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1. Introduction 

In the current theater of operations, warfighters encounter threats that must be detected at a 
standoff distance.  Some threats contain components whose permittivity contrasts substantially 
with that of the emplacement; such is the case with many threats that are buried.  The reception 
of a subsurface linear radar response from an area whose surface is otherwise undisturbed 
indicates the presence of a threat.  Others threats contain metal contacts and semiconductor 
junctions whose nonlinear electromagnetic response contrasts with that of the emplacement; such 
is the case with radio frequency (RF) electronics.  The reception of a nonlinear radar response 
from an area that does not otherwise contain electronics indicates the presence of another class of 
threat.  The combined radar is intended to detect both types of threats, whether or not they are 
collocated. 

Often, threats contain dielectric, as well as electronic components, hence they will respond to 
both linear and nonlinear excitation.  Either mode (linear/nonlinear) will detect the threat.  By 
switching between two radar modes, additional information about the threat is received, and, 
thus, the probability that it is detected is improved. 

1.1 Linear Radar Versus Nonlinear Radar 

Linear radar is well suited to the detection of a target whose complex permittivity ̂  contrasts 
greatly with that of its surroundings: 

 ˆ j      ,  (1) 

where    is the “real” part, and    is the “imaginary” part of the permittivity.  The permittivity 
of a material relative to that of free space is its dielectric constant ˆ

r : 

 
0 0 0

ˆ
ˆr r rj j

    
  

 
       ,  (2) 

 12
0

F ˆ8.854 10 m r r     .  (3) 

Let the target be illuminated by a radar wave as illustrated in figure 1, and let the electric field of 
that wave Ein be represented by a single-tone sinusoid of frequency f0 and amplitude E0: 

    in 0 0cos 2E t E f t   .  (4)
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Figure 1.  Incident and reflected radar waves for  
propagation normal to target. 

Assuming normal incidence (i.e., the direction of propagation of the wave is normal to the 
boundary of the target), the reflected wave is (1)  

     refl 1 0 1cos 2E t E f t E     ,  (5) 

 1 2
1 0

1 2

1

1
r r r

r r r

E E
  
  

 
     

 
.  (6) 

The frequency of the reflected wave is the same as that of the incident wave, but its amplitude is 
scaled by the reflection coefficient  .  For 1r  , 0  , the target is transparent to the radar 

wave traveling in air, and there is no reflection. 

As the contrast in r  between a target and that of the medium through which the radar wave is 

propagating increases, the strength of the radar reflection from that target increases.  The value 
of r   for a typical conductor (e.g., aluminum) is greater than 107 S/m (2).  Thus, conductive 

targets are very detectable, even if they are buried or obscured by insulators.  For insulators, r   
is near zero, but r   can take on a wide range of values, from 1r    for dry foam (3) up to 

80r    for distilled water (4).  Thus, insulating targets are not as detectable, as their radar 

reflections depend much more strongly on r  . 

Nonlinear radar exploits a completely different phenomenon:  it relies on the nonlinear properties 
of a target to convert a portion of the incident radar wave into a reflected wave at a different 
frequency.  Most materials found in nature are linear (with the exception of ferromagnetics), 
whereas many man-made materials are nonlinear (5–11).  Semiconductor devices, such as radios 
and cell phones, are highly nonlinear. 

A simple model for RF nonlinearity is the memoryless power series given by (12, 13)  

          2 3
refl 1 in 2 in 3 in in

1

...
N

n
n

n

E t a E t a E t a E t a E t


     ,  (7) 

where an are complex power-series coefficients, and Erefl is the electric field reflected by the 
target.  The value of a1 is the linear reflected response of the target,  ; the values {a2, a3, …} 
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depend upon the nonlinear properties of the target.  If a nonlinear target is illuminated by the 
radar wave given by equation 4, the reflected wave is 

     refl 0
1

cos 2M M
M

E t E M f t E 




     ,  (8) 

 2 22 2 2 2
02 31

=1 2
k Mk M k M

M k Mk
k

a
E E


           

  ,  (9) 

which is a sum of sinusoids at harmonics M of f0, each with amplitude |EM| and phase {EM}.  If 
the radar measures EM = 0 for all M > 1, then no nonlinear target is detected.  If the radar 
measures EM for some M > 1, however, a nonlinear target is detected. 

A combined radar detects targets using linear, as well as nonlinear reflective responses.  The 
linear radar detects targets whose permittivity contrasts with that of the background, whereas the 
nonlinear radar detects targets whose electromagnetic properties produce a change in frequency 
between the incident and reflected waves. 

1.2 Implementation 

Linear radar can be implemented in different ways, which are commonly designated by the 
transmit waveform, such as continuous-wave (CW), pulsed single-tone, or chirp.  To achieve an 
ultrawide bandwidth for ground penetration, as well as an imaging resolution, the U.S. Army 
Research Laboratory (ARL) designed the Synchronous Impulse Reconstruction (SIRE) radar 
(14).  The SIRE radar uses a single-cycle impulse waveform, two transmit antennas, 16 receive 
antennas, and multiple data traces collected, whereas the radar platform is in motion in order to 
form high-resolution images of surface and shallow-buried targets.  A single-cycle impulse and 
its spectrum are illustrated in figure 2a.  An alternative design that allows for more flexibility in 
the transmitted band is the stepped-frequency waveform illustrated in figure 2b. 

 

(a)                                                                 (b) 

Figure 2.  Linear radar waveforms:  (a) impulse and (b) stepped-frequency. 

main 
lobe side lobes
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Both impulse and stepped-frequency waveforms are broadband.  For the impulse, the peak power 
is high, but the average power is low.  For the stepped-frequency signal, the peak power and the 
average power are the same.  Either waveform will provide linear detection and ranging. 

One advantage of a stepped-frequency design, however, is that its underlying switched-
frequency signal source is likely able to dwell on a single frequency for a long period of time.  
As dwell time increases while transmitting the same average power in a tone or a series of tones, 
the side lobes caused by interrupting the transmission (e.g., turning the source off or switching to 
another tone) diminish.  This extended dwell time is necessary in order to minimize reflected 
linear side-lobes from nonlinear reflections, which are usually very weak. 

Nonlinear radar can also be implemented in different ways.  One popular technique is to transmit 
a single frequency f0 and receive the target response at the second harmonic of the transmitted 
tone, 2f0 (15–19).  A slight variation of this technique tracks a Doppler shift at 2f0 for moving 
targets (20).  Other variations chirp (21) or digitally modulate (12) the transmit waveform for 
greater noise rejection.  Another common technique is to transmit two tones f1 and f2 and receive 
the intermodulation tones 2f1–f2 and 2f2–f1 (6, 22–25).  A technique recently developed at ARL 
transmits at least two tones and receives not only a harmonic of the transmitted tones (e.g., 2f1 
and 2f2) but also the mixing products of those tones near that harmonic (e.g., 3f1–f2, f1 + f2, 3f2–f1) 
(26).  Figure 3a shows an example of transmit and receive spectra for a nonlinear radar that 
transmits one tone and receives harmonics of that tone (27, 28).  Figure 3b shows an example of 
spectra for a radar that transmits two tones and receives harmonics, as well as mixing products 
near those harmonics. 

 

(a)     (b) 

Figure 3.  Nonlinear radar waveforms:  (a) single-tone CW and (b) two-tone CW. 

In this report, an experimental transceiver is developed to demonstrate (a) a transmit chain, 
which generates waveforms that are appropriate for both linear and nonlinear modes of 
operation, and (b) a switchable receiver chain, which captures either linear or nonlinear 

4th 

2nd 
harmonic 

mixing 
products

inter- 
modulation 

3rd 
harmonic 

single-tone 
transmission 

two-tone 
transmission 
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responses from a radar target.  The response to be exploited by the nonlinear receiver is the 
second harmonic of the transmitted waveform. 

First, four different types of waveforms are selected that are appropriate for linear and nonlinear 
radar.  Next, a bench-top architecture for the combined radar is proposed.  Last, the experimental 
architecture is constructed, and measurements using a simulated (wireline) radar channel are 
performed to demonstrate the functionality of the linear and nonlinear radar modes. 

2. Transmit Waveforms 

The four waveforms selected for the linear/nonlinear transmitter are the single-tone pulse, the 
multitone pulse, the linear frequency-modulated (FM) chirp, and a stepped-frequency pulse. 

2.1 Single-Tone Pulse 

A mathematical representation for a single-tone pulse produced by an arbitrary waveform 
generator (AWG) is 

    AWG env pulsecos 2V A f t s t   ,  (10) 

with a carrier frequency fpulse.  The amplitude Aenv is computed from the power of the envelope of 
the pulse Penv (in decibels referenced to 1 mW) by 

   dBm
env 10 3

env 10 2 50 10 W mWPA    .  (11) 

The pulse modulation is given by the switching waveform s(t): 

         envc cs t u t u t D T s t T D T T      ,  (12) 

which has a period T and a duty cycle Dc.  The pulse is active during the time interval Tenv.  An 
example of an RF pulse generated by a Tektronix AWG7052 is given in figure 4.  A MATLAB* 
function, which generates a single-tone RF pulse is given in appendix A. 

It should be noted that (a) all signals in this report were captured in time by a Lecroy 
Wavemaster 8300A oscilloscope and in frequency by an Agilent N9342C spectrum analyzer; (b) 
the sampling rate of the 8300A oscilloscope was 20 GS/s, and the resolution bandwidth of the 
N9342C analyzer was 1 kHz; and (c) the amplitude of each waveform is less than Aenv computed 
by equation 11 due to the loss introduced by the 8-ft RG-58 Subminiature Version A (SMA) 
cable, which feeds each of the signal capture instruments.

                                                 
* MATLAB is a registered trademark of The MathWorks, Inc.  
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Figure 4.  Single-tone RF pulse output by AWG:  fpulse = 900 MHz, Penv = 0 dBm, Tenv = 1 s, Dc = 10%. 

2.2 Multitone Pulse 

If, instead of a single RF carrier frequency, multiple frequencies are active during the pulse, a 
multitone pulse is generated: 

         AWG tone 1 2cos 2 cos 2 ... cos 2 NV A f t f t f t s t            ,  (13) 

which contains N frequencies given by f1, f2, … fN.  In this representation, the amplitude of each 
tone is Atone, and each tone begins at a common initial phase (for maximum peak-to-average 
ratio, which generates a maximum nonlinear response).  Also, the tones are centered at fc and 
separated by fspace: 

 1 space
1

1 N

i c i i
i

f f f f f
N 



   .  (14) 

The active tones are again modulated by the on/off pulse waveform s(t).  An example of a 
multitone pulse is shown in figure 5.  A MATLAB function, which generates this waveform, is 
given in appendix B.
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Figure 5.  Multitone RF pulse output by AWG:  N = 2 tones, fc = 890 MHz, Ptone = –6 dBm per tone,  
Tenv = 2 s, Dc = 20%. 

2.3 Linear Frequency-Modulated Chirp Pulse 

A pulse whose carrier frequency begins at fstart and increases linearly to fend over the time interval 
Tenv is given by 

       AWG env start end start envcos 2 2V A f k t t s t k f f T        ,  (15) 

where k is the linear chirp rate, and Aenv is the amplitude of the pulse envelope.  An example of a 
linear FM chirp pulse is shown in figure 6.  A MATLAB function, which generates this 
waveform, is given in appendix C. 

 

Figure 6.  Linear FM chirp pulse output by AWG:  fstart = 860 MHz, fend = 900 MHz, Penv = –3 dBm, Tenv = 4 s, 
Dc = 50%.
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2.4 Stepped-Frequency Pulse 

A chirp whose carrier frequency steps between discrete values can be represented by 

    AWG env cos 2V A f t t s t     ,  (16) 

  

start

start

env
start

steps

end env env

0

2

2 2 3

... ...

f t t

f f t t t
T

f t f f t t t t
N

f f T t t T

  
              



    

,  (17) 

where Nsteps is the number of steps, Tenv is the length of the stepped-frequency waveform, Aenv is 
the amplitude, f is the spacing in frequency between each step, and t is the spacing in time 
between each step.  It should be noted that this representation for the waveform is not phase-
continuous, that is, the phase of the waveform changes abruptly across each frequency transition. 

An example of a stepped-frequency pulse is shown in figure 7.  A MATLAB function, which 
generates this waveform, is given in appendix D. 

 

Figure 7.  Stepped-frequency pulse output by AWG:  fstart = 870 MHz, fend = 890 MHz, f = 1 MHz,  
Penv = 0 dBm, Tenv = 2.5 s, Dc = 25%. 

3. Experimental Transceiver 

An architecture having components common to both linear and nonlinear modes for transmitting 
and receiving radar waveforms is necessary to minimize the size, weight, and power of the 
combined radar system.  A bench-top architecture for a combined radar transceiver is given in 
figure 8.
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Figure 8.  Experimental combined radar architecture. 

In this setup, the Tektronix AWG7052 is the signal generator for both linear and nonlinear radar 
waveforms.  The MiniCircuits NLP-1000+ low-pass filters are highly linear with a passband 
below 1 GHz; these filters remove much of the transmitter (Tx)-generated nonlinear (harmonic) 
distortion.  The amplifier research AR4W1000 amplifier boosts the power of the AWG signal to 
a level sufficient to excite nonlinear responses from electronic targets.  The HP 778D dual-
directional coupler provides one port for sampling the forward (transmit, Tx) waveform and 
another port for sampling the reverse (receive, Rx) signal.  The “Simulated Radar Environment” 
consists of 100 ft of SMA cable (four 25-ft cables in series), terminated by an SMA-
connectorized target. 

Two receive chains are selected by a pair of Hittite HMC784MS8GE switches.  Each switch is 
powered by 5 V from the 6-V/5-A port on an Agilent E3631A supply and controlled by  
5 V/0 V from the 25-V/1-A port.  In figure 8, the “Linear Rx” chain is selected, and the signal 
is passed directly to the 8300A oscilloscope through an SMA cable.  Alternatively, the 
“Nonlinear Rx” chain may be selected.  Along the nonlinear receiver path, the signal is filtered 
by three MiniCircuits VHF-1320+ high-pass filters (passbands above 1.32 GHz, to remove the 
linear response from capture and processing) and amplified by two MiniCircuits PSA-5453+ and 
one MiniCircuits PSA-545+.  Each amplifier is mounted on an evaluation board and powered by 
3 V from another E3631A supply. 

3.1 RF Signal Generation and Capture 

As measured by an Agilent N9923A network analyzer and observed in figure 9, the AR4W1000 
provides more than a 40-dB gain to the transmit signal.  For nonlinear (harmonic) responses, 
each NLP-1000+ filter attenuates Tx-generated distortion at frequencies above 1500 MHz by 
more than 40 dB.
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Figure 9.  Transmitter amplifier and low-pass filters. 

As seen in figure 10, the Tx and Rx coupling from the 778D is approximately –20 dB.  Also, the 
nonlinear Rx chain (measured from one HMC784 “RF common” port to the other) passes signals 
to the 8300A with a gain of approximately 40 dB, whereas the linear Rx chain passes signals 
through with a loss under 3 dB. 

 

Figure 10.  Directional coupler and linear/nonlinear receiver chain. 

3.2 MATLAB Graphical User Interface 

The AWG7052 generator, 8300A oscilloscope, and E3631A supplies are controlled via the 
General Purpose Interface Bus (GPIB).  Communication is established using the Instrument 
Control Toolbox in MATLAB (v7.0.0.19920, R14).  The graphical user interface (GUI) in figure 
11 was created using MATLAB’s “guide” function.  The script and functions that govern the 
operation of the GUI are given in appendices E through K.
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Figure 11.  GUI for experimental combined-radar system. 

Using the upper panel, the four different waveforms presented in section 2 may be uploaded to 
the AWG for transmission to the target.  Using the lower panel, the signal from the target may be 
captured using the linear or nonlinear receive chain and processed accordingly. 

For the single-tone pulse, the user may choose the power of the RF pulse while it is active (Penv), 
the RF frequency (fpulse), the time interval during which the pulse is active (Tenv), and the pulse 
duty cycle (Dc).  The “waveform name” is the designation that appears on the AWG after the 
waveform is uploaded and is selected for waveform playback. 

For the linear FM chirp pulse, the user may choose the power of the chirp envelope (Penv), the 
frequency at which the chirp starts (fstart), the frequency at which the chirp ends (fend), the time 
interval during which the frequency linearly changes from fstart to fend (Tenv), and the duty cycle of 
the waveform (Dc). 

For the multitone pulse, the user may choose the number of tones (N), power per tone (Ptone), the 
frequency at which the tones are centered (fc), the time interval during which the pulse is active 
(Tenv), and the pulse duty cycle (Dc).  The frequency separation between the tones (fspace) is 
automatically set to 1/Tenv, so that the shortest waveform necessary to achieve N, fc, and Tenv with 
negligible frequency aliasing is uploaded to the AWG. 

For the stepped-frequency waveform, the user may choose the power of the pulse envelope 
(Penv), the frequency at which the stepping starts (fstart), the frequency at which the stepping ends 
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(fend), the time interval during which the frequency steps from fstart to fend (Tenv), the step size (f), 
and the duty cycle of the waveform (Dc). 

In agreement with figure 8, the sampled Tx signal is fed to channel 2 of the 8300A oscilloscope, 
and the sampled Rx signal is fed (through the linear/nonlinear receive chain) to channel 3.  The 
user chooses the voltage scale per channel, the total data collection time per trace, and the 
number of integrations (i.e., the number of data traces averaged before capture). 

The user chooses the trigger level and source.  In the experimental setup, Marker 1 from the 
AWG7052 is fed to the External trigger port on the 8300A. 

The user chooses the receiver (Rx) mode and types a name for the native MATLAB (MAT) file 
that will store the time-sampled Tx and Rx voltage vectors. 

Upon pressing the “Upload…” button inside of one of the upper subpanels, the appropriate 
waveform is generated and sent to the AWG.  A new figure panel (not shown) appears, which 
plots the software-generated waveform in frequency and time to confirm that the signal the user 
intended has been uploaded. 

Upon pressing the “Capture…” button inside the lower subpanel, the corresponding signal 
received from the target is recorded by the oscilloscope and processed in MATLAB.  A second 
figure panel (shown in section 4) appears, which plots the raw Tx and Rx data in time.  A third 
figure panel (also shown in section 4) appears, which plots the correlation of the Tx and Rx 
voltage samples. 

4. Wireline Experiments 

Several experiments were conducted in order to demonstrate the performance of the bench-top 
combined-radar transceiver:  three different waveforms (pulse, linear chirp, stepped-frequency), 
two Rx modes (linear and nonlinear), two linear targets (open-circuit, matched load), and one 
nonlinear target (Family Radio Service [FRS] radio). 

4.1 Linear Rx, Chirp Waveform, Open-Circuit Target 

Figure 12 shows the result of the linear data capture and processing when reflecting a chirp from 
an open-circuit target.  Figure 12a plots the raw Tx and Rx data.  Figure 12b plots the cross 
correlation of the Tx and Rx signals: 

       trans rec trans recV V t V t V t d 



    ,  (18) 

where time has been mapped to distance using the velocity of propagation of an RF signal in the 
MiniCircuits CBL 25-ft coaxial lines (dielectric constant r  2.1):
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     
. (19) 

A factor of 1/2 is used in equation 19, because the distance plotted is half the round-trip distance 
from the transmitter (i.e., from the coupler output port) to the target (i.e., to the end of the 100-ft 
coaxial line) to the receiver (i.e., back to the coupler output port). 

 

(a)                                                              (b) 

Figure 12.  Radar data, chirp Tx waveform, linear Rx mode, open-circuit target:  fstart = 880 MHz, fend = 920 MHz, 
Penv = 0 dBm, Tenv = 1 s, Dc = 10%, (a) raw Tx and Rx data and (b) correlation of Tx and Rx waveforms. 

Cross correlation is a basic form of target ranging.  The peak of Vtrans*Vrec (as a function of 
distance) indicates the distance from the transmitter to the target. 

In figure 12a, a relatively constant-amplitude pulse is visible in the sampled Tx channel, and a 
distorted pulse is visible in the sampled Rx channel.  These waveforms are expected, given the 
frequency-dependent characteristic of the coupler in figure 10.  In figure 12b, a sinc function is 
visible along with several sidelobes.  This shape is expected from the cross correlation of two 
chirps.  The peak of the sinc function is visible at a distance of d = 101 ft.  The calculated 
distance is very close to the length of the coaxial line (and slightly higher because the calculation 
does not account for the length of the Rx chain). 

4.2 Linear Rx, Chirp Waveform, Open Circuit Versus Matched Load 

Figure 13a shows the result of the cross correlation when reflecting a chirp with a wider 
bandwidth than that of section 4.1 from an open-circuit target.  Figure 13b is the correlation 
when reflecting the same waveform from a matched (50-) load.  Two results are notable:  (1) 
the peak is sharper when the bandwidth of the Tx waveform is wider and (2) very little signal 
reflects from the matched load.  Both results are expected and indicate proper operation of the 
transmitter and the linear receive chain.
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(a)                                                              (b) 

Figure 13.  Radar data, chirp Tx waveform, linear Rx mode:  fstart = 860 MHz, fend = 940 MHz, Penv = 0 dBm,  
Tenv = 1 s, Dc = 10%, (a) open-circuit target, (b) matched-load target. 

4.3 Nonlinear Rx, Pulse Waveform, Nonlinear Target 

Figure 14 shows the result of the nonlinear data capture when reflecting an RF pulse from a 
nonlinear target:  a Motorola T4500 radio whose antenna has been replaced by an SMA end-
launch connector.  A 13-dB attenuator is placed between the end of the coaxial line and the FRS 
radio.  Figure 14a plots the raw Tx and Rx data along a 5-s time scale.  Figure 14b plots the 
same raw data along a 2-ns time scale between t = 500 ns and t = 502 ns. 

 

(a)                                                              (b) 

Figure 14.  Radar data, RF pulse Tx waveform, linear Rx mode, FRS radio target:  fpulse = 900 MHz, Penv = 0 dBm, 
Tenv = 1 s, Dc = 10%, (a) raw data, complete time scale and (b) raw data, zoomed-in time scale.



 

15 

It is not obvious from figure 14a that the transceiver is detecting the nonlinear response from the 
target.  In figure 14b, however, the observed response is clearly nonlinear, because the frequency 
of the received signal (1800 MHz) is twice that of the transmitted signal (900 MHz). 

4.4 Nonlinear Rx, Stepped-Frequency Waveform, Nonlinear Target 

Nonlinearity is also visible in the frequency domain when the Tx and Rx signals are captured 
with a spectrum analyzer.  Figure 15 provides such captures for a stepped-frequency waveform 
and the FRS radio target.  The signal output from the AWG (and filtered by a NLP-1000+) is 
plotted above, and the received spectrum is plotted below.  For PAWG, all of the spectral content 
is centered at f = 900 MHz, and no spectral content exists near 2f = 1800 MHz.  For Prec, all of 
the spectral content is centered at 2f = 1800 MHz, and no spectral content exists near f = 900 
MHz. 

 

Figure 15.  Tx and Rx frequency content, stepped-frequency Tx waveform, nonlinear Rx mode,  
FRS radio target: fstart = 890 MHz, fend = 910 MHz, f = 1 MHz, Penv = 0 dBm, 
 Tenv = 2 s, Dc = 20%. 

4.5 Nonlinear Rx, Chirp Waveform, Nonlinear Target 

Figure 16 shows the result of the nonlinear data capture and processing when reflecting a chirp 
from the FRS radio.  Figure 16a plots the raw Tx and Rx data.  Figure 16b plots the cross 
correlation of the Tx and Rx signals: 

       trans rec trans recV V t V t V t d 



    ,  (20) 

where the Tx signal used for the correlation is a filtered second harmonic of the captured Vtrans:
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      2
trans BPF transV t h t V t   ,  (21) 

and hBPF is a bandpass filter with passband edges fL = 3fc/2 and fU = 5fc/2, where fc = (fstart + 
fend)/2. 

A sinc function is again visible and centered at d = 103 ft.  This distance is longer than d = 101 ft 
measured previously, because the nonlinear Rx chain contains slightly more propagation delay 
(through the filters and amplifiers) than the linear Rx chain (SMA cable, pass through). 

 

(a)                                                                   (b) 

Figure 16.  Radar data, linear chirp Tx waveform, nonlinear Rx mode, FRS radio target:  fstart = 880 MHz,  
fend = 920 MHz, Penv = 0 dBm, Tenv = 1 s, Dc = 10%, (a) raw Tx and Rx data and (b) correlation of Tx and Rx 
waveforms. 

4.6 Nonlinear Rx, Chirp Waveform, Nonlinear Versus Open-Circuit Target 

The nonlinear Rx chain was tested against a purely linear target in order to demonstrate that the 
transceiver does not indicate detection if the target is linear, and the radar is listening for a 
nonlinear response.  Figure 17 gives the result of this test, which is performed with a chirp 
waveform. 

From figure 17a, it is clear that the radar registers a detection (d = 103 ft) when the target is 
nonlinear, and the Rx is expecting a nonlinear response.  From figure 17b, it is clear that the 
nonlinear Rx chain does not register a detection when the target is linear.
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(a)                                                              (b) 

Figure 17.  Radar data, chirp Tx waveform, nonlinear Rx mode:  fstart = 890 MHz, fend = 910 MHz, Penv = 0 dBm,  
Tenv = 1 s, Dc = 10%, (a) FRS radio target and (b) open-circuit target. 

5. Conclusions 

A combined-radar transceiver has been constructed, which enables basic target ranging in both 
linear and nonlinear (harmonic) receive modes.  The transceiver was constructed using an 
arbitrary waveform generator as the signal source, a high-speed digitizing oscilloscope as the 
signal capture device, and commercial off-the-shelf (COTS) components for the radar front-end 
(amplification, filtering, and switching).  A 100-ft length of SMA cable terminated in an open 
circuit simulated a linear radar target; the same cable terminated in an SMA-connectorized FRS 
radio simulated a nonlinear radar target.  A MATLAB GUI was developed in order to control the 
transceiver remotely.  The associated script and helper functions are provided in the appendices.  
Ranging to the target was demonstrated experimentally using RF pulses, linear FM chirps, and 
stepped-frequency waveforms. 
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Appendix A.  MATLAB Function for Generating Single-Tone RF Pulses† 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
† This appendix is presented in its original form without editorial change. 
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function [v, f_sample] = awg_pulse( f_pulse, T_env, P_env, duty_cycle, f_sample_max ) 
  
f_res = 1/T_env;                            % frequency resolution (Hz) 
  
f_sample = 2*f_res; 
while (f_sample <= f_sample_max/2)          % adjust AWG sample rate 
    f_sample = 2*f_sample; 
end 
  
f_pulse = round(f_pulse/f_res)*f_res;       % adjust pulse carrier frequency 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
t_sbb = 1/f_sample;                         % sampling time 
t = 0:t_sbb:T_env-t_sbb;                    % time vector 
A = sqrt(10^(P_env/10)*2*50*10^-3);         % amplitude of pulse when ON 
  
x = A * cos(2*pi*f_pulse.*t);               % sinusoid equation 
  
if (duty_cycle <= 0) || (duty_cycle >= 1) 
    v = x;                                  % continuous wave 
else 
    v = [x zeros(1,(round(1/duty_cycle)-1)*length(x))];     % pulsed 
end 
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Appendix B.  MATLAB Function for Generating Multitone RF Pulses‡ 

 

 

 

 

 

 

 

 

 

 

 

  

                                                 
‡ This appendix is presented in its original form without editorial change. 
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function [v, f_sample] = awg_multitone( N, f_c, T_env, P_tone, duty_cycle, f_sample_max ) 
  
f_res = 1/T_env;                            % resolution based on envelope length 
f_space = 2*f_res;                          % tone spacing 
  
f_sample = 2*f_res; 
while (f_sample <= f_sample_max/2)          % adjust AWG sample rate 
    f_sample = 2*f_sample; 
end 
  
f_c = round(f_c/f_res)*f_res;               % adjust center frequency 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
A = sqrt(10^(P_tone/10)*2*50*10^-3);        % amplitude of each tone 
  
t_sbb = 1/f_sample;                         % sampling time 
t = 0:t_sbb:T_env-t_sbb;                    % time vector 
  
xi = zeros(1,length(t));                    % initialize baseband I/Q vectors 
xq = zeros(1,length(t)); 
  
% generate multitones with in-phase and quadrature components 
for n = 1:N/2 
    xi = xi + (A)*cos(2*pi*f_space*(abs(n)-1/2)*t) + (A)*cos(2*pi*f_space*(abs(n)-1/2)*t); 
    xq = xq + (A)*sin(2*pi*f_space*(abs(n)-1/2)*t) - (A)*sin(2*pi*f_space*(abs(n)-1/2)*t); 
end; 
  
x = xi.*cos(2*pi*f_c*t ) - xq.*sin(2*pi*f_c*t ); 
  
if (duty_cycle <= 0) || (duty_cycle >= 1) 
    v = x;                                  % continuous wave 
else 
    v = [x zeros(1,(round(1/duty_cycle)-1)*length(x))];     % pulsed 
end 
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Appendix C.  MATLAB Function for Generating RF Chirp Pulses§ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
§ This appendix is presented in its original form without editorial change. 
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function [v, f_sample] = awg_chirp( f_start, f_end, T_env, P_env, duty_cycle, f_sample_max ) 
  
f_res = 1/T_env;                            % frequency resolution (Hz) 
  
f_sample = 2*f_res; 
while (f_sample <= f_sample_max/2)          % adjust AWG sample rate 
    f_sample = 2*f_sample; 
end 
  
f_start = round(f_start/f_res)*f_res;       % adjust start frequency 
f_end = round(f_end/f_res)*f_res;           % adjust end frequency 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
t_sbb = 1/f_sample;                         % sampling time 
t = 0:t_sbb:T_env-t_sbb;                    % time vector 
A = sqrt(10^(P_env/10)*2*50*10^-3);         % amplitude of chirp when ON 
  
k = (f_end-f_start)/T_env;                  % chirp rate (Hz/s) 
  
x = A * cos(2*pi*(f_start+(k/2)*t).*t);     % chirp equation 
  
if (duty_cycle <= 0) || (duty_cycle >= 1) 
    v = x;                                  % continuous wave 
else 
    v = [x zeros(1,(round(1/duty_cycle)-1)*length(x))];     % pulsed 
end 
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Appendix D.  MATLAB Function for Generating Stepped-frequency RF 
Pulses** 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
** This appendix is presented in its original form without editorial change. 
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function [v, f_sample] = awg_stepped( f_start,f_end,f_delta,T_env,P_env,duty_cycle,f_sample_max ) 
  
f_res = 1/T_env;                            % frequency resolution (Hz) 
  
f_sample = 2*f_res; 
while (f_sample <= f_sample_max/2)          % adjust AWG sample rate 
    f_sample = 2*f_sample; 
end 
  
freq = (f_start:f_delta:f_end-f_delta);     % instantanous frequencies 
N = length(freq); 
  
% adjust instantaneous frequencies 
for counter = 1:length(freq) 
    freq(counter) = floor(freq(counter)/f_res)*f_res; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
t_sbb = 1/f_sample;                         % sampling time 
t = 0:t_sbb:T_env-t_sbb;                    % time vector 
A = sqrt(10^(P_env/10)*2*50*10^-3);         % amplitude of chirp when ON 
  
index = ceil((1:length(t))/(length(t)/N)); 
f = freq(index); 
x = A * cos(2*pi*(f.*t)); 
  
if (duty_cycle <= 0) || (duty_cycle >= 1) 
    v = x;                                  % continuous wave 
else 
    v = [x zeros(1,(round(1/duty_cycle)-1)*length(x))];     % pulsed 
end 
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Appendix E.  MATLAB Script for the Graphical User Interface†† 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
†† This appendix is presented in its original form without editorial change. 
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function varargout = gremlin(varargin) 
  
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @gremlin_OpeningFcn, ... 
                   'gui_OutputFcn',  @gremlin_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% executes before the GUI is made visible %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function gremlin_OpeningFcn(hObject, eventdata, handles, varargin) 
  
% connect to the DC power supplies (Agilent E3631A) 
global dca dcb; 
dca = visa('ni','GPIB0::5::INSTR'); 
dcb = visa('ni','GPIB0::4::INSTR'); 
  
fopen(dca); 
fopen(dcb); 
fprintf(dca, ['APPLy P6V, 5 V']);       % apply 5V to RF switches 
fprintf(dcb, ['APPLy P6V, 3 V']);       % apply 3V to low-noise amplifiers 
fprintf(dca, ['APPLy P25V, 0 V']);      % start up in linear Rx mode 
fprintf(dcb, ['APPLy P25V, 5 V']); 
fprintf(dca, ['OUTPut:STATe ON']); 
fprintf(dcb, ['OUTPut:STATe ON']); 
fclose(dca); 
fclose(dcb); 
  
% connect to the AWG (Tektronix AWG7052) 
%  and to the oscilloscope (Lecroy Wavemaster 8300A) 
global awg osc; 
awg = visa('ni','GPIB0::2::INSTR'); 
osc = visa('ni','GPIB0::6::INSTR'); 
  
fopen(awg) 
fwrite(awg, 'AWGCONTROL:DOUTPUT1:STATE 1');     % turn 'direct output' on 
fclose(awg) 
  
% define strings for the Tx channel (C2), Rx channel (C3), 
%  Tx channel averaged (F2), and Rx channel averaged (F3) 
global data_trc_1 data_trc_2 avg_trc_1 avg_trc_2 sweeps; 
data_trc_1 = 'C2'; 
data_trc_2 = 'C3'; 
avg_trc_1 = 'F2'; 
avg_trc_2 = 'F3'; 
sweeps = 1; 
  
% turn C2 and C3 off; turn F2 and F3 on 
fopen(osc) 
fprintf(osc,[avg_trc_1 ':DEF EQN,''AVG(' data_trc_1 '),SUMMED'',SWEEPS,' num2str(sweeps)]); 
fprintf(osc,[avg_trc_2 ':DEF EQN,''AVG(' data_trc_2 '),SUMMED'',SWEEPS,' num2str(sweeps)]); 
fprintf(osc,[data_trc_1 ':TRACE OFF']); 
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fprintf(osc,[data_trc_2 ':TRACE OFF']); 
fprintf(osc,[avg_trc_1 ':TRACE ON']); 
fprintf(osc,[avg_trc_2 ':TRACE ON']); 
fprintf(osc,[avg_trc_1 ':FRST']);           % reset the averaged sweeps 
fprintf(osc,[avg_trc_2 ':FRST']); 
fclose(osc) 
  
handles.output = hObject; 
guidata(hObject, handles); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% generate single-tone RF pulse %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function pushbutton1_Callback(hObject, eventdata, handles) 
  
global awg; 
  
% user-defined waveform name to be uploaded to the AWG 
global wf_name; 
wf_name = get(handles.edit6,'String'); 
  
% user-defined pulse power while the pulse is active 
global P_env; 
P_env = str2num(get(handles.edit1,'String')); 
  
% user-defined carrier frequency for the RF pulse 
global f_pulse; 
f_pulse = str2num(get(handles.edit2,'String')); 
  
% user-defined time for the RF pulse to be active 
global T_env; 
T_env = str2num(get(handles.edit4,'String')); 
  
% user-defined duty cycle 
global duty_cycle; 
duty_cycle = str2num(get(handles.edit5,'String'))/100; 
  
% user-defined maximum sampling rate for the AWG 
global f_sample_max; 
f_sample_max = str2num(get(handles.edit3,'String')); 
  
% generate the single-tone pulse waveform 
%  and compute an appropriate AWG sampling frequency 
global v fsample; 
[v,f_sample] = awg_pulse(f_pulse,T_env,P_env,duty_cycle,f_sample_max); 
  
awg_plot(v,f_sample) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
global samples; 
samples = length(v); 
  
% provide two markers (triggers) in sync with the AWG output 
marker_1 = zeros(1,samples); 
marker_1(1:round(samples/10)) = 1; 
marker_2 = zeros(1,samples); 
marker_2(1:round(samples/10)) = 1; 
  
global buffer; 
buffer = samples; 
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set(awg,'InputBufferSize',buffer); 
set(awg,'OutputBufferSize',buffer); 
  
% convert the real waveform data to binary 
%  and upload the binary data to the AWG for playback 
[binblock, header, bytes] = awg_binary(v, marker_1, marker_2); 
awg_upload(awg, buffer, wf_name, binblock, header, bytes); 
  
% set the AWG sampling frequency, select the waveform to be played, 
%  and turn the AWG output on 
fopen(awg); 
fwrite(awg, 'AWGC:DOUT1 ON'); 
fwrite(awg, ['SOURCE1:FREQUENCY ' num2str(f_sample/10^9) ' GHZ']); 
fwrite(awg, ['SOURCE1:WAVEFORM "' wf_name '"']); 
fwrite(awg, 'OUTPUT ON'); 
fwrite(awg, 'AWGCONTROL:RUN'); 
fclose(awg); 
  
global f_trans; 
f_trans = f_pulse; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% generate linear RF chirp pulse %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function pushbutton2_Callback(hObject, eventdata, handles) 
  
global awg; 
  
% user-defined waveform name to be uploaded to the AWG 
global wf_name; 
wf_name = get(handles.edit12,'String'); 
  
% user-defined chirp power while the pulse is active 
global P_env; 
P_env = str2num(get(handles.edit8,'String')); 
  
% user-defined start frequency for the chirp 
global f_start; 
f_start = str2num(get(handles.edit9,'String')); 
  
% user-defined end frequency for the chirp 
global f_end; 
f_end = str2num(get(handles.edit13,'String')); 
  
% user-defined length of the chirp 
global T_env; 
T_env = str2num(get(handles.edit10,'String')); 
  
% user-defined duty cycle 
global duty_cycle; 
duty_cycle = str2num(get(handles.edit11,'String'))/100; 
  
% user-defined maximum sampling rate for the AWG 
global f_sample_max; 
f_sample_max = str2num(get(handles.edit3,'String')); 
  
% generate the RF chirp waveform 
%  and compute an appropriate AWG sampling frequency 
global v f_sample; 
[v,f_sample] = awg_chirp(f_start,f_end,T_env,P_env,duty_cycle,f_sample_max); 
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awg_plot(v,f_sample) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
global samples; 
samples = length(v); 
  
% provide two markers (triggers) in sync with the AWG output 
marker_1 = zeros(1,samples); 
marker_1(1:round(samples/10)) = 1; 
marker_2 = zeros(1,samples); 
marker_2(1:round(samples/10)) = 1; 
  
global buffer; 
buffer = samples; 
set(awg,'InputBufferSize',buffer); 
set(awg,'OutputBufferSize',buffer); 
  
% convert the real waveform data to binary 
%  and upload the binary data to the AWG for playback 
[binblock, header, bytes] = awg_binary(v, marker_1, marker_2); 
awg_upload(awg, buffer, wf_name, binblock, header, bytes); 
  
% set the AWG sampling frequency, select the waveform to be played, 
%  and turn the AWG output on 
fopen(awg); 
fwrite(awg, 'AWGC:DOUT1 ON'); 
fwrite(awg, ['SOURCE1:FREQUENCY ' num2str(f_sample/10^9) ' GHZ']); 
fwrite(awg, ['SOURCE1:WAVEFORM "' wf_name '"']); 
fwrite(awg, 'OUTPUT ON'); 
fwrite(awg, 'AWGCONTROL:RUN'); 
fclose(awg); 
  
global f_trans; 
f_trans = (f_start + f_end)/2; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% generate multitone RF pulse %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function pushbutton4_Callback(hObject, eventdata, handles) 
  
global awg; 
  
% user-defined waveform name to be uploaded to the AWG 
global wf_name; 
wf_name = get(handles.edit18,'String'); 
  
global N; 
N = str2num(get(handles.edit19,'String')); 
  
% user-defined power per tone while the pulse is active 
global P_tone; 
P_tone = str2num(get(handles.edit14,'String')); 
  
% user-defined center frequency for the tones 
global f_c; 
f_c = str2num(get(handles.edit15,'String')); 
  
% user-defined time for the multitone pulse to be active 
global T_env; 
T_env = str2num(get(handles.edit16,'String')); 
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% user-defined duty cycle 
global duty_cycle; 
duty_cycle = str2num(get(handles.edit17,'String'))/100; 
  
% user-defined maximum sampling rate for the AWG 
global f_sample_max; 
f_sample_max = str2num(get(handles.edit3,'String')); 
  
% generate the multitone waveform 
%  and compute an appropriate AWG sampling frequency 
global v fsample; 
[v,f_sample] = awg_multitone(N,f_c,T_env,P_tone,duty_cycle,f_sample_max); 
  
awg_plot(v,f_sample) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
global samples; 
samples = length(v); 
  
% provide two markers (triggers) in sync with the AWG output 
marker_1 = zeros(1,samples); 
marker_1(1:round(samples/10)) = 1; 
marker_2 = zeros(1,samples); 
marker_2(1:round(samples/10)) = 1; 
  
global buffer; 
buffer = samples; 
set(awg,'InputBufferSize',buffer); 
set(awg,'OutputBufferSize',buffer); 
  
% convert the real waveform data to binary 
%  and upload the binary data to the AWG for playback 
[binblock, header, bytes] = awg_binary(v, marker_1, marker_2); 
awg_upload(awg, buffer, wf_name, binblock, header, bytes); 
  
% set the AWG sampling frequency, select the waveform to be played, 
%  and turn the AWG output on 
fopen(awg); 
fwrite(awg, 'AWGC:DOUT1 ON'); 
fwrite(awg, ['SOURCE1:FREQUENCY ' num2str(f_sample/10^9) ' GHZ']); 
fwrite(awg, ['SOURCE1:WAVEFORM "' wf_name '"']); 
fwrite(awg, 'OUTPUT ON'); 
fwrite(awg, 'AWGCONTROL:RUN'); 
fclose(awg); 
  
global f_trans; 
f_trans = f_c; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% generate stepped-frequency pulse %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function pushbutton5_Callback(hObject, eventdata, handles) 
  
global awg; 
  
% user-defined waveform name to be uploaded to the AWG 
global wf_name; 
wf_name = get(handles.edit24,'String'); 
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% user-defined power at each frequency while the pulse is active 
global P_env; 
P_env = str2num(get(handles.edit20,'String')); 
  
% user-defined start frequency for the steps 
global f_start; 
f_start = str2num(get(handles.edit26,'String')); 
  
% user-defined end frequency for the steps 
global f_end; 
f_end = str2num(get(handles.edit21,'String')); 
  
% user-defined frequency step size 
global f_delta; 
f_delta = str2num(get(handles.edit25,'String')); 
  
% user-defined time for the stepped waveform to be active 
global T_env; 
T_env = str2num(get(handles.edit22,'String')); 
  
% user-defined duty cycle 
global duty_cycle; 
duty_cycle = str2num(get(handles.edit23,'String'))/100; 
  
% user-defined maximum sampling rate for the AWG 
global f_sample_max; 
f_sample_max = str2num(get(handles.edit3,'String')); 
  
% generate the stepped-frequency waveform 
%  and compute an appropriate AWG sampling frequency 
global v f_sample; 
[v,f_sample] = awg_stepped(f_start,f_end,f_delta,T_env,P_env,duty_cycle,f_sample_max); 
  
awg_plot(v,f_sample) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
global samples; 
samples = length(v); 
  
% provide two markers (triggers) in sync with the AWG output 
marker_1 = zeros(1,samples); 
marker_1(1:round(samples/10)) = 1; 
marker_2 = zeros(1,samples); 
marker_2(1:round(samples/10)) = 1; 
  
global buffer; 
buffer = samples; 
set(awg,'InputBufferSize',buffer); 
set(awg,'OutputBufferSize',buffer); 
  
% convert the real waveform data to binary 
%  and upload the binary data to the AWG for playback 
[binblock, header, bytes] = awg_binary(v, marker_1, marker_2); 
awg_upload(awg, buffer, wf_name, binblock, header, bytes); 
  
% set the AWG sampling frequency, select the waveform to be played, 
%  and turn the AWG output on 
fopen(awg); 
fwrite(awg, 'AWGC:DOUT1 ON'); 
fwrite(awg, ['SOURCE1:FREQUENCY ' num2str(f_sample/10^9) ' GHZ']); 
fwrite(awg, ['SOURCE1:WAVEFORM "' wf_name '"']); 
fwrite(awg, 'OUTPUT ON'); 
fwrite(awg, 'AWGCONTROL:RUN'); 
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fclose(awg); 
  
global f_trans; 
f_trans = (f_start + f_end)/2; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% clear waveforms & reset AWG %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function pushbutton3_Callback(hObject, eventdata, handles) 
  
global awg; 
  
fopen(awg); 
fwrite(awg,'*RST'); 
fwrite(awg,'*CLS'); 
pause(1) 
fwrite(awg, 'AWGCONTROL:DOUTPUT1:STATE 1'); 
fclose(awg); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% capture and process Rx waveform %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function pushbutton7_Callback(hObject, eventdata, handles) 
  
global mode; 
switch get(handles.popupmenu3,'Value') 
    case 1 
        mode = 1;                   % select LINEAR receive mode 
    case 2 
        mode = 2;                   % select NONLINEAR receive mode 
    otherwise 
        mode = 1; 
end 
  
global dca dcb; 
fopen(dca); 
fopen(dcb); 
if (mode == 2) 
    fprintf(dca, ['APPLy P25V, 5 V']);      % set RF switches to 
    fprintf(dcb, ['APPLy P25V, 0 V']);      %  nonlinear Rx chain 
else 
    fprintf(dca, ['APPLy P25V, 0 V']);      % set RF switches to 
    fprintf(dcb, ['APPLy P25V, 5 V']);      %  linear Rx chain 
end 
fclose(dca); 
fclose(dcb); 
  
global awg osc; 
  
global trig_src; 
switch get(handles.popupmenu2,'Value') 
    case 1 
        trig_src = 'EX';                    % trigger = external 
    case 2 
        trig_src = 'C1';                    % trigger = channel C1 
    case 3 
        trig_src = 'C4';                    % trigger = channel C4 
    otherwise 
        trig_src = 'EX'; 
end 



 

37 

  
% user-defined trigger level 
global trig_lev; 
trig_lev = str2num(get(handles.edit37,'String'))*10^-3; 
  
% user-defined total time for Tx and Rx data to be collected 
global t_total; 
t_total = str2num(get(handles.edit32,'String'))*10^-6; 
t_div = t_total/10; 
  
% user-defined voltage per division visible on the oscilloscope 
global v_div_1 v_div_2; 
v_div_1 = str2num(get(handles.edit33,'String'))*10^-3; 
v_div_2 = str2num(get(handles.edit34,'String'))*10^-3; 
  
% user-defined voltage offset on the oscilloscope 
global v_offset; 
v_offset = 0e-3; 
  
% set trigger delay to 1/2 of the data collection time so that 
%  the maximum amount of data is collected AFTER the trigger point 
global trig_delay; 
trig_delay = -t_total/2; 
  
% user-defined Matlab file to store Tx and Rx time & voltage vectors 
global data_name; 
data_name = get(handles.edit36,'String'); 
  
global trig_mode; 
trig_mode = 'SINGLE';           % use a single trigger for each sweep 
  
global f_capture; 
f_capture = 20e9; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
global buffer; 
buffer = 10*t_div*f_capture + 26; 
set(osc,'InputBufferSize',buffer); 
set(osc,'OutputBufferSize',buffer); 
  
global data_trc_1 data_trc_2 avg_trc_1 avg_trc_2 sweeps; 
sweeps = str2num(get(handles.edit38,'String')); 
  
% set the oscilloscope to record data according to user-input values 
fopen(osc); 
fprintf(osc, ['TRSE EDGE,SR,' trig_src ',HT,OFF']); 
fprintf(osc, ['TRMD ' trig_mode]); 
fprintf(osc, ['TRDL ' num2str(trig_delay/10^-6) ' US']); 
fprintf(osc, ['EX:TRLV ' num2str(trig_lev/10^-3) ' MV']); 
fprintf(osc, ['TDIV ' num2str(t_div/10^-6) ' US']); 
fprintf(osc, [data_trc_1 ':VDIV ' num2str(v_div_1/10^-3) ' MV']); 
fprintf(osc, [data_trc_2 ':VDIV ' num2str(v_div_2/10^-3) ' MV']); 
fprintf(osc, [data_trc_1 ':OFST ' num2str(v_offset/10^-3) ' MV']); 
fprintf(osc, [data_trc_2 ':OFST ' num2str(v_offset/10^-3) ' MV']); 
fclose(osc); 
  
% turn the appropriate data traces on/off 
%  and set two of the traces to each average the Tx or Rx data stream 
fopen(osc); 
fprintf(osc,[data_trc_1 ':TRACE OFF']); 
fprintf(osc,[data_trc_2 ':TRACE OFF']); 
fprintf(osc,[avg_trc_1 ':TRACE ON']); 
fprintf(osc,[avg_trc_2 ':TRACE ON']); 
fprintf(osc,[avg_trc_1 ':FRST']); 
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fprintf(osc,[avg_trc_2 ':FRST']); 
fprintf(osc,[avg_trc_1 ':DEF EQN,''AVG(' data_trc_1 '),SUMMED'',SWEEPS,' num2str(sweeps)]); 
fprintf(osc,[avg_trc_2 ':DEF EQN,''AVG(' data_trc_2 '),SUMMED'',SWEEPS,' num2str(sweeps)]); 
for counter = 1:sweeps 
    fprintf(osc,'*TRG'); 
    fprintf(osc,'WAIT'); 
end 
fclose(osc); 
  
% download the oscilloscope data into Matlab 
[v_trans, v_rec, t_trans, t_rec] = osc_capture( osc, buffer, avg_trc_1, avg_trc_2 ); 
  
% stop the waveform generator playback 
fopen(awg); 
fwrite(awg, 'OUTPUT OFF'); 
fwrite(awg, 'AWGCONTROL:STOP'); 
fclose(awg); 
  
global f_trans; 
  
% process and display the Tx and Rx data 
osc_process( v_trans, v_rec, t_trans, t_rec, mode, f_trans ); 
  
% save the raw Tx and Rx vectors to a MAT file 
save(data_name,'t_trans','v_trans','t_rec','v_rec'); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% initialize all text boxes, buttons, etc. %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
function varargout = gremlin_OutputFcn(hObject, eventdata, handles)  
varargout{1} = handles.output; 
  
function edit1_Callback(hObject, eventdata, handles) 
  
function edit1_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit2_Callback(hObject, eventdata, handles) 
  
function edit2_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit3_Callback(hObject, eventdata, handles) 
  
function edit3_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit4_Callback(hObject, eventdata, handles) 
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function edit4_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit5_Callback(hObject, eventdata, handles) 
  
function edit5_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit6_Callback(hObject, eventdata, handles) 
  
function edit6_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit8_Callback(hObject, eventdata, handles) 
  
function edit8_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit9_Callback(hObject, eventdata, handles) 
  
function edit9_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit10_Callback(hObject, eventdata, handles) 
  
function edit10_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit11_Callback(hObject, eventdata, handles) 
  
function edit11_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit12_Callback(hObject, eventdata, handles) 
  
function edit12_CreateFcn(hObject, eventdata, handles) 
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if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit13_Callback(hObject, eventdata, handles) 
  
function edit13_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit14_Callback(hObject, eventdata, handles) 
  
function edit14_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit15_Callback(hObject, eventdata, handles) 
  
function edit15_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit16_Callback(hObject, eventdata, handles) 
  
function edit16_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit17_Callback(hObject, eventdata, handles) 
  
function edit17_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit18_Callback(hObject, eventdata, handles) 
  
function edit18_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit19_Callback(hObject, eventdata, handles) 
  
function edit19_CreateFcn(hObject, eventdata, handles) 
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if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit20_Callback(hObject, eventdata, handles) 
  
function edit20_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit21_Callback(hObject, eventdata, handles) 
  
function edit21_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit22_Callback(hObject, eventdata, handles) 
  
function edit22_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit23_Callback(hObject, eventdata, handles) 
  
function edit23_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit24_Callback(hObject, eventdata, handles) 
  
function edit24_CreateFcn(hObject, eventdata, handles) 
  
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit25_Callback(hObject, eventdata, handles) 
  
function edit25_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit26_Callback(hObject, eventdata, handles) 
  
function edit26_CreateFcn(hObject, eventdata, handles) 
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if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit32_Callback(hObject, eventdata, handles) 
  
function edit32_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit33_Callback(hObject, eventdata, handles) 
  
function edit33_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit34_Callback(hObject, eventdata, handles) 
  
function edit34_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit36_Callback(hObject, eventdata, handles) 
  
function edit36_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit37_Callback(hObject, eventdata, handles) 
  
function edit37_CreateFcn(hObject, eventdata, handles) 
  
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function popupmenu2_Callback(hObject, eventdata, handles) 
  
function popupmenu2_CreateFcn(hObject, eventdata, handles) 
  
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
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function popupmenu3_Callback(hObject, eventdata, handles) 
  
function popupmenu3_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end 
  
function edit38_Callback(hObject, eventdata, handles) 
  
function edit38_CreateFcn(hObject, eventdata, handles) 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 
end
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Appendix F.  MATLAB Function for an Ideal Bandpass Filter‡‡ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
‡‡ This appendix is presented in its original form without editorial change. 
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function y_out = bandpass( x_in, y_in, start_freq, end_freq ) 
  
% y_out = bandpass( x_in, y_in, start_freq, end_freq ) 
%  -- applies an ideal bandpass filter to 'y_in' as a function of 'x_in' 
%  -- start_freq = lower bandpass corner frequency 
%  -- end_freq = upper bandpass corner frequency 
%  -- y_out = filtered result, still a function of 'x_in' 
  
T = x_in(length(x_in)) - x_in(1);               % full period of x 
  
tau = x_in(2) - x_in(1);                        % delta(x) sample length 
  
Y_temp = fft(y_in);                             % Fast Fourier Transform 
  
if mod(length(Y_temp),2) == 1 
    frequency = [ (0:floor(length(Y_temp)/2))*(1/T)  fliplr((1:floor(length(Y_temp)/2))*(-1/T)) 
]; 
else 
    frequency = [ (0:length(Y_temp)/2)*(1/T)  fliplr((1:length(Y_temp)/2-1)*(-1/T)) ]; 
end 
  
for n = 1:length(frequency) 
    if ( frequency(n) >= -1*start_freq ) && ( frequency(n) <= start_freq ) ... 
        || ( frequency(n) <= -1*end_freq ) || ( frequency(n) >= end_freq ) 
            Y_temp(n) = 0; 
    end 
end 
  
y_out = real(ifft(Y_temp));                     % inverse FFT 
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Appendix G.  MATLAB Function for Converting Real AWG Waveforms to 
Binary Data§§ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
§§ This appendix is presented in its original form without editorial change. 
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function [binblock, header, bytes] = awg_binary(v, marker_1, marker_2) 
  
y = 2 * single(v); 
  
samples = length(v); 
  
marker_1 = uint8(marker_1); 
marker_2 = uint8(marker_2); 
  
marker_1 = bitshift(uint8(logical(marker_1)),6); 
marker_2 = bitshift(uint8(logical(marker_2)),7); 
m = marker_1 + marker_2; 
  
binblock = zeros(1,samples*5,'uint8'); 
for k=1:samples 
    binblock((k-1)*5+1:(k-1)*5+5) = [typecast(y(k),'uint8') m(k)]; 
end 
  
bytes = num2str(length(binblock)); 
  
header = ['#' num2str(length(bytes)) bytes]; 
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Appendix H.  MATLAB Function for Uploading Waveform Data to the 
AWG*** 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
*** This appendix is presented in its original form without editorial change. 
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function awg_upload( awg, buffer, wf_name, binblock, header, bytes) 
  
fopen(awg);                     % connect to the waveform generator 
  
fwrite(awg,['WLISt:WAVeform:DELete "' wf_name '"']); 
fwrite(awg,['WLIST:WAVEFORM:NEW "' wf_name '",' num2str(buffer) ',REAL']); 
  
cmd = ['WLIST:WAVEFORM:DATA "' wf_name '",' header binblock]; 
  
bytes = length(cmd); 
if buffer >= bytes 
    fwrite(awg,cmd) 
else 
    awg.EOIMode = 'off'; 
    for i = 1:buffer:bytes-buffer 
        fwrite(awg,cmd(i:i+buffer-1)) 
    end 
    awg.EOIMode = 'on'; 
    i = i + buffer; 
    fwrite(awg,cmd(i:end)) 
end 
  
fclose(awg); 
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Appendix I.  MATLAB Function for Plotting Waveforms Uploaded to the 
AWG††† 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
††† This appendix is presented in its original form without editorial change. 
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function awg_plot( v, f_sample ) 
  
t = (0:length(v)-1)*1/f_sample;             % time vector 
T = t(length(t)) + 1/f_sample;              % total time per waveform 
f = -f_sample/2:1/T:(f_sample/2)-1/T;       % frequency grid 
  
V = fftshift(fft(2*(v))/length(v));         % calculate FFT 
PdB = 10*log10(abs(V).^2/(2*50*10^-3));     % calculate power spectrum 
  
figure(1)                                   % plot in time & frequency 
subplot(1,2,1) 
plot(t/10^-6,v/10^-3) 
axis([-Inf Inf 1.1*min(v/10^-3) 1.1*max(v/10^-3)]) 
ylabel('Voltage  (mV)') 
xlabel('Time  (\mus)') 
subplot(1,2,2) 
plot(f/10^6,PdB) 
axis([0 Inf -Inf max(PdB)+10]) 
ylabel('Power  (dBm)') 
xlabel('Frequency  (MHz)') 
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Appendix J.  MATLAB Function for Recording Real Waveforms Using the 
Oscilloscope‡‡‡ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
‡‡‡ This appendix is presented in its original form without editorial change. 
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function [v_1, v_2, t_1, t_2] = osc_capture( osc, buffer, data_trc_1, data_trc_2 ) 
  
fopen(osc);                                 % connect to the oscilloscope 
fprintf(osc, 'ARM') 
  
pause(1) 
fprintf(osc, [data_trc_1 ':WF? ALL']);      % grab raw data trace 
raw_data = fread(osc,buffer,'uint8'); 
  
% calculate voltage amplitude per step 
v_quant_temp = raw_data(181)*16^6 + raw_data(180)*16^4 + raw_data(179)*16^2 + raw_data(178)*16^0; 
v_quant = typecast(uint32(v_quant_temp),'single'); 
  
% calculate voltage offset 
v_offset_temp = raw_data(185)*16^6 + raw_data(184)*16^4 + raw_data(183)*16^2 + 
raw_data(182)*16^0; 
v_offset = typecast(uint32(v_offset_temp),'single'); 
  
% calculate time interval per step 
t_quant_temp = raw_data(201)*16^6 + raw_data(200)*16^4 + raw_data(199)*16^2 + raw_data(198)*16^0; 
t_quant = typecast(uint32(t_quant_temp),'single'); 
  
% calculate time offset 
t_offset_temp = raw_data(209)*16^14 + raw_data(208)*16^12 + raw_data(207)*16^10 + ... 
raw_data(206)*16^8 raw_data(205)*16^6 + raw_data(204)*16^4 + raw_data(203)*16^2 + ... 
raw_data(202)*16^0; 
  
fprintf(osc, [data_trc_1 ':WF? DAT1']);     % grab voltage trace 
raw_data_v = fread(osc,buffer,'int8'); 
  
% convert raw data to time & voltage waveforms 
v_1 = v_quant*raw_data_v(23:length(raw_data_v)-1) + v_offset; 
t_1 = t_quant*(0:length(v_1)-1) + t_offset; 
  
pause(1) 
fprintf(osc, [data_trc_2 ':WF? ALL']);      % grab raw data trace 
raw_data = fread(osc,buffer,'uint8'); 
  
% calculate voltage amplitude per step 
v_quant_temp = raw_data(181)*16^6 + raw_data(180)*16^4 + raw_data(179)*16^2 + raw_data(178)*16^0; 
v_quant = typecast(uint32(v_quant_temp),'single'); 
  
% calculate voltage offset 
v_offset_temp = raw_data(185)*16^6 + raw_data(184)*16^4 + raw_data(183)*16^2 + 
raw_data(182)*16^0; 
v_offset = typecast(uint32(v_offset_temp),'single'); 
  
% calculate time interval per step 
t_quant_temp = raw_data(201)*16^6 + raw_data(200)*16^4 + raw_data(199)*16^2 + raw_data(198)*16^0; 
t_quant = typecast(uint32(t_quant_temp),'single'); 
  
% calculate time offset 
t_offset_temp = raw_data(209)*16^14 + raw_data(208)*16^12 + raw_data(207)*16^10 + ... 
raw_data(206)*16^8 raw_data(205)*16^6 + raw_data(204)*16^4 + raw_data(203)*16^2 + ... 
raw_data(202)*16^0; 
t_offset = typecast(uint64(t_offset_temp),'double'); 
  
fprintf(osc, [data_trc_2 ':WF? DAT1']);     % grab voltage trace 
raw_data_v = fread(osc,buffer,'int8'); 
  
% convert raw data to time & voltage waveforms 
v_2 = v_quant*raw_data_v(23:length(raw_data_v)-1) + v_offset; 
t_2 = t_quant*(0:length(v_2)-1) + t_offset; 
  
fclose(osc);  
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Appendix K.  MATLAB Function for Processing Radar Data from the 
Oscilloscope§§§ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

                                                 
§§§ This appendix is presented in its original form without editorial change. 
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function osc_process( v_1, v_2, t_1, t_2, mode, f_trans ) 
  
delta_t = t_2(2) - t_2(1); 
T = t_1(length(t_1)) - t_1(1); 
  
% for nonlinear mode, correlate Rx with 2nd harmonic of Tx 
if ( mode == 2 ) 
    v_1x = v_1.^2; 
    v_1x = bandpass(t_1,v_1x,1.5*f_trans,2.5*f_trans); 
else 
    v_1x = v_1; 
end 
  
% compute correlation and associated time vector 
v_corr = xcorr(v_1x,v_2); 
t_corr = delta_t*(0:length(v_corr)-1) - T; 
  
% adjust the velocity of propagation by dielectric constant 
dielectric_PTFE = 2.1; 
velocity_PTFE = 0.9836e9 / sqrt(dielectric_PTFE); 
  
% compute a distance vector based on 2X transit time 
d_corr = -1/2 * t_corr * velocity_PTFE; 
  
% find the peak of the correlation waveform 
[v_max,index] = max(abs(v_corr)); 
v_max = abs(v_corr(index)); 
d_max = d_corr(index); 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure(2)                               % plot the raw Tx and Rx data 
subplot(2,1,1) 
plot(t_1/10^-6,v_1,'-') 
axis([-Inf Inf -1.5 1.5]) 
ylabel('Tx Voltage, Ch2  (V)') 
subplot(2,1,2) 
plot(t_2/10^-6,v_2/10^-3,'-') 
axis([-Inf Inf -250 250]) 
ylabel('Rx Voltage, Ch 3  (mV)') 
xlabel('Time  (\mus)') 
  
figure(3)                               % plot Tx and Rx data samples 
subplot(2,1,1)                          %  to confirm Rx frequency 
plot(t_1/10^-9,v_1,'-')                 %  is twice the Tx frequency 
axis([500 502 -1.5 1.5]) 
ylabel('Tx Voltage, Ch2  (V)') 
grid 
subplot(2,1,2) 
plot(t_2/10^-9,v_2/10^-3,'-') 
axis([500 502 -150 150]) 
ylabel('Rx Voltage, Ch 3  (mV)') 
xlabel('Time  (ns)') 
grid 
  
figure(5)                               % plot the Tx and Rx correlation 
plot(d_corr,v_corr) 
axis([50 400 -1000 1000]) 
% text(250,800,['peak @ {\itd} = ' num2str(round(d_max)) ' ft']); 
ylabel('{\bfCorrelation,  {\itV}_{trans} * {\itV}_{rec}}') 
xlabel('{\bfDistance to Target}  (ft)') 
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List of Symbols, Abbreviations, and Acronyms 

ARL U.S. Army Research Laboratory 

AWG arbitrary waveform generator 

COTS commercial off-the-shelf 

CW continuous-wave 

FM frequency modulated 

FRS Family Radio Service 

GPIB General Purpose Interface Bus 

GUI graphical user interface 

RF radio frequency 

Rx receiver 

SIRE Synchronous Impulse Reconstruction 

SMA Subminiature Version A 

Tx transmitter 
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