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ABSTRACT 

 
LIDAR data taken over the Elkhorn Slough region in central California were analyzed for terrain classification.  

Data were collected on April 12
th

, 2005 over a 10 km x 20 km region that is mixed use agriculture and wetlands.  

LIDAR temporal information (elevation values), intensity of returned light and distribution of point returns (in both 

vertical and spatial dimensions) were used to distinguish land-cover types.  Terrain classification was accomplished 

using LIDAR data alone, multi-spectral QuickBird data alone and a combination of the two data-types.  Results are 

compared to significant ground truth information. 
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1.  INTRODUCTION 

 
The goal of this research is to analyze the utility of LIDAR data for ground classification purposes.  LIDAR data 

were analyzed alone and in conjunction with multi-spectral data. 

 

LIDAR data used in this study were collected by Airborne 1 Corporation using the Optech ALTM (Airborne Laser 

Terrain Mapper) 2025. DigitalGlobe® collected multi-spectral data using the QuickBird sensor.  The specifications 

for both data sets are below (Tables 1a and 1b). 

 
Table 1a.  Specifications for Airborne 1 LIDAR data  

collect. 

 

Airborne 1 LIDAR Collection Parameters 

Collection rate 25,000 pulses per second 

Wavelength 1064 nm (NIR) 

Collection dates April 12th, 2005 

Altitude 1828 m 

Strip width +/- 18°, 1200 m Ground Swath 

Pulse Return 

Classification 

 

1 - Extracted Feature - Last Pulse 

2 - Bare Earth - Last Pulse 

3 - Extracted Feature - First Pulse 

4 - Bare Earth - First Pulse 

Point spacing 1-m posting gridded to 2.4-m 

Platform ParteNavia fixed-wing twin prop 

Datums UTM Zone 10, NAD83, NAVD88 m 

 

Table 1b.  Specifications for QuickBird multi-spectral  

data collect. 

 

QuickBird Multi-Spectral Collection Parameters 

Wavelengths Blue – 479.5 nm 

Green – 546.5 nm 

Red – 654 nm 

Near IR – 814.5 nm 

Collection dates Oct 8
th

, 2002 

GSD 2.4 x 2.4 m 

Level of processing by 

vendor 

Standard 2A 

 

 

2.  BACKGROUND 

 
To derive elevation values from LIDAR data, a measurement is made of the time lapse between when a laser pulse 

is emitted and when the reflected light reaches the sensor again.  Multiplying the speed of light by the elapsed time 

gives the distance between the sensor and the object being sensed.  Combining the ‘distance traveled’ information 

with the GPS and INS data onboard the aircraft allows the calculation of precise elevation values of objects on the 

ground.   
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LIDAR data can also be used to determine something about the physical structure of an object.  When pulse of light 

interacts with objects on the ground and with the atmosphere it travels through, the shape of the pulse is affected.  

As an example, consider a tree on the ground.  Some of the light that hits the tree will be reflected from the very top 

of the tree, while some of the light will continue to filter further down through the canopy before it is reflected back 

to the sensor.  The reflection of light at slightly different times creates a variation in light intensity being recorded 

over time at the sensor.  This signal, which represents the way in which light interacts with objects on the ground, 

can be used to distinguish and identify materials.  

 

Full-return LIDAR systems record the entire signal return for later processing, while discrete-return LIDAR systems 

record a small number of samples from the returned signal.  Discrete returns are measured by finding the ‘edges’ in 

the return signal, under the assumption that objects at different heights within the same spatial resolution cell will be 

distinguished.  

 

3.  PROCESSING 
 

The LIDAR data set used in this study was from a discrete-return system.  Up to four elevation values and four 

associated intensity values were recorded for each point on the ground.  The points at each ground location were 

classified into one of four classes as part of the processing at Airborne 1:  Extracted Feature – Last Return; Bare 

Earth – Last Return; Extracted Feature – First Return; or Bare Earth – First Return.   

 

The Bare Earth – Last Return features were used to create a DEM of the bare earth using IDL ‘trigrid’ and 

‘triangulate’ routines.  These routines are IDL’s solution to the problem of irregularly gridded data (4).  This DEM 

was then used to register the QuickBird multi-spectral data. 

 

The QuickBird data used in this study was a DigitalGlobe® Standard Imagery Product.  This data type has a rough 

DEM applied as part of the post-processing (3), making it unsuitable for precision orthorectification.  Because 

orthorectification wasn’t possible, the QuickBird image was registered to the LIDAR DEM.  This method does not 

necessarily create an image that accurately reflects the ground, but does allow comparison of QuickBird pixels to 

LIDAR data points based on their geolocation.  The accuracy of the registration varied over the scene area.  Small 

sections of the overall scene that exhibited excellent registration were chosen for analysis (Figures 1a and 1b). 

 

 
 

Fig. 1a.  Segment of the QuickBird multi-spectral image. 

 

 
 

Fig. 1b.  Geographically same area of Airborne 1 LIDAR 

image (Extracted Feature – First Return).
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4.  RESULTS AND ANALYSIS 

 
The most obvious way to use LIDAR data in conjunction with multi-spectral imagery is to look at materials that 

exhibit similar spectral features but have differing height characteristics.  There are abundant Eucalyptus and Oak 

woodland areas in the Elkhorn Slough region.  While these materials look very similar from above, they actually 

have very different physical characteristics.  

 

The Normal Difference Vegetation Index (NDVI) was used to create a healthy vegetation mask.  Several vegetated 

areas were chosen as ground truth sites.  The Regions Of Interest (ROIs) overlaid on the image below (Figure 2) 

mark the ground truth locations in this image segment.

 
Fig. 2.  QuickBird multi-spectral image with overlaid 

healthy vegetation ROIs. 

 

 

 

 

 Oak 

 Marsh 

 Eucalyptus 

 Cultivated Field 

 

 

 

 

 

 

 

 

 

The vegetation spectra look very similar in the multi-spectral imagery because they all exhibit the characteristics of 

‘healthy vegetation’.  In the LIDAR data however, we can more easily separate the different types of vegetation 

based on differences in heights and intensity of light from the reflected LIDAR pulse (Figures 3a-c and Table 2).

 
Fig. 3a.  Vegetation spectra over QuickBird multi-spectral 

wavelength range.  The values shown are the mean 

values of the ROIs above.  
 

 
Fig. 3b.  Four LIDAR intensity values for the healthy 

vegetation ROIs. 
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Fig 3c.  LIDAR derived height values and ranges.  
 

 
Table 2.  Data points for Figure 3c, LIDAR derived height 

values and ranges.  EF = Extracted Feature Return, BE = 

Bare Earth Return.  
 

Mean ROI LIDAR Height Differences 

 EF 1
st
 – 

EF Last 

BE 1
st
 – 

BE Last 

EF 1
st
 – 

BE 1
st
 

EF 1
st
 – 

BE Last 

Eucalyptus 29.63 1.19 36.31 36.31 

Cultivated 0.12 0.16 0.26 0.35 

Marsh 0.30 0.14 0.89 0.90 

Oak 23.86 0.26 29.67 29.60 

 

 

 

In order to analyze the effectiveness of adding LIDAR information into image classification schemes, information 

for the separate data types (multi-spectral, LIDAR height, LIDAR intensity) were combined.  The different data 

types have widely different ranges of values.  In order to minimize this effect, the top and bottom 2% of the tails of 

the histogram of values for each data type were excluded.  The remaining values were scaled from 0-255.  The 

bands of spectral data were then combined with the bands of LIDAR information into one image file.   

 

The data was classified using the Maximum Likelihood classification scheme from the ENVI software. The 

classification was done using information from each data type individually and in combination (Figures 5a-d). 

 

ENVI was used to create a confusion matrix using the ground truth ROIs.  The classified image pixels were 

compared to the ROI pixels and a measure of overall classification accuracy was calculated (Table 3).  

 
Table 3.  Overall classification accuracy based on ground truth ROIs. 

 

 4-band MSI 

(Fig. 5a) 

4-pulse return 

Height (Fig. 5b) 

4-pulse return 

Intensity (Fig. 5c) 

Height and 

Intensity 

MSI, Height, and 

Intensity (Fig. 5d) 

Percentage correctly 

classified 
88.47 65.74 69.84 80.93 89.14 

# of pixels 

(correct/total) 
798/902 593/902 630/902 730/902 804/902 

 
The highest classification accuracy was obtained by using all of the available information in conjunction.  The 

addition of LIDAR information did not lead to a dramatic increase in overall classification accuracy.  It is notable 

that the classification of LIDAR Height and Intensity information created an accuracy of 80.9%, which is close to 

what is achieved using the multi-spectral data. 
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Fig. 5a.  Maximum Likelihood classification using 4-bands 

of multi-spectral data only. 

 

 

 

 
 

Fig. 5b.  Classification using 4 bands of LIDAR derived 

height information only.

 
 

Fig. 5c.  Classification using LIDAR Intensity information 

only. 

 

 

 

 
 

Fig. 5d.  Classification of combined data product (multi-

spectral, LIDAR-derived heights and LIDAR 

intensity).
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5.  FUTURE WORK 
 

Based on the success of using discrete-return LIDAR information for image classification, it is realistic to think that 

useful information can be extracted from full-waveform LIDAR data using traditional spectral image processing 

techniques.  An attempt was made to simulate full-waveform LIDAR data from the discrete-return LIDAR data used 

in this study.  A histogram was created based on all LIDAR returns within a small spatial extent, but this led to 

smoothing in the spatial dimension. While it was possible to distinguish different classes of materials using this 

technique, the spatial resolution was degraded beyond a point that is interesting in this type of terrain classification. 
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