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ABSTRACT 

Understanding of phonon mediated thermal transport properties in nanostructured materials 

is essential for the intelligent design of next-generation microelectronic and thermoelectric 

devices.  Presented here is the study of the thermal transport properties of model organic-

inorganic, nanoscopically layered systems for the purpose of elucidating the dependence of bulk 

thermal conductivity on the nanostructure of the material and, specifically, the role that limited 

interfacial thermal conductance plays.  We measured the bulk thermal conductivity of various 

organically modified montmorillonite clays as a function of several variables.  Thermal 

conductivities of the organically modified clays were measured to be approximately 0.09 W/mK 

and were relatively independent of the variables investigated.  This suggests the dominance of 

the organic-inorganic interfacial conductance in the determination of bulk thermal conductivity 

of this system and was determined from the thermal conductivity measurements to be 

approximately 150 MW/m
2
K, which is consistent with measured interfacial conductance in 

similarly coupled systems. 

Organic-inorganic perovskite structures were also investigated to determine the effect that 

varying crystal structure plays in determining thermal bulk thermal conductivity.  While the data 

is too sparse to draw strong conclusions, current data suggests little dependence on the subtle 

changes in the crystal structure observed here.  However, further study of this system may be 

warranted. 
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CHAPTER 1 

INTRODUCTION 

1.1 Thermal Conductivity and Thermal Boundary Conductance 

Heat management is a concern in nearly every branch of practical engineering, from 

microelectronics to architecture.  Dissipation or concentration of thermal energy is a requirement 

for the efficient design of devices for a wide variety of applications.  To best facilitate efficient 

management of thermal energy, the design of materials with desirable thermal transport 

properties is essential. 

The most useful description of a material’s thermal transport properties is its thermal 

conductivity, Λ.  The thermal conductivity is traditionally defined by Fourier’s Law of heat 

conduction which states that the rate of heat energy transfer through a material is proportional to 

the negative gradient in the temperature field where the thermal conductivity is the 

proportionality constant.  In the case of most bulk materials, this thermal conductivity is a 

function of the material’s atomic composition and crystal structure, where more uniformly 

crystalline materials display higher thermal conductivities than less ordered, glassy materials.  

However, Fourier’s Law is a stochastic description and becomes invalid at areas of high 

anisotropy, such as interfacial boundaries, and as nanoscopic length scales are approached.  

Through the manipulation of material properties and boundaries at the nanoscale, the thermal 

transport behavior of materials can be controlled to a greater extent than ever before.  Perhaps 

the simplest way to modify the thermal transport behavior of materials in this fashion is through 

the control of interfacial boundaries and boundary density. 

Interfacial boundary resistance has been a subject of study since it was first proposed to be 

significant by Keesom and Keesom in 1936 and experimentally measured by Kaptiza at a liquid 
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helium – bronze interface in 1941.
1,2

  Since that time, the study of thermal transport at interfaces 

has become quite important with the advent of solid-state electronics of ever decreasing 

dimension.   

A thermal boundary resistance, typically measured in thermal power through an area per a 

temperature difference, (often reported in the units MW/m
2
K) is characterized by a discontinuity 

in the temperature field at an interface that is subjected to a temperature gradient (Figure 1a) and 

has been traditionally difficult to predict.
3
  The two oldest and most conventional models of 

interfacial conductance are the acoustic mismatch model and the diffuse mismatch model which 

generally form the bounds for the expected experimental value.  The acoustic mismatch model 

determines interfacial conductance by the ratio of acoustic impedance between the two materials 

forming the interface, much in the same way that optical reflectance is classically determined by 

the difference in index of refraction at an interface.
4
  The acoustic mismatch model usually 

represents the lower limit on expected interfacial conductance.  The diffuse mismatch model 

determines interfacial conductance by the ratio between the phonon density of states for any 

given phonon frequency and usually represents the upper limit of predicted interfacial 

conductance.
5
  As evidenced by this lack of ability to accurately predict interfacial thermal 

transport behavior, interfacial effects are not well understood. 

While it may not yet be possible to accurately predict the interfacial thermal boundary 

conductance between arbitrary materials, through the use of modern analytic techniques, such as 

time-domain thermoreflectance, which will be discussed in more detail in a later section, 

boundary conductance across very strongly mismatched boundaries have been measured to have 

exceptionally low conductances such as the Pb/hydrogen terminated diamond interface which 

has the lowest measured interfacial conductance of less than 20 MW/m
2
K.

6
  Coupled with high 
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interface densities, even relatively high interfacial conductances will produce measurably 

reduced bulk thermal conductivities; a technique that has already been applied to the 

development of high figure-of-merit thermoelectric devices through high interface density 

semiconductor superlattices.
7
 

 

 

1.2 Nanoscale Layered Materials 

Until recently, the lower limit to a material’s thermal conductivity was believed to be set by 

the so-called “amorphous limit” which describes the thermal conductivity of an amorphous 

material as a random walk of vibrational energy between neighboring atoms.
8
  Recent work has 

demonstrated that through nanoscale material design the thermal conductivity can be pushed 

below the amorphous limit.
9, 10

 

An important class of ultralow thermal conductivity materials are those formed from 

nanoscale superlattices having alternating layers with differing acoustic properties.  A significant 

amount of work has gone into studying thermal transport in semiconductor superlattices due to 

their applications to the development of high figure-of-merit thermoelectric materials.  

Numerous groups have studied the effects of varying layer thickness in systems with repeat 

spacings longer than the phonon mean-free-path.  In these cases, the thermal conductivity of the 

overall superlattice is reduced by the limited conductance at each interface.
11, 12

  However the 

thermal transport properties of superlattices with layer thicknesses that approach the phonon 

mean-free-path are poorly understood.  Theoretically, coherent phonon reflection off multiple 

interfaces could result in phonon minibands, which would increase the transmission coefficient 

of phonons of the appropriate wavelength across the boundaries but with a reduced group 
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velocity, thereby increasing the thermal conductivity.
13, 14

  Though some groups have observed 

this to be the case
15, 16

, others have shown that the thermal conductivity of such short period 

superlattices continues to decrease as the layer thickness is decreased.
17, 18

  The high interface-

density limit of this class of materials has been studied by Chiritescu et al. for ordered WSe2 

films in which each layer is 3 atoms (< 1 nm) thick.  This system showed the lowest measured 

thermal conductivity of any fully dense solid with a lowest thermal conductivity of 0.05 W/mK 

(Figure 2b).
10

    

However, measuring the thermal conductivity as a function of layer thickness at these 

dimensions is quite difficult.  The WSe2 superlattice system and other related ultra-low thermal 

conductivity superlattice systems were synthesized using molecular beam epitaxy (MBE) or 

metal-organic chemical vapor deposition (MOCVD) which, while providing excellent control 

over layer thickness and uniformity, limit material choices to inorganics and limit the possible 

types of interfacial interactions.
10, 11

 This work describes the synthesis and measurement of the 

effective thermal conductivity of a self-assembled, organic-inorganic nanoscopic superlattice for 

the purpose of studying the effect that the interfacial boundary conductance and boundary 

density has on phonon mediated heat transport. 

The measurement of the thermal conductivity of these composite materials is made possible 

through the use of the time-domain thermoreflectance technique described in the subsequent 

section. 
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1.3 Time-domain Thermoreflectance 

Time-domain thermoreflectance (TDTR) is a pump-probe laser technique used primarily for 

the determination of thermal conductivity of solid samples.
6,19

 In a TDTR measurement, the 

pump pulse heats the sample (or a thin metal film on the surface of the film that acts as a 

transducer) and the time-delayed probe pulse measures the change in the reflectivity of the 

surface that arises from the temperature dependence of the optical constants.  On the basis of the 

temperature decay over time being measured at the surface, thermal conductivity of the sample 

can be determined as long as the dimensions and volumetric heat capacity of the sample is 

known through comparison to a thermal diffusion model.
6
  The overall optical setup is 

represented in Figure 3. 

In our implementation of TDTR a mode-locked Ti:sapphire laser produces a train of pulses < 

500 fs in duration with a repetition rate of 80.6 MHz.  This pulse train is split into pump and 

probe lines on the basis of orthogonal polarization.  The optical path length of the pump line is 

adjusted by way of a mechanical delay stage, the intensity of which is modulated by an electro-

optic modulator.  The probe line is modulated by a mechanical chopper.  The pump and probe 

lines are then recombined by a polarizing beam-splitter so that a single objective lens can be used 

to focus both lines onto the sample and to collect the reflection of the probe pulses.
20

  For all 

TDTR measurements, the Ti:sapphire output has a wavelength of 787 nm.  For the 

nanostructured film samples, we use pump and probe beam powers of 14 mW and 7 mW 

respectively and a 1/e
2
 beam radius of 8 µm or 15 µm.  The differences in reflected probe pulse 

intensity due to heating caused by the pump pulse are extracted by a radio frequency lock-in 

amplifier set to the modulation frequency of the pump beam (9.8 MHz).
20

  The output of the 

lock-in amplifier is then measured with audio frequency lock-in amplifiers that are locked to the 
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frequency of the mechanical chopper.  This technique of double modulation greatly increases 

signal-to-noise ratio and reduces artifacts caused by pump light scattered by the surface of the 

samples.
21
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1.4 Figures 

 

Figure 1:  Schematic representing the temperature profile across an interface between two 

dissimilar materials illustrating the effect that limited boundary conductance has on the 

temperature profile. 
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Figure 2: a. Schematic representing the structure of the WSe2 crystals studied by Chiritescu 

et al. and the direction in which the thermal transport properties were measured.  b. Thermal 

conductivity data from Chiritescu et al. on WSe2 thin films, showing ultra-low thermal 

conductivity, below the predicted minimum of the amorphous limit.
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Figure 3: Diagram of the basic time-domain thermoreflectance setup that was used for thermal 

conductivity measurements. 
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CHAPTER 2 

THERMAL TRANSPORT IN ORGANICALLY MODIFIED 

MONTMORILLONITES  

2.1 Background 

Organically modified montmorillonite presents a unique material for studying thermal 

conductivity in a nanoscale superlattice system.  Montmorillonite is a natural layered clay that 

belongs to the 2:1 smectite clay family which can be exfoliated into large aspect ratio (>1000:1) 

~1 nm thick sheets (Figure 4a).  Each montmorillonite sheet consists of an octahedral alumina 

layer sandwiched by two tetrahedral silica layers.  Additionally each aluminosilicate particle 

possesses negative charges, due to Mg
2+

 impurities in the central alumina layer, which are 

balanced by electrostatically bound Na
+
.  The necessity of charge balancing cations provides the 

opportunity for chemical modification via cation exchange under the appropriate conditions 

(Figure 4b).
22

 

The chemical modification of clays via ion exchange is not a novel concept and has been 

studied extensively, most frequently with the object of creating nanocomposite materials. 
22

  One 

of the most thoroughly investigated aspects of intercalated clay systems is the effect that various 

intercalants have on the clay’s (001) d-spacing due to the insight this information can give into 

the packing structure of the interlayer molecules.
23

  Investigation into this aspect of chemically 

modified clay systems has shown that upon intercalation with long-chain primary 

alkylammonium salts, the (001) d-spacing increases accordingly (Figure something).
23

  Due to 

the nanoscopic dimensions of the clay sheets and of the according interlayers in appropriately 

chemically modified montmorillonite, an organically modified clay system provides an ideal 
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structure in which to study the effects of layer thickness and the organic interfacial conductance 

on the bulk thermal transport properties. 

It should be noted that although the work presented here on organically modified clays is 

restricted to modified montmorillonites, there are numerous other clays that would be suitable for 

similar study.  We chose montmorillonite specifically because of the extensive work previously 

done on the organically modified systems as well as the ready availability and high purity of 

montmorillonite.  As the only physical requirement for a clay to be chemically modifiable 

through this process is a high cation exchange capacity (>90 milliequivalents/100 g), similar 

studies with other mineral components, such as vermiculite or synthetic clays, may be reasonable 

to pursue in the future. 

 

2.2 Preparation and Characterization 

2.2.1 Synthesis of Organically Modified Clays 

Organically modified clays were synthesized via an ion exchange reaction between the 

charge balancing sodium ions and long chain alkylammonium salts of varying length, from 

decyl- to octadecyl-, and termination.  The exchange took place in 5:1 excess alkylammonium 

salt in 1:1 water/ethanol by volume at 75 
o
C for 12 hours.

24
  θ - 2θ x-ray diffraction 

measurements of the modified clays showed that upon intercalation with organic groups, the 

clays show an increase in (001) d – spacing in related to the length of the intercalated organic 

group (Figure 5). 
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2.2.2 Organoclay Film Preparation and Characterization 

In order to study the effects of boundaries on the bulk thermal properties of organo-clay 

nanostructures, thin films of organically modified clay were prepared.  2% weight dispersions of 

organically modified clay in a 10:1 mixture of toluene and methanol were spin-coated onto 

silicon substrates.  Films prepared in this manner were between 100 and 400 nm thick depending 

on spin-coating conditions.  Spin coated films were dried under vacuum at 150 
o
C for 24 hours to 

remove toluene and methanol from the film.  After drying, approximately 65 nm of aluminum 

metal was sputter deposited onto the clay surface for the TDTR measurements, resulting in the 

sample geometry represented in Figure 6a.   

TDTR measurements on these films proved to be misleading and inconclusive for several 

reasons.  Firstly, films prepared in this manner showed a long period oscillation in the TDTR 

signal that begins at approximately 300 ps as is evident in Figure 6b.  Previous unpublished work 

by Cahill et al. showed that similar, less intense oscillations arise in TDTR measurements of 

rough films, though they were unable to identify the source of the signal.  Considering that we 

believe this signal to be created by surface roughness it is reasonable to assume that the clay 

particles at the surface are not well aligned with substrate.  Due to the highly anisotropic thermal 

conductivity of clay multilayers, clay particles misaligned with respect to the substrate would 

provide an efficient pathway for heat conduction away from the surface, resulting in a higher 

than minimum measured thermal conductivity.   Additionally, the measured thermal 

conductivities as a function of (001) spacing showed an anomalous decrease as spacing increased, 

diverging from values predicted by a simple series thermal resistor model using accepted thermal 

conductivity values for montmorillonite and liquid dodecane, which will be discussed in detail in 

a later section.  It was determined that clay films would have to be extremely smooth and have 
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well aligned clay particles within the top approximately 25 nm of the film to provide meaningful 

TDTR data. 

To create samples with surfaces sufficiently smooth for accurate TDTR measurement, we 

developed a multistep sample preparation technique similar to micro-transfer printing.  After 

deposition and drying of the clay film, 10 nm of chromium metal followed by 300 nm of gold 

were sputtered onto the clay film.  ~3 µm of nickel was then electrodeposited onto the gold 

surface and subsequently attached to a glass slide with a thermally conductive adhesive.  Due to 

the low adhesion between the clay film and the silicon substrate, the silicon substrate can be 

removed, exposing the surface that was in contact with the silicon surface.  This new surface (the 

geometry of which is represented in Figure 7a) proved to be both smooth enough for TDTR 

measurement (as evidenced by both SEM images and the elimination of the anomalous TDTR 

signal as evidenced in Figures 7b and Figure 8) and very well aligned (as evidenced by cross-

sectional TEM shown in Figure 9). 

Additional information concerning the alignment of the clay in the films is provided by ω – 

rocking curve x-ray diffraction measurements about the (001) reflection. The rocking curve 

measurements show what we believe to be two superimposed distributions: a sharp (FWHM 

~0.25°) distribution is observed at θ=ω which we believe corresponds to the highly aligned clay 

particles near the Si surface, and a wider (FWHM > 1
o
) centered at θ = ω likely corresponding to 

more disordered clay sheets deeper into the film (Figure 10).  However, we believe the wider 

distribution is irrelevant to the thermal conductivity measurement because the thermal probe 

depth does not sample these regions of the film. 
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Furthermore, DSC measurements of the organically modified clays show a weak glass-

transition at approximately 85 degrees Celsius, supporting the conclusion that the organic 

component of the structure is glassy at room temperature (Figure 11). 

The density of the organically modified clay films was confirmed to be consistent with a 

weighted average between the bulk density values of the organic component and the clay 

calculated from areal density obtained He
2+

 RBS measurements and profilometry measurements 

of the film thickness.  A typical RBS measurement and the according simulation used for density 

calculations is represented in Figure 12.  This supports the conclusion that the clay films are 

dense and measurements of low thermal are not due to voids within the film artificially 

increasing the phonon path length.  This conclusion is also supported by cross-sectional TEM 

measurements that confirm that voids are not present within the probe depth of the TDTR 

measurements (Figure 9). 

 

2.3 Calculation of Thermal Conductivities and Error 

In order to obtain values for the thermal conductivity from raw TDTR data, the data is 

compared to the output of a diffusive thermal model (Figure 13a).  This model is dependent on 

several variables including layer thickness, thermal conductivity, density, and heat capacity of 

each element of the model.  In the model that we used there are three layers, the “absorption 

layer”, the aluminum layer corresponding to the aluminum deposited onto the sample, and an 

infinitely thick sample layer.  The absorption layer does not correspond to anything physical and 

is just a construct in the simulation to decrease the difficulty of the calculation.  The absorption 

layer is set to be 1 nm thick and have thermal conductivity and volumetric heat capacity ten 

times greater than that of the aluminum layer.  Because the absorption layer is actually part of the 
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aluminum layer, the thickness of the aluminum layer is decreased accordingly, by 10 nm.  Since 

every variable in this model is known, either through measurement or reasonable estimation, 

save for the thermal conductivity of the sample, the thermal conductivity can be determined by 

fitting the curve of the model to the data. 

While the thermal conductivities, thicknesses, and volumetric heat capacities are known to a 

reasonable degree for each component of the system (save he thermal conductivity of the 

sample), obtaining these values is non trivial in some cases.  Two of the most critical values in 

the model other than the parameter being solved for are the thermal conductivity and thickness of 

the transducer/thermometer aluminum film on the surface of the sample.  The thermal 

conductivity of the aluminum film is calculated from the electrical conductivity of a similar film 

deposited onto a glass slide at the same time the film was deposited onto the sample using the 

Wiedemann-Franz law which relates the two quantities.  The electrical conductivity is measured 

using the four-point probe method.  The thickness of the aluminum film is measured during the 

TDTR experiment itself.  During the first ~100 ps, periodic peaks are visible in the data that 

correspond to acoustic reflections of the stress-strain wave generated by the laser pulse off of the 

aluminum clay boundary, which are clearly visible in Figures 7 and 14.  Using the speed of 

sound in aluminum (~6.42 nm/ps) and the time elapsed between reflections, we are able to 

calculate the local thickness of the film with a high degree of accuracy.  The aluminum films are 

deposited to be approximately 65 nm thick so as to be thick enough to prevent any optical bleed-

through to the sample while simultaneously optimizing the sensitivity of the measurement to the 

thermal conductivity of the sample. 

Figure 13b shows the dependence of the sensitivity of the model as a function of the clay 

layer thickness.  The sensitivity of the model to a variable is defined as the partial derivative of 
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the natural logarithm of the TDTR output ratio with respect to the natural logarithm of the 

desired variable.  This plot shows that the sensitivity of the model to the clay-Al interface and the 

clay thickness become negligible as the clay film thickness is increased past 50 nm.  It is for this 

reason that all thermal conductivity measurements were made on films >100 nm thick. 

It can also be shown that the model is largely only sensitive to the top 25 nm of the clay film, 

assuming that the clay film has a thermal conductivity of 0.1 W/mK or less.  This supports the 

conclusion that having a highly aligned clay film near the surface with more misalignment 

deeper into the film is sufficient for accurate measurement of the thermal conductivity normal to 

the film alignment. 

The error in the measurement of the thermal conductivity is calculated through the 

sensitivities of the model to the various variables.  To calculate the error in the thermal 

conductivity measurement that arises from any variable, the ratio of the sensitivity to the variable 

to the sensitivity to the thermal conductivity of the sample.  This ratio is then multiplied by the 

calculated value of thermal conductivity, providing the error in the measurement due to the 

variable in question.  The overall error is calculated by summing the errors accumulated from the 

individual variables, on average resulting in 15 – 20% error. 

 

2.4 Thermal Conductivity Measurements of Organically Modified Clay Films 

To investigate the relationship between the thermal conductivity and organic layer thickness, 

the length of the alkylamommium molecule was varied from 10 to 18 carbon atoms in length. 

The spacing between aluminosilicate sheets increased from 0.17 to 0.68 nm with increasing alkyl 

chain length, as verified by θ-2θ x-ray diffraction measurements (Fig 5b). Thermal 

measurements of the organic-clay films show the thermal conductivities to all be approximately 
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0.09 W/mK (Fig 15), approximately 50% lower than the thermal conductivity of the organic 

layer (dodecane (l) = 0.13 W/mK) 
25

 and 5 times lower than the thermal conductivity of the 

unmodified clay (0.48 W/mK) 
26

 it should be noted that the thermal conductivity of the 

montmorillonite is highly anisotropic and the measured value is the thermal conductivity normal 

to a stack of clay platelets.  The thermal conductivity within each montmorillonite sheet is 

certainly much greater, and may even be comparable to the thermal conductivity of bulk sapphire 

(>20 W/mK).
26 

 

In addition to measuring the thermal conductivity of the organically-modified clay 

multilayers as a function of intercalant chain length and therefore (001) d-spacing, we measured 

the thermal conductivity of a series of modified clays with comparable d-spacing but with 

varying trialkyl functionalizations in addition to a dodecyl- chain (Figure 16). 

 

2.5 Temperature Dependent Thermal Conductivity Measurements 

Thermal conductivity of the primary amine modified clays was measured as a function of 

temperature between room temperature and 110 C to probe the effect that the change in organic 

chain mobility associated with the glass transition measured via DSC has on the bulk thermal 

conductivity of the films.  As it is impossible to take full TDTR scans at a high enough 

frequency to represent a reasonable temperature change rate due to the speed of the mechanical 

delay stage, a modified procedure was used for these experiments.  The TDTR setup was set to 

continuously collect data at 1Hz while the mechanical delay stage was set to stay at a probe pulse 

delay time of 400 ps and the temperature of the sample was increased at a rate of 5 C/min.  In 

this measurement it is assumed that any change in the TDTR output ratio at 400 ps is due to a 

change in the thermal conductivity since the thermal conductivity is the only strongly 
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temperature dependent variable in the model.  The measurements did not show an appreciable 

change in the thermal conductivity in the measured temperature range (Figure 17) for any of the 

samples.  As the phase transition measured by DSC is a 2
nd

 order transition, this result is not 

inconsistent with the data as the transition does not have a latent heat and a small change in heat 

capacity is the only expected change to the diffusive heat flow model.  We thought it possible 

that the increased mobility of the organic component of the composite might have an effect on 

phonon transmission and by extension affecting heat flow, however this did not appear to be the 

case. 

 

2.6 Discussion 

It is our belief that the low value measured is due to both the organic layers and the high 

density of interfaces normal to the substrate, and is dominated by heat transfer across the 

interfaces.  Variation of the alkyl chain length, and by extension the thickness of the organic 

layer, did not have an appreciable effect on the thermal conductivity of the films.  This is 

reasonably consistent with a model of thermal transport in which the thermal conductivity is 

dominated by the interfacial conductance.  The thermal conductivity of the superlattice should 

increase up to the thermal conductivity of the bulk organic component as the thickness of the 

organic layer increases, due to a decrease in the number of interfaces per unit thickness, 

however, we were unable to create clays with sufficiently thick organic layers to observe the 

beginning of the regime where the thermal properties of the organic component begin to 

dominate.  The combination of low interfacial conductance with the short repeat length in the 

nanostructure results in the characteristics of the interface dominating the bulk thermal 

conductivity, while the thermal properties of the individual layers become less important. 
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We formulated a simple series thermal resistor model to describe the heat flow normal to the 

film texture, using the values of 0.13 W/mK for the thermal conductivity of the organic layer and 

100 W/mK for the thermal conductivity of the clay sheet (Figure 18).  The value used for the 

thermal conductivity of the organic layer comes from that of liquid n-dodecane at STP.
25

  We 

estimate the thermal conductivity of the inorganic layer to be significantly higher than the that of 

bulk clay since even a bulk unmodified clay has a large number of interfaces (since the thermal 

conductivity of the clay layers is so much greater than that of the organic layer, the actual value 

is not important).  Using this model, the observed data can only be fit with a significant 

interfacial resistance.  The interfacial resistance is set as a variable and the best fit to the 

observed data (Fig. something) is for an interfacial boundary conductance between the organic 

and inorganic components of the superlattice of approximately 150 MW/m
2
K.  This value is 

roughly half the observed value for a spun coat PMMA/Piranha cleaned Si interface
27

, 

suggesting that the value obtained is reasonable as compared to similarly coupled interfaces.  As 

described in the previous paragraph, due to the dominance of the interfacial thermal conductance 

over the thermal transport properties of the layers themselves, and the relatively narrow range of 

organic layer thicknesses probed, we do not observe the increase in thermal conductivity up to 

that of the bulk organic as the organic layer thickness is increased as predicted by the thermal 

series resistor model. 

We see a measureable increase in the thermal conductivity of the trimethyl- terminated 

dodecylammonium-modified clay in comparison to both larger organic groups and the primary 

alkylammonium modified clay.  We speculate that this small increase in thermal conductivity 

could be due to packing differences between the different compositions, though the data set is 
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not extensive enough to draw any solid conclusion and the small difference in density caused by 

a difference in organic group packing is difficult to detect with RBS measurements. 

While it was suggested earlier that study of the thermal transport properties of similarly 

modified smectite clays other than montmorillonite may be reasonable, it is unlikely that a non-

functional change in the clay backbone would affect the thermal conductivity appreciably.  Due 

to the apparent dominance of the thermal conductivity within modified montmorillonites by the 

interfacial properties and, to a lesser extent, the thermal conductivity of the organic interlayer, 

any change in the clay structure would have to be drastic or provide additional functionality to 

affect the bulk thermal conductivity. 
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2.7 Figures 

 

Figure 4:  a. Model of the unmodified montmorillonite crystal structure.  Red balls represent 

oxygen atoms, beige balls represent silicon or aluminum atoms and purple balls represent the 

charge balancing sodium atoms. b. Schematic representing an organically modified 

montmorillonite.  This schematic does not accurately represent the interlayer packing structure. 

a b 
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Figure 5: a. Representative θ - 2θ X-ray diffraction measurement of a dodecyl- modified 

montmorillonite film.  b. Plot of (001) d-spacing as a function of organic functionality chain 

length, showing a clear increase in spacing as chain length increases.  Bars refer to FWHM of the 

(001) peak. 

 

 

Figure 6: a. Schematic representation of the first films prepared for TDTR measurements.  b. 

Representative TDTR data from films prepared in the geometry of the sample in Fig 4a where 

the long period acoustic oscillation is evident.  The solid red line represents the best fit for the 

thermal model and shows the clay film to have a thermal conductivity of 0.13 W/mK.
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Figure 7: a. Schematic representation of the sample geometry for the smooth clay film samples.  

b. Comparison of TDTR data from smooth films to data from the original rough films.  Both data 

sets are from tetradecyl- modified clay films, 
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Figure 8: a and c SEM images of as-spun clay films on a Si wafer.  b and d are SEM images of 

inverted, smooth clay films at comparable magnification to a and c. 
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Figure 9:  Cross-sectional TEM images of an organically modified clay film on a Si wafer.  In b 

the alignment of the clay films is clearly visible to be parallel to the Si substrate. 
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Figure 10:  X-ray diffraction ω – rocking curve measurements of several organically modified 

clay films.  In the dodecyl- to hexadecyl- modified clays, the complex distribution is evident. 
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Figure 11:  Representative DSC scan of dodecyl- modified montmorillonite displaying a glass-

like phase transition at ~85 C.  All organically modified clays display the same behavior at this 

temperature. 
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Figure 12:  He
2+

 RBS measurement of a tetradecyl- modified montmorillonite film on an 

amorphous carbon substrate.  The simulation is based on expected the expected composition of 

the organically modified clay film with a small Fe impurity to account for the signal from 

channels 700 – 800. 
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Figure 13: a. Schematic representation of the model used for the determination of the thermal 

conductivity.  b. Sensitivity of the thermal model to several variables as a function of the clay 

layer thickness. 
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Figure 14: Parts a,b,c, and d are plots of TDTR data from dodecyl-, tetradecyl-, hexadecyl-, 

and octadecylammonium modified montmorillonites samples.  The solid red line is the fit 

from the diffusive heat flow model with thermal conductivity values as reported.  Data and 

fits here are representative of smooth organically modified montmorillonite samples.
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Figure 15: Thermal conductivity of montmorillonites as a function of (001) d-spacing as well 

as series thermal resistor models for comparison. 
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Figure 16: a. θ - 2θ X-ray diffraction measurements of tetraalkyl- modified montmorillonites 

showing a relative independence of the peak position on the functionalization.  b. Thermal 

conductivity measurements of tetraalkyl- modified montmorillonite films. 
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Figure 17:  TDTR ratio at 400 ps of dodecylammonium modified montmorillonite film as a 

function of temperature plotted with a DSC trace of the same material.  There was no 

measureable change in the thermal conductivity of the samples due to the phase transition 

measured in by DSC in any of the samples measured. 
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Figure 18: a. Schematic representation of the series thermal resistor model used determine 

the interfacial thermal conductance of the organic-inorganic interfaces of the sample. b. Plot 

of effective thermal conductivity as a function of organic layer thickness.  Plots of the model 

with several values of interfacial boundary conductance are included as well as the data for 

the primary alkyl group modified montmorillonites. 
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CHAPTER 3 

THERMAL TRANSPORT IN SnI6 – ORGANIC LAYERED PEROVSKITES 

3.1 Background 

We have shown that the thermal conductivity of organically modified clay multilayers is 

strongly dependent on the interfacial thermal conductance between the clay sheets and the 

intercalated organic layer and the density of interfaces.  Organic – inorganic perovskite structures 

are a nanoscopically layered system with dimensions similar to organically modified clays but 

with important differences.
28

  Perovskite structures are more crystalline structures than clays as 

evidenced by higher order (00l) reflections in XRD measurements (Figure 19).
29

  Additionally, 

there is flexibility in the chemistry of the perovskite backbone, providing far greater control over 

aspects of the inorganic component of the layered system than with organically modified clays.  

We chose to specifically study the thermal properties SnI6 perovskites because of the ease of 

synthesis and the fact that the SnI6 backbone is electrically conductive, providing the possibility 

of thermoelectric applications. 

 

3.2 Synthesis and Characterization of SnI6 Perovskites 

SnI6 organo-perovskites were synthesized from SnI2(s), HI (conc.) and the appropriate long 

chain alkylammonium group (hexyl-, decyl, and octadecyl- moities).  1g of SnI2(s) was placed in 

excess concentrated HI with 2 mole equivalents of the desired alkylamine with respect to the 

SnI2.  After refluxing the solution at 95 
o
C for 24 hours, the dark purple crystals were vacuum 

filtered out and were washed with a 5:1 butanol/toluene mixture.  The crystals were subsequently 

redissolved in methanol at a concentration of 20mg/mL and the resulting solution was spin-
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coated onto a silicon substrate.  The resulting films were measured to be 15 - 30 nm thick by 

ellipsometry and appeared to be lightly purple and somewhat cloudy.
29

 

The films were shown to be highly crystalline in the (00l) direction by XRD measurements 

(Figure 18).  However, SnI6 – organic perovskites did not show the same trend toward increasing 

(001) spacing with increasing organic group length as the organically modified clays as 

evidenced in Figure 20a.  XRD measurements of SnI6 – organic perovskites show a difference in 

crystallinity with respect to each other inconsistent with an increase in the (001) spacing.  

Additionally, powder XRD measurements of various SnI6 – organic perovskite show peaks that 

correspond to reflections other than the (00l) reflections.  This indicates order in other directions 

which likely would increase the effective thermal conductivity due to the increase in order.   

We think it likely that these differences in XRD spectra between different perovskite 

compositions reflect a change in the symmetry of the crystal packing as opposed to a change in 

spacing.  While this system did not show the behavior of increasing (001) spacing with longer 

incorporated organic chain, this did provide the chance to investigate the effect that subtly 

differing crystalline symmetry has on the thermal conductivity of a layered system. 

 

3.3 Thermal Conductivity Measurements of SnI6 – Organic Perovskite Films 

Thermal conductivities of SnI6 – organic perovskite films were measured by the TDTR 

method.  Measured thermal conductivities of these perovskites have did not show a dependence 

on the changes in crystal structure we have affected through changes of the organic group (all 

thermal conductivity measurements have been ~0.23 W/mK) (Figure 20d).  All TDTR 

measurements showed a deviation from the diffusive heat flow model at long ( > 800 ps) delay 

times, as is apparent in Figure 20c.  Values for the density and thickness of the SnI6 films for use 
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in the diffusive heat model was estimated from spectroscopic ellipsometry measurements and the 

heat capacity was estimated as a weighted average of the specific heat capacities of the 

components of the system.  The model was unable to be modified to account for this drop in the 

TDTR ratio and closest fits were used accordingly. 

 

3.4 Discussion 

As of now, thermal conductivity measurements of SnI6 – organic perovskites have shown no 

measureable dependence on the length of the organic group used in the synthesis.  This suggests 

that the changes in crystal structure affected by the change in the organic component of the 

system do not appreciably affect the thermal transport properties.  However, as the data on this 

system is limited, further investigation is warranted. 

As for avenues of further investigation of this system, there are a few possibilities.  It may be 

interesting to probe the effect of the strength of the organic-inorganic ionic bond by making 

structures with organic salts other than primary ammonium salts.  This may make it possible 

discover the role, if any, that the organic-inorganic bond plays in heat conduction.  Another 

possible line of inquiry could be the variation of the composition of the perovskite backbone.  

Through variation of the perovskite composition, it could be possible to probe the effect that the 

differing mass of the atoms in the perovskite has on thermal transport properties. 
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3.5 Figures 

 

Figure 19: a. Schematic representation of SnI6 – Organic perovskite structure. b. X-ray 

diffraction measurement of a SnI6 – organic perovskite illustrating the high degree of 

crystallinity in the (00l) direction. (Figures from Kagan et al.)
29

 

a b 
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Figure 20: a. X-ray diffraction measurement of various SnI6 – organic perovskite films 

illustrating a comparable level of order to results from Kagan et al.  b. Powder XRD 

measurement of decylamine-SnI6 perovksite.  c. TDTR data from a 20 nm film of 

decylammonium-SnI6 and the red line is the fit from the diffusive heat model with the 

reported thermal conductivity.  d. Thermal conductivity measurements of various SnI6 – 

organic perovskite films.  
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CHAPTER 4 

CONCLUSIONS 

We have investigated the effects of several variables on the thermal transport properties of 

organically modified montmorillonite and SnI6 – organic perovskite films.  We have determined 

that in the case of the organically modified clay films that thermal boundary resistance plays a 

dominant role in determining the bulk thermal transport properties of the film, dropping the 

thermal conductivity of the various alkyl-modified montmorillonites to ~0.09 W/mK.  We have 

also shown that it is possible to determine thermal boundary conductance values in bulk systems 

to a reasonable degree based on the deviation of the thermal conductivity from an idealized 

system.  Based on the assumption that thermal transport in alkylammonium modified 

montmorillonites is determined in much the same way as in long-period superlattice systems, it 

was determined that the thermal boundary conductance between the montmorillonite sheets and 

the organic component of the system is ~ 150 MW/m
2
K.   It is also surprising that a system with 

an almost atomic length scale repeat spacing would behave in this apparently classical manner.  

Additionally, data we have collected, specifically the thermal conductivity measurements of the 

quaternary alkylammonium modified clays, is not sufficiently explained and further investigation 

is needed to determine the exact cause of the anomalous thermal conductivity. 

 Concerning the SnI6 – organic perovskite structures, it remains to be seen whether or not the 

system will show any interesting thermal transport properties.  As of now, too little data has been 

collected to determine whether perovskites will show unusual thermal transport properties even 

considering the similarities between this system and the organically modified clay system, 

though current data shows little dependence on the crystal structure changes affected by the 

experiments presented here and the measured thermal conductivities measured were all 
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approximately 0.23 W/mK.  However, the research here lays the groundwork for further inquiry 

into the thermal transport properties of organic-inorganic perovskite structures and provides the 

foundation for similar determination of boundary conductance in similarly nanoscopically 

layered systems. 
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