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Abstract
Determining the speed of a ball as a function of its height after it is launched
straight upward in the absence of fluid resistance is a standard problem treated
at all levels of introductory physics. Inclusion of drag in the problem is seldom
covered even in the introductory course for majors. But, in fact, this problem
can be solved via a straightforward application of the work–energy theorem for
either linear or quadratic drag, and instructively plotted on graphs of kinetic
versus potential energy.

1. Setting up the problem

Choose upward to be the positive y-axis and the origin to coincide with the launch position of
the ball. Let υi be the ball’s upward launch speed, h the maximum height that the ball attains
before turning around and beginning its descent, and υf the ball’s speed as it returns to its
launch position. The problem consists in finding the speed υ of the ball as a function of its
height y between launch and return.

In the absence of drag, the solution can easily be found by conservation of mechanical
energy E,

K + U = E = constant, (1)

where K = 1
2mυ2 is the ball’s kinetic energy (assuming the ball has mass m) and U = mgy

is the gravitational potential energy (if the reference level is taken at the origin). The value
of the constant energy can be conveniently expressed either in terms of the potential energy
at the topmost point, Utop = mgh, or of the launch kinetic energy, Ki = 1

2mυ2
i . Substituting

these expressions into equation (1) and rearranging immediately gives υ(y) as desired.
On the other hand, when fluid resistance is present, a dissipative drag force FD acts on

the ball during its motion. Let us initially consider the specific case of a baseball moving
at ordinary speeds of throwing in air (i.e., not at the turbulent launch speeds of professional
baseball pitchers). In that case, as further discussed in section 4 below, the drag force is
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quadratic in speed [1] so that it has a magnitude of the form FD = bυ2, where b is a constant
of proportionality (that depends on the cross-sectional area of the ball and the density of the
air), and a direction opposite to the velocity υ of the ball. If we drop the ball from a large
enough height that it reaches terminal speed υT, then the gravitational and drag forces acting
on the ball must become equal and opposite, so that

bυ2
T = mg ⇒ b = mg

υ2
T

⇒ FD = mg

(
υ

υT

)2

. (2)

(In general, buoyancy can be neglected provided the ratio of the fluid density to the average
density of the ball is much less than unity. Otherwise we can rigorously account for the
buoyant force by reducing the effective gravitational acceleration g from its vacuum value;
specifically, the fractional decrease in g is equal to this density ratio [2].)

It is convenient to normalize the energies by the kinetic energy the ball would have if it
were moving at terminal speed, KT = 1

2mυ2
T. That is, we introduce the dimensionless kinetic

and potential energies, K ≡ K/KT = (υ/υT)2 and U ≡ U/KT = 2gy/υ2
T. In terms of these

new variables, equation (1) for the ball’s motion in the absence of air resistance becomes

U + K = Utop. (3)

When subject to drag, the baseball’s kinetic energy after launch will be smaller at a given height
(or equivalently, a given potential energy) than it would be in the absence of air resistance for
the same launch speed, since the drag force is dissipative. We therefore need to replace K in
this equation by some function of K that varies more slowly than linearly. On the other hand,
the function must reduce back to K in the limit that K � 1 because this implies that υ � υT

which in turn means that the drag force is negligibly weak (compared to mg) according to
equation (2). As is formally proven in the next section, the upward motion of the ball is in fact
described by replacing K by the simple function ln(1 + K), which by inspection satisfies both
of these conditions. During the downward phase of the ball’s motion, the drag force reverse
direction (since it is always opposite to υ), and the relevant function is instead − ln(1 − K).
(The insertion of two minus signs ensures that this expression still has the correct limiting
value K for K � 1.) To summarize, in the presence of quadratic fluid resistance, equation (3)
becomes

U ± ln(1 ± K) = Utop, (4)

where the upper (lower) signs refer to upward (downward) motion of the ball. Equations (3)
and (4) are compared in figure 1, taking Utop = 1 in both cases. This latter condition implies
that the baseball was launched at terminal speed in the absence of air drag and at

√
e − 1υT

(i.e., 31% faster than terminal speed, to allow for subsequent losses) in the presence of drag.
It returns to the launch position with the terminal speed again, in the absence of drag, but
with a speed of only

√
1 − 1/eυT (i.e., 20% slower than terminal speed) in the presence of

air resistance. (See section 3 for a derivation of these numerical values.) Experimental data
using video analysis of dropped balls [3] or balloons falling onto a motion sensor [4] are in
good agreement with the assumption of quadratic drag underlying equation (4).

2. Derivation of equation (4)

During an infinitesimal change dy in the ball’s position, mechanical energy is lost due to the
work done by the nonconservative drag force,

dK + dU = FD · dr, (5)
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Figure 1. Normalized kinetic versus potential energies for a ball launched straight up and
subsequently returning to the origin, assuming it is thrown just fast enough to reach a maximum
height of υ2

T/2g. In the absence of drag, the ball regains its original speed on the way down (dashed
line), whereas quadratic drag results in a net loss in kinetic energy (solid curves).

where the ball’s displacement is vertical, dr = dy ĵ. Noting that the drag force is
FD = ∓mg(υ/υT )2 ĵ, where we continue to use the convention that the upper (lower) sign
refers to upward (downward) motion of the ball, we can rewrite equation (5) as

dK + dU = ∓mg

(
υ

υT

)2

dy. (6)

Despite the double sign appearing on the right-hand side, that expression is always negative
because dy > 0 when the ball is travelling upwards, while dy < 0 when the ball is descending.
That is, mechanical energy is being dissipated in both the upward and downward segments of
the motion, as expected.

As before, we normalize this energy expression by dividing every term through by KT to
get

dK + dU = ∓K dU . (7)

which rearranges into

dK
1 ± K

= −dU . (8)

We integrate both sides over any macroscopic increment of motion (in either the upward or
downward direction) to obtain

±� ln(1 ± K) = −�U, (9)

where, as usual, ‘delta’ (�) refers to the change in the value of the quantity that follows it
(e.g., �U equals the value of U at the end of the increment of motion minus its value at the
beginning of the increment). In particular, for the increment between any arbitrary point on
the ball’s path and the topmost point,

± [ln(1 ± Ktop) − ln(1 ± K)] = −[Utop − U]. (10)

But Ktop = 0 since the ball instantaneously comes to rest at the topmost point and therefore
the first logarithm on the left-hand side of this expression drops out. Rearranging what is left
now gives equation (4), as we wished to show.
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3. Applications of equation (4)

Apply equation (4) to the initial launch of the ball upwards to find

ln(1 + Ki) = Utop ⇒ h = υ2
T

2g
ln

[
1 +

(
υi

υT

)2
]

, (11)

which is the maximum height attained by the ball in terms of its launch speed. Next apply
equation (4) to the return of the ball downwards to its launch position to obtain

− ln(1 − Kf) = Utop ⇒ h = υ2
T

2g
ln

[
1

1 − (υf/υT)2

]
. (12)

In contrast, equation (3) in the absence of drag implies that

Ki = Utop = Kf ⇒ h = υ2
i

2g
= υ2

f

2g
, (13)

which agrees with equations (11) and (12) using the Taylor expansion ln(1+x) ≈ x for |x| � 1
(as is appropriate because the drag force can be ‘turned off’ by taking the limit υT → ∞).

Equations (11) and (12) can be inverted to get the normalized launch and return speeds in
terms of the maximum height,

υi

υT
=

√
exp

(
2gh

υ2
T

)
− 1 and

υf

υT
=

√
1 − exp

(
−2gh

υ2
T

)
. (14)

Squaring these results and substituting h = υ2
T/2g gives the y-intercepts of the solid curves

in figure 1, consistent with the speeds mentioned at the end of section 1. In general,
dividing the second equality in equation (14) by the first and squaring gives the compact
expression Kf/Ki = exp(−Utop). On the other hand, if one equates the expressions for h in
equations (11) and (12) and rearranges, one finds the memorable result [5]

1

υ2
f

= 1

υ2
i

+
1

υ2
T

, (15)

alternatively expressed as 1/Kf = 1/Ki +1/KT. Equation (15) tells us that υf is always smaller
than both υi and υT, that we recover the drag-free result υf = υi in the limit that υi � υT,
and that we return to the ground at terminal speed if υi 	 υT. Finally, one can calculate the
cumulative amount of mechanical energy lost [6] E ≡ Elost/KT in normalized form, as

E = Ki − K − U (16)

since Ui = 0, where the dimensionless kinetic energy K can be expressed in terms of the
height y using equation (4). In particular, at launch one finds Ki = exp(Utop) − 1 from
equation (11). Note that Elost becomes thermal energy of the atmosphere.

4. Comparison with linear drag

For a sphere of diameter D moving at speed υ through a fluid of density ρ and viscosity η,
the Reynolds number is defined as R ≡ ρDυ/η. The drag force is linear in υ (Stokes’ law)
when R < 1, while the drag force is quadratic in υ (Newton’s law) when R > 1000 [2]. (At
intermediate values of R, one gets a mixture of both forms that is best treated numerically.
Also, turbulence arises when R > 2 × 105.) For air at room temperature, ρ = 1.21 kg m−3

and η = 1.83 × 10−5 kg m s−1, so that a baseball of diameter D = 7.4 cm is clearly in the
quadratic regime for speeds υ greater than 0.2 m s−1 (i.e., the entire trajectory except within
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Figure 2. Normalized potential energy at the maximum height versus normalized kinetic energy
at launch. The curves in the presence of drag fall below the straight line in the absence of drag due
to the dissipation of mechanical energy, but asymptotically approach the drag-free line in the limit
of small launch speed (compared to the ball’s terminal speed).

2 mm of the top turning point). On the other hand, if the ball is a dust grain of 100 µm diameter
falling at a speed of 0.1 m s−1, then it is in Stokes’ regime. In that case, we have a drag force
of magnitude FD = b′υ where b′ = 3π ηD. At terminal speed υT, the forces balance so
that in analogy to equation (2), b′υT = mg ⇒ FD = mg (υ/υT) = mg

√
K. Therefore,

equation (8) becomes
dK

1 ± √
K

= −dU . (8′)

This is easily integrated by making the substitution z ≡ 1 ± √
K to obtain

2�[±
√
K − ln(1 ±

√
K)] = −�U . (9′)

(For comparison purposes, all equations numbered with a prime for linear drag are analogous
to the corresponding unprimed equations for quadratic drag.) Again considering an increment
between any arbitrary point on the ball’s path and the topmost point, one finds that

U ± 2
√
K − 2 ln(1 ±

√
K) = Utop. (4′)

Using the expansion ln(1 + x) ≈ x − x2/2 for |x| � 1, equation (4′) correctly reduces to (3)
in the absence of drag.

Applying equation (4′) to the initial launch of the ball upwards implies

2
√
Ki − 2 ln(1 +

√
Ki) = Utop ⇒ h = υ2

T

g

[
υi

υT
− ln

(
1 +

υi

υT

)]
. (11′)

In the absence of drag, equation (3) implies that Ki = Utop; together with the first equalities in
equations (11) and (11′), this drag-free result is plotted in figure 2. The linear and quadratic
curves track closely with each other up to surprisingly large launch speeds; in fact, the two
curves cross when υi = 1.539υT. Evidently, a measurement of the maximum height is not an
effective way to distinguish experimentally between linear and quadratic drag unless the ball
is launched with a speed of at least 2υT. For this specific launch speed, equation (11) predicts
that the ratio of the maximum height in the presence of quadratic drag to the height attained
in the absence of drag is 1

4 ln 5 = 0.402, while equation (11′) predicts that the ratio of the
maximum height in the presence of linear drag to the height attained in the absence of drag is
1 − 1

2 ln 3 = 0.451.
The analogue of equation (12) can next be written down for the downward return of the

ball and that resulting expression for h equated to the second equality in (11′) to obtain
υi + υf

υT
= ln

(
υT + υi

υT − υf

)
⇒ υf

υT
= 1 + W

[
− 1 + υi/υT

exp(1 + υi/υT)

]
, (15′)
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where W [x] is the Lambert W function [7]. There are two negative solutions of this function
for values of υi/υT > 0 and one should take the solution with the smaller absolute value to
ensure that υf/υT > 0. (The other solution merely gives the launch velocity υf = −υi.) The
appearance of the Lambert W function nicely complements another recent work in which this
function also arises in connection with a projectile subject to linear drag [8].
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