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CHAPTER 1
Introduction

Random matrix theory has become a large and vital field of probability, and it has found appli-
cations in a wide variety of other areas. To motivate the results in these notes, we begin with an
overview of the connections between random matrix theory and computational mathematics.
We introduce the basic ideas underlying our approach, and we state one of our main results on
the behavior of random matrices. As an application, we examine the properties of the sample co-
variance estimator, a random matrix that arises in classical statistics. Afterward, we summarize
the other types of results that appear in these notes, and we assess the novelties in this presenta-
tion.

1.1 Historical Origins

Random matrix theory sprang from several different sources in the first half of the 20th century.

Multivariate Statistics. One of the earliest examples of a random matrix appeared in the work
of John Wishart [Wis28]. Wishart was studying the behavior of the sample covariance esti-
mator for the covariance matrix of a multivariate normal random vector. He showed that
the estimator, which is a random matrix, has the distribution that now bears his name.
Statisticians have often used random matrices as models for multivariate data [Mui82].

Numerical Linear Algebra. In their remarkable work [vNG47, GvN51] on computational meth-
ods for solving systems of linear equations, von Neumann and Goldstine considered a ran-
dom matrix model for the floating point errors that arise from LU decomposition.1 They
obtained an high-probability bound for the norm of the random matrix, which they took
as an estimate for the amount of error the procedure might typically incur. Curiously,
in subsequent years, numerical linear algebraists became very suspicious of probabilis-
tic techniques, and only in recent years have randomized algorithms reappeared in this
field [HMT11].

1It is breathtaking that von Neumann and Goldstine invented and analyzed this algorithm before they had any digital
computer on which to implement it! See [Grc11] for a historical account.

1



2 CHAPTER 1. INTRODUCTION

Nuclear Physics. In the early 1950s, physicists had reached the limits of deterministic analyti-
cal techniques for modeling the energy spectra of heavy atoms undergoing slow nuclear
reactions. Eugene Wigner was the first researcher to surmise that a random matrix, with
appropriate symmetries, might serve as a suitable model for the Hamiltonian of the quan-
tum mechanical system that describes the reaction. The eigenvalues of this random ma-
trix, then, would model the possible energy levels of the system. See Mehta’s book for an
account of all this [Meh04].

In each area, the motivation was quite different and led to distinct sets of questions. Later,
random matrices began to percolate into other fields, such as graph theory (the Erdős–Rényi
model [ER60] for a random graph) and number theory (as a model for the spacing of zeros of the
Riemann zeta function [Mon73]).

1.2 The Modern Random Matrix

By now, random matrices are ubiquitous. They arise throughout modern mathematics and
statistics, as well as in many branches of science and engineering. Random matrices have sev-
eral different purposes that we may wish to distinguish. They can be used within randomized
computer algorithms; they serve as models for data and for physical phenomena; and they are
subjects of mathematical inquiry.

1.2.1 Algorithmic Applications

The striking mathematical properties of random matrices can be harnessed to develop algo-
rithms for solving many different problems.

Computing Matrix Approximations. Random matrices provide an efficient way to construct
approximations of large matrices. For example, they can be used to develop fast algo-
rithms for computing a truncated singular-value decomposition. In this application, we
multiply a large input matrix by a smaller random matrix to extract information about the
dominant singular vectors of the input matrix. See the paper [HMT11] for an overview of
these ideas. This approach has been very successful in practice.

Subsampling of Data. One method that has been used in large-scale machine learning is to sub-
sample data randomly before fitting a model. For instance, we can combine random sam-
pling with the Nyström decomposition to approximate a kernel matrix efficiently [Git11].
The success of this approach depends on the properties of a small random submatrix
drawn from a large, fixed matrix.

Dimension Reduction. In theoretical computer science, a common algorithmic template in-
volves using randomness to reduce the dimension of the problem. The paper [AC09] de-
scribes an approach to nearest neighbor computations, based on random projection of the
input data, that has become very popular. Random matrix theory forms a core part of the
analysis.

Sparsification. One way to accelerate spectral computations on large matrices is to replace the
original matrix by a sparse proxy that has similar spectral properties. An elegant way to
produce the sparse proxy is to zero out entries of the original matrix at random while
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rescaling the entries that remain [AM07]. This idea plays an important role in Spielman
and Teng’s work on fast algorithms for solving linear systems [ST04].

Combinatorial Optimization. One way to solve a hard combinatorial optimization problem is
to replace the intractable computation with a related optimization problem that may be
more tractable [BTN01]. After solving the easier problem, we can perform a randomized
operation to obtain an approximate solution to the original hard problem. For optimiza-
tion problems involving matrices, random matrix theory is central to the analysis [So09].

Compressed Sensing. Random matrices appear as measurement operators in the field of com-
pressed sensing [Don06]. When acquiring data about an object with relatively few degrees
of freedom as compared with the ambient dimension, we can sieve out the important in-
formation from the object by taking a small number of random measurements, where the
number of measurements is comparable too the number of degrees of freedom. This ap-
plication is possible because of geometric properties of random matrices [CRPW12].

1.2.2 Modeling

Random matrices also appears as models for multivariate data or multivariate phenomena. By
studying the properties of these models, we may hope to obtain an understanding of the average-
case behavior of a data-analysis algorithm or a physical system.

Sparse Approximation for Random Signals. Sparse approximation has become an important
problem in statistics, signal processing, machine learning and other areas. One model for
a “typical” sparse signal involves the assumption that the nonzero coefficients that gener-
ate the signal are chosen at random. When analyzing methods for identifying the sparse
set of coefficients, we must study the behavior of a random column submatrix drawn from
the model matrix [Tro08a, Tro08b].

Demixing of Structured Signals. In data analysis, it is common to encounter a superposition of
two structured signals, and the goal is to extract the two signals using prior information
about the structures. A common model for this problem assumes that the signals are ran-
domly oriented with respect to each other, which means that it is usually possible to dis-
criminate the underlying structures. Random matrices arise in the analysis of estimation
techniques for this problem [MT12].

High-Dimensional Data Analysis. More generally, random models are pervasive in the analy-
sis of statistical estimation procedures for high-dimensional data. Random matrix theory
plays a key role in this field [Kol11, BvdG11].

Wireless Communication. Random matrices are commonly used as models for wireless chan-
nels. See the book of Tulino and Verdú for more information [TV04].

In these examples, it is important to recognize that random models may not coincide very well
with reality, but they allow us to get a sense of what might be possible in some generic cases.
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1.2.3 Theoretical Aspects

Random matrices are frequently studied for their intrinsic mathematical interest. In some fields,
they provide examples of striking phenomena. In other areas, they furnish counterexamples to
“intuitive” conjectures. Here are a few disparate problems where random matrices play a role.

Combinatorics. An expander graph has the property that every small set of vertices has edges
linking it to a large proportion of the vertices. The expansion property is closely related to
the spectral behavior of the adjacency matrix of the graph. The easiest construction of an
expander involves a random matrix [AS00, §9.2].

Algorithms. For worst-case examples, the Gaussian elimination method for solving a linear sys-
tem is not numerically stable. In practice, however, this is a non-issue. One explanation for
this phenomenon is that, with high probability, a small random perturbation of any fixed
matrix is well conditioned. As a consequence, it can be shown that Gaussian elimination
is stable for most matrices [SST06].

High-Dimensional Geometry. Dvoretsky’s Theorem states that, when N in large, the unit ball
of every N -dimensional Banach space has a slice of dimension n ≈ log N that is close to a
Euclidean ball with dimension n. It turns out that a random slice of dimension n realizes
this property. This important result can be framed as a statement about spectral properties
of a random matrix [Gor85].

Quantum Information Theory. Random matrices appear as examples and counterexamples for
a number of conjectures in quantum information theory. We refer the reader to the pa-
pers [HW08, Has09] for details.

1.3 Random Matrices for the People

Historically, random matrix theory has been regarded as a very challenging field. Even now,
many well-established methods are only accessible to researchers with significant experience,
and it takes months of intensive effort to prove new results. There are a small number of classes
of random matrices that have been studied so completely that we know almost everything about
them. Yet, moving beyond this terra firma, one quickly encounters examples where classical
methods are brittle.

We intend to democratize random matrix theory. These notes describe tools that deliver
useful information about a wide range of random matrices. In many cases, a modest amount
of straightforward arithmetic leads to strong results. The methods here should be accessible to
computational scientists working in a variety of fields. Indeed, the techniques in this work have
already found an extensive number of applications. Almost every week, we learn about a paper
that uses these ideas for a novel purpose.

1.4 Basic Questions in Random Matrix Theory

Although it sounds prosaic, random matrices merit attention precisely because they are matri-
ces. As a consequence, random matrices have spectral properties: eigenvalues and eigenvectors
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in the case of square matrices, singular values and singular vectors in the case of general ma-
trices. The most basic problems all concern these spectral properties. Here are some questions
that we might ask:

• What is the expectation of the maximum eigenvalue of a random symmetric matrix? What
about the minimum eigenvalue?

• How are the extreme eigenvalues of a random symmetric matrix distributed? What is the
probability that they take values substantially different from the mean?

• What is the expected spectral norm of a random matrix? What is the probability that the
norm takes a value substantially different from the mean?

• What about the other eigenvalues or singular values? Can we say something about the
“typical” spectrum of a random matrix?

• Can we say anything about the eigenvectors or singular vectors? For instance, is each one
distributed uniformly on the sphere?

• We can also ask questions about the operator norm of a random matrix acting as a map be-
tween two normed linear spaces. In this case, the geometry of the domain and codomain
play an important role.

In this work, we focus on the first three questions above. We study the expectation of the extreme
eigenvalues of random symmetric matrices, and we attempt to provide bounds on the probabil-
ity that they take an unusual value. As an application of these results, we show how to control
the expected spectral norm of a general matrix and to bound the probability of a large deviation.
These are the most important issues for most (but not all!) applications. We will not touch on
the remaining questions.

1.5 Random Matrices as Independent Sums

Our approach to random matrices depends on a fundamental principle:

In applications, it is common that a random matrix can be expressed as a sum of
independent random matrices.

The applications that appear in these notes should provide ample evidence for this claim. For
now, let us describe a specific problem that will serve as a running example throughout the In-
troduction. We hope this example is complicated enough to be interesting but simple enough to
illustrate the main points clearly.

1.5.1 Example: A Sample Covariance Matrix

Let x = (X1, . . . , Xp ) be a random vector with zero mean Ex = 0. Assume that the Euclidean norm
of the distribution is bounded: ‖x‖2 ≤ B . The covariance of the random vector x is the positive-
semidefinite matrix

A = E(x x∗) =
p∑

j ,k=1
E(X j X ∗

k )E j k (1.5.1)
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In other words, the ( j ,k) entry of the sample covariance records the covariance between the j th
and kth entry of the vector.

One basic problem in statistical practice is to estimate the covariance matrix from data.
Imagine that we have access to n independent samples x1, . . . , xn , distributed the same way as
x . The sample covariance estimator is defined as random matrix

Y = 1

n

n∑
k=1

xk x∗
k . (1.5.2)

The random matrix Y is an unbiased estimator for the sample covariance matrix: EY = A. The
formula (1.5.2) supposes that the random vector x is known to have zero mean; in general, we
would have to make some adjustments to incorporate an estimate for the sample mean. To
emphasize,

The sample covariance estimator Y can be expressed as a sum of independent ran-
dom matrices.

This is precisely the type of decomposition that our tools require.

1.6 Exponential Concentration Inequalities for Matrices

An important challenge in classical probability is to study the probability that a random variable
Z takes a value substantially different from its mean. That is, we seek a bound of the form

P {|Z −EZ | ≥ t } ≤ ??? (1.6.1)

for a positive parameter t . When Z is expressed as a sum of independent random variables, the
literature contains many tools for addressing this problem.

For a random matrix Z , a variant of (1.6.1) is the question of whether Z deviates substantially
from its mean value. We might frame this question as

P {‖Z −EZ ‖ ≥ t } ≤ ??? . (1.6.2)

Here and elsewhere, ‖·‖ denotes the spectral norm of a matrix. As noted, it is frequently possible
to decompose Z as a sum of independent random matrices. We might even dream that the
classical methods for studying the scalar concentration problem (1.6.1) extend to (1.6.2).

1.6.1 The Bernstein Inequality

To explain what kind of results we have in mind, we return to the scalar problem (1.6.1). Suppose
that we can express the real random variable Z as a sum of independent real random variables.
To control Z , we rely on two types of information: global properties of the sum (such as its mean
and variance) and local properties of the summands (such as their maximum fluctuation). These
pieces of data are usually easy to obtain. Together, they guarantee that Z concentrates sharply
around its mean value.

Theorem 1.6.1 (Bernstein Inequality). Let S1, . . . ,Sn be independent random variables that have
bounded deviation from their mean values:

|Sk −ESk | ≤ R for each k = 1, . . . ,n.
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Form the sum Z =∑n
k=1 Sk , and introduce a variance parameter σ2 = E[(Z −EZ )2

]
. Then

P {|Z −EZ | ≥ t } ≤ 2 exp

( −t 2/2

σ2 +Rt/3

)
for all t ≥ 0.

See the survey paper [Lug09] for a proof of this result.
We refer to Theorem 1.6.1 as an exponential concentration inequality because it yields expo-

nentially decaying bounds on the probability that Z deviates substantially from its mean. More
precisely, the result implies that the probability that the sum Z exhibits a moderate deviation
(t ≤σ2/R) decays like the tail of a normal random variable with varianceσ2. The probability that
the sum Z exhibits a large deviation (t ≥σ2/R) decays like an exponential random variable with
mean R.

1.6.2 The Matrix Bernstein Inequality

What is truly astonishing is that the scalar Bernstein inequality, Theorem 1.6.1, lifts directly to
matrices. Let us emphasize this remarkable fact:

There are exponential concentration inequalities for the spectral norm of a sum
of independent random matrices.

As a consequence, once we decompose a random matrix as an independent sum, we can harness
global properties (such as the mean and the variance) and local properties (such as a uniform
bound on the summands) to obtain detailed information about the norm of the sum. As in the
scalar case, it is usually easy to acquire the input data for the inequality. But the output of the
inequality is highly nontrivial.

To illustrate this point, we state one of the major results from these notes. This theorem is
a matrix extension of Bernstein’s inequality that was developed independently in the two pa-
pers [Oli10a, Tro11d]. After presenting the result, we give some more details about its interpreta-
tion. In the next section, we apply this result to study the covariance estimation problem.

Theorem 1.6.2 (Matrix Bernstein). Let S1, . . . ,Sn be independent random matrices with common
dimension d1 ×d2. Assume that each matrix has bounded deviation from its mean:

‖Sk −ESk‖ ≤ R for each k = 1, . . . ,n.

Form the sum Z =∑n
k=1 Sk , and introduce a variance parameter

σ2 = max
{∥∥E[(Z −EZ )(Z −EZ )∗

]∥∥ ,
∥∥E[(Z −EZ )∗(Z −EZ )

]∥∥}
.

Then

P {‖Z −EZ ‖ ≥ t } ≤ (d1 +d2) ·exp

( −t 2/2

σ2 +Rt/3

)
for all t ≥ 0.

Furthermore,

E‖Z −EZ ‖ ≤
√

2σ2 log(d1 +d2)+ 1

3
R log(d1 +d2).

The proof of this result appears in Chapter 6.
To appreciate what Theorem 1.6.2 means, it is valuable to make a direct comparison with the

scalar version, Theorem 1.6.1. In both cases, we express the object of interest as an independent
sum, and we instate a uniform bound on the summands. There are three salient changes:
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• The variance parameterσ2 in the result for matrices can be interpreted as the magnitude of
the expected squared deviation from the mean. The formula reflects the fact that a matrix
B has two different squares B B∗ and B∗B .

• The tail bound has a dimensional factor d1+d2 that depends on the size of the matrix. This
factor reduces to two in the scalar setting. In the matrix case, it limits the range of t where
tail bound is informative.

• We have included a bound for the expected deviation ‖Z −EZ ‖. This estimate is not par-
ticularly interesting the scalar setting, but it is usually quite challenging to prove results of
this type for matrices. In fact, we often find the expectation bound more useful than the
tail bound.

For further discussion of this result, turn to Chapter 6. Chapters 4 and 7 contain related results
and interpretations.

1.6.3 Example: A Sample Covariance Matrix

The reader may not yet perceive why abstract matrix inequalities, such as Theorem 1.6.2, deliver
information about random matrices that arise in practice. Our burden remains to show that the
results are worthwhile.

We will apply the matrix Bernstein inequality, Theorem 1.6.2, to measure how well a sam-
ple covariance matrix approximates the true covariance matrix. As before, let x be a zero-mean
random vector with dimension p, and assume that the Euclidean norm of the distribution is
bounded: ‖x‖2 ≤ B . The covariance matrix of the vector is A = E(x x∗). Suppose we have n inde-
pendent samples x1, . . . , xn with the same distribution as x . We can form the sample covariance
matrix

Y = 1

n

n∑
k=1

xk x∗
k .

Our goal is to study the spectral-norm distance ‖Y − A‖ between the sample covariance and the
true covariance.

To that end, let us express the error matrix as a sum of independent random matrices:

E = Y − A =
n∑

k=1
Sk .

where Sk = n−1(xk x∗
k − A) for each index k. To apply the matrix concentration inequality, we

must bound the norm of each summand, and we must compute the variance of the matrix E .
To obtain the uniform bound, observe that

ESk = 0 and ‖Sk‖ ≤
2B

n
.

We reach the latter inequality as follows:

‖Sk‖ =
1

n

∥∥xk x∗
k −E(x x∗)

∥∥≤ 1

n

(‖xk‖2 +E‖x‖2)≤ 2B

n
.

The first bound follows from the triangle inequality for the spectral norm and Jensen’s inequality.
The second relies on the uniform bound for the norm of a random vector distributed as x .
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Next, we must find a bound for the matrix variance σ2(E ). Let us calculate that

E(S2
k ) = 1

n2 E
[
(xk x∗

k − A)2]= 1

n2 E
[‖xk‖2 · xk x∗

k − (xk x∗
k )A − A(xk x∗

k )+ A2]
4

1

n2

[
B ·E(xk x∗

k )− A2 − A2 + A2]4 B

n2 · A.

The expression H 4 M means that M − H is positive semidefinite. This argument relies on the
uniform upper bound for the norm of the random vector. From here, we quickly obtain the
variance σ2(E ):

σ2(E ) = ∥∥E(E 2)
∥∥=

∥∥∥∥∥ n∑
k=1

E(S2
k )

∥∥∥∥∥≤ B

n
· ‖A‖ .

The second relation depends on the fact that the summands are independent and zero mean.
The inequality is valid because 04 H 4 M implies that the norm of M exceeds that norm of H .

Now, we may invoke Theorem 1.6.2 to obtain

E‖Y − A‖ ≤
√

2B ‖A‖ log p

n
+ 2B log p

3n
.

In other words, the error in approximating the sample covariance matrix is not too large when
we have a sufficient number of samples. If we wish to obtain a relative error of ε, where ε ∈ (0,1],
we may take

n ≥ Const · B log p

ε2 ‖A‖ .

This selection yields
E‖Y − A‖ ≤ Const ·ε · ‖A‖ .

It is often the case that B = Const · p, so we discover that n = Const · ε−2p log p samples suffice
to estimate the covariance matrix A accurately. This bound is qualitatively sharp for worst-case
distributions.

1.6.4 History of this Example

Covariance estimation may be the earliest application of matrix concentration bounds in ran-
dom matrix theory. Rudelson [Rud99] showed how to use the noncommutative Khintchine in-
equality [LP86, LPP91, Buc01, Buc05] to obtain essentially optimal bounds on the sample covari-
ance estimator for a bounded random vector. The tutorial [Ver12] of Roman Vershynin provides
an excellent overview of this problem as well as many results and references.

The analysis of the sample covariance matrix here is adapted from the paper [GT11]. It leads
to essentially the same result as Rudelson obtained in [Rud99]. For an analysis of sparse co-
variance estimation using matrix concentration inequalities, see the paper [CGT12a] and the
technical report [CGT12b].

1.7 The Arsenal of Results

The classical literature contains many exponential tail bounds for sums of independent random
variables. Some of the best known results are the Bernstein inequality and the Chernoff inequal-
ity, but there are many more. It turns out that essentially all of these results admit extensions
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that hold for random matrices. These lecture notes focus on some exponential concentration
inequalities for matrices that have already found significant applications.

Matrix Gaussian Series. A matrix Gaussian series is a random matrix that can be expressed as a
sum of fixed matrices weighted by independent standard normal random variables. This
formulation includes a surprising number of examples. The most important are undoubt-
edly Wigner matrices and rectangular Gaussian matrices. Other interesting cases include
a Toeplitz matrix with Gaussian entries. This material appears in Chapter 4.

Matrix Rademacher Series. A matrix Rademacher series is a random matrix that can be written
as a sum of fixed matrices weighted by independent Rademacher random variables.2 This
construction includes things like random sign matrices, as well as a fixed matrix whose
entries are modulated by random signs. There are also interesting examples that arise in
combinatorial optimization. We treat these problems in Chapter 4.

Matrix Chernoff Bounds. The matrix Chernoff bounds apply to random matrices that can be
decomposed as a sum of independent positive-semidefinite random matrices whose max-
imum eigenvalues are subject to a uniform bound. These results are appropriate for study-
ing the Laplacian matrix of a random graph. They also allow us to obtain information
about the norm of a random submatrix drawn from a fixed matrix. See Chapter 5.

Matrix Bernstein Bounds. Matrix Bernstein inequalities concern random matrices that can be
expressed as a sum of independent bounded random matrices that are bounded in norm.
These results have many applications, including the analysis of randomized algorithms for
approximate matrix multiplication and randomized algorithms for matrix sparsification.
Chapter 6 contains this material.

Intrinsic Dimension Bounds. Some matrix concentration inequalities can be improved when
the random matrix has limited spectral content in most dimensions. In this situation, we
may be able to obtain bounds that do not depend on the ambient dimension. See Chap-
ter 7 for details.

The literature describes other exponential matrix inequalities for sums of independent ran-
dom matrices. These include a matrix Bennett inequality [Tro11d, §6], matrix Bernstein inequal-
ities for unbounded random matrices [Tro11d, §6], and a matrix Hoeffding inequality [Tro11d,
§7]. These results extend to give bounds for matrix-valued martingales, such as the matrix Azuma
and McDiarmid inequalities [Tro11d, §7] and the matrix Freedman inequality [Oli10a, Tro11a].

Furthermore, the paper [MJC+12] develops a very different technique that can yield matrix
concentration inequalities for random matrices based on dependent random variables. The re-
sults in this work include several exponential inequalities. This approach also leads to polyno-
mial concentration inequalities, which can be viewed as a generalization of Chebyshev’s inequal-
ity. See the annotated bibliography for more information.

1.8 These Lecture Notes

These lecture notes are intended for researchers and graduate students in computational math-
ematics who want to learn some modern techniques for analyzing random matrices. The prepa-
ration required is minimal. We assume familiarity with calculus, applied linear algebra, the basic

2A Rademacher random variable is uniformly distributed on {±1}.
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theory of normed spaces, and classical probability theory up through the basic concentration
inequalities (such as Markov and Bernstein).

The material here is based primarily on the paper “User-Friendly Tail Bounds for Sums of
Random Matrices” by the present author [Tro11d]. There are several significant revisions to this
earlier work:

Examples and Applications. Many of the papers on matrix concentration give limited informa-
tion about how the results can be used to solve problems of interest. A major part of these
notes consists of worked examples and applications that indicate how matrix concentra-
tion inequalities are used in practice.

Expectation Bounds. This work collects bounds for the expected value of the spectral norm of
a random matrix and bounds for the expectation of the smallest and largest eigenvalues of
a random symmetric matrix. Some of these useful results have appeared piecemeal in the
literature [CGT12a, MJC+12], but they have not been included in a unified presentation.

Intrinsic Dimension Bounds. Over the last few years, there have been some refinements to the
basic matrix concentration bounds that improve the dependence on dimension [HKZ12b,
Min11]. We describe a new framework that allows us to prove these results with ease.

Annotated Bibliography. We have included a list of the main works on matrix concentration,
including a short summary of the main contributions of these papers. We hope this list
will be a valuable guide for further reading, even though it remains incomplete.

The organization of the notes is straightforward. Chapter 2 contains background material
that is needed for the proofs. Chapter 3 describes the framework for developing exponential
concentration inequalities for matrices. Chapter 4 presents the first set of results and examples,
concerning matrix Gaussian and Rademacher series. Chapter 5 introduces the matrix Chernoff
bounds and their applications, and Chapter 6 expands on our discussion of the matrix Bern-
stein inequality. Chapter 7 shows how to sharpen some of the results so that they depend on
an intrinsic dimension parameter. We conclude with resources on matrix concentration and a
bibliography.

Since these are lecture notes, we have not followed all of the conventions for scholarly articles
in journals. In particular, almost all the citations appear in the notes at the end of each chapter.
Our aim has been to explain the ideas as clearly as possible, rather than to interrupt the narrative
with an elaborate genealogy of results. In the current version, these notes are still not as polished
and complete as we might like, and we intend to expand them in future revisions.





CHAPTER 2
Matrix Functions and Probability

with Matrices

We begin the main development with a short overview of the background material that is re-
quired to understand the proofs and, to a lesser extent, the statements of matrix concentration
inequalities. We have been careful to provide detailed cross-references to these foundational
results, so most readers will be able to proceed directly to the main theoretical development in
Chapter 3 or the discussion of specific random matrix inequalities in Chapters 4, 5, and 6.

Section 2.1 below covers material from matrix theory concerning the behavior of matrix func-
tions. Section 2.2 reviews some relevant results from probability, especially the parts involving
matrices.

2.1 Matrix Theory Background

Most of these results are drawn from Bhatia’s excellent books on matrix analysis [Bha97, Bha07].
The books [HJ85, HJ94] of Horn and Johnson also serve as good general references. Higham’s
work [Hig08] is a generous source of information about matrix functions.

2.1.1 Conventions

A matrix is a finite, two-dimensional array of complex numbers. Many parts of the discussion do
not depend on the size of a matrix, so we specify dimensions only when it matters. Readers who
wish to think about real-valued matrices will find that none of the results require any essential
modification in this setting.

2.1.2 Spaces of Matrices

Complex matrices with fixed dimensions form a linear space because we can add them and mul-
tiply them by complex scalars. We write Md1×d2 for the linear space of d1 ×d2 matrices. In ad-
dition to the usual linear operations, we can multiply square matrices, so they form an algebra.

13
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We writeMd for the algebra of d ×d square, complex matrices. The setHd consists of Hermitian
matrices with dimension d ; it is a linear space over the real field. That is, we can add Hermi-
tian matrices and multiply them by real numbers. Multiplication by a complex scalar is verboten
inside Hd . We rarely require this notation, but it is occasionally important for clarity.

2.1.3 Basic Matrices

We write 0 for the zero matrix and I for the identity matrix. Occasionally, we add a subscript to
specify the dimension. For instance, Id is the d ×d identity.

The standard basis for the linear space Md1×d2 is comprised of unit matrices. We write E j k

for the unit matrix with a one in position ( j ,k) and zeros elsewhere. We use a related notation
for unit vectors. The symbol ek denotes a column vector with a one in position k and zeros
elsewhere. The dimensions of unit matrices and unit vectors are typically determined by the
context.

A square matrix that satisfies QQ∗ = I =Q∗Q is called unitary. We reserve the symbol Q for a
unitary matrix. The symbol ∗ denotes the conjugate transpose.

Readers who prefer the real setting may prefer to regard Q as an orthogonal matrix and to
interpret ∗ as the (simple) transpose operation.

2.1.4 Hermitian Matrices and Eigenvalues

A square matrix that satisfies A = A∗ is called Hermitian. We adopt Parlett’s convention that bold
Latin and Greek letters that are symmetric around the vertical axis (A, H , . . . , Y ; ∆, Θ, . . . , Ω)
always represent Hermitian matrices.

Each Hermitian matrix A has an eigenvalue decomposition

A =QΛQ∗ with Q unitary andΛ real diagonal. (2.1.1)

The diagonal entries of Λ are called the eigenvalues of A. The unitary matrix Q in the eigen-
value decomposition is not completely determined, but the list of eigenvalues is unique modulo
permutations. The eigenvalues of an Hermitian matrix are often referred to as its spectrum.

We denote the algebraic minimum and maximum eigenvalues of an Hermitian matrix A by
λmin(A) and λmax(A). The extreme eigenvalue maps are positive homogeneous:

λmin(θA) = θλmin(A) and λmax(θA) = θλmax(A) for θ ≥ 0. (2.1.2)

There is an important relationship between minimum and maximum eigenvalues:

λmin(−A) =−λmax(A). (2.1.3)

The fact (2.1.3) warns us that we must be careful passing scalars through an eigenvalue map.
Readers who prefer the real setting may read “symmetric” in place of “Hermitian.” In this

case, the eigenvalue decomposition involves an orthogonal matrix Q . Note, however, that the
term “symmetric” has a different meaning in probability!

2.1.5 The Trace of a Square Matrix

The trace of a square matrix, denoted by tr, is the sum of its diagonal entries.

trB =
d∑

j=1
b j j for a d ×d matrix B .
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The trace is unitarily invariant:

trB = tr(Q∗BQ) for each square matrix B and each unitary Q .

In particular, the existence of an eigenvalue decomposition (2.1.1) shows that the trace of an
Hermitian matrix equals the sum of its eigenvalues. This fact also holds true for a general square
matrix.

2.1.6 The Semidefinite Order

An Hermitian matrix A with nonnegative eigenvalues is positive semidefinite. When each eigen-
value is strictly positive, we say that the matrix A is positive definite. Positive semidefinite ma-
trices play a special role in matrix theory, analogous to the role of nonnegative numbers in real
analysis.

The set of positive-semidefinite matrices with size d forms a closed, convex cone in the real-
linear space of Hermitian matrices of dimension d . Therefore, we may define the semidefinite
partial order on Hermitian matrices of the same size by the rule

A 4 H ⇐⇒ H − A is positive semidefinite.

In particular, we write A < 0 to indicate that A is positive semidefinite and A Â 0 to indicate that
A is positive definite. For a diagonal matrix Λ, the expression Λ< 0 means that each entry of Λ
is nonnegative.

The semidefinite order is preserved by conjugation, a fact whose importance cannot be over-
stated.

Proposition 2.1.1 (Conjugation Rule). Let A and H be Hermitian matrices of the same size, and
let B be a general matrix with conforming dimensions. Then

A 4 H =⇒ B AB∗ 4B HB∗ (2.1.4)

Finally, we remark that the trace of a positive-semidefinite matrix is at least as large as its
maximum eigenvalue:

λmax(A) ≤ tr A when A is positive semidefinite. (2.1.5)

This property follows from the definition of a positive-semidefinite matrix and the fact that the
trace of A is the sum of the eigenvalues.

2.1.7 Standard Matrix Functions

Let us describe the most direct method for extending a function on the reals to a function on
Hermitian matrices. The basic idea is to apply the function to each eigenvalue of the matrix to
construct a new matrix.

Definition 2.1.2 (Standard Matrix Function). Let f : I → R where I is an interval of the real line.
Let A be a d ×d Hermitian matrix with eigenvalues in I . Define the d ×d Hermitian matrix f (A)
via the eigenvalue decomposition of A:

A =Q

λ1
. . .

λd

Q∗ =⇒ f (A) =Q

 f (λ1)
. . .

f (λd )

Q∗.
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In particular, we can apply f to a real diagonal matrix by applying the function to each diagonal
entry.

It can be verified that the definition of f (A) does not depend on which eigenvalue decomposi-
tion A =QΛQ∗ that we choose. Any matrix function that arises in this fashion is called a standard
matrix function.

For an Hermitian matrix A, when we write the power function Ap or the exponential eA or
the logarithm log A, we are always referring to a standard matrix function. Note that we only
define the matrix logarithm for positive-definite matrices, and non-integer powers are only valid
for positive-semidefinite matrices.

The following result is an immediate, but important, consequence of the definition of a stan-
dard matrix function.

Proposition 2.1.3 (Spectral Mapping Theorem). Let A be an Hermitian matrix, and let f :R→R.
Each eigenvalue of f (A) has the form f (λ), where λ is an eigenvalue of A.

In most cases, the “obvious” generalization of an inequality for real-valued functions fails to
hold in the semidefinite order. Nevertheless, there is one class of inequalities for real functions
that extends to give semidefinite relationships for matrix functions.

Proposition 2.1.4 (Transfer Rule). Let f and g be real-valued functions defined on an interval I
of the real line, and let A be an Hermitian matrix whose eigenvalues are contained in I . Then

f (a) ≤ g (a) for each a ∈ I =⇒ f (A)4 g (A). (2.1.6)

Proof. Decompose A = QΛQ∗. It is immediate that f (Λ) 4 g (Λ). The Conjugation Rule (2.1.4)
allows us to conjugate this relation by Q . Finally, invoke the definition of the matrix function to
complete the argument.

When a real function has a power series expansion, we can also represent the standard matrix
function with the same power series expansion. Indeed, suppose that f : I → R is defined on an
interval I of the real line, and assume that A has eigenvalues in I . Then

f (a) = c0 +
∞∑

p=1
cp ap for a ∈ I =⇒ f (A) = c0I+

∞∑
p=1

cp Ap .

This formula can be verified using an eigenvalue decomposition of A, along with the definition
of a standard matrix function.

2.1.8 The Matrix Exponential

For any Hermitian matrix A, we can introduce the matrix exponential eA using the Definition 2.1.2
of a standard matrix function. Equivalently, we can use a power series expansion:

eA = exp(A) = I+
∞∑

p=1

Ap

p !
.

The Spectral Mapping Theorem, Proposition 2.1.3, implies that the exponential of an Hermitian
matrix is always positive definite.



2.1. MATRIX THEORY BACKGROUND 17

We often work with the trace of the matrix exponential:

trexp : A 7−→ treA .

This function has several properties that we use extensively. First, the trace exponential is mono-
tone with respect to the semidefinite order. That is, for Hermitian matrices A and H of the same
size,

A 4 H =⇒ treA ≤ treH . (2.1.7)

The trace exponential is also a convex function on the real-linear space of Hermitian matrices.
That is, for Hermitian matrices A and H of the same size,

treτA+τ̄H ≤ τ · treA + τ̄ · treH where τ ∈ [0,1] and τ̄= 1−τ.

In other words, the trace exponential of an average is no greater than the average value of the
trace exponentials. The proofs of these two results are not particularly hard, but they fall outside
the boundary of these notes. See the survey article [Pet94, Sec. 2] or the lecture notes [Car10,
Sec. 2.2] for a complete demonstration.

2.1.9 The Matrix Logarithm

We can define the matrix logarithm as a standard matrix function. The matrix logarithm is also
the functional inverse of the matrix exponential:

log
(
eA)= A for each Hermitian matrix A. (2.1.8)

A deep and significant fact about the matrix logarithm is that it preserves the semidefinite order.
For positive-definite matrices A and H of the same size,

0 ≺ A 4 H =⇒ log(A)4 log(H). (2.1.9)

For a good treatment of operator monotonicity at an introductory level, see [Bha97, Chap. V].
Let us emphasize that the matrix exponential does not have any operator monotonicity property
analogous with (2.1.9)!

2.1.10 Singular Values of General Matrices

A general matrix B does not have an eigenvalue decomposition, but it admits a different repre-
sentation that is just as useful. Every d1 ×d2 matrix B has a singular value decomposition

B =UΣV ∗ with U ,V unitary and Σ nonnegative diagonal. (2.1.10)

The unitary matrices U and V have dimensions d1×d1 and d2×d2, respectively. The inner matrix
Σ has dimension d1×d2, and we use the term diagonal in the sense that only the diagonal entries
(Σ) j j may be nonzero.

The diagonal entries ofΣ are called the singular values of B . They are determined completely
modulo permutations, and it is standard to arrange them in weakly decreasing order:

σ1(B ) ≥σ2(B ) ≥ ·· · ≥σmin{d1, d2}(B ).
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There is an important relationship between singular values and eigenvalues. A general matrix
has two squares associated with it, B B∗ and B∗B , both of which are Hermitian. We can use a
singular value decomposition of B to construct eigenvalue decompositions of the two squares:

B B∗ =U (ΣΣ∗)U∗ and B∗B =V (Σ∗Σ)V ∗

The two squares of Σ are both nonnegative, diagonal, and—of course—square. Conversely, we
can always extract a singular value decomposition from eigenvalue decompositions of the two
squares.

2.1.11 The Spectral Norm and the Euclidean Norm

The spectral norm of an Hermitian matrix is defined by the relation

‖A‖ = max{λmax(A), −λmin(A)} .

For a general matrix B , the spectral norm is defined to be the largest singular value:

‖B‖ =σ1(B ).

These two definitions are consistent for Hermitian matrices.
When applied to a row vector or a column vector, the spectral norm coincides with the Eu-

clidean norm:

‖b‖ =
(

d∑
k=1

∣∣bk
∣∣2

)1/2

for b ∈Cd .

We are certainly justified, therefore, in using the same symbol for both norms.

2.1.12 Dilations

An extraordinarily fruitful idea from operator theory is to embed matrices within larger block
matrices, called dilations [Pau02].

Definition 2.1.5 (Hermitian Dilation). The Hermitian dilation

H :Md1×d2 −→Hd1+d2

is the map from a general matrix to a Hermitian matrix given by

H (B ) =
[

0 B
B∗ 0

]
. (2.1.11)

The dilation retains important spectral information. To see why, note that the square of the
dilation satisfies

H (B )2 =
[

B B∗ 0
0 B∗B

]
. (2.1.12)

We discover that the squared eigenvalues of H (B ) coincide with the squared singular values of
B , along with an appropriate number of zeros. Since the trace of H (B ) is zero, its maximum
eigenvalue must be nonnegative. Together, these two facts yield an important identity:

λmax(H (B )) = ‖H (B )‖ = ‖B‖ . (2.1.13)

Finally, we note that the Hermitian dilation is a real-linear map.
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2.2 Probability Background

We continue with some material from probability, focusing on connections with matrices. For
more details, consult any good probability text.

2.2.1 Conventions

We prefer to avoid abstraction and unnecessary technical detail, so we frame the standing as-
sumption that all random variables are sufficiently regular that we are justified in computing
expectations, interchanging limits, and so forth. All the manipulations we perform are valid if
we assume that all random variables are bounded, but the results hold in broader circumstances
if we instate appropriate regularity conditions.

2.2.2 Random Matrices

Let (Ω,F ,P) be a probability space, and let Md1×d2 be the set of d1 ×d2 complex matrices. A
random matrix Z is a measurable map

Z :Ω−→Md1×d2 .

It is more natural to think of the entries of Z as complex random variables that may or may nor
be correlated with each other. We reserve the letters X ,Y for random Hermitian matrices, and
the letter Z denotes a general random matrix.

A finite sequence {Zk } of random matrices is independent when

P {Zk ∈ Ek for each k} =
∏

k P {Zk ∈ Ek }

for every collection {Ek } of Borel subsets of Md1×d2 .

2.2.3 Expectation

The expectation of a random matrix Z = [Z j k ] is simply the matrix formed by taking the compo-
nentwise expectation. That is,

[EZ ] j k = E(Z j k ).

Under mild assumptions, expectation commutes with linear and real-linear maps. Indeed, ex-
pectation commutes with multiplication by a fixed matrix:

E(B Z ) = B (EZ ) and E(Z B ) = (EZ )B .

In particular, the product rule for the expectation of independent random variables extends to
matrices:

E(S Z ) = (ES)(EZ ) when S and Z are independent.

We use these identities liberally, without any further comment.
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2.2.4 Inequalities for Expectation

Markov’s inequality states that a nonnegative (real) random variable X obeys the probability
bound

P {X ≥ t } ≤ EX

t
where X ≥ 0. (2.2.1)

The Markov inequality is a central tool for establishing concentration inequalities.
Jensen’s inequality describes how averaging interacts with convexity. Let Z be a random ma-

trix, and let h be a real-valued function on matrices. Then

Eh(Z ) ≤ h(EZ ) when h is concave, and
h(EZ ) ≤ Eh(Z ) when h is convex.

(2.2.2)

Let us emphasize that these inequalities hold for every real-valued function h on matrices that is
concave or convex.

The expectation of a random matrix can be viewed as a convex combination, and the cone
of positive-semidefinite matrices is convex. Therefore, expectation preserves the semidefinite
order:

X 4Y =⇒ EX 4 EY .

We use this result many times without direct reference.



CHAPTER 3
The Matrix Laplace Transform

Method

This chapter contains the core part of the analysis that ultimately delivers matrix concentration
inequalities. Readers who are only interested in the concentration inequalities themselves or the
sample applications may wish to move on to Chapters 4, 5, and 6.

The approach that we take can be viewed as a matrix extension of the Laplace transform
method, sometimes referred to as the “Bernstein trick.” In the scalar setting, this so-called trick
is one of the most basic and successful paths to reach concentration inequalities for sums of in-
dependent random variables. It turns out that there is a very satisfactory version of this argument
that applies to sums of independent random matrices. In the more general setting, however, we
must invest more care and wield sharper tools to execute this technique successfully.

We first define matrix analogs of the moment generating function and the cumulant gener-
ating function, which pack up information about the growth of a random matrix. Section 3.2 ex-
plains how we can use the matrix mgf to obtain probability inequalities for the maximum eigen-
value of a random Hermitian matrix. The next task is to develop a bound for the mgf of a sum
of independent random matrices using information about the summands. In §3.3, we discuss
the challenges that arise, and §3.4 presents the ideas we need to overcome these obstacles. Sec-
tion 3.5 establishes that the classical result on additivity of cumulants has a companion in the
matrix setting. This result allows us to develop a collection of abstract probability inequalities
in §3.6 that we specialize to obtain matrix Chernoff bounds, matrix Bernstein bounds, etc.

3.1 Matrix Moments and Cumulants

At the heart of the Laplace transform method are the moment generating function (mgf) and
the cumulant generating function (cgf) of a random variable. We begin by presenting matrix
versions of the mgf and cgf.

21
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Definition 3.1.1 (Matrix Mgf and Cgf). Let X be a random Hermitian matrix. The matrix moment
generating function MX and the matrix cumulant generating functionΞX are given by

MX (θ) := EeθX and ΞX (θ) := log EeθX for θ ∈R. (3.1.1)

Note that the expectations may not exist for all values of θ.

The matrix mgf MX and matrix cgfΞX contain information about how much the random matrix
X varies. We aim to exploit the data encoded in these functions to control the eigenvalues.

To expand on Definition 3.1.1, let us observe that the matrix mgf and cgf have formal power
series expansions:

MX (θ) = I+
∞∑

p=1

θp

p !
·E(X p ) and ΞX (θ) =

∞∑
p=1

θp

p !
·Ψp .

We call the coefficients E(X p ) matrix moments, and we refer to Ψp as a matrix cumulant. The
matrix cumulant Ψp has a formal expression as a (noncommutative) polynomial in the matrix
moments up to order p. In particular, the first cumulant is the mean and the second cumulant
is the variance:

Ψ1 = EX and Ψ2 = E(X 2)− (EX )2.

Higher-order cumulants are harder to write down and interpret.

3.2 The Matrix Laplace Transform Method

In the scalar setting, the Laplace transform method allows us to obtain tail bounds for a random
variable in terms of its mgf. The starting point for our theory is the observation that a similar
result holds in the matrix setting.

Proposition 3.2.1 (Tail Bounds for Eigenvalues). Let Y be a random Hermitian matrix. For all
t ∈R,

P {λmax(Y ) ≥ t } ≤ inf
θ>0

e−θt E treθY , and (3.2.1)

P {λmin(Y ) ≤ t } ≤ inf
θ<0

e−θt E treθY . (3.2.2)

In words, we can control the tail probabilities of the extreme eigenvalues of a random matrix
by producing a bound for the trace of the matrix mgf. The proof of this fact parallels the classical
argument, but there is a twist.

Proof. We begin with (3.2.1). Fix a positive number θ, and observe that

P {λmax(Y ) ≥ t } =P
{

eθλmax(Y ) ≥ eθt
}
≤ e−θt Eeθλmax(Y ).

The first identity holds because a 7→ eθa is a monotone increasing function, so the event doesn’t
change under the mapping. The second relation is Markov’s inequality (2.2.1). To control the
exponential, note that

eθλmax(Y ) = eλmax(θY ) =λmax
(
eθY )≤ treθY . (3.2.3)
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The first identity holds because the maximum eigenvalue map is positive homogeneous, as stated
in (2.1.2). The second depends on the Spectral Mapping Theorem, Proposition 2.1.3. The in-
equality holds because the exponential of an Hermitian matrix is positive definite, and (2.1.5)
shows that the maximum eigenvalue of a positive-definite matrix is dominated by the trace.
Combine the latter two relations to reach

P {λmax(Y ) ≥ t } ≤ e−θt E treθY .

This inequality holds for any positive θ, so we may take an infimum to achieve the tightest pos-
sible bound.

To prove (3.2.2), we use a similar approach. Fix a negative number θ, and calculate that

P {λmin(Y ) ≤ t } =P
{

eθλmin(Y ) ≥ eθt
}
≤ e−θt Eeθλmin(Y ) = e−θt Eeλmax(θY ).

The function a 7→ eθa reverses the inequality in the event because it is monotone decreasing.
The third relation owes to the relationship (2.1.3) between minimum and maximum eigenvalues.
Finally, introduce the inequality (3.2.3) for the trace exponential and minimize over negative
θ.

In the proof of Proposition 3.2.1, it may seem crude to bound the maximum eigenvalue by
the trace. It turns out that, at most, this estimate results in a loss of a logarithmic factor. At the
same time, the maneuver allows us to exploit some amazing convexity properties of the trace
exponential.

We can adapt the proof of Proposition 3.2.1 to obtain bounds for the expectation of the max-
imum eigenvalue of a random Hermitian matrix. This argument does not have a perfect analog
in the scalar setting.

Proposition 3.2.2 (Expectation Bounds for Eigenvalues). Let Y be a random Hermitian matrix.
Then

Eλmax(Y ) ≤ inf
θ>0

1

θ
log E treθY , and (3.2.4)

Eλmin(Y ) ≥ sup
θ<0

1

θ
log E treθY . (3.2.5)

Proof. We establish the bound (3.2.4); the proof of (3.2.5) is quite similar. Fix a positive number
θ, and calculate that

Eλmax(Y ) = 1

θ
λmax(θY ) = 1

θ
logexpλmax(θY ) = 1

θ
logλmax(eθY ) ≤ 1

θ
log treθY .

The first identity holds because the maximum eigenvalue map is positive homogeneous, as stated
in (2.1.2). The third follows when we use the Spectral Mapping Theorem, Proposition 2.1.3 to
draw the exponential inside the eigenvalue map. The inequality depends on the fact (2.1.5) that
the trace of a positive-definite matrix dominates the maximum eigenvalue.

3.3 The Failure of the Matrix Mgf

We would like the use the Laplace transform bounds from Section 3.2 to study a sum of inde-
pendent random matrices. In the scalar setting, the Laplace transform method is effective for
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studying independent sums because the mgf and the cgf decompose. In the matrix case, the
situation is more subtle, and the goal of this section is to indicate where things go awry.

Consider an independent sequence {Xk } of real random variables. The mgf of the sum satis-
fies a multiplication rule:

M(
∑

k Xk )(θ) = Eexp
(∑

k θXk
)= E∏

k eθXk =∏
k EeθXk =∏

k MXk (θ). (3.3.1)

At first, we might imagine that a similar relationship holds for the matrix mgf. Consider an inde-
pendent sequence {Xk } of random Hermitian matrices. Perhaps,

M(
∑

k Xk )(θ)
?= ∏

k MXk (θ). (3.3.2)

Unfortunately, this hope shatters when we subject it to interrogation.
It is not hard to find the reason that (3.3.2) fails. Note that the identity (3.3.1) depends on

the fact that the scalar exponential converts a sum into a product. In contrast, for Hermitian
matrices,

eA+H 6= eAeH unless A and H commute.

If we introduce the trace, the situation improves somewhat:

treA+H ≤ treAeH for all Hermitian A, H . (3.3.3)

The result (3.3.3) is known as the Golden–Thompson inequality, a famous theorem from statisti-
cal physics. Unfortunately, the analogous bound may fail for three matrices:

treA+H+M 6≤ treAeH eM for certain Hermitian A, H , M .

It seems that we have reached an impasse.
What if we consider the cgf instead? The cgf of a sum of independent random variables sat-

isfies an addition rule:

Ξ(
∑

k Xk )(θ) = log Eexp
{∑

k θXk
}= log

∏
k EeθXk =∑

kΞXk (θ). (3.3.4)

The relation (3.3.4) follows when we extract the logarithm of the multiplication rule (3.3.1). This
result looks like a more promising candidate for generalization because a sum of Hermitian ma-
trices remains Hermitian. We might hope that

Ξ(
∑

k Xk )(θ)
?= ∑

kΞXk (θ).

As stated, this putative identity also fails. Nevertheless, the addition rule (3.3.4) admits a very sat-
isfactory extension to matrices. In contrast with the scalar case, the proof involves much deeper
considerations.

3.4 A Theorem of Lieb

To find the appropriate generalization of the addition rule for cgfs, we turn to the literature on
matrix analysis. Here, we discover a famous result of Elliott Lieb on the convexity properties of
the trace exponential function.
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Theorem 3.4.1 (Lieb). Fix an Hermitian matrix H with dimension d. The function

A 7−→ trexp
(

H + log(A)
)

is concave on the positive-definite cone in dimension d.

In the scalar case, the analogous function a 7→ exp(h + log(a)) is linear, so this result describes a
new type of phenomenon that emerges when we move to the matrix setting. Theorem 3.4.1 is
not easy to prove, so we must take it for granted.

Let us focus on the consequences of this remarkable result. Lieb’s Theorem is valuable to us
because the Laplace transform bounds from Section 3.2 involve the trace exponential function.
To highlight the connection, let us rephrase Theorem 3.4.1 in probabilistic terms.

Corollary 3.4.2. Let H be a fixed Hermitian matrix, and let X be a random Hermitian matrix of
the same size. Then

E trexp(H +X ) ≤ trexp
(

H + log
(
EeX ))

.

Proof. Introduce the random matrix Y = eX . Then

E trexp(H +X ) = E trexp(H + log(Y ))

≤ trexp(H + log(EY )) = trexp
(

H + log
(
EeX ))

.

The first identity follows from the definition (2.1.8) of the matrix logarithm as the functional
inverse of the matrix exponential. Theorem 3.4.1 shows that the trace function is concave in Y ,
so Jensen’s inequality (2.2.2) allows us to draw the expectation inside the function.

3.5 Subadditivity of the Matrix Cgf

We are now prepared to generalize the addition rule (3.3.4) for scalar cgfs to the matrix setting.
The following result is fundamental to our approach.

Lemma 3.5.1 (Subadditivity of Matrix Cgfs). Consider a finite sequence {Xk } of independent, ran-
dom, Hermitian matrices of the same size. Then

E trexp
(∑

k θXk
)≤ trexp

(∑
k log EeθXk

)
for θ ∈R. (3.5.1)

Equivalently,
trexp

(
Ξ(

∑
k Xk )(θ)

)≤ trexp
(∑

kΞXk (θ)
)

for θ ∈R. (3.5.2)

The parallel between the additivity rule (3.3.4) and the subadditivity rule (3.5.2) is striking.
With our level of preparation, it is easy to prove this result: We just apply the bound from Corol-
lary 3.4.2 repeatedly.

Proof. To simplify notation, we take θ = 1. Let Ek denote the expectation with respect to Xk , the
remaining random matrices held fixed. Abbreviate

Ξk := log
(
Ek eXk

)= log
(
EeXk

)
.

We may calculate that

E trexp
(∑n

k=1 Xk
)= EEn trexp

(∑n−1
k=1 Xk +Xn

)
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≤ E trexp
(∑n−1

k=1 Xk + log
(
En eXn

))
= EEn−1 trexp

(∑n−2
k=1 Xk +Xn−1 +Ξn

)
≤ EEn−2 trexp

(∑n−2
k=1 Xk +Ξn−1 +Ξn

)
. . . ≤ trexp

(∑n
k=1Ξk

)
.

We can introduce iterated expectations because of the tower property of conditional expectation.
At each step m = 1,2, . . . ,n, we invoke Corollary 3.4.2 with the fixed matrix H equal to

Hm =
m−1∑
k=1

Xk +
n∑

k=m+1
Ξk .

This argument is legitimate because Hm is independent from Xm .
The equivalent formulation (3.5.2) follows from (3.5.1) when we substitute the definition (3.1.1)

of the matrix cgf and make some algebraic simplifications.

3.6 Master Bounds for Independent Sums of Matrices

Finally, we can present some general results on the behavior of a sum of independent random
matrices. At this stage, we simply combine the Laplace transform bounds with the subadditivity
of the matrix cgf to obtain abstract inequalities. Later, we will harness properties of the sum-
mands to develop more concrete estimates that apply to specific examples of interest.

Theorem 3.6.1 (Master Bound for an Independent Sum of Matrices). Consider a finite sequence
{Xk } of independent, random, Hermitian matrices. Then

Eλmax
(∑

k Xk
)≤ inf

θ>0

1

θ
log trexp

(∑
k log EeθXk

)
, and (3.6.1)

Eλmin
(∑

k Xk
)≥ sup

θ<0

1

θ
log trexp

(∑
k log EeθXk

)
. (3.6.2)

Furthermore, for all t ∈R,

P
{
λmax

(∑
k Xk

)≥ t
}≤ inf

θ>0
e−θt trexp

(∑
k log EeθXk

)
, and (3.6.3)

P
{
λmin

(∑
k Xk

)≤ t
}≤ inf

θ<0
e−θt trexp

(∑
k log EeθXk

)
. (3.6.4)

Furthermore,

Proof. Substitute the subadditivity rule for matrix cgfs, Lemma 3.5.1, into the two matrix Laplace
transform results, Proposition 3.2.1 and Proposition 3.2.2.

In this chapter, we have focused on probability inequalities for the extreme eigenvalues of a
sum of independent random matrices. Nevertheless, these results also give information about
the spectral norm of a sum of independent, random, general matrices because we can apply
them to the Hermitian dilation of the sum. Instead of presenting a general theorem, we find it
more natural to extend the specific tail bounds to general matrices.
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3.7 Notes

This section includes some historical discussion about the results we have described in this
chapter, along with citations for the results that we have established.

3.7.1 The Matrix Laplace Transform Method

The idea of lifting the “Bernstein trick” to the matrix setting is due to two researchers in quan-
tum information theory, Rudolf Ahlswede and Andreas Winter, who were working on a problem
concerning transmission of information through a quantum channel [AW02]. Their paper con-
tains a version of the matrix Laplace transform result, Proposition 3.2.1, along with a substantial
number of related foundational ideas. Their work is one of the major inspirations for the tools
that are described in these notes.

The precise version of Proposition 3.2.1 and the proof that we present here are due to Roberto
Oliveira, from his an elegant paper [Oli10b]. The subsequent result on expectations, Proposi-
tion 3.2.2, first appeared in the paper [CGT12a].

3.7.2 Subadditivity of Cumulants

The major impediment to applying the matrix Laplace transform method is the need to produce
a bound for the trace of the matrix moment generating function (the trace mgf). This is where
all the technical difficulty in the argument resides. Ahslwede and Winter [AW02, App.] proposed
a different approach for bounding the trace mgf of an independent sum, based on a repeated
application of the Golden–Thompson inequality (3.3.3). The Ahlswede–Winter argument leads
to a cumulant bound of the form

E trexp
(∑

k Xk
)≤ d ·exp

(∑
k λmax

(
log EeXk

))
. (3.7.1)

In other words, they bound the cumulant of a sum in terms of the sum of maximum eigenval-
ues of the cumulants. There are cases where the bound (3.7.1) is equivalent with Lemma 3.5.1.
For example, the bounds coincide when each matrix Xk is identically distributed. In general,
however, the estimate (3.7.1) leads to fundamentally weaker results.

The first major technical advance beyond the original argument of Ahlswede and Winter ap-
pears in another paper [Oli10a] of Oliveira. He developed a much more effective way to de-
ploy the Golden–Thompson inequality, and he used this technique to establish a matrix ver-
sion of Freedman’s inequality [Fre75]. In the scalar setting, Freedman’s inequality extends the
Bernstein concentration inequality to martingales. Oliveira obtained the analogous extension of
Bernstein’s inequality for matrix-valued martingales. When specialized to independent sums, his
result is quite similar to the matrix Bernstein inequality, Theorem 6.1.1, apart from the precise
values of the constants. Oliveira’s method, however, does not seem to deliver the full spectrum
of matrix concentration inequalities that we discuss in these notes.

The approach we describe here, based on Lieb’s Theorem, was developed in the paper [Tro11d].
This research recognized the probabilistic content of Lieb’s Theorem, Corollary 3.4.2, and it used
this idea to establish Lemma 3.5.1, on the subadditivity of cumulants, along with the master tail
bounds from Theorem 3.6.1. Note that the two articles [Oli10a, Tro11d] are independent works.

For a detailed discussion of the benefits of Lieb’s Theorem over the Golden–Thompson in-
equality, turn to [Tro11d, §4]. In summary, to get the sharpest concentration results for random



28 CHAPTER 3. THE MATRIX LAPLACE TRANSFORM METHOD

matrices, Lieb’s theorem is indispensible. The Ahlswede–Winter approach seems to be intrinsi-
cally weaker. Oliveira’s argument has certain advantages, however, in that it extends from matri-
ces to the fully noncommutative setting [JZ12].

Subsequent research on the underpinnings of the matrix Laplace transform method has led
to a martingale version of the subadditivity of cumulants [Tro11a, Tro11c]; these works also de-
pend on Lieb’s Theorem. Another paper [GT11] shows how to use a more general result, called
the Lieb–Seiringer Theorem [LS05], to obtain upper and lower tail bounds for all eigenvalues of
a sum of independent random Hermitian matrices.

3.7.3 Noncommutative Moment Inequalities

There is a closely related, and much older, line of research on noncommutative moment in-
equalities. These results provide information about the expected trace of a power of a sum of
independent random matrices. The matrix Laplace transform method, as encapsulated in The-
orem 3.6.1, gives analogous bounds for the exponential moments.

This research originates in an important paper [LP86] of Françoise Lust-Picquard. This arti-
cle develops an extension of the Khintchine inequality for matrices. Her result concerns a sum of
fixed matrices that are modulated by independent Gaussian random variables. It shows that the
expected trace of an even power of this random matrix is controlled by its variance. Subsequent
papers have refined the noncommutative Khintchine inequality to its optimal form [LPP91, Buc01,
Buc05].

In recent years, researchers have generalized other moment inequalities for sums of scalar
random variables to matrices (and beyond). For instance, the Rosenthal inequality, concern-
ing a sum of independent zero-mean random variables, admits a matrix version [JZ11, MJC+12,
CGT12a]. See the paper [JX05] for a good overview of some other noncommutative moment
inequalities.

Finally, and tangentially, we mention that matrix moments and cumulants also play a central
role in the theory of free probability [Spe11].

3.7.4 Quantum Statistical Mechanics

A curious feature of the theory of matrix concentration inequalities is that the most powerful
tools come from the mathematical theory of quantum statistical mechanics. This field studies
the bulk statistical properties of interacting quantum systems, and it would seem quite distant
from the field of random matrix theory. The connection between these two areas has emerged
because of research on quantum information theory, which studies how information can be en-
coded, operated upon, and transmitted via quantum mechanical systems.

The Golden–Thompson inequality is a major result from quantum statistical mechanics. For
a detailed treatment from the perspective of matrix theory, see Bhatia’s book [Bha97, Sec. IX.3].
The fact that the Golden–Thompson inequality fails for three matrices can be obtained from sim-
ple examples, such as combinations of Pauli spin matrices [Bha97, Exer. IX.8.4]. For an account
with more physical content, see the book of Thirring [Thi02].

Lieb’s Theorem [Lie73, Thm. 6] was first established in an important paper of Elliott Lieb on
the convexity of trace functions. His argument is difficult. Subsequent work has led to more
direct routes to the result. Epstein provides an alternative proof of Theorem 3.4.1 in [Eps73,
Sec. II], and Ruskai offers a simplified account of Epstein’s argument in [Rus02, Rus05]. The
note [Tro11b] shows how to derive Lieb’s theorem from the joint convexity of quantum relative
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entropy [Lin74, Lem. 2]. The latter approach is advantageous because the joint convexity result
admits several elegant, conceptual proofs [Pet86, Eff09].





CHAPTER 4
Matrix Gaussian Series & Matrix

Rademacher Series

In this chapter, we present our first set of matrix concentration inequalities. These results pro-
vide spectral information about a sum of fixed matrices, modulated by independent scalar ran-
dom variables. This type of formulation is surprisingly versatile, and it already encompasses a
range of interesting examples.

To be more precise about our scope, let us introduce the concept of a matrix Gaussian series.
Consider a finite sequence {Ak } of fixed Hermitian matrices with the same dimension, along
with a finite sequence {γk } of independent standard normal random variables. We will analyze
the extreme eigenvalues of the random matrix

Y =∑
k γk Ak .

As an example, we can express a Wigner matrix, one of the classical random matrices, in this
fashion. The real value of this perspective, however, is that we can use matrix Gaussian series to
represent many other kinds of random matrices formed from Gaussian random variables. These
models allow us to attack problems that classical methods do not handle gracefully. For instance,
we can study a symmetric Toeplitz matrix with Gaussian entries.

We do not need to limit our attention to the Hermitian case. This chapter also contains
bounds on the spectral norm of a Gaussian series with general matrix coefficients. Remarkably,
these results follow as an immediate corollary of the Hermitian theory. This theory brings rect-
angular matrices based on Gaussian variables within our purview.

Furthermore, similar ideas allow us to treat a matrix Rademacher series, a sum of fixed ma-
trices modulated by random signs. (Recall that a Rademacher random variable takes values in
{±1} with equal probability.) The results in this case are almost identical with the results for ma-
trix Gaussian series, but they allow us to consider new problems. For instance, we can study the
expected spectral norm of a fixed real matrix after flipping the signs of the entries at random.

We begin, in §§4.1–4.2, with an overview of our results for matrix Gaussian series; very similar
results also hold for matrix Rademacher series. Afterward, in §4.3, we discuss the accuracy of the

31
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theoretical bounds. The subsequent sections, §§4.4–4.6, describe what the matrix concentration
inequalities tell us about some classical and not-so-classical examples of random matrices. Sec-
tion 4.7 includes an overview of a more substantial application in combinatorial optimization.
The final part of the chapter, §§4.8–4.9, contains detailed proofs of the bounds. We conclude
with bibliographical notes.

4.1 Series with Hermitian Matrices

Consider a finite sequence {ak } of real numbers and a finite sequence {γk } of independent stan-
dard normal random variables. A routine invocation of the scalar Laplace transform method
demonstrates that

P
{∑

k γk ak ≥ t
}≤ e−t 2/2σ2

where σ2 =∑
k a2

k . (4.1.1)

This result indicates that the upper tail of a scalar Gaussian series behaves like the upper tail of a
single Gaussian random variable with varianceσ2. It turns out that the inequality (4.1.1) extends
directly to the matrix setting.

Theorem 4.1.1 (Matrix Gaussian and Rademacher Series: The Hermitian Case). Consider a finite
sequence {Ak } of fixed Hermitian matrices with dimension d, and let {γk } be a finite sequence of
independent standard normal variables. Form the matrix Gaussian series

Y =∑
k γk Ak .

Compute the variance parameter

σ2 =σ2(Y ) = ∥∥E(
Y 2)∥∥ . (4.1.2)

Then

Eλmax (Y ) ≤
√

2σ2 logd . (4.1.3)

Furthermore, for all t ≥ 0,

P {λmax (Y ) ≥ t } ≤ d e−t 2/2σ2
. (4.1.4)

The same bounds hold when we replace {γk } by a finite sequence of independent Rademacher
random variables.

The proof of this result appears below in §4.8.

4.1.1 Discussion

Let us take a moment to discuss the content of Theorem 4.1.1. The main message is that the ex-
pectation of the maximum eigenvalue of Y is controlled by the matrix varianceσ2. Furthermore,
the maximum eigenvalue of Y has a Gaussian tail whose decay rate depends on σ2.

We can obtain a more explicit expression for the variance (4.1.2) in terms of the coefficients
in the Gaussian series. Simply compute that

σ2(Y ) = ∥∥E(
Y 2)∥∥=

∥∥∥E(∑
j ,k γ jγk A j Ak

)∥∥∥= ∥∥∑
k A2

k

∥∥ . (4.1.5)
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The second identity follows because {γk } is an independent family. As in the scalar case (4.1.1),
the variance is the sum of the squares of the coefficients.

A new feature of the bound (4.1.4) is the dimensional factor d . When d = 1, this factor van-
ishes, and the matrix bound coincides with the scalar result (4.1.1). When d = 1, the expectation
bound (4.1.3) also produces a sharp result, namely Eλmax(Y ) ≤ 0. In this case, at least, we have
lost nothing by lifting the Laplace transform method to matrices. In §4.3, we discuss the extent
to which Theorem 4.1.1 provides accurate predictions.

Finally, the reader may be concerned about the lack of explicit inequalities for the minimum
eigenvalue λmin(Y ). But these bounds are consequences of the results for the maximum eigen-
value because −Y has the same distribution as Y . Therefore,

Eλmin(Y ) = Eλmin(−Y ) =−Eλmax(Y ) ≥−
√

2σ2 logd . (4.1.6)

The second identity holds because of the relationship (2.1.3) between minimum and maximum
eigenvalues. Similar considerations lead to a lower tail bound for the minimum eigenvalue:

P {λmin(Y ) ≤−t } ≤ d e−t 2/2σ2
for t ≥ 0. (4.1.7)

This result follows directly from the upper tail bound (4.1.4).

4.2 Series with General Matrices

Most of the inequalities in these notes can be adapted to study the spectral norm of a sum of
general random matrices. Although this problem might seem to have a character different from
the Hermitian case, the results for general matrices are an easy formal consequence of the theory
for Hermitian matrices. Here is the extension of Theorem 4.1.1.

Corollary 4.2.1 (Matrix Gaussian and Rademacher Series: The General Case). Consider a finite
sequence {Bk } of fixed complex matrices with dimensions d1 ×d2, and let {γk } be a finite sequence
of independent standard normal variables. Form the matrix Gaussian series

Z =∑
k γk Bk .

Compute the variance parameter

σ2 =σ2(Z ) = max
{∥∥E(

Z Z ∗)∥∥ ,
∥∥E(

Z ∗Z
)∥∥}

. (4.2.1)

Then

E‖Z ‖ ≤
√

2σ2 log(d1 +d2). (4.2.2)

Furthermore, for all t ≥ 0,

P {‖Z ‖ ≥ t } ≤ (d1 +d2)e−t 2/2σ2
. (4.2.3)

The same bounds hold when we replace {γk } by a finite sequence of independent Rademacher
random variables.

The proof of Corollary 4.2.1 appears below in §4.9.
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4.2.1 Discussion

The results for rectangular matrices are similar with the results in Theorem 4.1.1 for Hermitian
matrices, so many of the same intuitions apply. Still, the differences deserve some comment.

The most salient change occurs in the definition (4.2.1) of the variance parameter. The vari-
ance has this particular form because a general matrix has two squares associated with it, and
we can omit neither one. Note that, when Z is Hermitian, the general variance (4.2.1) reduces to
the Hermitian variance (4.1.2), so the new definition extends the previous one.

To represent the variance in terms of the coefficient matrices, we simply calculate that

σ2(Z ) = max
{∥∥E(

Z Z ∗)∥∥ ,
∥∥E(

Z ∗Z
)∥∥}

= max
{∥∥∥E(∑

j ,k γ jγk B j B∗
k

)∥∥∥ ,
∥∥∥E(∑

j ,k γ jγk B∗
j Bk

)∥∥∥}
= max

{∥∥∑
k Bk B∗

k

∥∥ ,
∥∥∑

k B∗
k Bk

∥∥}
.

(4.2.4)

The expression (4.2.4) provides a natural formulation of the “sum of squares” of a sequence of
general matrices.

The dimensional factor d1 +d2 in Corollary 4.2.1 apparently differs from the factor d that
appears in Theorem 4.1.1. Nevertheless, properly interpreted, the two results coincide: Observe
that we must bound the maximum and minimum eigenvalues of a Hermitian Gaussian series Y
to control its spectral norm. Thus,

P {‖Y ‖ ≥ t } ≤ 2d e−t 2/2σ2
. (4.2.5)

This inequality follows when we apply the union bound to the upper (4.1.4) and lower (4.1.7) tail
bounds. The dimensional factor d1 +d2 in Corollary 4.2.1 matches the factor 2d in (4.2.5). We
conclude that it is appropriate for both dimensions of the general matrix to play a role.

4.3 Are the Bounds Sharp?

One may wonder whether Theorem 4.1.1 and Corollary 4.2.1 provide accurate information about
the behavior of a matrix Gaussian series. The answer turns out to be complicated, so we must
limit ourselves to a summary of facts.

First, we consider the bound (4.2.2) for the expectation of a Gaussian series Z taking d1 ×d2

matrix values:

E‖Z ‖ ≤
√

2σ2 log(d1 +d2),

where σ2 is defined in (4.2.1). Since the upper tail of ‖Z ‖ decays so quickly, it is easy to believe
(and true!) that

E‖Z ‖2 <≈ 2σ2 log(d1 +d2).

On the other hand, since the spectral norm is convex, Jensen’s inequality (2.2.2) shows that

E(‖Z ‖2) = Emax
{∥∥Z Z ∗∥∥,

∥∥Z ∗Z
∥∥}≥ max

{∥∥E(Z Z ∗)
∥∥,

∥∥E(Z ∗Z )
∥∥}=σ2.

The first identity holds because ‖Z ‖2 = ‖Z Z ∗‖ = ‖Z ∗Z ‖. The final relation depends on the cal-
culation (4.2.4). In summary,

σ2 ≤ E(‖Z ‖2) <≈ 2σ2 log(d1 +d2). (4.3.1)
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We see that the matrix variance σ2 defined in (4.2.1) is roughly the correct scale for E(‖Z ‖2). In
general, it is a challenging problem to identify the expected norm of a Gaussian series, so the
estimate (4.3.1) is already a significant achievement.

At this point, we might ask whether either side of the inequality (4.3.1) can be tightened. The
answer is negative, unless we have additional information beyond the variance σ2. There are
examples of matrix Gaussian series where the left-hand inequality is correct up to constant fac-
tors, while there are other examples that saturate the right-hand inequality. Later in this chapter,
when we turn to applications, we will encounter both of these cases (and more). In Chapter 7,
we will show how to moderate the dimensional factor, but we cannot remove it entirely using
current techniques.

What about the tail bound (4.2.3) for the norm of the Gaussian series? Here, our results are
less impressive. It turns out that the large-deviation behavior of a Gaussian series is controlled
by a different parameter σ2∗ called the weak variance. There are cases where the weak variance
σ2∗ is substantially smaller than the variance σ2, which means that the tail bound (4.2.3) can
badly overestimate the tail probability when the level t is large. Fortunately, this problem is
less pronounced with the matrix Chernoff inequalities of Chapter 5 and the matrix Bernstein
inequalities of Chapter 6.

In short, the primary value of matrix concentration inequalities inheres in the estimates that
they provide for the expectation of the norm (maximum eigenvalue, minimum eigenvalue) of a
random matrix. In many cases, they also provide reasonable information about the tail decay,
but there are other situations where the tail bounds are depressingly feeble.

4.4 Example: Some Gaussian Matrices

Let us begin by applying our tools to two types of Gaussian matrices that have been studied ex-
tensively in the classical literature on random matrix theory. In these cases, precise information
about the eigenvalue distribution is available, which provides a benchmark for assessing our re-
sults. We find that bounds based on Theorem 4.1.1 and Corollary 4.2.1 lead to very reasonable
estimates but they are not sharp. We can reach similar conclusions for matrices with indepen-
dent Rademacher entries.

4.4.1 Gaussian Wigner Matrices

We begin with a family of Gaussian Wigner matrices. A d × d matrix Wd from this ensemble
is real-symmetric with a zero diagonal; the entries above the diagonal are independent normal
variables with mean zero and variance one:

Wd =


0 γ12 γ13 . . . γ1d

γ12 0 γ23 . . . γ2d

γ13 γ23 0 γ3d
...

...
. . .

...
γ1d γ2d . . . γd−1,d 0


where {γ j k : 1 ≤ j < k ≤ d} is an independent family of standard normal variables. We can repre-
sent this matrix more compactly as a Gaussian series:

W = ∑
1≤ j<k≤d

γ j k (E j k +Ek j ) (4.4.1)
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It is known that
1p
d
λmax(Wd ) −→ 2 almost surely as d →∞. (4.4.2)

To make (4.4.2) precise, we assume that {Wd } is a sequence of independent Gaussian Wigner
matrices, indexed by the dimension d .

Theorem 4.1.1 provides a simple way to bound the maximum eigenvalue of a Gaussian Wigner
matrix. We just need to compute the variance σ2(Wd ). To that end, note that the sum of the
squared coefficient matrices takes the form∑

1≤ j<k≤d
(E j k +Ek j )2 = ∑

1≤ j<k≤d
(E j j +Ekk ) = (d −1)Id .

We have used the fact that E j k Ek j = E j j , while E j k E j k = 0 because the limits of the summation
ensure that j 6= k. We see that

σ2(Wd ) = ‖(d −1)Id‖ = d −1.

The bound (4.1.3) for the expectation of the maximum eigenvalue gives

Eλmax(W ) ≤
√

2(d −1)logd . (4.4.3)

In conclusion, our techniques overestimate the maximum eigenvalue of Wd by a factor of ap-
proximately

√
0.5logd . Our result (4.4.3) is not perfect, but it only takes two lines of work. In

contrast, the classical result (4.4.2) depends on a long moment calculation that involves chal-
lenging combinatorial arguments.

4.4.2 Rectangular Gaussian Matrices

Next, we consider a d1 ×d2 rectangular matrix with independent standard normal entries:

G =


γ11 γ12 γ13 . . . γ1d2

γ21 γ22 γ23 . . . γ2d2
...

...
. . .

...
γd11 γd12 γd13 . . . γd1d2


where {γ j k } is an independent family of standard normal variables. We can express this matrix
efficiently using a Gaussian series:

G =
d1∑

j=1

d2∑
k=1

γ j k E j k ,

For this matrix, the literature contains an elegant estimate of the form

E‖G‖ ≤
√

d1 +
√

d2. (4.4.4)

The inequality (4.4.4) is saturated when d1 and d2 tend to infinity with the ratio d1/d2 fixed.
Corollary 4.2.1 yields another bound on the expected norm of the matrix G . In order to com-

pute the variance σ2(G), we form the sums of squared coefficients:

d1∑
j=1

d2∑
k=1

E j k E∗
j k =

d1∑
j=1

d2∑
k=1

E j j = d2 Id1 , and

d1∑
j=1

d2∑
k=1

E∗
j k E j k =

d1∑
j=1

d2∑
k=1

Ekk = d1 Id2 .
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The matrix variance (4.2.1) is

σ2(G) = max
{∥∥d2 Id1

∥∥ ,
∥∥d1 Id2

∥∥}= max{d1, d2}.

We conclude that

E‖G‖ ≤
√

2max{d1, d2} log(d1 +d2). (4.4.5)

The leading term is roughly correct because√
d1 +

√
d2 ≤

√
2max{d1, d2} ≤p

2
(√

d1 +
√

d2

)
.

The logarithmic factor in (4.4.5) does not belong, but it is rather small in comparison with the
leading terms. Once again, we have produced a good result with a minimal amount of effort. In
contrast, the proof of (4.4.4) depends on a miraculous application of a comparison theorem for
Gaussian processes.

4.5 Example: Matrices with Randomly Signed Entries

Next, we turn to an example that superficially appears similar to the matrix discussed in §4.4.2
but is much less understood. Consider a fixed d1 ×d2 matrix B with real entries, and let {ε j k } be
an independent family of Rademacher random variables. Consider the d1 ×d2 random matrix

B± =
d1∑

j=1

d2∑
k=1

ε j k b j k E j k

In other words, we obtain the random matrix B± be randomly flipping the sign of each entry of
B . The literature contains the following bound on the expected norm of this matrix:

E‖B±‖ ≤ Const ·σ · log1/4(min{d1, d2}), (4.5.1)

where the leading factor
σ= max

{
max j

∥∥b j :
∥∥, maxk ‖b:k‖

}
. (4.5.2)

We have written b j : for the j th row of B and b:k for the kth column of B . In other words, the
expected norm of a matrix with randomly signed entries is comparable with the maximum Eu-
clidean norm achieved by any row or column. There are cases where the bound (4.5.1) admits a
matching lower bound.

Corollary 4.2.1 leads to a quick proof of a slightly weaker result. We simply need to compute
the variance σ2(B±). To that end, note that

d1∑
j=1

d2∑
k=1

(b j k E j k )(b j k E j k )∗ =
d1∑

j=1

(
d2∑

k=1

∣∣b j k
∣∣2

)
E j j =

‖b1:‖2

. . . ∥∥bd1:
∥∥2

 .

Similarly,

d1∑
j=1

d2∑
k=1

(b j k E j k )∗(b j k E j k ) =
d2∑

k=1

(
d1∑

j=1

∣∣b j k
∣∣2

)
Ekk =

‖b:1‖2

. . . ∥∥b:d2

∥∥2

 .



38 CHAPTER 4. MATRIX GAUSSIAN SERIES & MATRIX RADEMACHER SERIES

Therefore, the variance (4.2.1) is

σ2(B±) = max

{∥∥∥∥∥ d1∑
j=1

d2∑
k=1

(b j k E j k )(b j k E j k )∗
∥∥∥∥∥ ,

∥∥∥∥∥ d1∑
j=1

d2∑
k=1

(b j k E j k )∗(b j k E j k )

∥∥∥∥∥
}

= max
{

max j
∥∥b j :

∥∥2, maxk
∥∥b:k

∥∥2
}

.

We see that σ(B±) coincides with σ, the leading term (4.5.2) in the established estimate (4.5.1)!
Now, Corollary 4.2.1 delivers the bound

E‖B±‖ ≤
p

2 ·σ(B±) · log1/2(d1 +d2). (4.5.3)

Observe that the estimate (4.5.3) for the norm matches the correct bound (4.5.1) up to a factor
of log1/4(max{d1, d2}). Yet again, we obtain a result that is respectably close to the optimal one,
even though it is not quite sharp.

The main advantage of using results like Corollary 4.2.1 to analyze this random matrix is
that we can obtain a good result with a minimal amount of arithmetic. The analysis that leads
to (4.5.1) involves a long sequence of combinatorial arguments.

4.6 Example: Gaussian Toeplitz Matrices

Matrix concentration inequalities offer very effective tools for analyzing random matrices that
involve dependency structures that are more complicated than the classical ensembles. In this
section, we consider Gaussian Toeplitz matrices, which have applications in signal processing.

We construct an (unsymmetric) d ×d Gaussian Toeplitz matrix R by populating the first row
and first column of the matrix with independent standard normal variables; the entries along
each diagonal of the matrix take the same value:

Rd =



γ0 γ1 . . . γd−1

γ−1 γ0 γ1

γ−1 γ0 γ1
...

...
. . .

. . .
. . .

γ−1 γ0 γ1

γ−(d−1) . . . γ−1 γ0


where {γk } is a family of independent standard normal variables. As usual, we represent the
Gaussian Toeplitz matrix as a matrix Gaussian series:

Rd = γ0 I+
d−1∑
k=1

γk Sk +
d−1∑
k=1

γ−k (Sk )∗, (4.6.1)

where S is the shift-up operator acting on d-dimensional column vectors:

S =


0 1

0 1
. . .

. . .
0 1

0

 .
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It follows that Sk shifts a vector up by k places, introducing zeros at the bottom, while (Sk )∗ shifts
a vector down by k places, introducing zeros at the top.

We can analyze this example quickly using Corollary 4.2.1. First, note that

(Sk )(Sk )∗ =
d−k∑
j=1

E j j and (Sk )∗(Sk ) =
d∑

j=k+1
E j j .

To obtain the variance parameter (4.2.1), we calculate the sum of the “squares” of the coefficient
matrices that appear in (4.6.1). In this instance, the two terms in the matrix variance are the
same. We find that

I2 +
d−1∑
k=1

(Sk )(Sk )∗+
d−1∑
k=1

(Sk )∗(Sk ) = I+
d−1∑
k=1

[
d−k∑
j=1

E j j +
d∑

j=k+1
E j j

]

=
d∑

j=1

[
1+

d− j∑
k=1

1+
j−1∑
k=1

1

]
E j j =

d∑
j=1

(1+ (d − j )+ ( j −1))E j j = d Id . (4.6.2)

In the second line, we (carefully) switch the order of summation and rewrite the identity matrix
as a sum of diagonal matrix units. We reach

σ2(Rd ) = ‖d Id‖ = d .

An application of Corollary 4.2.1 leads us to conclude that

E‖Rd‖ ≤
√

2d log(2d). (4.6.3)

It turns out that the inequality (4.6.3) is correct up to the precise value of the constant, which
does not seem to be known. In other words,

const ≤ E‖Rd‖√
d logd

≤ Const as d →∞.

Here, we take {Rd } to be a sequence of unsymmetric Gaussian Toeplitz matrices, indexed by the
ambient dimension d .

4.7 Application: Rounding for the MaxQP Relaxation

Our final application involves a more substantial question in combinatorial optimization. One
of the methods that has been proposed for solving a certain optimization problem leads to a
matrix Rademacher series, and the analysis of this method requires the spectral norm bounds
from Corollary 4.2.1. A detailed treatment would take us too far afield, so we just sketch the
context and indicate how the random matrix arises.

There are many types of optimization problems that are computationally difficult to solve ex-
actly. One approach to solving these problems is to enlarge the constraint set in such a way that
the problem becomes tractable, a process called “relaxation.” After solving the relaxed problem,
we can “round” the solution to ensure that it falls in the constraint set for the original problem. If
we can perform the rounding step without changing the value of the objective function substan-
tially, then the rounded solution is also a decent solution to the original optimization problem.
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One difficult class of optimization problems involves maximizing a quadratic form subject
to a set of quadratic constraints and a spectral norm constraint. This problem is referred to as
MAXQP. The desired solution Z to this problem is a d1 ×d2 matrix. The solution needs to satisfy
several different requirements, but we focus on the condition that ‖Z ‖ ≤ 1.

There is a natural relaxation of the MAXQP problem that has been studied for the last decade
or so. When we solve the relaxation, we obtain a family {Bk : k = 1,2, . . . ,n} of d1 ×d2 matrices
that satisfy the constraints

n∑
k=1

Bk B∗
k 4 Id1 and

n∑
k=1

B∗
k Bk 4 Id2 .

In fact, these two bounds are part of the specification of the relaxed problem. To round the family
of matrices back to a solution Y of the original problem, we form the random matrix

Z =α
n∑

k=1
εk Bk ,

where {εk : k = 1, . . . ,n} is a family of independent Rademacher random variables. The scaling
factor α> 0 can be adjusted to guarantee that the norm constraint holds with high probability.

What is the expected norm of Z ? Corollary 4.2.1 yields

E‖Z ‖ ≤
√

2σ2(Z ) log(d1 +d2).

Here, the variance parameter satisfies

σ2(Z ) =α2 max

{∥∥∥∥∥ n∑
k=1

Bk B∗
k

∥∥∥∥∥ ,

∥∥∥∥∥ n∑
k=1

B∗
k Bk

∥∥∥∥∥
}
≤α2,

owing to the properties of the matrices B1, . . . ,Bn . It follows that the scaling parameter α should
satisfy

α2 = 1

2log(d1 +d2)

to ensure that E‖Z ‖ ≤ 1. For this choice ofα, the rounded solution Z observes the spectral norm
constraint on average.

The important fact here is that the scaling parameter α is usually small as compared with
the other parameters of the problem (d1,d2, n, and so forth). Therefore, the scaling does not
have a massive effect on the value of the objective function. Ultimately, this approach leads to a
technique for solving the MAXQP problem that produces a feasible point whose objective value
is within a factor of

√
2log(d1 +d2) of the maximum objective value possible.

4.8 Proof of Bounds for Hermitian Matrix Series

We continue with the proof that matrix Gaussian series exhibit the behavior described in Theo-
rem 4.1.1. Afterward, we show how to adapt the argument to address matrix Rademacher series.
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4.8.1 Hermitian Gaussian Series

Our main tool is the Theorem 3.6.1, the set of master bounds for independent sums. To use this
result, we must identify the cgf of a fixed matrix modulated by a Gaussian random variable.

Lemma 4.8.1 (Gaussian × Matrix: Mgf and Cgf). Suppose that A is a fixed Hermitian matrix, and
let γ be a standard normal random variable. Then

EeγθA = eθ
2 A2/2 and log EeγθA = θ2

2
A2 for θ ∈R.

Proof. We may assume θ = 1 by absorbing θ into the matrix A. It is well known that the moments
of a standard normal variable satisfy

E(γ2p+1) = 0 and E(γ2p ) = (2p)!

p !2p for p = 0,1,2, . . . .

The formula for the odd moments holds because a standard normal variable is symmetric. One
way to establish the formula for the even moments is to use integration by parts to obtain a
recursion for the (2p)th moment in terms of the (2p −2)th moment.

Therefore, the matrix mgf satisfies

EeγA = I+
∞∑

p=1

E(γ2p )A2p

(2p)!
= I+

∞∑
p=1

(A2/2)p

p !
= eA2/2.

The first identity holds because the odd terms in the series vanish. To compute the cgf, we extract
the logarithm of the mgf and recall (2.1.8), which states that the matrix logarithm is the functional
inverse of the matrix exponential.

The results for the maximum and minimum eigenvalues of a matrix Gaussian series follow
easily.

Proof of Theorem 4.1.1: Gaussian Case. Consider a finite sequence {Ak } of Hermitian matrices,
and let {γk } be a finite sequence of independent standard normal variables. Define the matrix
Gaussian series

Y =∑
k γk Ak .

We begin with the upper bound (4.1.3) for Eλmax(Y ). The master expectation bound, relation (3.6.1)
from Theorem 3.6.1, implies that

Eλmax(Y ) ≤ inf
θ>0

1

θ
log E trexp

(∑
k log EeγkθAk

)
= inf
θ>0

1

θ
log trexp

(
θ2

2

∑
k A2

k

)
≤ inf
θ>0

1

θ
log

[
d λmax

(
exp

(
θ2

2

∑
k A2

k

))]
= inf
θ>0

1

θ
log

[
d exp

(
θ2

2
λmax

(∑
k A2

k

))]= inf
θ>0

1

θ

[
logd + θ2σ2

2

]
.

The second line follows when we introduce the cgf from Lemma 4.8.1. To reach the third in-
equality, we bound the trace by the dimension times the maximum eigenvalue. The fourth line
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is the Spectral Mapping Theorem, Proposition 2.1.3. Identify the variance parameter (4.1.2) in
the exponent. The infimum is attained at θ =

√
2σ−2 logd , which leads to (4.1.3).

Next, we turn to the proof of the upper tail bound (4.1.4) for λmax(Y ). Invoke the master tail
bound, relation (3.6.3) from Theorem 3.6.1, and calculate that

P {λmax(Y ) ≤ t } ≤ inf
θ>0

e−θt trexp
(∑

k log EeγkθAk
)

= inf
θ>0

e−θt trexp

(
θ2

2

∑
k A2

k

)
≤ inf
θ>0

e−θt ·d exp

(
θ2

2
λmax

(∑
k A2

k

))= d inf
θ>0

e−θt+θ2σ2/2.

The steps here are the same as in the previous calculation. The infimum is achieved at θ = t/σ2,
which yields (4.1.4).

4.8.2 Hermitian Rademacher Series

The results for matrix Rademacher series involve arguments closely related to the proofs for ma-
trix Gaussian series, but we require one additional piece of reasoning to obtain the simplest re-
sults. First, let us compute bounds for the matrix mgf and cgf of a Hermitian matrix modulated
by a Rademacher random variable.

Lemma 4.8.2 (Rademacher × Matrix: Mgf and Cgf). Suppose that A is a fixed Hermitian matrix,
and let ε be a Rademacher random variable. Then

EeεθA 4 eθ
2 A2/2 and log EeεθA 4

θ2

2
A2 for θ ∈R.

Proof. First, we establish a scalar inequality. Comparing Taylor series,

cosh(a) =
∞∑

p=0

a2p

(2p)!
≤

∞∑
p=0

a2p

2p p !
= ea2/2 for a ∈R. (4.8.1)

The inequality holds because (2p)! ≥ (2p)(2p −2) · · · (4)(2) = 2p p !.
To compute the matrix mgf, we may assume θ = 1. By direct calculation,

EeεA = 1

2
eA + 1

2
e−A = cosh(A)4 eA2/2.

The semidefinite bound follows when we apply the Transfer Rule (2.1.6) to the inequality (4.8.1).
To determine the matrix cgf, observe that

log EeεA = logcosh(A)4
1

2
A2.

The semidefinite bound follows when we apply the Transfer Rule (2.1.6) to the bound logcosh(a) ≤
a2/2 for a ∈R, which is a consequence of (4.8.1).

We are prepared to develop probability inequalities for the extreme eigenvalues of a Rademacher
series with matrix coefficients.
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Proof of Theorem 4.1.1: Rademacher Case. Consider a finite sequence {Ak } of Hermitian matri-
ces, and let {εk } be a finite sequence of independent standard normal variables. Define the ma-
trix Rademacher series

Y =∑
k εk Ak .

The bounds for the extreme eigenvalues of Y follow from an argument almost identical with the
proof in the Gaussian case. The only point that requires justification is the inequality

trexp
(∑

k log EeεkθAk
)
≤ trexp

(
θ2

2

∑
k A2

k

)
.

To obtain this result, we introduce the semidefinite bound, Lemma 4.8.2, for the Rademacher
cgf into the trace exponential. The left-hand side increases after this substitution because of
the fact (2.1.7) that the trace exponential function is monotone with respect to the semidefinite
order.

4.9 Proof of Bounds for Rectangular Matrix Series

Next, we consider a series with rectangular matrix coefficients modulated by independent Gaus-
sian or Rademacher random variables. The bounds for the norm of a rectangular series follow
instantly from the the bounds for the norm of an Hermitian series because of a formal device:
We simply apply the Hermitian results to the Hermitian dilation (2.1.11) of the series.

Proof of Corollary 4.2.1. Consider a finite sequence {Bk } of d1×d2 complex matrices, and let {ξk }
be a finite sequence of independent random variables, either standard normal or Rademacher.

Recall from Definition 2.1.5 that the Hermitian dilation is the map

H : B 7−→
[

0 B
B∗ 0

]
.

This leads us to form the two series

Z =∑
k ξk Bk and Y =H (Z ).

To analyze ‖Z ‖, we wish to invoke Theorem 4.1.1. To make this step, we apply the fact (2.1.13)
that the Hermitian dilation preserves spectral information:

‖Z ‖ =λmax(H (Z )) =λmax(Y ).

Therefore, bounds on λmax(Y ) deliver bounds on ‖Z ‖. To use these results, we must express the
variance (4.1.2) of the random Hermitian matrix Y in terms of the general matrix Z . Observe
that

σ2(Y ) = ∥∥E(Y 2)
∥∥= ∥∥E(

H (Z )2)∥∥=
∥∥∥∥E[

Z Z ∗ 0
0 Z ∗Z

]∥∥∥∥
=

∥∥∥∥[
E(Z Z ∗) 0

0 E(Z ∗Z )

]∥∥∥∥= max
{∥∥E(Z Z ∗)

∥∥,
∥∥E(Z ∗Z )

∥∥}=σ2(Z ).

The third relation is the identity (2.1.12) for the square of the Hermitian dilation. The penulti-
mate equation holds because the norm of a block-diagonal matrix is the maximum norm of any
diagonal block. We obtain the formula (4.2.1) for the variance of the matrix Z .

We are, finally, prepared to apply Theorem 4.1.1, whose conclusions lead to the statement of
Corollary 4.2.1.
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4.10 Notes

The material in this chapter is, perhaps, more firmly established than anything else in these
lecture notes. We give an overview of research related to matrix Gaussian series, along with ref-
erences for the specific random matrices that we have analyzed.

4.10.1 Matrix Gaussian and Rademacher Series

The main results, Theorem 4.1.1 and Corollary 4.2.1, have an interesting history. In the precise
form stated here, these two results first appeared in [Tro11d], but we can trace them back more
than two decades.

In his work [Oli10b, Thm. 1], Oliveira established the mgf bounds, Lemma 4.8.1 and Lemma 4.8.2.
He also developed an ingenious improvement on the arguments of Ahlswede and Winter [AW02,
App.] that gives a bound similar with Theorem 4.1.1. The constants in Oliveira’s result are a bit
worse, but the dependence on the dimension is sometimes better. We do not believe that the
original approach of Ahlswede–Winter can deliver any of these results.

It turns out that Theorem 4.1.1 is roughly comparable with the noncommutative Khintchine
inequality [LP86]. The noncommutative Khintchine inequality provides a bound for the ex-
pected trace of an even power of a matrix Gaussian series (or a matrix Rademacher series) in
terms of the variance of the series. The sharpest forms [LPP91, Buc01, Buc05] are slightly more
powerful than Theorem 4.1.1. Unfortunately, established proofs of the noncommutative Khint-
chine inequality are abstract or difficult or both. Recently, the paper [MJC+12] propounded an
elementary proof, based on Stein’s method of exchangeable pairs [Ste72, Cha07].

For a detailed exploration of the relationships between matrix concentration inequalities and
noncommutative moment inequalities, see [Tro11d, Sec. 4]. This discussion also indicates the
extent to which Theorem 4.1.1 and its relatives are sharp.

Recently, there have been some minor improvements to the dimensional factor that appears
in Theorem 4.1.1. We discuss these results and give citations in Chapter 7.

4.10.2 Application to Random Matrices

It has also been known for a long time that results such as Theorem 4.1.1 can be used to study
random matrices.

We believe that the functional analysis literature contains the earliest applications of ma-
trix concentration results to analyze random matrices. In a well-known paper [Rud99], Mark
Rudelson—acting on a suggestion of Gilles Pisier—showed how to use the noncommutative
Khintchine inequality to study a problem connected with covariance estimation. This work led
to a significant amount of activity, in which researchers used variants of Rudelson’s argument to
prove other types of results. See, for example, the paper [RV07]. This approach is very powerful,
but it tends to require some effort to use.

In parallel, other researchers in noncommutative probability theory also came to recognize
the power of noncommutative moment inequalities in random matrix theory. See the paper [JX08]
for a specific example. Unfortunately, this literature is technically formidable, which makes it
difficult for outsiders to appreciate its achievements.

The work [AW02] of Ahslwede and Winter led to first “finished” matrix concentration inequal-
ities, of the type that we describe in these lecture notes. For the first few years after this work,
most of the applications concerned quantum information theory and random graph theory. The
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paper [Gro11] introduced the Ahslwede–Winter method to researchers in mathematical signal
processing and statistics, and it served to popularize matrix concentration bounds.

At this point, the available matrix concentration inequalities were still significantly subop-
timal. The main advances, in [Oli10a, Tro11d], led to nearly optimal matrix concentration re-
sults of the kind that we present in these lecture notes. These results allow researchers to obtain
reasonably accurate analyses of a wide variety of random matrices with very little effort. New
applications of these ideas now appear on a weekly basis.

4.10.3 Wigner and Marčenko–Pastur

Wigner matrices first emerged in the literature on nuclear physics, where they were used to
model the Hamiltonians of heavy atoms [Meh04]. Wigner showed that the limiting spectral dis-
tribution of a Wigner matrix follows the semicircle law; see [Tao12, §2.4] for an overview of the
proof. The Bai–Yin law [BY93] states that, up to scaling, the maximum eigenvalue of a Wigner
matrix converges almost surely to two. See [Tao12, §2.3] for a detailed treatment. The analysis
that we present here, using Theorem 4.1.1, is drawn from [Tro11d, §4].

The first analysis of a rectangular Gaussian matrix is due to Marčenko and Pastur [MP67],
who established that the limiting distribution of the squared singular values follows a semicircu-
lar distribution. The Bai–Yin law [BY93] gives an almost sure limit for the largest singular value of
a rectangular Gaussian matrix. The expectation bound (4.4.4) appears in a survey article [DS02]
by Davidson and Szarek. The expectation bound is ultimately derived from a comparison the-
orem for Gaussian processes due to Férnique and amplified by Gordon [Gor85]. Our approach,
using Corollary 4.2.1, is based on [Tro11d, §4].

4.10.4 Randomly Signed Matrices

Matrices with randomly signed entries have not received much attention in the literature. The
result (4.5.1) is due to Yoav Seginer [Seg00]. There is also a well-known paper [Lat05] by Rafał
Latała that provides a bound for the expected norm of a Gaussian matrix whose entries have
nonuniform variance. The analysis here, using Corollary 4.2.1, appears in [Tro11d, §4].

4.10.5 Gaussian Toeplitz Matrices

Research on random Toeplitz matrices is quite recent, but there are now a number of papers
available. Bryc, Dembo, and Jiang obtained the limiting spectral distribution of a symmetric
Toeplitz matrix based on iid random variables [BDJ06]. Later, Mark Meckes established the first
bound for the expected norm of a random Toeplitz matrix based on iid random variables [Mec07].
More recently, Sen and Virág computed the limiting value of the expected norm of a random,
symmetric Toeplitz matrix whose entries have identical second-order statistics [SV11]. See the
latter paper for additional references. The analysis here, based on Corollary 4.2.1, is new.

4.10.6 Relaxation and Rounding of MAXQP

The idea of using semidefinite relaxation and rounding to solve the MAXQP problem is due to
Arkadi Nemirovski [Nem07]. He obtained nontrivial results on the performance of his method
using some matrix moment calculations, but he was unable to reach the sharpest possible bound.
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Anthony So [So09] pointed out that matrix moment inequalities could be used to obtain an op-
timal result; he also showed that matrix concentration inequalities have applications to robust
optimization. The presentation here, using Corollary 4.2.1, is essentially equivalent with the ap-
proach in [So09], but we have achieved slightly better bounds for the constants.



CHAPTER 5
A Sum of Random

Positive-Semidefinite Matrices

This chapter presents matrix concentration inequalities that are analogous with the classical
Chernoff bounds. In the matrix setting, Chernoff-type inequalities allow us to study the extreme
eigenvalues of an independent sum of random, positive-semidefinite matrices. This approach
is valuable for controlling the norm of a random matrix and for understanding when a random
matrix is singular.

More formally, we consider independent random matrices X1, . . . , Xn with the properties

Xk < 0 and λmax(Xk ) ≤ R for each k = 1, . . . ,n.

Form the sum Y = ∑
k Xk . Our goal is to study the expectation and tail behavior of λmax(Y ) and

λmin(Y ). Matrix Chernoff inequalities offer all of these estimates. Note that it is better to use
the matrix Bernstein inequalities, from Chapter 6, to study how much a random matrix deviates
from its mean.

Bounds on the maximum eigenvalue λmax(Y ) give us information about the norm of the ma-
trix Y , a measure of how much the matrix can dilate a vector. Bounds for the minimum eigen-
value λmin(Y ) tell us when the matrix Y is nonsingular; they also provides evidence about the
norm of the inverse Y −1, when it exists.

The matrix Chernoff inequalities are quite powerful, and they have numerous applications.
We demonstrate the relevance of this theory by considering two examples. First, we show how
to study the norm of a random submatrix drawn from a fixed matrix, and we explain how to
check when the random submatrix has full rank. Second, we develop an analysis to determine
when a random graph is likely to be connected. These two problems are closely related to basic
questions in statistics and in combinatorics.

Section 5.1 presents the main results on the expectations and the tails of the extreme eigen-
values of a sum of independent, positive-semidefinite random matrices. Section 1.6.3 describes
the application to sample covariance estimation, while §5.2 explains how the matrix Chernoff
bounds provide spectral information about a random submatrix drawn from a fixed matrix. Af-
terward, in §5.4 we explain how to prove the main results.

47
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5.1 The Matrix Chernoff Inequalities

In the scalar setting, the Chernoff inequalities describe the behavior of a sum of independent,
positive random variables that are subject to a uniform upper bound. These results are often
applied to study the number Y of successes in a sequence of independent—but not identical—
Bernoulli trials with relatively small probabilities of success. In this case, the Chernoff bounds
show that Y behaves like a Poisson random variable. The random variable Y concentrates near
the expected number of successes. Its lower tail has Gaussian decay below the mean, while its
upper tail drops off faster than an exponential random variable.

In the matrix setting, we encounter similar phenomena when we consider a sum of indepen-
dent, positive-semidefinite random matrices whose eigenvalues meet a uniform upper bound.
This behavior emerges from the next theorem, which closely parallels the scalar Chernoff theo-
rem.

Theorem 5.1.1 (Matrix Chernoff). Consider a finite sequence {Xk } of independent, random, Her-
mitian matrices that satisfy

Xk < 0 and λmax(Xk ) ≤ R.

Define the random matrix
Y =∑

k Xk .

Compute the expectation parameters:

µmax =µmax(Y ) =λmax(EY ) and µmin =µmin(Y ) =λmin(EY ). (5.1.1)

Then, for θ > 0,

Eλmax(Y ) ≤ eθ−1

θ
µmax + 1

θ
R logd , (5.1.2)

Eλmin(Y ) ≥ 1−e−θ

θ
µmin − 1

θ
R logd . (5.1.3)

Furthermore,

P
{
λmax (Y ) ≥ (1+δ)µmax

}≤ d

[
eδ

(1+δ)1+δ

]µmax/R

for δ≥ 0, and (5.1.4)

P
{
λmin (Y ) ≤ (1−δ)µmin

}≤ d

[
e−δ

(1−δ)1−δ

]µmin/R

for δ ∈ [0,1). (5.1.5)

The proofs of Theorem 5.1.1 appears below in §5.4.

5.1.1 Discussion

First, observe that we can easily compute the matrix expectation parameters µmax and µmin in
terms of the coefficient matrices:

µmax(Y ) =λmax
(∑

k EXk
)

and µmin(Y ) =λmin
(∑

k EXk
)

.

This point follows from the linearity of expectation.
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In many situations, it is easier to work with streamlined versions of the bounds from Theo-
rem 5.1.1:

Eλmax(Y ) ≤ (e−1)µmax +R logd , and (5.1.6)

Eλmin(Y ) ≥ (1−e−1)µmin −R logd . (5.1.7)

We obtain these results by selecting θ = 1 in both (5.1.3) and (5.1.2). Note that, in the scalar case
d = 1, we can take θ→ 0 to obtain a numerical constant of one in each bound.

These simplifications also help to clarify the meaning of Theorem 5.1.1. On average, λmax(Y )
is not much larger than the maximum eigenvalue µmax of the mean EY plus a fluctuation term
that reflects the maximum size R of a summand and the ambient dimension d . Similarly, the
average value of λmin(Y ) is close to the minimum eigenvalue µmin of the mean EY , minus a
similar fluctuation term.

We can weaken the tail bounds to reach

P
{
λmax (Y ) ≥ tµmax

}≤ d
(e

t

)tµmax/R
for t ≥ e, and

P
{
λmin (Y ) ≤ tµmin

}≤ d e−(1−t )2µmin/2R for t ∈ [0,1).

The first bound manifests that the upper tail of λmax(Y ) decays faster than an exponential ran-
dom variable with mean µmax/R. The second bound shows that the lower tail of λmin(Y ) decays
as fast as a Gaussian random variable with variance R/µmin. This is the same type of prediction
we receive from the scalar Chernoff inequalities.

5.2 Example: A Random Submatrix of a Fixed Matrix

The matrix Chernoff inequality plays an important role in bounding the extreme singular val-
ues of a random submatrix drawn from a fixed matrix. Although Theorem 5.1.1 might not seem
suitable for this purpose (since it deals with eigenvalues), we can connect the problem with the
method via a simple transformation. The results in this section have found applications in ran-
domized linear algebra, sparse approximation, and other fields.

5.2.1 A Random Column Submatrix

Let B be a fixed d ×n matrix, and let b:k denote the kth column of this matrix. The matrix can be
expressed as a sum of columns:

B =
n∑

k=1
b:k e∗k .

The symbol ek refers to the elementary column vector with a one in the kth component and
zeros elsewhere; the length of the vector is determined by context.

We consider a simple model for a random column submatrix. Let {ηk } be an independent
sequence of Bernoulli random variables with common mean q/n. Define the random matrix

Z =
n∑

k=1
ηk b:k e∗k .
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That is, we include each column independently with probability q/n, which means that there
are typically about q nonzero columns in the matrix. We do not remove the other columns; we
just zero them out.

In this section, we will obtain bounds on the expectation of the extreme singular values of
the d ×n matrix Z . In particular,

E
(
σ1(Z )2)≤ 1.72

q

n
σ1(B )2 + (logd) ·maxk ‖b:k‖2 , and

E
(
σd (Z )2)≥ 0.63

q

n
σd (B )2 − (logd) ·maxk ‖b:k‖2 .

(5.2.1)

That is, the random submatrix Z gets its fair share of the spectrum of the original matrix B . There
is a fluctuation term that depends on largest norm of a column of B and the logarithm of the
number d of rows in B . This result is very useful because a positive bound onσd (Z ) ensures that
the nonzero columns of the random submatrix Z are linearly independent, at least on average.

The Analysis

To study the singular values of Z , it is convenient to define a d×d random, positive-semidefinite
matrix

Y = Z Z ∗ =
n∑

j ,k=1
η jηk (b: j e∗j )(ek b∗

:k ) =
n∑

k=1
ηk b:k b∗

:k .

Note that η2
k = ηk because ηk only takes the values zero and one. The eigenvalues of Y determine

the singular values of Z , and vice versa. In particular,

λmax(Y ) =λmax(Z Z ∗) =σ1(Z )2 and λmin(Y ) =λmin(Z Z ∗) =σd (Z )2,

where we arrange the singular values of Z in weakly decreasing order σ1 ≥ ·· · ≥σd .
The matrix Chernoff inequality provides bounds for the expectations of the eigenvalues of Y .

To apply the result, we first calculate

EY =
n∑

k=1
(Eηk )b:k b∗

:k = s

n

n∑
k=1

b:k b∗
:k = s

n
B B∗,

so that

µmax = q

n
σ1(B )2 and µmin = q

n
σd (B )2.

Define R = maxk ‖b:k‖2, and observe that
∥∥ηk b:k b∗

:k

∥∥ ≤ R for each k. Theorem 5.1.1 now ensures
that

E
(
σ1(Z )2)= Eλmax(Y ) ≤ (e−1)q

n
σ1(B )2 +R logd , and

E
(
σd (Z )2)= Eλmin(Y ) ≥ (1−e−1)q

n
σd (B )2 −R logd .

We have taken θ = 1 in the upper (5.1.2) and lower (5.1.3) bounds for the expectation. To obtain
the stated result (5.2.1), we simply introduce numerical estimates for the constants.
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5.2.2 A Random Row and Column Submatrix

Next, we consider a model for a random set of rows and columns drawn from a fixed d×n matrix
B . In this case, it is helpful to use matrix notation to represent the extraction of a submatrix. Let

P = diag(η1, . . . ,ηd ) and Q = diag(ξ1, . . . ,ξn)

where {ηk } is an independent family of Bernoulli random variables with common mean p/d and
{ξk } is an independent family of Bernoulli random variables with common mean q/n. Then

Z = P BQ

is a random submatrix of Z with about p nonzero rows and q nonzero columns.
In this section, we will show that

E
(‖Z ‖2)≤ 3

p

d

q

n
‖B‖2 +2

p logn

d

(
maxk

∥∥b:k
∥∥2

)
+2

q logd

n

(
max j

∥∥b j :
∥∥2

)
+ (logd)(logn) max

j ,k

∣∣b j k
∣∣2. (5.2.2)

The notations b j : and b:k refer to the j th row and kth column of the matrix B , while b j k is the
( j ,k) entry of the matrix. In other words, the random submatrix Z gets its share of the total
norm of the matrix B . The fluctuation terms reflect the maximum row norm and the maximum
column norm of B , as well as the size of the largest entry. There is also a weak dependence on
the ambient dimensions d and n.

The Analysis

The argument has much in common with the calculations for a random column submatrix, but
we need to do some extra work to handle the interaction between the random row sampling and
the random column sampling.

To begin, we express ‖Z ‖2 in terms of the maximum eigenvalue of a random positive-semidefinite
matrix:

E
(‖Z ‖2)= Eλmax((P BQ)(P BQ)∗)

= Eλmax(P BQB∗P ) = E
[
E

[
λmax

(
n∑

k=1
ξk (P B ):k (P B )∗:k

) ∣∣∣P

]]
We have used the facts that P = P∗ and that QQ∗ = Q . Invoking the matrix Chernoff inequal-
ity (5.1.2), conditional on the choice of P , we obtain

E
(‖Z ‖2)≤ (e−1)q

n
Eλmax(P B B∗P )+Emaxk ‖(P B )k‖2 · logd . (5.2.3)

The notation (P B )k refers to the kth column of the matrix P B . The required calculation is anal-
ogous to the one in the Section 5.2.1, so we omit the details. To reach a deterministic bound, we
still have two more expectations to control.

Next, we examine the term in (5.2.3) that involves the maximum eigenvalue:

Eλmax(P B B∗P ) = Eλmax(B∗P 2B ) = Eλmax

(
d∑

j=1
η j b∗

j :b j :

)
.
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The first identity holds because the nonzero eigenvalues of CC∗ equal the nonzero eigenvalues
of C∗C for any matrix C . Another application of the matrix Chernoff inequality (5.1.2) yields

Eλmax(P B B∗P ) ≤ (e−1)p

d
λmax(B∗B )+max j

∥∥b j :
∥∥2 · logn. (5.2.4)

Recall that λmax(B∗B ) = ‖B‖2 to simplify this expression slightly.
Last, we develop a bound on the maximum column norm in (5.2.3). This result also follows

from the matrix Chernoff inequality, but we need to do a little work to see why. We are going to
treat the maximum column norm as the maximum eigenvalue of an independent sum of random
diagonal matrices. Observe that

‖(P B )k‖2 =
d∑

j=1
η j

∣∣b j k
∣∣2 for each k = 1, . . . ,n.

Using this representation, we see that

max
k

‖(P B )k‖2 =λmax


∑d

j=1η j
∣∣b j 1

∣∣2

. . . ∑d
j=1η j

∣∣b j n
∣∣2


=λmax

(
d∑

j=1
η j diag

(∣∣b j :
∣∣2

))
.

When applied to a vector, the notation |·|2 refers to the componentwise modulus squared. To ac-
tivate the matrix Chernoff bound, we need to compute the two parameters that appear in (5.1.2).
First, the upper bound parameter R satisfies

R = max j λmax

(
diag

(∣∣b j :
∣∣2

))
= max j maxk

∣∣b j k
∣∣2.

Second, to compute the upper mean parameter µmax, note that

E
d∑

j=1
η j diag

(∣∣b j :
∣∣2

)
= p

d
diag

(
d∑

j=1

∣∣b j :
∣∣2

)
= p

d
diag

(∥∥b j :
∥∥2

)
,

which yields

µmax = p

d
max j

∥∥b j :
∥∥2.

Therefore, the matrix Chernoff inequality implies

Emax
k

‖(P B )k‖2 ≤ (e −1)p

d
max j

∥∥b j :
∥∥2 +max

j ,k

∣∣b j k
∣∣2 · logn. (5.2.5)

On average, the maximum column norm of a random submatrix P B with about p nonzero rows
gets its share p/d of the maximum column norm of B , plus a fluctuation term that depends on
the magnitude of the largest entry of B and the logarithm of the number n of columns.

Combine the three bounds (5.2.3), (5.2.4), and (5.2.5) to reach the result (5.2.2). We have
simplified numerical constants to make the expression more compact.
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5.3 Application: When is an Erdős–Rényi Graph Connected?

Random graph theory concerns probabilistic models for the interactions between pairs of ob-
jects. One basic question about a random graph is to ask whether there is a path connecting
every pair of vertices or whether some vertices are segregated in different parts of the graph. It
is possible to address this problem by studying the eigenvalues of random matrices, a challenge
that we take up in this section.

5.3.1 Background on Graph Theory

Recall that an undirected graph is a pair G = (V ,E) where V is a set of vertices and E is a set of
edges connecting pairs of distinct vertices. For simplicity, we assume that the vertex set V =
{1, . . . ,n}. The degree deg(k) of the vertex k is the number of edges in E that include the vertex k.

There are some natural matrices associated with an undirected graph. The adjacency matrix
of the graph G is an n ×n symmetric matrix A whose entries indicate which edges are present:

a j k =
{

1, { j ,k} ∈ E

0, { j ,k} ∉ E .

We have assumed that edges connect distinct vertices, so the diagonal entries of the matrix A
equal zero. Next, define a diagonal matrix D = diag(deg(1), . . . ,deg(n)) whose entries list the de-
grees of the vertices. The Laplacian and normalized Laplacian of the graph are the matrices

L = D − A and M = D−1/2LD−1/2.

We place the convention that D−1/2(k,k) = 0 when deg(k) = 0. The Laplacian matrix L is always
positive semidefinite. The vector 1 of ones is always an eigenvector of L with eigenvalue zero.

These matrices and their spectral properties play a central role in modern graph theory. For
example, the graph G is connected if and only if the second-smallest eigenvalue of L is strictly
positive. The second smallest eigenvalue of M controls the rate at which a random walk on
the graph G converges to the stationary distribution (under appropriate assumptions). See the
book [GR01] or the website [But] for more information about these connections.

5.3.2 The Model of Erdős and Rényi

The simplest possible example of a random graph is the independent model G(n, p) of Erdős and
Rényi [ER60]. The number n is the number of vertices in the graph, and p ∈ (0,1) is the probabil-
ity that two vertices are connected. More precisely, here is how to construct a random graph in
G(n, p). Between each pair of distinct vertices, we place an edge independently at random with
probability p. In other words, the adjacency matrix takes the form

a j k =


δ j k , 1 ≤ j < k ≤ n

δk j , 1 ≤ k < j ≤ n

0, j = k.

(5.3.1)

The family {δ j k : 1 ≤ j < k ≤ n} consists of mutually independent BERNOULLI(p) random vari-
ables. Figure 5.3.2 shows one realization of an Erdős–Rényi graph.
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An Erdos−−Renyi graph in G(100, 0.1)

Figure 5.1: The adjacency matrix of an Erdős–Rényi graph. This figure shows the pattern of
nonzero entries in the adjacency matrix A of a random graph drawn from G(100,0.1). Out of
a possible 4,950 edges, there are 486 edges present. A basic question is whether the graph is
connected. The graph is disconnected if and only if there is a permutation of the coordinates
so that the adjacency matrix is block diagonal. This property is reflected in the second-smallest
eigenvalue of A.

Let us explain how to represent the adjacency matrix and Laplacian matrix of an Erdős–Rényi
graph as a sum of independent random matrices. The adjacency matrix A of a graph in G(n, p)
can be written as

A = ∑
1≤ j<k≤n

δ j k (E j k +Ek j ). (5.3.2)

This expression is a straightforward translation of the definition (5.3.1) into matrix form. Simi-
larly, the Laplacian matrix L can be expressed as

L = ∑
1≤ j<k≤n

δ j k (E j j +Ekk −E j k −Ek j ). (5.3.3)

To verify the formula (5.3.3), observe that the presence of an edge between the vertices j and k
increases the degree of j and k by one. Therefore, when δ j k = 1, we augment the ( j , j ) and (k,k)
entries of L to reflect the change in degree, and we mark the ( j ,k) and (k, j ) entries with −1 to
reflect the presence of the edge between j and k.

5.3.3 Connectivity of an Erdős–Rényi Graph

We will obtain a near-optimal bound for the range of parameters where an Erdős–Rényi graph
G(n, p) is likely to be connected. We can accomplish this goal by showing that the second small-
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est eigenvalue of the n ×n random Laplacian matrix L = D − A is strictly positive. We will solve
the problem by using the matrix Chernoff inequality to study the second-smallest eigenvalue of
the random Laplacian L.

We need to form a random matrix Y that consists of independent positive-semidefinite terms
and whose minimum eigenvalue coincides with the second-smallest eigenvalue of L. To that
end, define an (n −1)×n partial unitary matrix R that restricts a vector to the orthogonal com-
plement of the vector 1 of ones. That is, the rows of R form an orthonormal family and the null
space of R is the vector 1. Now, consider the random matrix

Y = RLR∗ = ∑
1≤ j<k≤n

δ j k ·R(E j j +Ekk −E j k −Ek j )R∗. (5.3.4)

Recall that {δ j k } is an independent family of BERNOULLI(p) random variables, so the summands
are mutually independent. The Conjugation Rule (2.1.4) ensures that each summand remains
positive-semidefinite. Since 1 is an eigenvector with eigenvalue zero associated with the positive-
semidefinite matrix L, the minimum eigenvalue of Y coincides with the second-smallest eigen-
value of L.

To apply the matrix Chernoff inequality, we need a uniform upper bound B on the eigenval-
ues of the summands. We have

B ≤ ∥∥δ j k ·R(E j j +Ekk −E j k −Ek j )R∗∥∥
≤ ∣∣δ j k

∣∣ ·∥∥R
∥∥ ·∥∥E j j +Ekk −E j k −Ek j

∥∥ ·∥∥R∗∥∥ = 2.

The first bound follows from the submultiplicativity of the spectral norm. To obtain the second
bound, note that δ j k takes 0–1 values. The matrix R is a partial isometry so its norm equals one.
Finally, a direct calculation shows that T = E j j +Ekk −E j k −Ek j satisfies the polynomial T 2 = 2T ,
so the eigenvalues of T must equal zero and two.

Next, we compute the expectation of the matrix Y .

EY = p ·R

[ ∑
1≤ j<k≤n

(E j j +Ekk −E j k −Ek j )

]
R∗

= p ·R
[
(n −1)In − (11∗− In)

]
R∗ = pn In−1.

The first identity follows when we apply linearity of expectation to (5.3.4) and then use linearity
of matrix multiplication to draw the sum inside the conjugation by R . The term (n−1)In emerges
when we sum the diagonal matrices. The term 11∗−In comes from the off-diagonal matrix units,
once we note that the matrix 11∗ has one in each component. The last identity holds because R
annihilates the vector 1, while RR∗ = In−1. We conclude that

µmin(Y ) =λmin(EY ) = pn.

This is all the information we need.
Invoke the tail bound (5.1.5) to obtain, for ε ∈ (0,1),

P
{
λ↑

2(L) ≤ ε ·pn
}
=P{

λmin(Y ) ≤ ε ·pn
}≤ (n −1)

[
eε−1

εε

]pn/2

.

To appreciate what this means, we may think about the situation where ε→ 0. Then the bracket
tends to e−1, and we see that the second smallest eigenvalue of L is unlikely to be zero when
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log(n −1)−pn/2 < 0. Rearranging this expression, we obtain a sufficient condition

p > 2log(n −1)

n

for an Erdős–Rényi graph G(n, p) to be connected with high probability as n →∞. This bound is
quite close to the optimal result, which lacks the factor two on the right-hand side. It is possible
to make this reasoning more precise, but it does not seem worth the fuss.

5.4 Proof of the Matrix Chernoff Inequalities

The first step toward the matrix Chernoff inequalities is to develop an appropriate semidefinite
bound for the mgf and cgf of a random positive-semidefinite matrix. The method for establishing
this bound mimics the proof in the scalar case: we simply bound the exponential with a linear
function.

Lemma 5.4.1 (Matrix Chernoff: Mgf and Cgf Bound). Suppose that X is a random positive-
semidefinite matrix that satisfies λmax(X ) ≤ R. Then

EeθX 4 exp

(
eRθ−1

R
· (EX )

)
and log EeθX 4

eRθ−1

R
· (EX ) for θ ∈R.

Proof. Consider the function f (x) = eθx . Since f is convex, its graph lies below the chord con-
necting two points. In particular,

f (x) ≤ f (0)+ f (R)− f (0)

R
· x for x ∈ [0,R].

In detail,

eθx ≤ 1+ eRθ−1

R
· x for x ∈ [0,R].

By assumption, each eigenvalue of X lie in the interval [0,R]. Thus, the Transfer Rule (2.1.6)
implies that

eθX 4 I+ eRθ−1

R
·X .

Expectation respects the semidefinite order, so

EeθX 4 I+ eRθ−1

R
· (EX )4 exp

(
eRθ−1

R
· (EX )

)
.

The second relation is a consequence of the fact that I+ A 4 eA for every matrix A, which we
obtain by applying the Transfer Rule (2.1.6) to the inequality 1+a ≤ ea , valid for all a ∈R.

To obtain the semidefinite bound for the cgf, we simply take the logarithm of the semidef-
inite bound for the mgf. This operation preserves the semidefinite order because of the prop-
erty (2.1.9) that the logarithm is operator monotone.

We break the proof of the matrix inequality into two pieces. First, we establish the bounds
on the maximum eigenvalue, which are slightly easier. Afterward, we develop the bounds on the
minimum eigenvalue.
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Proof of Theorem 5.1.1, Maximum Eigenvalue Bounds. Consider a finite sequence {Xk } of inde-
pendent, random Hermitian matrices that satisfy

Xk < 0 and λmax(Xk ) ≤ R for each index k.

The cgf bound, Lemma 5.4.1, states that

log EeθXk 4 g (θ)(EXk ) where g (θ) = eRθ−1

R
for θ > 0. (5.4.1)

We begin with the upper bound (5.1.2) for Eλmax(Y ). Using the fact (2.1.7) that the trace of the
exponential function is monotone with respect to the semidefinite order, we substitute these cgf
bounds into the master inequality (3.6.1) for the maximum eigenvalue to reach

Eλmax(Y ) ≤ inf
θ>0

1

θ
log trexp

(
g (θ)

∑
k EXk

)
≤ inf
θ>0

1

θ
log

[
d λmax

(
exp

(
g (θ)(EY )

))]
= inf
θ>0

1

θ
log

[
d exp

(
λmax

(
g (θ)(EY )

))]
= inf
θ>0

1

θ
log

[
d exp

(
g (θ) ·λmax(EY )

)]
= inf
θ>0

1

θ

[
logd + g (θ) ·µmax

]
.

In the second line, we use the fact that the matrix exponential is positive definite to bound the
trace by d times the maximum eigenvalue. We have also identified the sum as EY . The third line
follows from the Spectral Mapping Theorem, Proposition 2.1.3. Next, we use the fact (2.1.2) that
the maximum eigenvalue map is positive homogeneous, which depends on the observation that
g (θ) > 0 for θ > 0. Finally, we identify the quantity µmax, defined in (5.1.1). The infimum does not
admit a closed form, but we can obtain the expression (5.1.2) by making the change of variables
θ 7→ θ/R.

Next, we turn to the upper bound (5.1.4) for the upper tail of the maximum eigenvalue. Sub-
stitute the cgf bounds (5.4.1) into the master inequality (3.6.3) to reach

P {λmax(Y ) ≥ t } ≤ inf
θ>0

e−θt trexp
(
g (θ)

∑
k EXk

)
≤ inf
θ>0

e−θt ·d exp
(
g (θ) ·µmax

)
.

The steps here are identical with the previous argument. Make the change of variables t 7→ (1+
δ)µmax. The infimum is achieved at θ = R−1 log(1+δ), which leads to the tail bound (5.1.4).

The lower bounds follow from a related argument that is slightly more delicate.

Proof of Theorem 5.1.1, Minimum Eigenvalue Bounds. Once again, consider a finite sequence {Xk }
of independent, random Hermitian matrices that satisfy

Xk < 0 and λmax(Xk ) ≤ R for each index k.
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The cgf bound, Lemma 5.4.1, states that

log EeθXk 4 g (θ) · (EXk ) where g (θ) = eRθ−1

R
for θ < 0. (5.4.2)

Note that g (θ) < 0 for θ < 0, which alters a number of the steps in the argument.
We commence with the lower bound (5.1.3) for Eλmin(Y ). As stated in (2.1.7), the trace ex-

ponential function is monotone with respect to the semidefinite order, so the master inequal-
ity (3.6.2) for the minimum eigenvalue delivers

Eλmin(Y ) ≥ sup
θ<0

1

θ
log trexp

(
g (θ)

∑
k EXk

)
≥ sup

θ<0

1

θ
log

[
d λmax

(
exp

(
g (θ) · (EY )

))]
= sup

θ<0

1

θ
log

[
d exp

(
λmax

(
g (θ) · (EY )

))]
= sup

θ<0

1

θ
log

[
d exp

(
g (θ) ·λmin(EY )

)]
= sup

θ<0

1

θ

[
logd + g (θ) ·µmin

]
.

Most of the steps are the same as in the proof of the upper bound (5.1.2), so we focus on the
differences. Since the factor θ−1 in the first and second lines is negative, upper bounds on the
trace reduce the value of the expression. We move to the fourth line by invoking the property
λmax(αA) = αλmin(A) for α < 0, which follows from (2.1.2) and (2.1.3). This piece of algebra
depends on the fact that g (θ) < 0 when θ < 0. To obtain the result (5.1.3), we change variables:
θ 7→ −θ/R.

Finally, we establish the bound (5.1.5) for the lower tail of the minimum eigenvalue. Intro-
duce the cgf bounds (5.4.2) into the master inequality (3.6.4) to reach

P {λmin(Y ) ≤ t } ≤ inf
θ<0

e−θt trexp
(
g (θ)

∑
k EXk

)
≤ inf
θ<0

e−θt ·d exp
(
g (θ) ·µmin

)
.

The justifications here match those in with the previous argument. Make the change of variables
t 7→ (1−δ)µmin. The infimum is attained at θ = R−1 log(1−δ), which yields the tail bound (5.1.5).

5.5 Notes

As usual, we continue with an overview of background references and related work.

5.5.1 Matrix Chernoff Inequalities

Scalar Chernoff inequalities date to the paper [Che52, Thm. 1] by Herman Chernoff. The original
result provides probability bounds for the number of successes in a sequence of independent but
non-identical Bernoulli trials. Chernoff’s proof combines the scalar Laplace transform method
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with refined bounds on the mgf of a Bernoulli random variable. It is very common to encounter
simplified versions of Chernoff’s result, such as [Lug09, Exer. 8] or [MR95, §4.1].

In their paper [AW02], Ahlswede and Winter developed a matrix version of the Chernoff in-
equality. The matrix mgf bound, Lemma 5.4.1, essentially appears in their work. Ahlswede–
Winter focus on the case of iid random matrices, in which case their results are comparable with
Theorem 5.1.1. For the general case, their approach leads to mean parameters of the form

µAW
max =

∑
k λmax(EXk ) and µAW

min =∑
k λmin(EXk ).

It is clear that these mean parameters may be substantially inferior to the mean parameters µmax

and µmin that we defined in Theorem 5.1.1.
The tail bounds from Theorem 5.1.1 are drawn from [Tro11d, §5], but the expectation bounds

we present are new. The paper [GT11] extends the matrix Chernoff inequality to provide upper
and lower tail bounds for all eigenvalues of a sum of positive-semidefinite random matrices.
Finally, Chapter 7 contains a slight improvement of the upper bounds from Theorem 5.1.1.

5.5.2 Random Submatrices

The problem of studying a random submatrix drawn from a fixed matrix has a long history. An
early example is the paving problem from operator theory, which asks for a well-conditioned set
of columns (or a well-conditioned submatrix) inside a fixed matrix. Random selection provides
a natural approach to this question. The papers [BT87, BT91, KT94] study random paving using
sophisticated tools from functional analysis. See the paper [NT12] for a summary of research on
the paving problem.

Later, Rudelson and Vershynin [RV07] showed that the noncommutative Khintchine inequal-
ity provides a clean way to bound the norm of a random column submatrix (or a random row and
column submatrix) drawn from a fixed matrix. Their ideas have found many applications in the
mathematical signal processing literature. See, for example, the paper [Tro08a]. The same ap-
proach led to the work [Tro08c], which contains a new proof of [BT91, Thm. 2.1].

The article [Tro11e] contains the observation that the matrix Chernoff inequality is an ideal
tool for studying random submatrices. It applies this technique to study a random matrix that
arises in numerical linear algebra, and it achieves the optimal estimate for this problem. Our
analysis of a random column submatrix is based on this work. The analysis of a random row
and column submatrix is new. The paper [CD12], by Chrétien and Darses, uses matrix Chernoff
bounds in a more sophisticated way to develop tail bounds for the norm of a random row and
column submatrix.

5.5.3 Random Graphs

The analysis of random graphs and random hypergraphs appeared as one of the earliest applica-
tions of matrix concentration inequalities [AW02]. Christofides and Markström developed a ma-
trix Hoeffding inequality to aid in this purpose [CM08]. Later, Oliveira wrote two papers [Oli10a,
Oli11] on random graph theory based on matrix concentration. We recommend these works for
further information.

The device we have used to analyze the second smallest eigenvalue of a random graph Lapla-
cian can be extended to obtain tail bounds for all the eigenvalues of a sum of independent ran-
dom matrices. See the paper [GT11] for a development of this idea.





CHAPTER 6
A Sum of Bounded
Random Matrices

In this chapter, we describe matrix concentration inequalities that generalize the classical Bern-
stein bound. The matrix Bernstein inequalities concern a random matrix formed as a sum of
independent, bounded random matrices. The results allow us to study how much a random
matrix deviates from its mean value in the spectral norm.

To be rigorous, let us suppose that X1, . . . , Xn are independent random matrices with the
properties

EXk = 0 and λmax(Xk ) ≤ R for each k = 1, . . . ,n.

Form the sum Y =∑
k Xk . The matrix Bernstein inequality allows us to study the expectation and

tail behavior of λmax(Y ) in terms of the variance E(Y 2).
Matrix Bernstein inequalities have a much wider scope of application than the last paragraph

might suggest. First, if the summands are not centered, we can subtract off the mean and use the
matrix Bernstein method to obtain information about λmax(Y − EY ). Second, we can obtain
bounds for the minimum eigenvalue λmin(Y ) by applying the matrix Bernstein bounds to −Y .
Third, we can extend the result to study the spectral norm of a sum of independent, general
random matrices that satisfy a uniform norm bound.

In these pages, we can only give a coarse indication of how researchers have used the matrix
Bernstein inequality. We have selected two typical examples from the literature on randomized
matrix approximation. First, we explain how to develop a randomized algorithm for approximate
matrix multiplication, and we establish an error bound for this method. Second, we consider the
technique of randomized sparsification, in which we replace a dense matrix with a sparse proxy
that has similar spectral behavior. There are many other examples, some of which appear in the
annotated bibliography.

Altogether, the matrix Bernstein inequality is a powerful tool with a huge number of appli-
cations. It is particularly effective for studying randomized approximations of a given matrix.
Nevertheless, let us emphasize that, when the matrix Chernoff inequality, Theorem 5.1.1, hap-
pens to apply, it often delivers better results for a given problem.

61
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Section 6.1 describes the Bernstein inequality for Hermitian matrices, and §6.2 presents the
adaptation to general matrices. Afterward, in §§6.3–6.4, we continue with the two random-
ized approximation examples. We conclude with the proof of the matrix Bernstein inequalities
in §6.5.

6.1 A Sum of Bounded Hermitian Matrices

In the scalar setting, there are a large number of concentration bounds that fall under the head-
ing “Bernstein inequality.” Most of these bounds have extensions to matrices. For simplicity, we
focus on the most famous of them all, a tail bound for the sum Y of independent, zero-mean
random variables that are subject to a uniform upper bound. In this case, the Bernstein inequal-
ity shows that the sum Y concentrates around its mean value. For moderate deviations, the sum
behaves like a normal random variable with the same variance as Y . For large deviations, the
sum has tails that decay at least as fast as an exponential random variable.

In analogy, the matrix Bernstein inequality concerns a sum of independent, zero-mean Her-
mitian matrices whose eigenvalues are bounded above. The theorem demonstrates that the
maximum eigenvalue of the sum acts much like the scalar random variable Y that we discussed
in the last paragraph.

Theorem 6.1.1 (Matrix Bernstein: Hermitian Case). Consider a finite sequence {Xk } of indepen-
dent, random, Hermitian matrices with dimension d. Assume that

EXk = 0 and λmax(Xk ) ≤ R.

Introduce the random matrix

Y =∑
k Xk .

Compute the variance parameter

σ2 =σ2(Y ) = ∥∥E(
Y 2)∥∥ . (6.1.1)

Then

Eλmax(Y ) ≤
√

2σ2 logd + 1

3
R logd . (6.1.2)

Furthermore, for all t ≥ 0.

P {λmax (Y ) ≥ t } ≤ d ·exp

( −t 2/2

σ2 +Rt/3

)
. (6.1.3)

The proof of Theorem 6.1.1 appears below in §6.5.

6.1.1 Discussion

Let us spend a few moments to discuss this result and its implications. First, observe that we can
express the variance parameter (6.1.1) in terms of the summands:

σ2(Y ) = ∥∥E(
Y 2)∥∥=

∥∥∥E(∑
j ,k X j Xk

)∥∥∥= ∥∥∑
k E

(
X 2

k

)∥∥ .
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The second relation holds because the summands are independent, and each one has zero mean.
This identity parallels the scalar result that the variances of a sum of independent random vari-
ables is the sum of the variances.

The expectation bound (6.1.2) shows that the expectation of λmax(Y ) is on the same scale as
the standard deviation σ and the upper bound R on the summands; there is also a weak depen-
dence on the ambient dimension d . In general, all three of these features are necessary.

Next, let us interpret the tail bound (6.1.3). The only difference between this result and the
scalar Bernstein bound is the addition of the dimensional factor d , which reduces the range of t
where the inequality is informative. To get a better idea of what this result means, it is helpful to
make a further estimate:

P {λmax(Y ) ≥ t } ≤
{

d ·exp(−3t 2/8σ2), t ≤σ2/R

d ·exp(−3t/8R), t ≥σ2/R.
(6.1.4)

In other words, for moderate values of t , the tail probability decays as fast as the tail of a Gaussian
random variable with variance 4σ2/3. For larger values of t , the tail probability decays at least as
fast as that of an exponential random variable with mean 4R/3.

Next, we point out that Theorem 6.1.1 also yields information about the minimum eigenvalue
of an independent sum of d-dimensional Hermitian matrices. In this case, we must assume that

EXk = 0 and λmin(Xk ) ≥−R.

Form the random matrix Y =∑
k Xk . By applying the expectation bound (6.1.2) to −Y , we obtain

Eλmin(Y ) ≥−
√

2σ2 logd − 1

3
R logd (6.1.5)

where σ2 =σ2(Y ). We can use (6.1.3) to develop a tail bound. For t ≥ 0,

P {λmin(Y ) ≤−t } ≤ d ·exp

( −t 2/2

σ2 +Rt/3

)
.

Let us emphasize that the bounds for λmax(Y ) and the bounds for λmin(Y ) may diverge because
the two parameters R and R can take sharply different values.

Finally, it is important to recognize that the matrix Bernstein inequality applies just as well
to uncentered matrices. Consider a finite sequence {Xk } of independent, random Hermitian
matrices with dimension d . Assume that each matrix satisfies the bound

λmax(Xk −EXk ) ≤ R.

Introduce the sum Y =∑
k Xk , and compute the variance parameter

σ2 =σ2(Y ) = ∥∥E(
(Y −EY )2)∥∥= ∥∥∑

k E
(
(Xk −EXk )2)∥∥ .

Then we have the expectation bound

Eλmax(Y −EY ) ≤
√

2σ2 logd + 1

3
R logd .

Furthermore, for t ≥ 0,

P {λmax(Y −EY ) ≥ t } ≤ d ·exp

( −t 2/2

σ2 +Rt/3

)
.
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Similar results hold for λmin(Y ), as discussed in the previous paragraph.
There are many other types of matrix Bernstein inequalities. For example, we can sharpen

the tail bound (6.1.3) to obtain a matrix Bennett inequality. We can also relax the boundedness
assumption to a weaker hypothesis on the growth of the moments of each summand Xk . See the
notes at the end of this chapter and the annotated bibliography for more information.

6.2 A Sum of Bounded Rectangular Matrices

The matrix Bernstein inequality admits an extension to a sum of general random matrices that
are subject to a uniform norm bound. This result turns out to be a formal consequence of the
Hermitian result, Theorem 6.1.1, even though it may initially seem more powerful.

Corollary 6.2.1 (Matrix Bernstein: General Case). Consider a finite sequence {Sk } of independent,
random matrices with dimension d1 ×d2. Assume that

ESk = 0 and ‖Sk‖ ≤ R.

Introduce the random matrix
Z =∑

k Sk .

Compute the variance parameter

σ2 =σ2(Z ) = max
{∥∥E(

Z Z ∗)∥∥ ,
∥∥E(

Z ∗Z
)∥∥}

. (6.2.1)

Then

E‖Z ‖ ≤
√

2σ2 log(d1 +d2)+ 1

3
R log(d1 +d2). (6.2.2)

Furthermore, for all t ≥ 0,

P {‖Z ‖ ≥ t } ≤ (d1 +d2) exp

(
− t 2/2

σ2 +Rt/3

)
.

The proof of Corollary 6.2.1 appears in §6.5.

6.2.1 Discussion

The general case is similar with the Hermitian case, Theorem 6.1.1, in many respects. Corol-
lary 6.2.1 also has a lot in common with Corollary 4.2.1, concerning a Gaussian series with gen-
eral matrix coefficients. As a consequence, we do not indulge in an extensive commentary.

First, let us express the variance parameter (6.2.1) in terms of the summands:

σ2(Z ) = max
{∥∥E(

Z Z ∗)∥∥ ,
∥∥E(

Z ∗Z
)∥∥}

= max
{∥∥∥E(∑

j ,k S j S∗
k

)∥∥∥ ,
∥∥∥E(∑

j ,k S∗
j Sk

)∥∥∥}
= max

{∥∥∑
k E

(
Sk S∗

k

)∥∥ ,
∥∥∑

k E
(
S∗

k Sk
)∥∥}

.

As usual, the last relation holds because the summands are independent, zero-mean random
matrices.
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The version of Corollary 6.2.1 for uncentered matrices is important enough that we lay out
the details. Consider a finite sequence {Sk } of independent, random matrices with dimension
d1 ×d2. Assume that each matrix satisfies the bound

‖Sk −ESk‖ ≤ R.

Introduce the sum Z =∑
k Sk , and compute the variance parameter

σ2 = max
{∥∥E(

(Z −EZ )(Z −EZ )∗
)∥∥ ,

∥∥E(
(Z −EZ )∗(Z −EZ )

)∥∥}
= max

{∥∥∑
k E

(
(Sk −ESk )(Sk −ESk )∗

)∥∥ ,
∥∥∑

k E
(
(Sk −ESk )∗(Sk −ESk )

)∥∥}
.

Then we have the expectation bound

E‖Z −EZ ‖ ≤
√

2σ2 log(d1 +d2)+ 1

3
R log(d1 +d2).

Furthermore, for t ≥ 0,

P {‖Z −EZ ‖ ≥ t } ≤ (d1 +d2) ·exp

( −t 2/2

σ2 +Rt/3

)
.

The results in this paragraph are probably the most commonly used versions of the matrix Bern-
stein bounds.

6.3 Application: Randomized Sparsification of a Matrix

Many tasks in data analysis require spectral computations on large, dense matrices. Yet many
spectral decomposition algorithms operate most efficiently on sparse matrices. If we can tolerate
approximate results, we may be able to reduce the computational cost by replacing the original
dense matrix with a sparse proxy that has a similar spectrum. An elegant way to identify the
sparse proxy is to randomly zero out entries of the original matrix. In this example, we examine
the performance of one such approach.

Let B be a fixed d1 ×d2 complex matrix. Write L = max j k
∣∣b j k

∣∣ for the maximum absolute
entry of the matrix. Fix a sparsification parameter p ∈ (0,1), and consider a family of independent
Bernoulli random variables:

δ j k ∼ BERNOULLI(p j k ) where p j k = p
∣∣b j k

∣∣
p

∣∣b j k
∣∣+L

.

It is easy to verify that 0 ≤ p j k < 1, so this is a legitimate probability. Draw a random, sparse
matrix Z with entries

Z j k = δ j k
b j k

p j k
for j = 1, . . . ,d1 and k = 1, . . . ,d2.

In other words, we zero out small entries with high probability, and we zero out larger entries
with low probability. We rescale the entries that we keep to compensate. Observe that E(Z j k ) =
b j k , so that the random sparse matrix Z is an unbiased approximation to the original matrix B .
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We must assess the typical sparsity of the random matrix Z , and we must bound the distance
between Z and the original matrix B in the spectral norm. An elementary calculation shows that
the expected number of nonzero entries in Z is at most

∑
j ,k
E(δ j k ) =∑

j ,k

p
∣∣b j k

∣∣
p

∣∣b j k
∣∣+L

≤ p
∑
j ,k

∣∣b j k
∣∣

L
≤ p ·d1d2.

So the parameter p is a bound for the proportion of nonzero entries appearing in the reduced
matrix. We will show that the expected approximation error satisfies

E‖Z −B‖
‖B‖ ≤

√
2L max{d1, d2} log(d1 +d2)

p ‖B‖2 + 2L log(d1 +d2)

3p ‖B‖ . (6.3.1)

Ignoring the logarithmic factors, we learn that it is possible to construct a sparse matrix that
approximates B with a small relative error, provided that

L ¿‖B‖ and L max{d1, d2} ¿‖B‖2

Matrices whose largest entries are relatively small as compared with the norm are natural candi-
dates for this type of processing.

The Analysis

We will use the matrix Bernstein inequality to study how well the sparsification procedure pre-
serves the spectral properties of the original matrix. For reference, we calculate the mean and
variance of the entries of Z :

EZ j k = b j k and E
∣∣Z j k −b j k

∣∣2 = L

p
.

It follows that EZ = B . Define the error matrix E = Z −B , and write

E =∑
j ,k

(Z j k −b j k )E j k =∑
j ,k

S j k ,

where the expression above defines the summands S j k . It is immediate that each summand
satisfies ES j k = 0 and that {S j k } is an independent family.

To apply the matrix Bernstein inequality, we first observe that the summands satisfy a uni-
form bound: ∥∥S j k

∥∥ ≤
∣∣b j k

∣∣
p j k

≤ p
∣∣b j k

∣∣+L

p
≤ 2L

p
.

Determining the variance of the error matrix E takes a little more work. We have

E
(
S j k S∗

j k

)
=

[
E
∣∣Z j k −b j k

∣∣2
]

E j k Ek j =
L

p
E j j .

It follows that ∥∥∥∥∥∑
j ,k
E
(
S j k S∗

j k

)∥∥∥∥∥= L

p

∥∥d2 Id1

∥∥= d2L

p
.
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Similarly, ∥∥∥∥∥∑
j ,k
E
(
S∗

j k S j k

)∥∥∥∥∥= d1L

p
.

We conclude that the variance (6.2.1) of the error matrix

σ2(E ) = L

p
max{d1, d2}.

The expectation bound (6.2.2) from Corollary 6.2.1 delivers

E‖E‖ ≤
√

2L max{d1, d2} log(d1 +d2)

p
+ 2L log(d1 +d2)

3p
.

The result (6.3.1) is a direct consequence of this inequality.

6.4 Application: Randomized Matrix Multiplication

Over the last decade, randomized algorithms have started to play an important role in numerical
linear algebra. One of the basic tasks in linear algebra is to multiply two matrices with compatible
dimensions. Suppose that B is a d1 ×N complex matrix and that C is an N ×d2 complex matrix,
and we wish to compute the product BC . The straightforward algorithm forms the product entry
by entry:

(BC )i k =
N∑

j=1
bi j c j k for each i = 1, . . . ,d1 and k = 1, . . . ,d2. (6.4.1)

This approach takes O(N d1d2) arithmetic operations. There are algorithms, such as Strassen’s
divide-and-conquer method, that can reduce the cost, but these approaches are not considered
practical for most applications.

In certain circumstances, we can accelerate matrix multiplication using randomized meth-
ods. The key to this approach is to view the matrix product as a sum of outer products:

BC =
N∑

k=1
b:k ck:. (6.4.2)

Next, we reinterpret this sum as the expectation of a random matrix. It takes some care to do this
properly. Define a set of probabilities

p j =
∥∥b: j

∥∥∥∥c j :
∥∥∑N

k=1

∥∥b:k
∥∥∥∥ck:

∥∥ for j = 1,2, . . . , N .

Now, we introduce a random matrix R with distribution

R = 1

p j
b: j c j : with probability p j for each j = 1, . . . , N .

It follows that

ER =
N∑

j=1
b: j c j : = BC .



68 CHAPTER 6. A SUM OF BOUNDED RANDOM MATRICES

Therefore, we can regard R as a randomized proxy for the product BC . This estimator is unbi-
ased, but the variance may be intolerable. To obtain a more precise estimate for the product, we
can average n independent copies of R :

R̄n = 1

n

n∑
k=1

Rk

We must assess how large n must be for R̄n to achieve a reasonable error, and we must bound
the computational cost of the resulting estimator.

It is helpful to frame the results in terms of the stable rank of the matrices B and C that appear
in the product.

Definition 6.4.1 (Stable Rank). The stable rank of a matrix F is defined as

srank(F ) = ‖F‖2
F

‖F‖2 .

The Frobenius norm is defined by the relation ‖F‖2
F = tr(F F∗).

The stable rank is a lower bound for the algebraic rank: 1 ≤ srank(F ) ≤ rank(F ). Check these
inequalities by expressing the two norms in terms of the singular values of F . In contrast with
the algebraic rank, the stable rank is a continuous function of the matrix, so it is more suitable
for numerical applications.

We are prepared to present the main claim about randomized matrix multiplication. Fix a
parameter ε ∈ (0,1]. Suppose that the number n of samples satisfies

n ≥ 5 · srank(A) · srank(B ) · log(d1 +d2)

ε2 (6.4.3)

Then the randomized estimate R̄n for the product achieves a relative error of ε in the spectral
norm:

E
∥∥R̄n −BC

∥∥≤ ε‖B‖‖C‖ (6.4.4)

To compute R̄n , we need O(nd1d2) arithmetic operations. Therefore, the estimator is efficient
when the number n of samples is much smaller than N , the inner dimension of the product BC .

This result is natural because a matrix with low stable rank contains a lot of redundant in-
formation. As a consequence, we do not need to multiply each column of B with each row of C
to get a good estimate for the product. In particular, when the outer dimensions d1 and d2 are
much smaller than the inner dimension N , many of the terms in (6.4.2) can be omitted without
a significant loss.

Remark 6.4.2. Since our goal is to illustrate the analysis of a random matrix, the algorithmic
details are not especially important. Nevertheless, we should point out that the method we have
described is not the most effective way to perform randomized matrix multiplication. It is better
to apply a preprocessing step to ensure that the columns of B have comparable norms and that
the rows of C have comparable norms. In this case, it is possible to obtain a somewhat better
bound on the number of samples required.
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The Analysis

To study the behavior of randomized matrix multiplication, we introduce the error matrix

E = R̄n −BC = 1

n

n∑
k=1

(Rk −BC ) =
n∑

k=1
Sk .

The random matrices Sk are defined by the previous expression. Observe that the summands are
independent, and each has zero mean. Therefore, we can apply the matrix Bernstein inequality
to study the expected norm of the error.

First, let us bound the norm of a generic summand S = n−1(R −BC ). Note that

‖R‖ ≤ max j
1

p j

∥∥b: j c j :
∥∥ =

N∑
k=1

‖b:k‖‖ck:‖ ≤ ‖B‖F ‖C‖F

The last inequality is Cauchy–Schwarz. Therefore, we have the uniform bound

‖S‖ = 1

n
‖R −BC‖ ≤ 1

n
(‖R‖+‖B‖‖C‖) ≤ 2

n
‖B‖F ‖C‖F .

Observe that the bound decreases with the number n of samples.
Next, we compute the variance of E . This takes some effort. First, consider a generic sum-

mand S. Form the expectation

E
[
SS∗]= 1

n2 E
[
(R −BC )(R −BC )∗

]= 1

n2

[
E
(
RR∗)−BCC∗B∗]

.

Let us focus on the first term on the right-hand side.

∥∥E(
RR∗)∥∥=

∥∥∥∥∥ N∑
j=1

1

p j

(
b: j c j :

)(
b: j c j :

)∗∥∥∥∥∥≤
N∑

j=1

1

p j

∥∥b: j
∥∥2∥∥c j :

∥∥2 =
(

N∑
j=1

∥∥b: j
∥∥∥∥c j :

∥∥)2

≤ ‖B‖2
F ‖C‖2

F .

In combination, the last two displays yield

∥∥E(
SS∗)∥∥≤ 1

n2

[‖B‖2
F ‖C‖2

F +
∥∥BCC∗B

∥∥]≤ 2

n2
‖B‖2

F ‖C‖2
F .

To obtain the variance of the error matrix E , we calculate that

∥∥E(
E E∗)∥∥=

∥∥∥∥∥ n∑
j ,k=1

E
(
S j S∗

k

)∥∥∥∥∥=
∥∥∥∥∥ n∑

k=1
E
(
Sk S∗

k

)∥∥∥∥∥≤ 2

n
‖B‖2

F ‖C‖2
F .

The second identity holds because the summands are independent and zero mean. The last
bound follows from the triangle inequality and the calculation for a generic summand. The sec-
ond component of the variance does not require any additional ideas, and we reach the bound

σ2(E ) = max
{∥∥E(

E E∗)∥∥ ,
∥∥E(

E∗E
)∥∥}≤ 2

n
‖B‖2

F ‖C‖2
F .

Observe that we retain the favorable dependence on the number n of samples.
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We have acquired what we need to apply the matrix Bernstein inequality. Invoke the expec-
tation bound (6.2.2) to reach

E‖E‖ ≤
√

4log(d1 +d2)

n
‖B‖F ‖C‖F +

2log(d1 +d2)

3n
‖B‖F ‖C‖F .

With our choice of n from (6.4.3), we conclude that

E‖E‖ ≤ 4ε

5
‖B‖‖C‖+ 2ε2

15

‖B‖2

‖B‖F

‖C‖2

‖C‖F

< ε‖B‖‖C‖ .

The last bound holds because the Frobenius norm dominates the spectral norm. This is the
result (6.4.4).

6.5 Proof of the Matrix Bernstein Inequalities

In establishing the matrix Bernstein inequality, the main challenge is to obtain an appropriate
bound for the matrix mgf and cgf of a zero-mean random matrix whose eigenvalues satisfy a
uniform bound. We do not present the sharpest estimate possible, but rather the one that leads
most directly to the useful results stated in Theorem 6.1.1.

Lemma 6.5.1 (Matrix Bernstein: Mgf and Cgf Bound). Suppose that X is a random Hermitian
matrix that satisfies

EX = 0 and λmax(X ) ≤ R.

Then, for 0 < θ < 3/R,

EeθX 4 exp

(
θ2/2

1−Rθ/3
E
(

X 2)) and log EeθX 4
θ2/2

1−Rθ/3
E
(

X 2) .

Proof. Fix the parameter θ > 0. In the exponential eθX , we would like to expose the random
matrix X and its square X 2 so that we can exploit information about the mean and variance. To
that end, we write

eθX = I+θX + (eθX −θX − I) = I+θX +X · f (X ) ·X , (6.5.1)

where f is a function on the real line:

f (x) = eθx −θx −1

x2 for x 6= 0 and f (0) = θ2

2
.

The function f is increasing because its derivative is positive. Therefore, f (x) ≤ f (R) when x ≤ R.
By assumption, the eigenvalues of X do not exceed R, so the Transfer Rule (2.1.6) implies that

f (X )4 f (R) · I. (6.5.2)

The Conjugation Rule (2.1.4) allows us to introduce the relation (6.5.2) into our expansion (6.5.1)
of the matrix exponential:

eθX 4 I+θX +X ( f (R) · I)X = I+θX + f (R) ·X 2.
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Take the expectation of this semidefinite bound to reach

EeθX 4 I+ f (R) ·E(X 2). (6.5.3)

The expression (6.5.3) provides a powerful bound for the matrix mgf. In fact, this result leads to
the matrix Bennett inequality, which strengthens Theorem 6.1.1. We have chosen to present the
weaker result because it is easier to apply in practice. To arrive at the mgf bound required for
Theorem 6.1.1, we must keep working.

We need an inequality for the quantity f (R). This argument involves a clever application of
Taylor series:

f (R) = eRθ−Rθ−1

R2 = 1

R2

∞∑
q=2

(Rθ)q

q !
≤ θ2

2

∞∑
q=2

(Rθ)q−2

3q−2 = θ2/2

1−Rθ/3
. (6.5.4)

The second expression is simply the Taylor expansion of the fraction, viewed as a function of
θ. We obtain the inequality by factoring out (Rθ)2/2 from each term in the series and invoking
the bound q ! ≥ 2 ·3q−2, valid for each q = 2,3,4, . . . . Sum the geometric series to obtain the final
identity.

Introduce the inequality (6.5.4) for f (R) into the semidefinite bound (6.5.3) for the matrix
mgf to reach

EeθX 4 I+ θ2/2

1−Rθ/3
E(X 2)4 exp

(
θ2/2

1−Rθ/3

)
.

The second semidefinite relation follows when we apply the Transfer Rule (2.1.6) to the inequality
1+a ≤ ea , which holds for a ∈R.

To obtain the semidefinite bound for the cgf, we extract the logarithm of the mgf bound using
the fact (2.1.9) that the logarithm is operator monotone.

We are prepared to establish the matrix Bernstein inequalities for random Hermitian matri-
ces.

Proof of Theorem 6.1.1. Consider a finite sequence {Xk } of random Hermitian matrices with di-
mension d . Assume that

EXk = 0 and λmax(Xk ) ≤ R.

The matrix Bernstein cgf bound, Lemma 6.5.1, provides that

log EeθXk 4 g (θ) ·E(
X 2

k

)
where g (θ) = θ2/2

1−Rθ/3
for 0 < θ < 3/R. (6.5.5)

Define the sum Y =∑
k Xk , which it is our task to analyze.

We begin with the bound (6.1.2) for the expectation Eλmax(Y ). Invoke the master inequality,
relation (3.6.1) in Theorem 3.6.1, to find that

Eλmax(Y ) ≤ inf
θ>0

1

θ
log trexp

(∑
k log EeθXk

)
≤ inf

0<θ<3/R

1

θ
log trexp

(
g (θ)

∑
k E

(
X 2

k

))
= inf

0<θ<3/R

1

θ
log trexp

(
g (θ) ·E(

Y 2)) .
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As usual, to move from the first to the second line, we invoke the fact (2.1.7) that the trace ex-
ponential is monotone to introduce the semidefinite bound (6.5.5) for the cgf. The rest of the
argument glides along a well-oiled track:

Eλmax(Y ) ≤ inf
0<θ<3/R

1

θ
log

[
d λmax

(
exp

(
g (θ) ·E(

Y 2)))]
= inf

0<θ<3/R

1

θ
log

[
d exp

(
g (θ) ·λmax

(
E
(
Y 2)))]

= inf
0<θ<3/R

1

θ
log

[
d exp

(
g (θ) ·σ2)]

= inf
0<θ<3/R

[
logd

θ
+ θ/2

1−Rθ/3
·σ2

]
.

In the first inequality, we bound the trace of the exponential by the dimension d times the max-
imum eigenvalue. The next line follows from the Spectral Mapping Theorem, Proposition 2.1.3.
In the third line, we identify the variance parameter (6.1.1). Afterward, we extract the logarithm
and simplify. Finally, we minimize the expression—ideally with a computer algebra system—to
complete the proof of (6.1.2).

Next, we develop the tail bound (6.1.3) forλmax(Y ). Owing to the master tail inequality (3.6.3),
we have

P {λmax(Y ) ≥ t } ≤ inf
θ>0

e−θt trexp
(∑

k log EeθXk
)

≤ inf
0<θ<3/R

e−θt trexp
(
g (θ)

∑
k E

(
X 2

k

))
= inf

0<θ<3/R
d e−θt exp

(
g (θ) ·σ2) .

The justifications are the same as before. The exact value of the infimum is messy, so we proceed
with the inspired choice θ = t/(σ2 +Rt/3), which results in the elegant bound (6.1.3).

Finally, we explain how to derive Corollary 6.2.1, for general matrices, from Theorem 6.1.1.
This result follows immediately when we apply the matrix Bernstein bounds for Hermitian ma-
trices to the Hermitian dilation of a sum of general matrices.

Proof of Corollary 6.2.1. Consider a finite sequence {Sk } of d1×d2 random matrices, and assume
that

ESk = 0 and λmax(Sk ) ≤ R

We define the two random matrices

Z =∑
k Sk and Y =H (Z ).

where H is the Hermitian dilation (2.1.11). We will invoke Theorem 6.1.1 to analyze ‖Z ‖. First,
recall the fact (2.1.13) that

‖Z ‖ =λmax(H (Z )) =λmax(Y ).

Next, we express the variance (6.1.1) of the random Hermitian matrix Y in terms of the general
matrix Z . Indeed,

σ2(Y ) = ∥∥E(Y 2)
∥∥= ∥∥E(

H (Z )2)∥∥=
∥∥∥∥E[

Z Z ∗ 0
0 Z ∗Z

]∥∥∥∥
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=
∥∥∥∥[
E(Z Z ∗) 0

0 E(Z ∗Z )

]∥∥∥∥= max
{∥∥E(Z Z ∗)

∥∥,
∥∥E(Z ∗Z )

∥∥}=σ2(Z ).

The third relation is the identity (2.1.12) for the square of the Hermitian dilation. The penulti-
mate equation holds because the norm of a block-diagonal matrix is the maximum norm of any
diagonal block. We obtain the formula (4.2.1) for the variance of the matrix Z . Finally, we invoke
Theorem 6.1.1 to establish Corollary 6.2.1.

6.6 Notes

There are a wide variety of Bernstein-type inequalities available in the scalar case, and the matrix
case is no different. The applications of the matrix Bernstein inequality are also numerous. We
only give a brief summary here.

6.6.1 Matrix Bernstein Inequalities

David Gross [Gro09] and Ben Recht [Rec11] used the approach of Ahlswede–Winter [AW02] to
develop two different versions of the matrix Bernstein inequality. These papers played a big role
in popularizing the use matrix concentration inequalities in mathematical signal processing and
statistics. Nevertheless, their results involve a suboptimal variance parameter of the form

σ2
AW =∑

k

∥∥E(X 2
k )

∥∥ .

In general, this parameter is significantly larger than the variance (6.1.1) that appears in Theo-
rem 6.1.1. They do coincide in some special cases, such as when the summands are independent
and identically distributed.

Oliveira [Oli10a] established the first version of the matrix Bernstein inequality that yields
the correct variance parameter (6.1.1). He accomplished this task with an elegant application
of the Golden–Thompson inequality (3.3.3). His method even gives a result, called the matrix
Freedman inequality, that holds for matrix-valued martingales. His bound is roughly equivalent
with Theorem 6.1.1, up to the precise value of the constants.

The matrix Bernstein inequality we have stated here, Theorem 6.1.1, first appeared in the pa-
per [Tro11d, §6]. The bounds for the expectation are new. The argument is based on Lieb’s The-
orem, and it also delivers a matrix Bennett inequality, and the split Bernstein inequality (6.1.4)
discussed here. This paper also describes how to establish matrix Bernstein inequalities for sums
of unbounded random matrices, given some control over the matrix moments.

The research in [Tro11d] is independent from Oliveira’s ideas [Oli10a]. Motivated by Oliveira’s
paper, the article [Tro11a] and the technical report [Tro11c] show how to use Lieb’s Theorem to
study matrix martingales. The subsequent paper [GT11] explains how to develop a Bernstein
inequality for interior eigenvalues using the Lieb–Seiringer Theorem [LS05].

For more versions of the matrix Bernstein inequality, see Vladimir Koltchinskii’s lecture notes
from Saint-Flour [Kol11].

6.6.2 Randomized Matrix Multiplication

The idea of using random sampling to accelerate matrix multiplication appears in a paper by
Drineas, Kannan, and Mahoney [DKM06]. Subsequently, Tamás Sarlós obtained a significant
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improvement in the performance of this algorithm [Sar06]. The analysis we have given here
is a corrected version of the argument in the work of Hsu, Kakade, and Zhang [HKZ12b]; see
also [HKZ12a]. A related analysis appears in the paper of Magen and Zouzias [MZ11].

6.6.3 Randomized Sparsification

The idea of using randomized sparsification to accelerate spectral computations appears in a
paper of Achlioptas and McSherry [AM07]. Drineas and Zouzias [DZ11] point out that matrix
concentration inequalities can be used to analyze this type of algorithm. For further results on
sparsification, see the paper [GT].



CHAPTER 7
Results Involving the Intrinsic

Dimension

A minor shortcoming of our matrix concentration results is the dependence on the ambient
dimension of the matrix. In this chapter, we show how to obtain a dependence on an intrin-
sic dimension parameter, which is sometimes much smaller than the ambient dimension. In
many cases, intrinsic dimension bounds offer only a modest improvement. Nevertheless, there
are examples where the benefits are significant enough that we can obtain nontrivial results for
infinite-dimensional random matrices.

We present a version of the matrix Chernoff inequality for an independent sum of bounded,
positive-semidefinite random matrices that involves an intrinsic dimension parameter. This re-
sult is interesting, but it is not entirely satisfactory because it lacks a bound for the minimum
eigenvalue. We also describe a version of the matrix Bernstein inequality for an independent
sum of bounded, zero-mean random matrices that involves an intrinsic dimension parameter.
The intrinsic Bernstein result often improves on Theorem 6.1.1. We omit intrinsic dimension
bounds for matrix series, which the reader may wish to develop as an exercise.

To give a sense of what these new results accomplish, we reconsider some of the examples
from earlier chapters. We apply the intrinsic Chernoff bound to study a random column subma-
trix of a fixed matrix, and we use the intrinsic Bernstein bound to analyze the sample covariance
estimator. In each case, the intrinsic dimension parameters have an attractive interpretation in
terms of the problem data.

We begin our development in §7.1 with the definition of the intrinsic dimension of a ma-
trix. In §7.2, we present the intrinsic Chernoff bound and some of its consequences. In §7.3,
we describe the intrinsic Bernstein bounds and their applications. Afterward, we describe the
new ingredients that are required in the proofs. Section 7.4 explains how to extend the matrix
Laplace transform method beyond the exponential function, and §7.5 describes a simple but
powerful lemma that allows us to obtain the dependence on the intrinsic dimension. Section 7.6
contains the proof of the intrinsic Chernoff bound, and §7.7 develops the proof of the intrinsic
Bernstein bound.

75
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7.1 The Intrinsic Dimension of a Matrix

Some types of random matrices are concentrated in a small number of dimensions, while they
have little content in other dimensions. So far, our bounds do not account for the difference. We
need to introduce a more refined notion of dimension that will allow us to discriminate among
these examples.

Definition 7.1.1 (Intrinsic Dimension). For a positive-semidefinite matrix A, the intrinsic dimen-
sion is the quantity

intdim(A) = tr A

‖A‖ .

By expressing the trace and the norm in terms of the eigenvalues, we can verify that

1 ≤ intdim(A) ≤ rank(A) ≤ dim(A).

The lower inequality is attained precisely when A has rank one, while the upper inequality is
attained precisely when A is a multiple of the identity. Note that the intrinsic dimension is 0-
homogeneous, so it is insensitive to changes in the scale of the matrix A. We interpret the in-
trinsic dimension as a reflection of the number of dimensions where A has significant spectral
content.

7.2 Matrix Chernoff with Intrinsic Dimension

Let us begin with an extension of the matrix Chernoff inequality. We obtain bounds for the maxi-
mum eigenvalue of a sum of bounded, positive-semidefinite matrices that depend on the intrin-
sic dimension of the expectation of the sum.

Theorem 7.2.1 (Matrix Chernoff: Intrinsic Dimension). Consider a finite sequence {Xk } of ran-
dom, Hermitian matrices that satisfy

Xk < 0 and λmax(Xk ) ≤ R.

Define the random matrix
Y =∑

k Xk .

Introduce an intrinsic dimension parameter and a mean parameter:

d = d(Y ) = intdim(EY ) and µmax =µmax(Y ) =λmax(EY ).

Then, for θ > 0,

Eλmax(Y ) ≤ eθ−1

θ
·µmax + 1

θ
·R log(2d). (7.2.1)

Furthermore,

P
{
λmax(Y ) ≥ (1+δ)µmax

}≤ 2d ·
[

eδ

(1+δ)1+δ

]µmax/R

for δ≥ 1. (7.2.2)

The proof of this result appears below in §7.6.



7.3. MATRIX BERNSTEIN WITH INTRINSIC DIMENSION 77

7.2.1 Discussion

Theorem 7.2.1 is almost identical with the parts of the basic matrix Chernoff inequality that con-
cern the maximum eigenvalue λmax(Y ). Let us call attention to the differences. The key advan-
tage is that the current result depends on the intrinsic dimension of the mean EY instead of the
ambient dimension. When the eigenvalues of EY decay, the improvement can be dramatic. We
do suffer a small cost in the extra factor of two, and the tail bound is restricted to a smaller range
of the parameter δ. Neither of these limitations is particularly significant.

A more serious flaw in Theorem 7.2.1 is that it does not provide any information about the
minimum eigenvalue λmin(Y ). Curiously, the approach we use to prove the result just does not
work for the minimum eigenvalue.

7.2.2 Example: A Random Column Submatrix

To demonstrate the value of Theorem 7.2.1, we apply it to bound the expected norm of a random
column submatrix drawn from a fixed matrix, a problem we considered in §5.2.

In this example, we began with a fixed d ×n matrix B , and we formed a random submatrix
Z containing an average of q nonzero columns from B . In the analysis, we applied the matrix
Chernoff inequality to the random matrix Y = Z Z ∗, which takes the form

Y =
n∑

k=1
ηk bk:b

∗
k:.

Here, {ηk } is an independent family of Bernoulli random variables with common mean q/n. We
have written bk: for the kth column of B .

To invoke Theorem 7.2.1, we just need to compute the intrinsic dimension d(Y ) = intdim(EY ).
Recall that EY = (q/n)B B∗, so that

d(Y ) = intdim
( q

n
B B∗

)
= intdim(B B∗) = tr(B B∗)

‖B B∗‖ = ‖B‖2
F

‖B‖2 = srank(B ).

The second identity holds because the intrinsic dimension is scale invariant. The last relation is
simply Definition 6.4.1. Therefore, the expectation bound (7.2.1) with θ = 1 delivers

E
(‖Z ‖2)= Eλmax(Y ) ≤ (e−1) ·µmax(Y )+R log(2 · srank(B )).

In contrast, our previous analysis led to a logarithmic factor of logd . If the matrix B has deficient
stable rank—meaning that it has many rows which are almost collinear—then the new bound
can result in a serious improvement.

7.3 Matrix Bernstein with Intrinsic Dimension

We continue with extensions of the matrix Bernstein inequality. These results provide tail bounds
for an independent sum of bounded random matrices that depend on the intrinsic dimension
of the variance.
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7.3.1 The Hermitian Case

We begin with the results for an independent sum of Hermitian random matrices whose eigen-
values are bounded above.

Theorem 7.3.1 (Matrix Bernstein: Hermitian Case with Intrinsic Dimension). Consider a finite
sequence {Xk } of random Hermitian matrices that satisfy

EXk = 0 and λmax(Xk ) ≤ R.

Define the random matrix
Y =∑

k Xk .

Introduce the intrinsic dimension and variance parameters

d = d(Y ) = intdim
(
E(Y 2)

)
and σ2 =σ2(Y ) = ∥∥E(Y 2)

∥∥ .

Then, for t ≥σ+R/3,

P {λmax(Y ) ≥ t } ≤ 4d ·exp

( −t 2/2

σ2 +Rt/3

)
. (7.3.1)

The proof of this result appears below in §7.7.

Discussion

Theorem 7.3.1 is quite similar to Theorem 6.1.1, so we focus on the differences. Note that the
tail bound (7.3.1) now depends on the intrinsic dimension of the variance matrix E(Y 2), which
is never larger than the ambient dimension. As a consequence, the tail bound is almost always
sharper than the earlier result. The costs of this improvement are small: We pay an extra factor
of four, and we must restrict our attention to a more limited range of the parameter t . Neither of
these changes is significant.

We can obtain a bound for Eλmax(Y ) by integrating the tail inequality (7.3.1), which gives

Eλmax(Y ) ≤ Const ·
(
σ

√
logd +R logd

)
.

It seems likely that we could adapt the argument to obtain a more direct proof of the expectation
bound, along with an explicit constant.

The other commentary about the original matrix Bernstein inequality, Theorem 6.1.1, also
applies to the intrinsic dimension result. Using similar arguments, we can obtain bounds for
λmin(Y ), and we can adapt the result to an independent sum of uncentered, bounded, random
Hermitian matrices. The modifications required in these cases are straightforward.

Finally, let us mention a subtle but important point concerning the application of Theo-
rem 7.3.1. It is often difficult or unwieldy to compute the exact values of the parameters d(Y )
and σ2(Y ). In this case, we can proceed as follows. Suppose that E(Y 2) 4 V for some positive-
semidefinite matrix V . A slight modification to the proof of Theorem 6.1.1 yields the tail bound

P {λmax(Y ) ≥ t } ≤ 4 · intdim(V ) ·exp

( −t 2/2

‖V ‖+Rt/3

)
(7.3.2)

for all t ≥ ‖V ‖1/2 +R/3. This version of the result is often much easier to apply.
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7.3.2 The General Case

Next, we present the adaptation for an independent sum of general random matrices that are
bounded in spectral norm.

Corollary 7.3.2 (Matrix Bernstein: Rectangular Case with Intrinsic Dimension). Consider a finite
sequence {Sk } of random complex matrices that satisfy

ESk = 0 and ‖Sk‖ ≤ R.

Define the random matrix
Z =∑

k Sk .

Introduce the intrinsic dimension parameter

d = d(Z ) = intdim

[
E (Z Z ∗) 0

0 E (Z ∗Z )

]
. (7.3.3)

and the variance parameter

σ2 =σ2(Z ) = max
{∥∥E(Z Z ∗)

∥∥ ,
∥∥E(Z ∗Z )

∥∥}
Then, for t ≥σ+R/3,

P {‖Z ‖ ≥ t } ≤ 4d ·exp

( −t 2/2

σ2 +Rt/3

)
. (7.3.4)

The proof of this result appears below in §7.7.

Discussion

Corollary 7.3.2 is very similar to Theorem 7.3.1 and our earlier result, Corollary 6.2.1. As a con-
sequence, we limit our discussion to a single point. Note that the intrinsic dimension param-
eter (7.3.3) is computed from a block-diagonal matrix that contains both of the squares of the
matrix Z . It follows that

d(Z ) = E tr(Z Z ∗)+E tr(Z ∗Z )

max{‖E(Z Z ∗)‖ , ‖E(Z ∗Z )‖}
.

In other words, we divide by the norm of the larger block. We can make a further bound to obtain
a result in terms of the intrinsic dimensions of the two blocks:

d(Z ) ≤ intdim
(
E(Z Z ∗)

)+ intdim
(
E(Z ∗Z )

)
.

An interesting consequence is that the intrinsic dimension d(Z ) can be much smaller than the
intrinsic dimension of either E(Z Z ∗) or E(Z ∗Z ).

7.3.3 Example: Sample Covariance Matrices, Redux

To demonstrate the value of the intrinsic dimension results, let us apply Theorem 7.3.1 to the
sample covariance matrix example we analyzed in §1.6.3.

Consider a random vector x with zero mean, covariance A, and uniform upper bound ‖x‖2 ≤
B . The sample covariance matrix Y = n−1 ∑n

k=1 xk x∗
k , where x1, . . . , xn are independent samples
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from the distribution x . Recall that the random matrix of interest is E = Y − A, the discrepancy
between the sample covariance matrix and the true covariance.

We expressed the error matrix E as the sum of the independent random matrices

Sk = 1

n
(xk x∗

k − A).

The summands have the properties that ESk = 0 and ‖Sk‖ ≤ 2B/n. Moreover, E(S2
k )4 (B/n2) · A,

so that

E(E 2)4
B

n
· A

As discussed, we may substitute the semidefinite upper bound V = (B/n) · A for E(E 2) when we
compute the variance parameter and the intrinsic dimension parameter in Theorem 7.3.1.

Let us introduce the intrinsic dimension and variance parameters

intdim(V ) = tr A

‖A‖ and ‖V ‖ = B

n
‖A‖ .

We can apply the modified tail bound (7.3.2) to both E and −E to control λmax(E ) and λmin(E ).
Combine these two results with the union bound to reach the spectral norm estimate

P {‖Y −E‖ ≥ t } ≤ 8tr A

‖A‖ ·exp

( −t 2/2

B ‖A‖/n +2B t/3n

)
,

valid when t is sufficiently large. To achieve a relative error ε ∈ (0,1], the number n of samples
should satisfy

n ≥ Const · B log(intdim(A))

ε2 ‖A‖ . (7.3.5)

In this case, we obtain a tail bound of the form

P {‖Y −E‖ ≥ ε‖A‖} ≤ Const · intdim(A)−Const.

By increasing the number n of samples, we can increase the exponent in the tail probability.
The key observation is that the intrinsic dimension term in (7.3.5) may be much smaller than

the ambient dimension of the covariance matrix A. For instance, if the ordered eigenvalues of A
satisfy the bounds

λ j (A) ≤ 1

j 2 for each j = 1,2,3, . . . ,

then the logarithmic factor in (7.3.5) reduces to a constant that is independent of the dimension
of the covariance matrix A!

Finally, we note that this result has an attractive interpretation: The intrinsic dimension pa-
rameter intdim(A) is the total variance of all the components of the random vector x divided by
the maximum variance achieved by any component of x .

7.4 Revisiting the Matrix Laplace Transform Bound

After some reflection, we can trace the dependence on the ambient dimension in our earlier re-
sults to the proof of Proposition 3.2.1. In the original argument, we used an exponential function
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to transform the tail event before applying Markov’s inequality. This approach leads to trouble
for the simple reason that the exponential function does not pass through the origin, which gives
undue weight to eigenvalues that are close to zero.

We can resolve this problem by using other types of functions to transform the tail event. The
functions we have in mind are adjusted versions of the exponential function. In particular, for
fixed θ > 0, we can consider

ψ1(t ) = max
{
0, eθt −1

}
and ψ2(t ) = eθt −θt −1.

Both functions are nonnegative and convex, and they are nondecreasing on the positive real line.
In each case, ψi (0) = 0. At the same time, the presence of the exponential function allows us to
exploit our bounds for the trace mgf.

Proposition 7.4.1 (Generalized Matrix Laplace Transform Bound). Let Y be a random Hermitian
matrix. Let ψ :R→R+ be a nonnegative function that is nondecreasing on [0,∞). For each t ≥ 0,

P {λmax(Y ) ≥ t } ≤ 1

ψ(t )
E trψ(Y ).

Proof. The proof follows the same lines as the proof of Proposition 3.2.1, but it requires some
additional finesse. Since ψ is nondecreasing on [0,∞), the bound a ≥ t implies that ψ(a) ≥ψ(t ).
It follows that

λmax(Y ) ≥ t =⇒ λmax(ψ(Y )) ≥ψ(t ).

Indeed, on the tail event λmax(Y ) ≥ t , we must have ψ(λmax(Y )) ≥ ψ(t ). The Spectral Mapping
Theorem, Proposition 2.1.3, indicates thatψ(λmax(Y )) is among the eigenvalues ofψ(Y ), and we
determine that λmax(ψ(Y )) also exceeds ψ(t ).

Returning to the tail probability, we discover that

P {λmax(Y ) ≥ t } ≤P{
λmax(ψ(Y )) ≥ψ(t )

}≤ 1

ψ(t )
Eλmax(ψ(Y )).

The second bound is Markov’s inequality (2.2.1), which is valid becauseψ is nonnegative. Finally,

P {λmax(Y ) ≥ t } ≤ 1

ψ(t )
E trψ(Y ).

The inequality holds because of the fact (2.1.5) that the trace of ψ(Y ), a positive-semidefinite
matrix, must be as large as its maximum eigenvalue.

7.5 The Intrinsic Dimension Lemma

The other new ingredient is a simple observation that allows us to control a trace function ap-
plied to a positive-semidefinite matrix in terms of the intrinsic dimension of the matrix.

Lemma 7.5.1 (Intrinsic Dimension). Letϕ be a convex function on the interval [0,∞) withϕ(0) =
0. For any positive-semidefinite matrix A, it holds that

trϕ(A) ≤ intdim(A) ·ϕ(‖A‖).



82 CHAPTER 7. RESULTS INVOLVING THE INTRINSIC DIMENSION

Proof. Since a 7→ϕ(a) is convex on the interval [0,R], it is bounded above by the chord connect-
ing the endpoints. That is, for a ∈ [0,R],

ϕ(a) ≤
(
1− a

R

)
·ϕ(0)+ a

R
·ϕ(R) = a

R
·ϕ(R).

The eigenvalues of A fall in the interval [0,R], where R = ‖A‖. As an immediate consequence of
the Transfer Rule (2.1.6), we find that

trϕ(A) ≤ tr A

‖A‖ ·ϕ(‖A‖).

Identify the intrinsic dimension of A to complete the argument.

7.6 Proof of the Intrinsic Chernoff Bound

With these results at hand, we are prepared to prove our first intrinsic dimension result, which
extends the matrix Chernoff inequality.

Proof of Theorem 7.2.1. Consider a finite sequence {Xk } of independent, random Hermitian ma-
trices with

Xk < 0 and λmax(Xk ) ≤ R.

Introduce the sum
Y =∑

k Xk .

The challenge is to establish bounds for λmax(Y ) that depends on the intrinsic dimension of the
matrix EY . We begin the argument with the proof of the tail bound (7.2.2). Afterward, we show
how to extract the expectation bound (7.2.1).

Fix a number θ > 0, and define the function ψ(t ) = max{0, eθt − 1} for t ∈ R. The general
version of the matrix Laplace transform bound, Proposition 7.4.1, states that

P {λmax(Y ) ≥ t } ≤ 1

ψ(t )
E trψ(Y ) = 1

eθt −1
E tr

(
eθY − I

)
. (7.6.1)

We have exploited the fact that Y is positive semidefinite and that t ≥ 0. The presence of the
identity matrix on the right-hand side allows us to draw stronger conclusions than we could
before.

Let us study the expected trace term on the right-hand side of (7.6.1). As in the proof of our
original matrix Chernoff bound, Theorem 5.1.1, we have the bound

E treθY ≤ trexp
(
g (θ)(EY )

)
where g (θ) = eRθ−1

R
.

Invoke the latter inequality, and introduce the function ϕ(a) = ea −1 to see that

E tr
(
eθY − I

)≤ trϕ
(
g (θ)(EY )

)≤ intdim(EY ) ·ϕ(
g (θ)‖EY ‖) .

The second inequality results from Lemma 7.5.1, the intrinsic dimension bound, and the fact
that the intrinsic dimension does not depend on the scaling factor g (θ). Recalling the notation
d = intdim(EY ) and µmax = ‖EY ‖, we continue the calculation:

E tr
(
eθY − I

)≤ d ·ϕ(
g (θ) ·µmax

)≤ d ·exp
(
g (θ) ·µmax

)
. (7.6.2)
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We have used the trivial bound ϕ(a) ≤ ea , which holds for a ∈R.
To complete the argument, introduce the bound (7.6.2) on the expected trace into the prob-

ability bound (7.6.1) to obtain

P {λmax(Y ) ≥ t } ≤ d · eθt

eθt −1
·e−θt+g (θ)·µmax .

It is convenient to make the change of variables t 7→ (1+δ)µmax. The previous estimate is valid
for all θ > 0, so we can select θ = R−1 log(1+δ) to minimize the final exponential. To bound the
fraction, observe that

ea

ea −1
= 1+ 1

ea −1
≤ 1+ 1

a
for a ≥ 0.

We obtain the latter inequality by replacing the convex function a 7→ ea − 1 with its tangent at
a = 0.

Altogether, these steps lead to the estimate

P
{
λmax(Y ) ≥ (1+δ)µmax

}≤ d ·
(
1+ R/µmax

(1+δ) log(1+δ)

)
·
[

eδ

(1+δ)1+δ

]µmax/R

. (7.6.3)

For random matrices, this inequality is rarely useful when δ < 1, so it does little harm to place
the restriction that δ≥ 1. Subject to this condition, the bracket (including the exponent) exceeds
one unless we also have

(1+δ) log(1+δ) ≥ R

µmax
.

Therefore, we can use the latter bound to make a numerical estimate for the parenthesis in (7.6.3),
which leads to the conclusion (7.2.2).

Now, we turn to the expectation bound (7.2.1). Observe that the functional inverse ofψ is the
increasing concave function

ψ−1(u) = 1

θ
log(1+u) for u ≥ 0.

Since Y is a positive-semidefinite matrix, we can calculate that

Eλmax(Y ) = Eψ−1(ψ(λmax(Y ))) ≤ψ−1(Eψ(λmax(Y )))

=ψ−1(Eλmax(ψ(Y ))) ≤ψ−1(E trψ(Y )). (7.6.4)

The second relation is Jensen’s inequality (2.2.2), which is valid becauseψ−1 is concave. The third
relation follows from the Spectral Mapping Theorem, Proposition 2.1.3, because the function ψ

is increasing. We can bound the maximum eigenvalue by the trace because ψ(Y ) is positive
semidefinite and ψ−1 is an increasing function.

Now, substitute the bound (7.6.2) into the last display (7.6.4) to reach

Eλmax(Y ) ≤ψ−1(d ·exp(g (θ) ·µmax)) = 1

θ
log

(
1+d ·eg (θ)·µmax

)
≤ 1

θ
log

(
2d ·eg (θ)·µmax

)= 1

θ

(
log(2d)+ g (θ) ·µmax

)
.

The first inequality again requires the property that ψ−1 is increasing. The second inequality
follows because 1 ≤ d · eg (θ)·µmax , which owes to the fact that the exponent is nonnegative. To
complete the argument, introduce the definition of g (θ), and make the change of variables θ 7→
θ/R. These steps yield (7.2.1).
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7.7 Proof of the Intrinsic Bernstein Bounds

In this section, we present the arguments that lead up to the intrinsic Bernstein bounds. That is,
we develop tail inequalities for an independent sum of bounded random matrices that depend
on the intrinsic dimension of the variance.

7.7.1 The Hermitian Case

We commence with the results for an independent sum of random Hermitian matrices whose
eigenvalues are subject to an upper bound.

Proof of Theorem 7.3.1. Consider a finite sequence {Xk } of independent, random, Hermitian ma-
trices with

EXk = 0 and λmax(Xk ) ≤ R.

Introduce the random matrix
Y =∑

k Xk .

It is our goal to obtain a tail bound forλmax(Y ) that reflects the intrinsic dimension of its variance
E(Y 2).

Fix a number θ > 0, and define the function ψ(t ) = eθt −θt −1 for t ∈ R. The general version
of the matrix Laplace transform bound, Proposition 7.4.1, implies that

P {λmax(Y ) ≥ t } ≤ 1

ψ(t )
E trψ(Y )

= 1

ψ(t )
E tr

(
eθY −θY − I

)
= 1

eθt −θt −1
E tr

(
eθY − I

)
.

(7.7.1)

The last identity holds because the random matrix Y has zero mean.
Let us focus on the expected trace on the right-hand side of (7.7.1). Examining the proof of

the original matrix Bernstein bound, Theorem 6.1.1, we recall that

E treθY ≤ trexp
(
g (θ) ·E(Y 2)

)
where g (θ) = exp

(
θ2/2

1−Rθ/3

)
.

Applying this inequality and introducing the function ϕ(a) = ea −1, we obtain

E tr
(
eθY − I

)≤ tr
(
eg (θ) E(Y 2) − I

)
= trϕ

(
g (θ) E(Y 2)

)
≤ intdim

(
E(Y 2)

) ·ϕ(
g (θ)

∥∥E(Y 2)
∥∥)

The last inequality depends on the intrinsic dimension result, Lemma 7.5.1, and the fact that
the intrinsic dimension does not depend on the scaling factor g (θ). Identify the dimensional
parameter d = intdim

(
E(Y 2)

)
and the variance parameter σ2 = ∥∥E(Y 2)

∥∥. It follows that

E tr
(
eθY − I

)≤ d ·ϕ(
g (θ) ·σ2)≤ d ·exp

(
g (θ) ·σ2) . (7.7.2)

This bound depends on the obvious estimate ϕ(a) ≤ ea , valid for all a ∈R.
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Substitute the bound (7.7.2) into the probability estimate (7.7.1) to reach

P {λmax(Y ) ≥ t } ≤ d · eθt

eθt −θt −1
·e−θt+g (θ)·σ2

.

This estimate holds for any positive value of θ. Choose θ = t/(σ2 +Rt/3) to obtain a nice form
for the final exponential. To control the fraction, we remark that

ea

ea −a −1
= 1+ 1+a

ea −a −1
≤ 1+ 3

a2 for all a ≥ 0.

The inequality above follows from the fact

ea −a −1

a2 − 1+a

3
> 0 for all a ∈R.

Indeed, the left-hand side of the latter expression defines a convex function of a, whose minimal
value, attained near a ≈ 1.30, is strictly positive.

Combine the results from the last paragraph to reach

P {λmax(Y ) ≥ t } ≤ d ·
(
1+ 3(σ2 +Rt/3)2

t 4

)
·exp

( −t 2/2

σ2 +Rt/3

)
.

This probability inequality is typically vacuous when t 2 <σ2 +Rt/3, so we may as well limit out
attention to the case where t 2 ≥ σ2 +Rt/3. Under this assumption, the parenthesis is bounded
by four, which gives the tail bound (7.3.1). We can simplify the restriction on t by solving the
quadratic inequality to obtain the sufficient condition

t ≥ 1

2

R

3
+

√
R2

9
+4σ2

 .

We develop an upper bound for the right-hand side of this inequality as follows.

1

2

R

3
+

√
R2

9
+4σ2

= R

6

1+
√

1+ 36σ2

R2

≤ R

6

[
1+1+ 6σ

R

]
=σ+ R

3
.

We have used the numerical fact
p

a +b ≤p
a+pb for all a,b ≥ 0. Therefore, the tail bound (7.3.1)

is valid when t ≥σ+R/3.

7.7.2 The General Case

Finally, we present the proof of the intrinsic Bernstein inequality for an independent sum of
bounded random matrices.

Proof of Corollary 7.3.2. Suppose that {Sk } is a finite sequence of independent random matrices
that satisfy

ESk = 0 and ‖Sk‖ ≤ R.
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Form the sum Z = ∑
k Sk . As in the proof of Corollary 6.2.1, we derive the result by applying

Theorem 7.3.1 to the Hermitian dilation Y =H (Z ). The only new point that requires attention
is the definition of the intrinsic dimension of Z . From the statement of Theorem 7.3.1, we have

d(Y ) = intdim
(
E(Y 2)

)= intdim
(
E
(
H (Z )2))= intdim

[
E(Z Z ∗) 0

0 E(Z ∗Z )

]
.

The last identity arises from the formula (2.1.12) for the square of the dilation. We determine that
the appropriate definition for the intrinsic dimension parameter of Z is

d(Z ) = intdim

[
E(Z Z ∗) 0

0 E(Z ∗Z )

]
.

This point completes the argument.

7.8 Notes

At present, there are two different ways to improve the dimensional factor that appears in matrix
concentration inequalities.

First, there is a sequence of matrix concentration results where the dimensional parameter
is bounded by the total rank of the random matrix. The first bound of this type is due to Rudel-
son [Rud99]. Oliveira’s results in [Oli10b] also exhibit this reduced dimensional dependence. A
subsequent paper [MZ11] by Magen and Zouzias contains a related argument that gives similar
results. We do not discuss this class of bounds here.

The idea that the dimensional factor should depend on metric properties of the random ma-
trix appears in a paper of Hsu, Kakade, and Zhang [HKZ12b]. They obtain a bound that is similar
to Theorem 7.3.1. Unfortunately, their argument is complicated, and the results it delivers are
less refined than the ones given here.

Theorem 7.3.1 is essentially due to Stanislav Minsker [Min11]. His approach leads to some-
what sharper bounds than the approach in the paper of Hsu–Kakade-Zhang, and his method is
easier to understand.

We present a new, general approach that delivers intrinsic dimension bounds. The intrinsic
Chernoff bounds that emerge from our framework are new. The proof of the intrinsic Bernstein
bound, Theorem 7.3.1, can be interpreted as a distillation of Minsker’s argument. Indeed, many
of the specific calculations already appear in Minsker’s paper. We have obtained constants that
are marginally better.



Matrix Concentration: Resources

This annotated bibliography describes some papers that involve matrix concentration inequali-
ties. Right now, this presentation is heavily skewed toward theoretical results, rather than appli-
cations of matrix concentration. It favors, unapologetically, the work of the author. Additional
papers may be included at a later time.

Exponential Matrix Concentration Inequalities

We begin with papers that contain the most current results on matrix concentration.

• [Tro11d]. These lecture notes are based heavily on the research described in this paper.
This work identifies Lieb’s Theorem [Lie73, Thm. 6] as the key result that animates expo-
nential moment bounds for random matrices. Using this technique, the paper develops
the bounds for matrix Gaussian and Rademacher series, the matrix Chernoff inequalities,
and several versions of the matrix Bernstein inequality. In addition, it contains a matrix
Hoeffding inequality (for sums of bounded random matrices), a matrix Azuma inequal-
ity (for matrix martingales with bounded differences), and a matrix bounded difference
inequality (for matrix-valued functions of independent random variables).

• [Tro12]. This note describes a simple proof of Lieb’s Theorem that is based on the joint con-
vexity of quantum relative entropy. This reduction, however, still involves a deep convexity
theorem.

• [Oli10a]. Oliveira’s paper uses an ingenious argument, based on the Golden–Thompson
inequality (3.3.3), to establish a matrix version of Freedman’s inequality. This result is,
roughly, a martingale version of Bernstein’s inequality. This approach has the advantage
that it extends to the fully noncommutative setting [JZ12]. Oliveira applies his results to
study some problems in random graph theory.

• [Tro11a]. This paper shows that Lieb’s Theorem leads to a Freedman-type inequality for
matrix-valued martingales. The associated technical report [Tro11c] describes additional
results for matrix-valued martingales.

• [GT11]. This article explains how to use the Lieb–Seiringer Theorem [LS05] to develop tail
bounds for the interior eigenvalues of a sum of independent random matrices. It con-
tains a Chernoff-type bound for a sum of positive-semidefinite matrices, as well as several
Bernstein-type bounds for sums of bounded random matrices.

87
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• [MJC+12]. This paper contains a strikingly different method for establishing matrix con-
centration inequalities. The argument is based on work of Sourav Chatterjee [Cha07] that
shows how Stein’s method of exchangeable pairs [Ste72] leads to probability inequalities.
This technique has two main advantages. First, it gives results for random matrices that are
based on dependent random variables. In particular, the results apply to sums of indepen-
dent random matrices. Second, it delivers both exponential moment bounds and polyno-
mial moment bounds for random matrices. Indeed, the paper describes a Bernstein-type
exponential inequality and also a Rosenthal-type polynomial moment bound. Further-
more, this work contains what is arguably the simplest known proof of the noncommuta-
tive Khintchine inequality.

• [CGT12a, CGT12b]. The primary focus of this paper is to analyze a specific type of proce-
dure for covariance estimation. The appendix contains a new matrix moment inequality
that is, roughly, the polynomial moment bound associated with the matrix Bernstein in-
equality.

• [Kol11]. These lecture notes use matrix concentration inequalities as a tool to study some
estimation problems in statistics. They also contain some matrix Bernstein inequalities for
unbounded random matrices.

• [GN]. Gross and Nesme show how to extend Hoeffding’s method for analyzing sampling
without replacement to the matrix setting. This result can be combined with a variety of
matrix concentration inequalities.

• [Tro11e]. This paper combines the matrix Chernoff inequality, Theorem 5.1.1, with the
argument from [GN] to obtain a matrix Chernoff bound for a sum of random positive-
semidefinite matrices sampled without replacement from a fixed collection. The result is
applied to a random matrix that plays a role in numerical linear algebra.

Bounds with Intrinsic Dimension Parameters

The following works contain matrix concentration bounds that depend on a dimension param-
eter that may be smaller than the ambient dimension of the matrix.

• [Oli10b]. Oliveira shows how to develop a version of Rudelson’s inequality [Rud99] using
a variant of the Ahlswede–Winter argument [AW02]. This paper is notable because the
dimensional factor is controlled by the maximum rank of the random matrix, rather than
the ambient dimension.

• [MZ11]. This work contains a matrix Chernoff bound for a sum of independent positive-
semidefinite random matrices where the dimensional dependence is controlled by the
maximum rank of the random matrix. The approach is, essentially, the same as the ar-
gument in Rudelson’s paper. The paper applies these results to study randomized matrix
multiplication algorithms.

• [HKZ12b]. This paper describes a method for proving matrix concentration inequalities
where the ambient dimension is replaced by the intrinsic dimension of the matrix vari-
ance. The argument is based on an adaptation of the proof in [Tro11a]. The authors give
several examples in statistics and machine learning.
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• [Min11]. This work presents a more refined technique for obtaining matrix concentration
inequalities that depend on the intrinsic dimension, rather than the ambient dimension.

The Ahlswede–Winter Method

In this section, we list some papers that use the ideas from the Ahslwede–Winter paper [AW02] to
obtain matrix concentration inequalities. In general, these results have suboptimal parameters,
but they played an important role in the development of this field.

• [AW02]. The original paper of Ahlswede and Winter describes the matrix Laplace trans-
form method, along with a number of other fundamental results. They show how to use
the Golden–Thompson inequality to bound the trace of the matrix mgf, and they use this
technique to prove a matrix Chernoff inequality for sums of independent and identically
distributed random variables. Their main application concerns quantum information the-
ory.

• [CM08]. Christofides and Markström develop a Hoeffding-type inequality for sums of
bounded random matrices using the Ahlswede–Winter argument. They apply this result
to study random graphs.

• [Gro11]. Gross presents a matrix Bernstein inequality based on the Ahlswede–Winter method,
and he uses it to study algorithms for matrix completion.

• [Rec11]. Recht describes a different version of the matrix Bernstein inequality, which also
follows from the Ahlswede–Winter technique. His paper also concerns algorithms for ma-
trix completion.

Noncommutative Moment Inequalities

We conclude with an overview of some major works on bounds for the polynomial moments
of a noncommutative martingale. Sums of independent random matrices provide one concrete
example where these results apply. The results in this literature are as strong, or stronger, than
the exponential moment inequalities that we have described in these notes. Unfortunately, the
proofs are typically quite abstract and difficult, and they do not usually lead to explicit constants.
Recently there has been some cross-fertilization between noncommutative probability and the
field of matrix concentration inequalities.

Note that “noncommutative” is not synonymous with “matrix” in that there are noncom-
mutative von Neumann algebras much stranger than the familiar algebra of finite-dimensional
matrices equipped with the operator norm.

• [TJ74]. This classic paper gives a bound for the expected trace of an even power of a matrix
Rademacher series. These results are important, but they do not give the optimal bounds.

• [LP86]. This paper gives the first noncommutative Khintchine inequality, a bound for the
expected trace of an even power of a matrix Rademacher series that depends on the matrix
variance.

• [LPP91]. This work establishes an optimal version of the noncommutative Khintchine in-
equality.
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• [Buc01, Buc05]. These papers prove optimal noncommutative Khintchine inequalities is
more general settings.

• [JX03, JX08]. These papers establish noncommutative versions of the Burkholder–Davis–
Gundy inequality for martingales. They also give an application of these results to random
matrix theory.

• [JX05]. This paper contains an overview of noncommutative moment results, along with
information about the optimal rate of growth in the constants.

• [JZ11]. This paper describes a fully noncommutative version of the Bennett inequality. The
proof is based on the Ahlswede–Winter method [AW02].

• [JZ12]. This work shows how to use Oliveira’s argument [Oli10a] to obtain some results for
fully noncommutative martingales.

• [MJC+12]. This work, described above, includes a section on matrix moment inequalities.
This paper contains what are probably the simplest available proofs of these results.
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Random Matrices in Statistics

§ Covariance estimation for the multivariate normal distribution

38 The Generalised Product Moment Distribution in Samples

We may simplify this expression by writing

2oy Ar,1' A ' r,'" A '

2<rl<r1' A==. 0'
N A*

2cr,cr1' A '2<7-,<r,' A '
when it becomes

dp= — A
H
0

H
B
F

G
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G

K-l
2

X
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h
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Aa-

h
b

f

Bb-

9
f
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dadbdcd/dgdh

(8).
It is to be noted that | abc | is equal to «,'«,•»»' | rpqI. p. ? = li 2, 3.

This is the fundamental frequency distribution for the three variate case, and
in a later section the calculation of its moment coeflScients will be dealt with.

3. Multi-varvite Distribution. Use of Quadratic co-ordinates.

A comparison of equation (8) with the corresponding results (1) and (2) for
uni-variate and bi-variate sampling, respectively, indicates the form the general
result may be expected to take. In fact, we have for the simultaneous distribution
in random samples of the n variances (squared standard deviations) and the

— product moment coefficients the following expression:

dp =

A»... Ala

AB...An

A*...Ann

N-l

N-2

a,, a,, ... a,n

•(9),

where Opq = SpSgVpg, and

I ••• dm

N A
', A being the determinant

\Pp<i\,p,q°l, 2,3, ...n,
and Ap, the minor of pm in A.

John Wishart

[Refs] Wishart, Biometrika 1928. Photo from apprendre-math.info.
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Random Matrices in Numerical Linear Algebra

§ Model for floating-point errors in LU decomposition

195I] NUMERICAL INVERTING OF MATRICES OF HIGH ORDER. II 191 

1~l/2 
(8.* 5) 4)(X) < - X Tr112 kn-3/2e-1/20,2 (8.5) < 

~~( 2T2)n8-112(r (n/2) ) 2 

With the help of (8.5) and the substitution 2-2, = X - 2o2rn we find 
that 

Prob (X > 2u-2rn) 

r0 oo 1/2 . o 

- U 40(X)dX < / j n-332e-X/2a2dX 
J?2rn - (2o-2) n1/2(r(n/2))2 20&2rn 

ir1 2e-rn r 

(P(nf/2))2 ,J O r(4 + rn) n-32dj 

(8.6) (rn) n-3I2e-rn7r1/2 J e (1 + An-3/2 

(r(n/2) )2 JO rn/ 

(rn) n-312e-rn7rl2 r e 2 

(F(n/2))2 J2 

(rn) n-3I2e-rnyrl/2 (rn) n-12e-rn7l/2 

(F(n/2))2(1 -((n - 3/2)/rn)) (r(n/2))2(r - 1)n 

Finally we recall with the help of Stirling's formula that 

/ /\2 7rnn-l 
(8.7) n2)) > en-22 (n = 1, 2,* 

now combining (8.6) and (8.7) we obtain our desired result: 

(rn) n- 1/2e-rn7rl /2en . 2n-2 

Prob (X > 2Cr2rn) < 

(8.8) 7rn-l(r -1)n 

- 
(er. 4(r - 1)(rrn)12 

We sum up in the following theorem: 

(8.9) The probability that the upper bound jA j of the matrix A 
of (8.1) exceeds 2.72o-n 12 is less than .027X2-n"n-12, that is, with 
probability greater than 99% the upper bound of A is less than 
2.72an 12 for n = 2, 3, * . 

This follows at once by taking r = 3.70. 

8.2 An estimate for the length of a vector. It is well known that 

(8.10) If a1, a2, * * *, an are independent random variables each of 
which is normally distributed with mean 0 and dispersion a2 and if 
I a| is the length of the vector a= (a,, a2, . , an), then 

John von Neumann

[Refs] von Neumann and Goldstine, Bull. AMS 1947 and Proc. AMS 1951. Photo c©IAS Archive.
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Random Matrices in Nuclear Physics

§ Model for the Hamiltonian of a heavy atom in a slow nuclear reaction

552 EUGENE P. WIGNER 

Multiplication with VW" and summation over X yields by means of (7) the well 
known equation 

(9a) (HV)>,/; = , XXv"\()X) 

Setting m = k = 0 herein and summing over all matrices of the set gives 

(9b) M1V =9 F' Zset (HV)oo -Av(Hv)oo . 
Av will denote the average of the succeeding expression over all matrices of 
the set. 

The M, will be calculated in the following section for a certain set of matrices 
in the limiting case that the dimension 2N + 1 of these matrices becomes in- 
finite. It will be shown, then, that S(x), which is a step function for every finite 
N, becomes a differentiable function and its derivative S'(x) = O-(x) will 
be called the strength function. In the last section, infinite sets of infinite 
matrices will be considered. However, all powers of these matrices will be defined 
and (HV)oo involves, for every P, only a finite part of the matrix. It will be seen 
that the definition of the average of this quantity for the infinite set of H does 
not involve any difficulty. However, a similar transition to a limiting case N -* 
co Will be carried out with this set as with the aforementioned set and this tran- 
sition will not be carried through in a rigorous manner in either case. 

The expression "strength function" originates from the fact that the absorp- 
tion of an energy level depends, under certain conditions, only on the square of a 
definite component of the corresponding characteristic vector. This component 
was taken, in (8), to be the 0 component. Hence S(x1) - S(x2) is the average 
strength of absorption by all energy levels in the (xI , x2) interval. 

Random sign symmetric matrix 
The matrices to be considered are 2N + 1 dimensional real symmetric matrices; 

N is a very large number. The diagonal elements of these matrices are zero, 
the non diagonal elements Vik = Vkit = ?v have all the same absolute value but 
random signs. There are = 2N(2N+l) such matrices. We shall calculate, after 
an introductory remark, the averages of (H')oo and hence the strength function 
S'(x) = a(x). This has, in the present case, a second interpretation: it also 
gives the density of the characteristic values of these matrices. This will be 
shown first. 

Let us consider one of the above matrices and choose a characteristic value 
X with characteristic vector 4/s6). Clearly, X will be a characteristic value also of 
all those matrices which are obtained from the chosen one by renumbering 
rows and columns. However, the components 41(i of the corresponding charac- 
teristic vectors will be all possible permutations of the components of the original 
matrix' characteristic vector. It follows that if we average (+p0)2 over the afore- 
mentioned matrices, the result will be independent of k. Because of the nor- 
malization condition (7), it will be equal to 1/(2N + 1). 

Let us denote now the average number of characteristic values of the matrices 

This content downloaded by the authorized user from 192.168.52.73 on Thu, 29 Nov 2012 18:29:16 PM
All use subject to JSTOR Terms and Conditions

Eugene Wigner

[Refs] Wigner, Ann. Math 1955. Photo from Nobel Foundation.
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Randomized Linear Algebra

Input: An m× n matrix A, a target rank k, an oversampling parameter p

Output: An m× (k + p) matrix Q with orthonormal columns

1. Draw an n× (k + p) random matrix Ω

2. Form the matrix product Y = AΩ

3. Construct an orthonormal basis Q for the range of Y

[Ref] Halko–Martinsson–T, SIAM Rev. 2011.
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Other Algorithmic Applications

§ Sparsification. Accelerate spectral calculation by randomly zeroing

entries in a matrix.

§ Subsampling. Accelerate construction of kernels by randomly

subsampling data.

§ Dimension Reduction. Accelerate nearest neighbor calculations by

random projection to a lower dimension.

§ Relaxation & Rounding. Approximate solution of maximization

problems with matrix variables.

[Refs] Achlioptas–McSherry 2001 and 2007, Spielman–Teng 2004; Williams–Seeger 2001, Drineas–Mahoney

2006, Gittens 2011; Indyk–Motwani 1998, Ailon–Chazelle 2006; Nemirovski 2007, So 2009...
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Random Matrices as Models

§ High-Dimensional Data Analysis. Random matrices are used to

model multivariate data.

§ Wireless Communications. Random matrices serve as models for

wireless channels.

§ Demixing Signals. Random model for incoherence when separating

two structured signals.

[Refs] Bühlmann and van de Geer 2011, Koltchinskii 2011; Tulino–Verdú 2004; McCoy–T 2011.
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Theoretical Applications

§ Algorithms. Smoothed analysis of Gaussian elimination.

§ Combinatorics. Random constructions of expander graphs.

§ High-Dimensional Geometry. Structure of random slices of convex

bodies.

§ Quantum Information Theory. (Counter)examples to conjectures

about quantum channel capacity.

[Refs] Sankar–Spielman–Teng 2006; Pinsker 1973; Gordon 1985; Hayden–Winter 2008, Hastings 2009.
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Random Matrices:.
My Way
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The Conventional Wisdom

“Random Matrices are Tough!”

[Refs] youtube.com/watch?v=NO0cvqT1tAE, most monographs on RMT.
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Principle A

“But...

In many applications, a random matrix can
be decomposed as a sum of independent
random matrices:

Z =
n∑
k=1

Sk

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 14



Principle B

and

There are exponential concentration
inequalities for the spectral norm of a sum
of independent random matrices:

P {‖Z‖ ≥ t} ≤ exp( · · · )

!!!”
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Matrix.
Gaussian Series

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 16



The Norm of a Matrix Gaussian Series

Theorem 1. [Oliveira 2010, T 2010] Suppose

§ B1,B2,B3, . . . are fixed matrices with dimension d1 × d2, and

§ γ1, γ2, γ3, . . . are independent standard normal RVs.

Define d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
BkB

∗
k

∥∥∥ , ∥∥∥∑
k
B∗
kBk

∥∥∥} .
Then

P
{∥∥∥∑

k
γkBk

∥∥∥ ≥ t} ≤ d · e−t2/2σ2.
[Refs] Tomczak–Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard–Pisier 1991, Rudelson 1999,

Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.
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The Norm of a Matrix Gaussian Series

Theorem 2. [Oliveira 2010, T 2010] Suppose

§ B1,B2,B3, . . . are fixed matrices with dimension d1 × d2, and

§ γ1, γ2, γ3, . . . are independent standard normal RVs.

Define d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
BkB

∗
k

∥∥∥ , ∥∥∥∑
k
B∗
kBk

∥∥∥} .
Then

E
∥∥∥∑

k
γkBk

∥∥∥ ≤√2σ2 log d.

[Refs] Tomczak–Jaegerman 1974, Lust-Picquard 1986, Lust-Picquard–Pisier 1991, Rudelson 1999,

Buchholz 2001 and 2005, Oliveira 2010, T 2011. Notes: Cor. 4.2.1, page 33.
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The Variance Parameter

§ Define the matrix Gaussian series Z =
∑n
k=1 γkBk

§ The variance parameter σ2(Z) derives from the “mean square of Z”

§ But a general matrix has two different squares!

E(ZZ∗) =

n∑
j=1

n∑
k=1

E(γjγk)BjB
∗
k =

n∑
k=1

BkB
∗
k

E(Z∗Z) =

n∑
j=1

n∑
k=1

E(γjγk)B∗
jBk =

n∑
k=1

B∗
kBk

§ Variance parameter σ2(Z) = max{‖E(ZZ∗)‖ , ‖E(Z∗Z)‖}.
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Schematic of Gaussian Series Tail Bound

0.2

0.4

0.6

0.8

1.0
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Warmup: A Wigner Matrix

§ Let {γjk : 1 ≤ j < k ≤ n} be independent standard normal variables

§ A Gaussian Wigner matrix:

W =


0 γ12 γ13 . . . γ1n
γ12 0 γ23 . . . γ2n
γ13 γ23 0 γ3n

... ... . . . ...
γ1n γ2n . . . γn−1,n 0



§ Problem: What is E ‖W ‖?

Notes: §4.4.1, page 35.
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The Wigner Matrix, qua Gaussian Series

§ Express the Wigner matrix as a Gaussian series:

W =
∑

1≤j<k≤n

γjk(Ejk + Ekj)

§ The symbol Ejk denotes the n× n matrix unit

Ejk =

 1

 ← j

↑

k
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Norm Bound for the Wigner Matrix

§ Need to compute the variance parameter σ2(W )

§ Summands are symmetric, so both matrix squares are the same:∑
1≤j<k≤n

(Ejk + Ekj)
2 =

∑
1≤j<k≤n

(EjkEjk + EjkEkj + EkjEjk + EkjEkj)

=
∑

1≤j<k≤n

(0 + Ejj + Ekk + 0) = (n− 1) In

§ Thus, the variance σ2(W ) = ‖(n− 1) In‖ = n− 1.

§ Conclusion: E ‖W ‖ ≤
√

2(n− 1) log(2n)

§ Optimal: E ‖W ‖ ∼ 2
√
n

[Refs] Wigner 1955, Davidson–Szarek 2002, Tao 2012.
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Example: A Gaussian Toeplitz Matrix

§ Let {γk} be independent standard normal variables

§ An unsymmetric Gaussian Toeplitz matrix:

T =


γ0 γ1 . . . γn−1

γ−1 γ0 γ1
γ−1 γ0 γ1

...
... . . . . . . . . .

γ−1 γ0 γ1
γ−(n−1) . . . γ−1 γ0



§ Problem: What is E ‖T ‖?

Notes: §4.6, page 38.
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The Toeplitz Matrix, qua Gaussian Series

§ Express the unsymmetric Toeplitz matrix as a Gaussian series:

T = γ0 I +

n−1∑
k=1

γkS
k +

n−1∑
k=1

γ−k(S
k)∗

§ The matrix S is the shift-up operator on n-dimensional column vectors:

S =


0 1

0 1
. . . . . .

0 1
0

 .
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Variance Calculation for the Toeplitz Matrix

§ Note that

(Sk)(Sk)∗ =

n−k∑
j=1

Ejj and (Sk)∗(Sk) =

n∑
j=k+1

Ejj.

§ Both sums of squares take the form

I2 +

n−1∑
k=1

(Sk)(Sk)∗ +

n−1∑
k=1

(Sk)∗(Sk)

= I +

n−1∑
k=1

n−k∑
j=1

Ejj +

n∑
j=k+1

Ejj

 =

n∑
j=1

[
1 +

n−j∑
k=1

1 +

j−1∑
k=1

1

]
Ejj

=

n∑
j=1

(1 + (n− j) + (j − 1))Ejj = n In.
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Norm Bound for the Toeplitz Matrix

§ The variance parameter σ2(T ) = ‖n In‖ = n

§ Conclusion: E ‖T ‖ ≤
√
2n log(2n)

§ Optimal: E ‖T ‖ ∼ const ·
√
2n log n

§ The optimal constant is at least 0.8288...

[Refs] Bryc–Dembo–Jiang 2006, Meckes 2007, Sen–Virág 2011, T 2011.
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Chernoff Inequality
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The Matrix Chernoff Bound

Theorem 3. [T 2010] Suppose

§ X1,X2,X3, . . . are random psd matrices with dimension d, and

§ λmax(Xk) ≤ R for each k.

Then

P
{
λmin

(∑
k
Xk

)
≤ (1− t) · µmin

}
≤ d ·

[
e−t

(1− t)1−t

]µmin/R

P
{
λmax

(∑
k
Xk

)
≥ (1 + t) · µmax

}
≤ d ·

[
et

(1 + t)1+t

]µmax/R

where µmin := λmin (
∑
k EXk) and µmax := λmax (

∑
k EXk).

[Refs] Ahlswede–Winter 2002, T 2011. Notes: Thm. 5.1.1, page 48.
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The Matrix Chernoff Bound

Theorem 4. [T 2010] Suppose

§ X1,X2,X3, . . . are random psd matrices with dimension d, and

§ λmax(Xk) ≤ R for each k.

Then

Eλmin

(∑
k
Xk

)
≥ 0.6µmin −R log d

Eλmax

(∑
k
Xk

)
≤ 1.8µmax +R log d

.

where µmin := λmin (
∑
k EXk) and µmax := λmax (

∑
k EXk).

[Refs] Ahlswede–Winter 2002, T 2011. Notes: Thm. 5.1.1, page 48.
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Example: Random Submatrices

Fixed matrix, in captivity:

C =

 | | | | |
c1 c2 c3 c4 . . . cn
| | | | |


d×n

Random matrix, formed by picking random columns:

Z =

 | | |
c2 c3 . . . cn
| | |


d×n

↑ ↑ ↑

Problem: What is the expectation of σ1(Z)? What about σd(Z)?

Notes: §5.2.1, page 49.
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Model for Random Submatrix

§ Let C be a fixed d× n matrix with columns c1, . . . , cn

§ Let δ1, . . . , δn be independent 0–1 random variables with mean s/n

§ Define ∆ = diag(δ1, . . . , δn)

§ Form a random submatrix Z by turning off columns from C

Z = C∆ =

 | | |
c1 c2 . . . cn
| | |


d×n


δ1

δ2
. . .

δn


n×n

§ Note that Z typically contains about s nonzero columns

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 32



The Random Submatrix, qua PSD Sum

§ The largest and smallest singular values of Z satisfy

σ1(Z)2 = λmax(ZZ∗)

σd(Z)2 = λmin(ZZ∗)

§ Define the psd matrix Y = ZZ∗, and observe that

Y = ZZ∗ = C∆2C∗ = C∆C∗ =
∑n

k=1
δk ckc

∗
k

§ We have expressed Y as a sum of independent psd random matrices
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Preparing to Apply the Chernoff Bound

§ Consider the random matrix

Y =
∑

k
δk ckc

∗
k

§ The maximal eigenvalue of each summand is bounded as

R = maxk λmax(δk ckc
∗
k) ≤ maxk ‖ck‖2

§ The expectation of the random matrix Y is

E(Y ) =
s

n

∑n

k=1
ckc

∗
k =

s

n
CC∗

§ The mean parameters satisfy

µmax = λmax(EY ) =
s

n
σ1(C)2 and µmin = λmin(EY ) =

s

n
σd(C)2
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What the Chernoff Bound Says

Applying the Chernoff bound, we reach

E
[
σ1(Z)2

]
= Eλmax(Y ) ≤ 1.8 · s

n
σ1(C)2 +maxk ‖ck‖22 · log d

E
[
σd(Z)2

]
= Eλmin(Y ) ≥ 0.6 · s

n
σd(C)2 −maxk ‖ck‖22 · log d

§ Matrix C has n columns; the random submatrix Z includes about s

§ The singular value σi(Z)2 inherits an s/n share of σi(C)2 for i = 1, d

§ Additive correction reflects number d of rows of C, max column norm

§ [Gittens–T 2011] Remaining singular values have similar behavior
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Key Example: Unit-Norm Tight Frame

§ A d× n unit-norm tight frame C satisfies

CC∗ =
n

d
Id and ‖ck‖22 = 1 for k = 1, 2, . . . , n

§ Specializing the inequalities from the previous slide...

E
[
σ1(Z)2

]
≤ 1.8 · s

d
+ log d

E
[
σd(Z)2

]
≥ 0.6 · s

d
− log d

§ Choose s ≥ 1.67 d log d columns for a nontrivial lower bound

§ Sharp condition s > d log d also follows from matrix Chernoff bound

[Refs] Rudelson 1999, Rudelson–Vershynin 2007, T 2008, Gittens–T 2011, T 2011, Chrétien–Darses 2012.
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The Matrix Bernstein Inequality

Theorem 5. [Oliveira 2010, T 2010] Suppose

§ S1,S2,S3, . . . are indep. random matrices with dimension d1 × d2,

§ ESk = 0 for each k, and

§ ‖Sk‖ ≤ R for each k.

Then

P
{∥∥∥∑

k
Sk

∥∥∥ ≥ t} ≤ d · exp{ −t2/2
σ2 +Rt/3

}
.

where d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
E(SkS∗

k)
∥∥∥ , ∥∥∥∑

k
E(S∗

kSk)
∥∥∥}

[Refs] Gross 2010, Recht 2011, Oliveira 2010, T 2011. Notes: Cor. 6.2.1, page 64.
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The Matrix Bernstein Inequality

Theorem 6. [Oliveira 2010, T 2010] Suppose

§ S1,S2,S3, . . . are indep. random matrices with dimension d1 × d2,

§ ESk = 0 for each k, and

§ ‖Sk‖ ≤ R for each k.

Then
E
∥∥∥∑

k
Sk

∥∥∥ ≤√2σ2 log d+ 1
3R log d

.

where d := d1 + d2 and the variance parameter

σ2 := max
{∥∥∥∑

k
E(SkS∗

k)
∥∥∥ , ∥∥∥∑

k
E(S∗

kSk)
∥∥∥}

[Refs] Gross 2010, Recht 2011, Oliveira 2010, T 2011. Notes: Cor. 6.2.1, page 64.
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Example: Randomized Matrix Multiplication

Product of two matrices, in captivity:

BC∗ =

 | | | | |
b1 b2 b3 b4 . . . bn
| | | | |


d1×n


— c∗1 —
— c∗2 —
— c∗3 —
— c∗4 —

...
— c∗n —


n×d2

[Idea] Approximate multiplication by random sampling

[Refs] Drineas–Mahoney–Kannan 2004, Magen–Zouzias 2010, Magdon-Ismail 2010, Hsu–Kakade–Zhang

2011 and 2012.
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A Sampling Model for Tutorial Purposes

§ Assume

‖bj‖2 = 1 and ‖cj‖2 = 1 for j = 1, 2, . . . , n

§ Construct a random variable S whose value is a d1 × d2 matrix:

§ Draw J ∼ uniform{1, 2, . . . , n}
§ Set S = n · bJc∗J

§ The random matrix S is an unbiased estimator of the product BC∗

ES =
∑n

j=1
(n · bjc∗j) · P {J = j} =

∑n

j=1
bjc

∗
j = BC∗

§ Approximate BC∗ by averaging m independent copies of S

Z =
1

m

∑m

k=1
Sk ≈ BC∗

Notes: §6.4, page 67.
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Preparing to Apply the Bernstein Bound I

§ Let Sk be independent copies of S, and consider the average

Z =
1

m

∑m

k=1
Sk

§ We study the typical approximation error

E ‖Z −BC∗‖ = 1

m
· E
∥∥∥∑m

k=1
(Sk −BC∗)

∥∥∥
§ The summands are independent and ESk = BC∗, so we symmetrize:

E ‖Z −BC∗‖ ≤ 2

m
· E
∥∥∥∑m

k=1
εkSk

∥∥∥
where {εk} are independent Rademacher RVs, independent from {Sk}
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Preparing to Apply the Bernstein Bound II

§ The norm of each summand satisfies the uniform bound

R = ‖εS‖ = ‖S‖ = ‖n · (bJc∗J)‖ = n ‖bJ‖2 ‖cJ‖2 = n

§ Compute the variance in two stages:

E(SS∗) =
∑n

j=1
n2(bjc

∗
j)(bjc

∗
j)

∗ P {J = j} = n
∑n

j=1
‖cj‖22 bjb

∗
j

= nBB∗

E(S∗S) = nCC∗

σ2 = max
{∥∥∥∑m

k=1
E(SkS∗

k)
∥∥∥ , ∥∥∥∑m

k=1
E(SkS∗

k)
∥∥∥}

= max {‖mn ·BB∗‖ , ‖mn ·CC∗‖}

= mn ·max{‖B‖2 , ‖C‖2}
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What the Bernstein Bound Says

Applying the Bernstein bound, we reach

E ‖Z −BC∗‖ ≤ 2

m
E
∥∥∥∑m

k=1
εkSk

∥∥∥
≤ 2

m

[
σ
√
2 log(d1 + d2) +

1
3R log(d1 + d2)

]
= 2

√
n log(d1 + d2)

m
·max{‖B‖ , ‖C‖}+ 2

3
· n log(d1 + d2)

m

[Q] What can this possibly mean? Is this bound any good at all?
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Detour: The Stable Rank

§ The stable rank of a matrix is defined as

srank(A) :=
‖A‖2F
‖A‖2

§ In general, 1 ≤ srank(A) ≤ rank(A)

§ When A has either n rows or n columns, 1 ≤ srank(A) ≤ n

§ Assume that A has n unit-norm columns, so that ‖A‖2F = n

§ When all columns of A are the same, ‖A‖2 = n and srank(A) = 1

§ When all columns of A are orthogonal, ‖A‖2 = 1 and srank(A) = n
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Randomized Matrix Multiply, Relative Error

§ Define the (geometric) mean stable rank of the factors to be

s :=
√

srank(B) · srank(C).

§ Converting the error bound to a relative scale, we obtain

E ‖Z −BC∗‖
‖B‖ ‖C‖

≤ 2

√
s log(d1 + d2)

m
+

2

3
· s log(d1 + d2)

m

§ For relative error ε ∈ (0, 1), the number m of samples should be

m ≥ Const · ε−2 · s log(d1 + d2)

§ The number of samples is proportional to the mean stable rank!

§ We also pay weakly for the dimension d1 × d2 of the product BC∗
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More Things in Heaven & Earth

§ [More Bounds for Eigenvalues] There are exponential tail bounds for maximum

eigenvalues, minimum eigenvalues, and eigenvalues in between...

§ [More Exponential Bounds] There is a matrix Hoeffding inequality and a matrix

Bennett inequality, plus matrix Chernoff and Bernstein for unbounded matrices...

§ [Matrix Martingales] There is a matrix Azuma inequality, a matrix bounded

difference inequality, and a matrix Freedman inequality...

§ [Dependent Sums] Exponential tail bounds hold for some random matrices based on

dependent random variables...

§ [Polynomial Bounds] There are matrix versions of the Rosenthal inequality, the

Pinelis inequality, and the Burkholder–Davis–Gundy inequality...

§ [Intrinsic Dimension] The dimensional dependence can sometimes be weakened...

§ [The Proofs!] And the technical arguments are amazingly pretty...

[Refs] T 2011, Gittens–T 2011, Oliveira 2010, Mackey et al. 2012, ...
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To learn more...

E-mail: jtropp@cms.caltech.edu

Web: http://users.cms.caltech.edu/~jtropp

Some papers:

§ “User-friendly tail bounds for sums of random matrices,” FOCM, 2011.
§ “User-friendly tail bounds for matrix martingales.” Caltech ACM Report 2011-01.
§ “Freedman’s inequality for matrix martingales,” ECP, 2011.
§ “A comparison principle for functions of a uniformly random subspace,” PTRF, 2011.
§ “From the joint convexity of relative entropy to a concavity theorem of Lieb,” PAMS, 2012.

§ “Improved analysis of the subsampled randomized Hadamard transform,” AADA, 2011.
§ “Tail bounds for all eigenvalues of a sum of random matrices” with A. Gittens. Submitted 2011.
§ “The masked sample covariance estimator” with R. Chen and A. Gittens. I&I, 2012.
§ “Matrix concentration inequalities...” with L. Mackey et al.. Submitted 2012.
§ “User-Friendly Tools for Random Matrices: An Introduction.” 2012.

See also...

§ Ahlswede and Winter, “Strong converse for identification via quantum channels,” Trans. IT, 2002.
§ Oliveira, “Concentration of the adjacency matrix and of the Laplacian.” Submitted 2010.
§ Vershynin, “Introduction to the non-asymptotic analysis of random matrices,” 2011.
§ Minsker, “Some extensions of Bernstein’s inequality for self-adjoint operators,” 2011.

Joel A. Tropp, User-Friendly Tools for Random Matrices, NIPS, 3 December 2012 48


	Contents
	Preface
	Introduction
	Historical Origins
	The Modern Random Matrix
	Random Matrices for the People
	Basic Questions in Random Matrix Theory
	Random Matrices as Independent Sums
	Exponential Concentration Inequalities for Matrices
	The Arsenal of Results
	These Lecture Notes

	Matrix Functions and Probability with Matrices
	Matrix Theory Background
	Probability Background

	The Matrix Laplace Transform Method
	Matrix Moments and Cumulants
	The Matrix Laplace Transform Method
	The Failure of the Matrix Mgf
	A Theorem of Lieb
	Subadditivity of the Matrix Cgf
	Master Bounds for Independent Sums of Matrices
	Notes

	Matrix Gaussian Series & Matrix Rademacher Series
	Series with Hermitian Matrices
	Series with General Matrices
	Are the Bounds Sharp?
	Example: Some Gaussian Matrices
	Example: Matrices with Randomly Signed Entries
	Example: Gaussian Toeplitz Matrices
	Application: Rounding for the MaxQP Relaxation
	Proof of Bounds for Hermitian Matrix Series
	Proof of Bounds for Rectangular Matrix Series
	Notes

	A Sum of Random Positive-Semidefinite Matrices
	The Matrix Chernoff Inequalities
	Example: A Random Submatrix of a Fixed Matrix
	Application: When is an Erdos–Rényi Graph Connected?
	Proof of the Matrix Chernoff Inequalities
	Notes

	A Sum of Bounded Random Matrices
	A Sum of Bounded Hermitian Matrices
	A Sum of Bounded Rectangular Matrices
	Application: Randomized Sparsification of a Matrix
	Application: Randomized Matrix Multiplication
	Proof of the Matrix Bernstein Inequalities
	Notes

	Results Involving the Intrinsic Dimension
	The Intrinsic Dimension of a Matrix
	Matrix Chernoff with Intrinsic Dimension
	Matrix Bernstein with Intrinsic Dimension
	Revisiting the Matrix Laplace Transform Bound
	The Intrinsic Dimension Lemma
	Proof of the Intrinsic Chernoff Bound
	Proof of the Intrinsic Bernstein Bounds
	Notes

	Matrix Concentration: Resources
	Bibliography

