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The Satellite
Derotator

these are inelastic.
However, there is an elastic rotational demonstra-

tion apparatus dating back to at least the 1960s,1 and
more recently popularized by its inclusion in The
Video Encyclopedia of Physics Demonstrations under the
name of the “satellite derotator.”2 Although presented
as an example of conservation of angular momentum,
it is instructive to instead view it as a mechanism for
transferring rotational kinetic energy from one object
to another without loss.  In particular, while intended
solely as a means of halting the rotations of a satellite,
one could imagine modifying the apparatus to con-
trollably adjust its angular orientation or velocity, stor-
ing up mechanical energy for later use.

The Video Demonstration

The actual device in the video demo2 is as follows
(see Fig. 1).  A flat disk of radius R and mass M rotates
about its center on low-friction bearings.  Two small
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W
hen introducing linear collision prob-
lems, physics texts contrast the elastic
and inelastic cases.  This distinction is
useful because, for an interaction be-

tween two bodies in one dimension, equality of the ki-
netic energies and linear momenta enables one to solve
for the final velocities from the initial velocities and
masses.  A number of important problems are approxi-
mately elastic, including collisions between aircarts
having spring bumpers, “gravity boosting” of space
probes around planets, billiard-ball and superball
bounces, and atomic collisions in the absence of elec-
tronic or nuclear excitations.  In contrast, with the ex-
ception of planetary orbits, there are no standard ex-
amples of elastic angular collisions.  The figure skater
pulling in her arms, spinning disks that stick together,
a bike wheel manipulated on a turntable, the revolving
ball on a string whose length can be varied, people
walking or jumping onto a merry-go-round — all of
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pucks, each of mass m, fit into C-shaped grooves on
the periphery at opposite ends of a diameter.  A pair of
metal clips keep these pucks from flying off until a re-
lease button is pressed.  The disk is set into rotation by
unreeling a cord wound around the axle.  Subsequent-
ly, the pucks are released from the disk but remain
tethered to a separate set of axle bearings by long, light
strings of length l.  As the pucks spiral outward, the
disk slows down until finally it is stationary and the
pucks are rapidly rotating around the axle in a circle of
radius l.  At this point, all of the angular momentum
of the disk has been transferred to the pucks.  If the
mass of the pucks is increased, even more angular mo-
mentum is transferred, so that the disk ends up
counter-rotating.

One measurement suffices to explain this behavior
in detail.  Taking a plastic ruler to the video monitor, I
find that the ratio of the string lengths to the disk’s ra-
dius is l/R � 2.7.  Let the system consist of the disk,
strings, and pucks.  Since we are neglecting friction
and the system is rotationally balanced, there are no
external torques on it.  Therefore, angular momentum
is conserved.  Let the subscript “i” denote the initial
values of the angular momentum, kinetic energy, mo-
ment of inertia, and angular speed before the pucks are
released; subscript “f ” the final values after the strings
have reached their full radial extension; and the unsub-
scripted values an arbitrary instant of time, when the
pucks are at some distance r from the axle and have ve-
locity �➝.  The radial and azimuthal components of this
velocity are, respectively,  �r and ��  � r�puck; at the
same instant in time, the disk has angular speed �disk.
Conservation of angular momentum can be expressed
as

Li =  (�
1

2
�M +  2m)R2�i =  L = �

1

2
�MR2�disk

+ 2mr2�puck = Lf = 2ml 2�f .                         (1)

Next we must consider the interaction between the
disk and pucks.  If the pucks were merely unclipped
and then freely flew tangentially outward, there would
be no mechanism to reduce the angular momentum of
the disk. There must be a decelerating torque on the
disk and a corresponding accelerating torque on the
pucks.  The nature of this coupling is not immediately
obvious (in contrast to the x-ray view of Fig. 1) and is

not discussed in the video.  But close inspection of the
release and outward spiral of the pucks frame by frame
reveals it.  The strings are never slack.  Prior to the re-
lease of the pucks, the strings proceed radially outward
from the axle until they reach the periphery and then
wrap around it to the C-grooves.  There may be hooks
at the points around which the strings bend as they
turn from the radial into the azimuthal directions.
The strings come free of the hooks as they straighten
out.  These hooks must be countersunk so that the
strings do not snag on them in subsequent passes
across the surface of the stationary disk.  There is no
mechanism for dissipating kinetic energy because the
strings are always taut, have negligible elasticity, and
are attached to a ring on the axle that does not stretch
radially.  We can therefore write

2Ki = (�
1

2
� M + 2m)R2�2

i = 2K = �
1

2
� MR2�2

disk 

+ 2m � 2
puck   = 2Kf = 2ml 2�f

2 ,                             (2)

where � 2
puck = �r

2 + ��
2.  By comparing the initial and

final angular momenta and kinetic energies, we con-
clude that

�i = �f and  Ii = (�
1

2
�M + 2m)R2 = If = 2ml 2. (3)

Fig. 1.  Rotating disk after the pucks have been unclipped
and have begun to symmetrically unwind from the cir-
cumference. In the video, the strings and hooks lie most-
ly behind the disk and so are not clearly visible.

� 

R

r



THE PHYSICS TEACHER ◆ Vol. 40, September 2002370

Rearranging the second equality leads to

�
4

M

m
� = �

(l/R)

1
2 – 1
�.                                             (4)

Hence, l/R dictates how massive the pucks need to be
relative to the mass of the disk to just stop it.  In the
calculations below, I will assume each puck has exact-
ly 4% of the mass of the disk, as this gives the mea-
sured value of l/R.

Transferring Rotational Energy
As long as the strings bend around the hooks, they

do positive work on the pucks and an equal amount of
negative work on the disk, dWpuck = –dWdisk.  It is
convenient to divide both sides by the time interval dt
and balance powers, computed by taking the dot prod-
uct of the tension (with magnitude T ) and the veloci-
ties (of the rim in the case of the disk, which is equiva-
lent to the product of the torque and angular speed).
The unfurling of the string is divided into two ranges
of motion.  First, the string unwraps from the rim,
ending up as two straight segments making a 90� bend
at the hook, as in Fig. 2. Then this bend angle opens
up to 180�.

Consider some arbitrary instant while the string is
unreeling from the rim, as sketched in Fig. 1.  From
the geometry, it follows that 

– �
dW

d
d

t
isk

� = TR�disk = �
dW

d
p

t
uck

�

= T(�� sin�– �r cos�), (5)
where

sin� = R/r  ➯ cos� = �1� –� (�R�/r�)2� . (6)

We begin the second phase of the motion when the
string is fully unwrapped, as in Fig. 2. Application of
Pythagoras’ theorem implies that

runwrap =  �R�2 +� (�l –� R�)2� . (7)

Beyond this point in time, the geometry of the string
is as sketched in Fig. 3.  Now Eqs. (5) and (6)
become

– �
dW

d
d

t
isk

� =TR�disk cos � = �
dW

d
p

t
uck

�  

= T(�� sin � – �r cos �), (8)
where

�
sin

R

�
� = �

sin(90

r

� +�)
� ➯ cos � =  �

R

r
�sin � (9a)

and
R 2 = r 2 + (l – R)2 – 2r(l – R) cos�,             (9b)

which can be solved for �.

Fig. 2.  Sketch of the instant at which either string has
finished unwrapping from the disk's periphery. At later
times, the string will no longer intersect the disk 
tangentially.

Fig. 3.  Geometry of a puck spiraling outward to its max-
imum radial extension. During this phase of the motion,
the angle � is increasing from 0° to 90°, while the angle
� is decreasing to 0°.
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Numerical Solution
The simultaneous solution of Eqs.  (1), (2), and (8)

using the quadratic formula is
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where y � r/R, k � 4m/M, and cos � is given by Eq.
(9b). This solution also holds for the first phase of
the motion if Eq. (6) is instead used for cos �; Eq. (7)
determines the value of r at which one switches from
one expression for cos� to the other.  Equation (10)
is written in a form that can be evaluated in a spread-
sheet. The first two quantities are plotted together
with �puck/r�i � �puck/�i in Fig. 4.

Finally, we can compute the timescales and angular
displacements of the system.  The radial velocity of the
pucks is �r � dr/dt.  This can be expressed in terms of a
finite-difference approximation that can be iterated in
a spreadsheet,

t(r) � t(r – �r) + �r/�r . (11)

It is convenient to calculate this in units of the initial
period, T � 2	/�i.  We also have

�puck � d�puck/dt ➯

�puck(r) � �puck (r – �r) + �puck �r/�r (12)

and similarly for �disk.  Note that these angular dis-
placements are independent of the initial angular
speed of the system, i.e., the pucks must rotate
through the same total angle in order to stop the disk
regardless of how hard you initially tug the pull cord.
These are graphed in Fig. 5, beginning when the
pucks are released and ending when they have
reached their maximum radial extension.  A step size
of �r = 0.01R was used.

The angle in radians that each puck is initially
wrapped around the circumference of the disk is 
�wrap =l/R – 1.  Hence, the total angle that each puck
must move through to reach its full extension is the
sum of this plus the total angle that the disk rotates
through,

�wrap + �disk,f = �puck,f . (13)
Substituting the values from Fig. 5 and Eq. (4), we
find that this equality is verified — both sides equal
	 radians, indicating that our step size for �r was

Fig. 4. Graph of select angular and linear speeds begin-
ning when the pucks are released and ending when the
strings are fully extended and the disk has stopped.
Notice that �puck ends up at its initial value, while �puck

monotonically increases until it finally equals l/R.

Fig. 5. Numerical integration of the time and angles (in
radians) from the release of the pucks to the stopping
of the disk.
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suitably small.  This half revolution agrees with what
one observes on the video.  It further agrees with the
abscissa in Fig. 5: It takes just under half the initial
period of rotation to bring the disk to rest after
releasing the pucks.  This is not surprising.  Figure 4
shows that the rotational speed of the pucks is rough-
ly constant with an average speed slightly larger than
the initial angular speed of the system.  Noting from
this same graph that the angular deceleration of the
disk is approximately constant, we conclude that

�disk,f � �
1

2
��itf � �

1

2
��puck,f . (14)

Substituting these two angles into Eq. (13) implies
that

�
T
tf� � 2 �

�

2
w

	

ra

R
pR

� . (15)

This says that the fraction of the initial period
required to stop the disk is roughly equal to the frac-
tion of the circumference initially wrapped by the
two strings.  Hence, if we wish to stop the disk more
rapidly (for a given initial angular speed), we should
decrease the length of the strings (i.e., move the
hooks closer to the C-grooves).  In turn, Eq. (4) then
implies we would have to increase the mass of the
pucks.  This agrees with the second half of the video,
where the mass of the pucks is increased (but the
string lengths remain unchanged) and the disk is
consequently brought to rest before the strings reach
their full extension.

With Your Students

This video demonstration can be analyzed in class
or homework at three different levels.  As a spring-
board for discussion, it illustrates simultaneous conser-
vation of angular momentum and kinetic energy.  
Ideally, rotational energy can be stored up without loss
in the pucks for later recovery.  By writing K = ½L�
and requiring both K and L = I� to be the same ini-

tially as finally, Eq. (3) is immediately obtained.  A
smaller or larger value of m would then necessarily
slow down the disk or change its direction of rotation,
respectively.  Applications other than to satellites can
be brainstormed.

As a homework problem, students could be asked
to write down expressions for the initial and final val-
ues of K and L without assuming the disk stops.  The
general simultaneous solution for the final angular ve-
locities of the disk and pucks is then straightforward
yet inelegant.  But there are some simpler special cases.
For example, the disk ends up counter-rotating with
an angular velocity equal and opposite to its initial ve-
locity when M/2m =  l/R –1.  As a second example, if
4m << M then one can neglect the contribution of the
pucks to the initial values of K and L.  It follows, for
instance, that M/m � 12(l/R)2 to halve the initial an-
gular speed of the disk.

Finally, as a spreadsheet exercise, the graphical so-
lutions in this paper could be reproduced. For this
purpose, I would recommend providing students with
a copy of this article.  There are a number of other in-
teresting graphs that could then be prepared, such as
of Eq. (4) or of the radial velocity of the pucks.  Other
values of m/M and of l /R could also be explored.
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