈SA

Θi(y)(ai − v∗), ∀y ∈ ΠB,

where the equality follows from f(x′,y′) = v∗, and the inequality from adding
∑

j∈SB
Λj(x

′)(bj−
v∗) to (8). Hence, f(x′,y) ≥ v∗ for all y ∈ ΠB. A similar argument shows that f(x,y′) ≤ v∗

for all x ∈ ΠA. Consequently, (x′,y′) is a saddle point. 2

If we know the value of the game v∗, then, according to Theorem 1, the optimal strategy
for A is x, which maximizes∑

j∈SB

Λj(x) · (bj − v∗) =
∑
j∈SB

∑
i∈SA

λijxij · (bj − v∗) =
∑
i∈SA

(∑
j∈SB

xij · λij(bj − v∗)

)
, (9)

where Λj(x) is defined in (3). Once v∗ is known, each of A’s units can determine which
opposing unit to fire at separately. For A’s unit i, he should simply compare λij(bj − v∗) for
all j ∈ SB and find the largest value. In other words, it is optimal for A’s unit i to fire at
B’s unit j∗, where

j∗ = arg max
j∈SB

λij(bj − v∗). (10)

In case of a tie, break it arbitrarily, in which case there will be multiple optimal pure strategies
and multiple saddle points. The optimal policy is to set xij∗ = 1, and xij = 0 for j 6= j∗.

It follows immediately from (10) that, if λi1j = λi2j for all j, then there exists an optimal
strategy, with which A’s units i1 and i2 fire at the same target. This result strengthens
Corollary 2 in Kikuta (1986), which requires θji1 = θji2 for all j.

5

Theorem 2 A pair of pure strategies (x′,y′) is a saddle point, and a real number v′ is the
value of the game, if and only if all three conditions hold:

C1. x′ maximizes
∑

j∈SB
Λj(x) · (bj − v′),

C2. y′ minimizes
∑

i∈SA
Θi(y) · (ai − v′),

C3. f(x′,y′) = v′.

Proof. From Theorem 1, the game has at least one saddle point. Denote by (x∗,y∗) a saddle
point, and v∗ the value of the game. It follows immediately that f(x∗, y∗) = v∗.

To prove that C1–C3 are sufficient conditions, we need to show v′ = v∗. To prove v′ = v∗

by contradiction, first suppose that v′ < v∗ to get a string of inequalities involving x′ and
x∗ as ∑

j∈SB

Λj(x
′)(bj − v′) ≥

∑
j∈SB

Λj(x
∗)(bj − v′) >

∑
j∈SB

Λj(x
∗)(bj − v∗),

where the first inequality follows from C1, while the second inequality follows because of the
assumption v′ < v∗. Similarly, we get another string of inequality involving y′ and y∗ as∑

i∈SA

Θi(y
′)(ai − v′) >

∑
i∈SA

Θi(y
′)(ai − v∗) ≥

∑
i∈SA

Θi(y
∗)(ai − v∗),

where the first inequality follows because of the assumption v′ < v∗, while the second in-
equality follows from Theorem 1. Adding these two equations together, we arrive at∑
j∈SB

Λj(x
′)(bj − v′) +

∑
i∈SA

Θi(y
′)(ai− v′) >

∑
j∈SB

Λj(x
∗)(bj − v∗) +

∑
i∈SA

Θi(y
∗)(ai− v∗). (11)

The left-hand side of the preceding is 0 according to C3, while the right-hand side is also 0
since f(x∗, y∗) = v∗. Hence, we arrive at a contradiction.

If we suppose v′ > v∗ instead, then we can use a similar argument to draw a contradiction.
Consequently, we have shown that v′ = v∗. Finally, using Theorem 1, together with v′ = v∗,
C1, and C2, it follows that (x′,y′) is a saddle point. Therefore, we have proved that C1–C3
are sufficient conditions.

We next prove that C1–C3 are necessary conditions. To prove C3, we write

f(x′,y′) = v∗ = v′,

where the first equality follows because (x′,y′) is a saddle point, and the second follows
because v′ is the value of the game.

To prove C1 and C2, note that because (x′,y′) is a saddle point, f(x′,y′) must be the
smallest in its row and largest in its column. The former implies that

f(x′,y′) ≤ f(x′,y), ∀y ∈ ΠB,

6

with equality when y = y′. Use C3 to replace the left-hand side with v′, and use (4) to spell
out the right-hand side. After some algebra, the preceding equation becomes∑

j∈SB

Λj(x
′) · (bj − v′) +

∑
i∈SA

Θi(y) · (ai − v′) ≥ 0, ∀y ∈ ΠB,

with equality when y = y′. In other words, y′ minimizes
∑

i∈SA
Θi(y) ·(ai−v′), which proves

C2. Beginning with
f(x′,y′) ≥ f(x,y′), ∀x ∈ ΠA,

with equality when x = x′, we can use a similar argument to prove C1. Consequently, we
have proved that C1–C3 are necessary conditions. 2

2.3 Computing Saddle Points

This section presents an iterative algorithm to compute saddle points without enumerating
the entire payoff matrix of size nm ×mn. The algorithm goes as follows.

1. Pick v arbitrarily in [0, 1].

2. For v ∈ [0, 1], define

x̂(v) ≡ arg max
x

∑
j∈SB

Λj(x) · (bj − v), (12)

ŷ(v) ≡ arg min
y

∑
i∈SA

Θi(y) · (ai − v). (13)

In case of a tie, break it arbitrarily. Next, compute

T (v) ≡ f(x̂(v), ŷ(v)) =

∑
j∈SB

Λj(x̂(v))bj +
∑

i∈SA
Θi(ŷ(v))ai∑

j∈SB
Λj(x̂(v)) +

∑
i∈SA

Θi(ŷ(v))
. (14)

3. If T (v) = v, then v is the value of the game and (x̂(v), ŷ(v)) is a saddle point. If
T (v) 6= v, then update v ← T (v), and go to step 2.

It is worth noting that computing x̂(v) and ŷ(v) in (12) and (13) does not require linear
programming, and can be done quickly, as is the case in (10). When the algorithm stops, we
have a triplet (x̂(v), ŷ(v), v) that satisfies the three conditions in Theorem 2; therefore, the
optimal solution. It follows immediately from Theorem 2 that the value of the game v∗ is
a fixed point of the function T (·), namely T (v∗) = v∗. We next present two lemmas, before
proving that the algorithm will stop after a finite number of iterations. Although Lemma 1
can be viewed as a special case of Lemma 2, we put them separately for ease of explanation.

Lemma 1 If v < v∗, then T (v) > v; if v > v∗, then T (v) < v.

7

Proof. From Theorem 1 there exists a saddle point; let (x∗,y∗) denote one. If v < v∗, then
using the same argument that gives rise to (11), we have that∑
j∈SB

Λj(x̂(v))(bj − v) +
∑
i∈SA

Θi(ŷ(v))(ai − v) >
∑
j∈SB

Λj(x
∗)(bj − v∗) +

∑
i∈SA

Θi(y
∗)(ai − v∗).

The right-hand side of the preceding is equal to 0, because f(x∗,y∗) = v∗. Therefore,∑
j∈SB

Λj(x̂(v))bj +
∑

i∈SA
Θi(ŷ(v))ai∑

j∈SB
Λj(x̂(v)) +

∑
i∈SA

Θi(ŷ(v))
> v,

or equivalently, T (v) > v. If v > v∗, then, using a similar argument, we can show that
T (v) < v, which completes the proof. 2

Let T (0)(v) ≡ v, and for k = 1, 2, . . ., let T (k)(v) ≡ T ◦ T (k−1)(v). The next lemma
generalizes Lemma 1.

Lemma 2 If v < v∗, then T (k)(v) > v, for k = 1, 2, . . .; if v > v∗, then T (k)(v) < v, for
k = 1, 2,

Proof. Consider the case v < v∗, and for notational simplicity write v0 ≡ v < v∗, and
vk ≡ T (k)(v), for k = 1, 2, We need to show that vk > v0 for k = 1, 2,

Because v0 < v∗, it follows from Lemma 1 that v1 > v0. If v1 < v∗, then it follows from
Lemma 1 again that v2 > v1 > v0. In other words, the sequence v0, v1, . . . increases strictly
until, at some point, it either reaches v∗ or exceeds v∗. In the former case, all following
numbers in the sequence are v∗ because T (v∗) = v∗, so it is true that vk > v0 for k = 1, 2,

Suppose now that the sequence v0, v1, . . . exceeds v∗ at some point. Let

s = min{k : vk > v∗}.

In other words, v0 < v1 < · · · < vs−1 < v∗ < vs, as depicted in Figure 1. Because vs > v∗,
it follows again from Lemma 1 that vs+1 < vs. If vk ≥ v∗ for k = s, s + 1, . . ., then the
statement that vk > v0 for all k = 1, 2, . . . is also true.

-

v0 v1 · · · vs−1 vt

v∗

vt−1 · · · vs+1 vs

Figure 1: This diagram depicts the sequence v0, v1, . . . , vs, . . . , vt, . . ., where vk ≡ T (k)(v0), for
k = 0, 1, Each new number in the sequence either gives a better lower bound or a better
upper bound for v∗, and the sequence converges to v∗ after a finite number of iterations.

To complete the proof, suppose now that the sequence vs, vs+1, . . . drops below v∗ at some
point, and let

t = min{k : k > s, vk < v∗}.

8

In other words, vt < v∗ < vt−1 < · · · < vs; as depicted in Figure 1. We next show that
vt > vs−1. To do so, write a string of inequality∑

j∈SB

Λj(x̂(vt−1))(bj − vs−1) >
∑
j∈SB

Λj(x̂(vt−1))(bj − vt−1)

≥
∑
j∈SB

Λj(x̂(vs−1))(bj − vt−1)

>
∑
j∈SB

Λj(x̂(vs−1))(bj − vs),

where the first inequality follows because vs−1 < v∗ < vt−1; the second inequality follows
from the definition of x̂(vt−1); the third inequality follows because vt−1 < vs. Similarly, write
another string of inequality∑

i∈SA

Θi(ŷ(vt−1))(ai − vs−1) ≥
∑
i∈SA

Θi(ŷ(vs−1))(ai − vs−1)

>
∑
i∈SA

Θi(ŷ(vs−1))(ai − vs),

where the first inequality follows from the definition of ŷ(vs−1), and the second inequality
follows because vs−1 < v∗ < vs. Adding these two inequalities gives∑

j∈SB

Λj(x̂(vt−1))(bj − vs−1) +
∑
i∈SA

Θi(ŷ(vt−1))(ai − vs−1)

>
∑
j∈SB

Λj(x̂(vs−1))(bj − vs) +
∑
i∈SA

Θi(ŷ(vs−1))(ai − vs).

The right-hand side of the preceding is equal to 0, because vs = T (vs−1). Hence, we arrive
at ∑

j∈SB

Λj(x̂(vt−1))(bj − vs−1) +
∑
i∈SA

Θi(ŷ(vt−1))(ai − vs−1) > 0,

or equivalently, ∑
j Λj(x̂(vt−1))bj +

∑
i Θi(ŷ(vt−1))ai∑

j Λj(x̂(vt−1)) +
∑

i Θi(ŷ(vt−1))
> vs−1.

Because the left-hand side of the preceding is just T (vt−1) = vt, we conclude that vt > vs−1 >
v0. By repeating this argument, we can see that vk > v0, for all k = 1, 2, The case of
v0 > v∗ can be proved in a similar fashion. 2

Theorem 3 The algorithm will stop after a finite number of iterations.

Proof. Recall that, in the game matrix, A has nm pure strategies (rows) and B has mn pure
strategies (columns). There are, at most, nm×mn distinct payoff values in the game matrix,

9

each of which corresponds to f(x,y) for some pure strategy pair (x,y). In addition, at least
one of the payoff values is v∗, since the game has a saddle point.

Again for notational simplicity, write v0 ≡ v, and vk ≡ T (k)(v), for k = 1, 2, To prove
the theorem, suppose instead that the algorithm does not stop, or equivalently, vk 6= v∗ for all
k = 0, 1, 2, Because vk 6= v∗, it follows from Lemma 2 that its value will not be repeated
in the subsequence vk+1, vk+2, In other words, all numbers in the sequence v0, v1, v2, . . .
are distinct. Other than v0, however, each number in the sequence v1, v2, . . . corresponds to
a payoff value in the game matrix. We then arrive at a contradiction because there are only
a finite number of distinct payoff values in the game matrix, which completes the proof. 2

The proof in Theorem 3 shows that the algorithm will stop after at most nm × mn

iterations. This worst case would happen if all the payoff values in the game matrix are
distinct, and if the sequence T (k)(v), k = 1, 2, . . . visits all these distinct values. In practice,
the actual number of iterations required to compute v∗ is often far smaller than nm ×mn,
because the sequence gets closer to v∗ after each iteration. In particular, as seen from the
proof in Lemma 2, each new value generated in the sequence is either v∗, or the best lower
bound to date if it is less than v∗, or the best upper bound to date if it is larger than v∗.

One way to speed up the computation is to pick the initial value close to v∗ to reduce
the number of iterations. To this end, note that maxi∈SA

ai ≤ v∗ ≤ minj∈SB
bj, because A

will increase his win probability if he kills any of B’s units, and decrease his win probability
if any of his units are killed. Hence, an initial pick between maxi∈SA

ai and minj∈SB
bj, such

as

v =
1

2

(
max
i∈SA

ai + min
j∈SB

bj

)
,

should work well.
This algorithm can be used to recursively compute V (SA, SB), the value of the game in

state (SA, SB). Specifically, we need to compute V (S ′A, S
′
B) for all S ′A ⊆ SA and S ′B ⊆ SB, by

iterating on |S ′A|+ |S ′B|, the total number of units still alive. The case when |S ′A|+ |S ′B| = 1
is trivial. If we have computed V (S ′A, S

′
B) for all states when |S ′A| + |S ′B| = k, then those

values become the ai and bj used to compute v∗ for states (S ′A, S
′
B) with |S ′A|+ |S ′B| = k+ 1,

which, in turn, becomes the ai and bj for next iteration when |S ′A|+ |S ′B| = k + 2.

Example 1 Consider an example with three unit types: rock (R), paper (P), and scissors
(S). Assume that

λR,P = λP,S = λS,R = 0.5,

λR,R = λP,P = λS,S = 1,

λR,S = λS,P = λP,R = 2,

and θij = λij for i, j = R,P, S. Table 1 gives the probability that A wins the duel in various
states. For instance, if A has 2 rocks and B has 1 rock and 1 paper, then A will win the
duel with probability V (RR,RP) = 0.262.

There is one interesting observation. Whereas, in 1-on-1 and 2-on-2 duels, the win
probability depends highly on the unit types on each side, in a 3-on-3 duel having RPS

10

Table 1: Probability that Player A wins the duel in different states as discussed in Example 1,
when there are three unit types: Rock, Paper, and Scissors.

Player B
Player A PP RP RS PS RPS RPP RSS PPS PSS

R 0.022 0.071 0.320 0.133 0.040 0.007 0.178 0.013 0.076
RR 0.111 0.262 0.696 0.375 0.186 0.049 0.533 0.079 0.279
RP 0.304 0.500 0.623 0.377 0.228 0.186 0.358 0.121 0.189

RRR 0.270 0.494 0.906 0.609 0.402 0.152 0.813 0.211 0.514
RRP 0.467 0.673 0.879 0.642 0.463 0.325 0.714 0.286 0.453
RRS 0.721 0.618 0.814 0.812 0.474 0.353 0.675 0.547 0.647
RPS 0.814 0.772 0.772 0.772 0.500 0.526 0.537 0.537 0.526

would guarantee a win probability at least 0.5, regardless of the opponent’s three units. It
is better to have a balanced force, which makes it difficult for the opponent to exploit the
weakness. 2

3 One Against Many

Consider the special case when m = 1. The optimal strategy for B is clearly for all his
remaining units to fire at A’s only unit, while A needs to decide in which of the n! possible
orders his only unit should fire at B’s units. Because A has only one unit, in this section we
write λj = λ1j, and θj = θj1 for notational convenience. We also use target j and B’s unit j
interchangeably.

The problem has been previously studied by Friedman (1977) and Kikuta (1983), where
they identified necessary conditions and sufficient conditions for an optimal fire order. In
particular, Friedman (1977) showed that if the fire order 1, 2, . . . , n is optimal, then

θk

(
λk + θk +

n∑
i=k+2

θi

)
≥ θk+1

(
λk+1 + θk+1 +

n∑
i=k+2

θi

)
, for k = 1, 2, . . . , n− 1, (15)

because otherwise, swapping k and k + 1 results in a better fire order. Equation (15),
however, is not a sufficient condition for optimality, as seen by a counterexample given in
Kikuta (1983). There is no simple way to rank the targets in a complete list, because whether
target k or target k+ 1 should be fired at first depends on the other targets present, as seen
by the term

∑n
i=k+2 θi in (15).

Intuitively, A prefers to fire at a target that is easier to kill so as to eliminate a target
sooner. He should also prefer to kill a target that poses a bigger threat. That is, if λ1 > λ2 and
θ1 > θ2, then it is intuitive that A should kill target 1 before trying to kill target 2, regardless
of the other targets still alive. It turns out this conjecture is true. The next theorem presents

11

a slightly weaker condition than the preceding one, under which it is possible to rank the
preference between two targets, regardless of the other targets still alive.

Theorem 4 If either

1. θ1 > θ2 and λ1 + θ1 ≥ λ2 + θ2, or

2. θ1 = θ2 and λ1 > λ2,

then target 1 stands higher than target 2 in the optimal fire order, regardless of the other
targets.

Proof. Consider fire order 1:

. . . , 1, i1, . . . , ik, 2, j1, . . . , jl.

Let α =
∑k

s=1 θis and β =
∑l

s=1 θjs for notational convenience. The probability that A wins
with fire order 1 is

P{wipe out all targets in front of target 1 before getting killed}

× λ1
λ1 + θ1 + α + θ2 + β

(
k∏

s=1

λis

λis +
∑k

r=s θir + θ2 + β

)
λ2

λ2 + θ2 + β

× P{wipe out targets j1, . . . , jl before getting killed}. (16)

Swap targets 1 and 2 in fire order 1 to get fire order 2:

. . . , 2, i1, . . . , ik, 1, j1, . . . , jl.

The probability that A wins with fire order 2 is

P{wipe out all targets in front of target 2 before getting killed}

× λ2
λ2 + θ1 + α + θ2 + β

(
k∏

s=1

λis

λis +
∑k

r=s θir + θ1 + β

)
λ1

λ1 + θ1 + β

× P{wipe out targets j1, . . . , jl before getting killed}. (17)

The first term and the last term in equations (16) and (17) are identical. In addition, the
product term in the middle in (16) is at least as large as the product term in the middle in
(17), because of the assumption θ1 ≥ θ2 in the theorem. Hence, fire order 1 is strictly better
than fire order 2 if

λ1
λ1 + θ1 + α + θ2 + β

λ2
λ2 + θ2 + β

>
λ2

λ2 + θ1 + α + θ2 + β

λ1
λ1 + θ1 + β

.

If either condition stated in the theorem is met, then one can verify that

(λ1 + θ1 + α + θ2 + β)(λ2 + θ2 + β)− (λ2 + θ1 + α + θ2 + β)(λ1 + θ1 + β)

= θ2(λ2 + θ2) + (λ2 + θ2)α + θ2β − θ1(λ1 + θ1)− (λ1 + θ1)α− θ1β < 0,

12

which completes the proof. 2

A natural question to ask is whether Theorem 4 can be extended to the case when A has
m ≥ 2 units. In other words, if each of the m units can individually rank all of B’s units
according to the condition in Theorem 4, then does each unit’s optimal fire order collectively
give rise to the group optimal policy? It turns out that is not the case, as seen in the
counterexample below.

Example 2 Consider an example with m = 2 and n = 2, with their kill-rate matrices given
as follows:

[λij] =

(
0.9 1
1 0.9

)
, [θji] =

(
1.1 1
1 1.1

)
.

In state ({1}, {1, 2}), from the standpoint of A’s unit 1, the rates

λ11 = 0.9, λ12 = 1, θ11 = 1.1, θ21 = 1

meet the condition in Theorem 4. Therefore, in state ({1}, {1, 2}) it is optimal for A’s unit
1 to fire at B’s unit 1. For the same reason, in state ({2}, {1, 2}) it is optimal for A’s unit 2
to fire at B’s unit 2.

If A still has both units and B also has both units, however, then A’s pure strategy

x =

(
1 0
0 1

)
is not optimal, as another pure strategy

x′ =

(
0 1
1 0

)
can do strictly better, because

Λ1(x
′) = 1 > 0.9 = Λ1(x),

Λ2(x
′) = 1 > 0.9 = Λ2(x).

As a matter of fact, x′ is optimal for A in state ({1, 2}, {1, 2}). Hence, even if each unit can
individually rank all opposing units according to the condition in Theorem 4, collectively,
these individual rankings do not necessarily give rise to the group optimal policy. 2

To conclude this section, we give a condition weaker than the one in Theorem 4, under
which the fire order 1, 2, . . . , n is optimal. Theorem 2 in Kikuta (1983) also gives a sufficient
condition for the fire order 1, 2, . . . , n to be optimal. It is straightforward to show that
Kikuta’s condition implies the one in Corollary 1; however, the condition in Corollary 1 is
much easier to verify.

13

Corollary 1 If
θ1 ≥ θ2 ≥ · · · ≥ θn,

and
θ1(λ1 + θ1) ≥ θ2(λ2 + θ2) ≥ · · · ≥ θn(λn + θn),

then the fire order 1, 2, . . . , n is optimal.

Proof. Consider an arbitrary fire order . . . , i, j, . . . other than 1, 2, . . . , n, where i > j. For
any constant D ≥ 0, we can verify that

θi(λi + θi +D) ≤ θj(λj + θj +D).

Hence, according to (15), swapping i and j results in another fire order that is at least as
good.

Starting with an arbitrary fire order, we can repeatedly look for adjacent targets that are
out of order and swap them—analogous to bubble sort—so that in each step we get a new
fire order that is at least as good. When no such swapping is possible, we arrive at the fire
order 1, 2, . . . , n, which is at least as good as the initial fire order. Because this argument
works for any initial fire order, the fire order 1, 2, . . . , n is optimal. 2

Acknowledgment

The authors would like to thank Alan Washburn, Moshe Kress, and Michael Atkinson for
their suggestions that improve the presentation of this paper.

14

References

Ancker, C. J. (2006). A proposed foundation for a theory of combat. Naval Research Logistics
Quarterly, 42(3):311–343.

Barfoot, C. B. (1974). Markov duels. Operations Research, 22(2):318–330.

Brown, R. H. (1963). Theory of combat: The probability of winning. Operations Research,
11(3):418–425.

Friedman, Y. (1977). Optimal strategy for the one-against-many battle. Operations Research,
25(5):884–888.

Gittins, J., Glazebrook, K. D., and Weber, R. (2011). Multi-Armed Bandit Allocation Indices.
Wiley, United Kingdom, 2nd edition.

Kikuta, K. (1983). A note on the one against many battle. Operations Research, 31(5):952–
956.

Kikuta, K. (1986). The matrix game derived from the many-against-many battle. Naval
Research Logistics Quarterly, 33(4):603–612.

Kress, M. (1992). A many-on-many stochastic duel model for a mountain battle. Naval
Research Logistics, 39:437–446.

Kress, M. (2012). Modeling armed conflicts. Science, 336(6083):865–869.

Kress, M. and Talmor, I. (1999). A new look at the 3:1 rule of combat through markov
stochastic lanchester models. The Journal of the Operational Research Society, 50(7):733–
744.

Lanchester, F. W. (1916). Aircraft in Warfare: The Dawn of the Fourth Arm. Constable,
London.

Ross, S. M. (1983). Introduction to Stochastic Dynamic Programming. Academic Press, New
York.

Washburn, A. R. (2003). Two-Person Zero-Sum Games. INFORMS, Rockville, MD, 3rd
edition.

Washburn, A. R. and Kress, M. (2009). Combat Modeling. Springer.

Williams, T. and Ancker, C. J. (1963). Stochastic duels. Operations Research, 11(5):803–817.

15

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Research Sponsored Programs Office, Code 41
Naval Postgraduate School
Monterey, California

4. Richard Mastowski (Technical Editor) ..1
Graduate School of Operational and Information Sciences (GSOIS)
Naval Postgraduate School
Monterey, California

5. Jonathan K. Alt ..1
TRAC-Monterey
Monterey, California

6. Christopher E. Marks ...1
TRAC-Monterey
Monterey, California

7. Christian J. Darken ...1
Computer Science Department
Naval Postgraduate School
Monterey, California

8. Arnold H. Buss ..1
Modeling, Virtual Environments, and Simulation Institute
Naval Postgraduate School
Monterey, California

9. Kyle Y. Lin ..1
Operations Research Department
Naval Postgraduate School
Monterey, California

