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ABSTRACT

A common problem with modern numerical oceanographic models is spatial displacement, including

misplacement and misshapenness of ocean circulation features. Traditional error metrics, such as least

squares methods, are ineffective in many such cases; for example, only small errors in the location of a frontal

pattern are translated to large differences in least squares of intensities. Such problems are common in me-

teorological forecast verification as well, so the application of spatial error metrics have been a recently

popular topic there. Spatial error metrics separate model error into a displacement component and an in-

tensity component, providing a more reliable assessment of model biases and a more descriptive portrayal

of numerical model prediction skill. The application of spatial error metrics to oceanographic models has

been sparse, and further advances for both meteorology and oceanography exist in the medical imaging field.

These advances are presented, along with modifications necessary for oceanographic model output. Standard

methods and options for those methods in the literature are explored, and where the best arrangements of

options are unclear, comparison studies are conducted. These trials require the reproduction of synthetic

displacements in conjunction with synthetic intensity perturbations across 480 Navy Coastal Ocean Model

(NCOM) temperature fields from various regions of the globe throughout 2009. Study results revealed the

success of certain approaches novel to both meteorology and oceanography, including B-spline transforms

and mutual information. That, combined with other common methods, such as quasi-Newton optimization

and land masking, could best recover the synthetic displacements under various synthetic intensity changes.

1. Introduction

The concept of spatial error was introduced by Hoffman

et al. (1995), who proposed two general types of error,

including spatial (or displacement) and intensity (or

amplitude) errors. Spatial error metrics have since ad-

vanced in a number of studies (Casati et al. 2008; Gilleland

et al. 2009, 2010a; Ahijevych et al. 2009; Marzban et al.

2009). More recent developments include an alignment

method by Beechler et al. (2010) only operating along

one dimension. Clark et al. (2010) searches for the best

matching point within a predefined window size. Marzban

and Sandgathe (2010) utilize a variation of optical flow to

improve the handling of intensity differences. Gilleland

et al. (2010b) use thin-plate splines to deform one dataset

to match the other.

These methods first determine a spatial displacement

to serve as one error metric. Many go further by cor-

recting the displacement and then consider any remain-

ing difference an intensity error. This separation of errors

can provide key information for numerical prediction

model validation. The intensity error can be displayed

qualitatively by simply displaying the point-wise difference

magnitude as an image. Gilleland et al. (2010a) illustrates

these difference images before and after correcting

displacement to show how true intensity errors are

discovered.

The above methods were applied to meteorological

datasets. The application of displacement metrics to ocean-

ographic data seems sparse, yet we assert that it would be

beneficial. The use of traditional statistical error metrics

for oceanographic modeling is common, including root-

mean square (RMS), cross correlation (CC), mean bias,
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and skill scores (Murphy and Epstein 1989; Murphy 1995;

Helber et al. 2010). Mariano (1990) tracks the motion of

isocontours as displacement error. Hurlburt et al. (2008)

manually identify features in satellite imagery and model

results and compare the positions by hand. A method

similar to Clark et al. (2010) is utilized by Helber et al.

(2010) such that data points are grouped into analysis

windows. This paper presents the hypothesis that algo-

rithmically detected displacement for ocean forecast

results can be more accurate than traditional statistical

metrics, more comprehensive and less laborious than

manual feature tracking, and provides both quantitative

and qualitative results.

Both meteorology and oceanography could benefit

from the advanced image alignment methodologies, re-

ferred to as ‘‘registration,’’ used in the medical imaging

field. Registration can occur, for example, between com-

puted tomography (CT) scans from different times, dif-

ferent patients, or to images of an entirely different

modality such as magnetic resonance imaging (MRI).

The field was already under heavy development by 1998

as exemplified in the survey by Maintz and Viergever

(1998). This paper focuses on ‘‘deformable’’ registration,

where the alignment can be nonuniform and tends to vary

significantly. Overall, such methods can be divided into

nonparameterized methods (e.g., optical flow) and param-

eterized, which use a parametric function (e.g., splines) to

model the displacement. Registration in both medical

imaging data (Crum et al. 2004) and meteorological

models (Ahijevych et al. 2009) favors ‘‘multiscale’’ ap-

proaches, where the two datasets are successively pro-

cessed from a coarse resolution to the finest. One can

also utilize masks to exclude invalid or irrelevant data. A

registration system is divided into three components: 1)

transform, 2) difference criterion, and 3) optimizer. The

transform deforms a trial dataset to appear like the ref-

erence dataset. The difference criterion (DC) measures

the difference between the datasets. The optimizer de-

termines how to adjust the transform to optimize the DC.

The three components iterate until the optimizer decides

convergence is achieved (Fig. 1). Meteorological appli-

cations for displacement error have almost exclusively

used a form of RMS or absolute error as the DC. Medical

image registration introduces normalized correlation

(NC), mutual information (MI), and others.

2. Registration method

A parameterized approach was chosen since nonpara-

meterized methods (e.g., optical flow) have not enjoyed

much success with data of significantly varying intensities

(Crum et al. 2004). Of the parameterized approaches, the

B-spline transform seems the most common (Crum et al.

2004). A B-spline transform is governed by control points

connected by 2D B-spline curves (Fig. 2a), and can be

evaluated to displacement vectors at every data point

(Fig. 2b). B-spline curves offer two advantages over the

thin-plate splines from Gilleland et al. (2010b). First, B-

splines have implicit smoothness constraints guaranteed

by their continuity and differentiability properties. Thin-

plate splines require a penalty parameter to reduce sharp

edges in the splines, and the correct value of the param-

eter can require some effort to determine initially for

different applications. B-splines also have a local region

of influence, allowing DC calculations to be calculated

over smaller regions for efficiency (Crum et al. 2004).

Multiscale processing is provided as an option to facilitate

the detection of larger spatial errors by starting the reg-

istration with a coarse sampling (reduced recursively by

some power of two) of the original grids. When the reg-

istration has converged at this coarse scale, it is resumed

on a finer grid (finer by a factor of 2). This process is re-

peated until the registration has been performed at the

original resolution. A related option includes scaling the

control point spacing at each of the aforementioned grid

scales. Finally, the masking option is implemented geo-

metrically across all scales to allow the treatment of only

the valid points.

A number of optimizers exist (Crum et al. 2004), but it

is important to note that every B-spline point adds more

degrees of freedom. The gradient descent optimizer tends

to converge slowly for more than a few degrees of free-

dom. Stochastic and evolutionary optimizers are good for

locating global optima but can be slow to converge.

Conjugate-gradient and quasi-Newton methods are in-

tended for many degrees of freedom and are simple to

initialize.

The most common DC is mean-square error MSE (the

square root of MSE, RMSE, adds extra calculations un-

necessary for optimization), which follows

MSE 5
1

n
�
x, y

[ f (x, y) 2 g(x, y)]2,

FIG. 1. The three components of registration, difference crite-

rion, optimizer, and transform, looping until completion. The inputs

are the analysis and forecast datasets. The outputs are a trans-

formed (corrected) forecast to best match the analysis and the

displacement field used to apply the transform.
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where x,y span the dimensions, and f(x, y) and g(x, y) are

the reference and trial datasets, respectively. The NC is

also common:

NC 5
1

n 21
�
x,y

[ f (x, y) 2 f ][g(x, y) 2 g]

sf sg

,

where f and g are the respective dataset means, and sf

and sg are the respective deviations. MSE can be very

susceptible to intensity differences. NC improves this, but

typically only for linear intensity differences (Pluim et al.

2003).

Viola and Wells (1995) introduced MI as a DC for

‘‘multimodal’’ registration—that is, registration across

different image modalities such as CT and MRI. MI is

defined as follows:

MI 5 H[ f (x, y)] 1 H[g(x, y)] 2 H[ f (x, y), g(x, y)],

where H( f) is the marginal entropy of random variable f

and H( f, g) is the joint entropy. In this case, the random

variables are the datasets themselves, either sampled at

every data point or a representative random sample of the

data points. The marginal and joint entropies are defined

as follows:

H[ f (x, y)] 5 2

ð
x,y

p( f ) log p( f ) df , and

H[ f (x, y), g(x, y)] 5

ð ð
x,y

p( f , g) log p( f , g) df dg,

where H(f) is also applied for H(g), p( f, g) is the joint

probability density function (PDF) and p(f ) and p(g) are

the respective marginal PDFs. The marginal PDFs can be

computed approximately using a histogram, where each

histogram bin count is divided by the total number of

samples to form a bin probability. This reduces the mar-

ginal entropy calculations H(f) and H(g) to merely the sum

of the bin probabilities multiplied by their respective log-

arithms. The joint PDF is estimated by a two-dimensional

histogram, where each bin represents a pairing of two

values, each respectively from the same location in the

datasets f and g. As with marginal entropy, the joint en-

tropy is the sum of all bin probabilities multiplied by their

respective logarithms.

Compared to MSE and NC, MI should handle nonlinear

intensity differences better because of the nonlinear na-

ture of the PDFs in relation to each other. Other research

has improved MI sophistication as documented in Pluim

et al. (2003). A combination of improved MI with

B-spline transforms is presented in Mattes et al. (2003).

MI was improved by using kernel density estimators (also

known as Parzen windows) as a more advanced form

of histogram. This was successful for multimodal reg-

istration, suggesting that MI would be superior in com-

paring model results to other sources of reference data

such as satellite imagery.

The system presented here is designed to compare a

model forecast field to an analysis field resulting from data

assimilation. Hoffman et al. (1995) used this approach,

and more recent examples include Casati et al. (2008) in

meteorology and Wallcraft et al. (2002) in oceanogra-

phy. The advantages of using an assimilative analysis

field from the same model [rather than actual ground

truth (e.g., satellite imagery)] include matching grids and

similar scalar properties. The disadvantage is that it will

miss errors in the model’s assimilation process itself. To

test the system, in the trials in sections 4 and 5, the refer-

ence data is an analysis and the trial forecast is syntheti-

cally deformed from that analysis. The registration result

is compared to the synthetic deformation for accuracy.

3. Parametric arrangements

Pretrials for a small number of datasets (section 4)

eliminated obviously poor options and arrangements of

those options. Final trials were run on more datasets

(section 5) to find an ideal arrangement. Both trials utilize

the Insight Segmentation and Registration Toolkit (ITK;

Yoo et al. 2002; Yoo 2004), which provides several DCs

and optimizers.

Ng (2005) provides a heuristic starting point for choos-

ing arrangements. Control point spacing for the B-spline

curves should not be too coarse or fine. Multiscale is

FIG. 2. (a) An example of a B-spline transform. (b) The same

B-spline transform converted to a displacement vector field.
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usually necessary; moreover, the number of scale levels

should be such that the lowest grid scale’s size is roughly

64 3 64—that is, 64 grid points in each direction. One

should also consider enabling the option to scale the con-

trol point spacing with each grid scale. It is expected that

the quasi-Newton or conjugate-gradient optimizers would

be the best, but optimization can vary depending upon the

problem set, so several options were tested including a

stochastic optimizer and an evolutionary optimizer. MI

was expected to be the best DC, but mean square (MS)

and NC were tried also. In addition, a smoothed-gradient

version of each MS, NC, and MI are tried as a DC. As the

registration progresses, the DC must also interpolate

from the forecast data’s transformed points to the orig-

inal gridpoint locations of the analysis field. Either linear

or cubic interpolations are appropriate, and one must

balance the faster evaluations of the former against the

typically faster convergence of the latter. Finally, the use

of a land mask is expected to improve registration, but

seems undocumented with regards to oceanographic data,

so it should be optional in the trials.

The synthetic forecasts are created by applying a de-

formation field to the analysis, where the deformation

field is the Gaussian-smoothed ocean current field from

the corresponding analysis. The vector field is scaled in

magnitude to be 11.25 times the grid spacing (1/88) per

1 m s21. This parallels one method for verification with

synthetic deformations in medical image registration us-

ing historically documented physical motion transforms

(Crum et al. 2004). Here, the smoothed current field is

used as an approximation of the advection of an ocean

model over several time steps. The performance of any

given registration arrangement is judged by the nearness

of the displacement field recovered by the registration to

the original synthetic deformation field. Nearness is de-

fined as the smaller RMS of the vector subtraction be-

tween the vector fields. The performance of a registration

arrangement under intensity changes is also evaluated by

adding functions in conjunction with the synthetic de-

formation. In this study there are four added functions:

zero, constant, low-frequency sinusoid, and high-frequency

sinusoid. The maxima of the functions added are one-tenth

of a standard deviation of the surface temperatures of

the respective dataset, which therefore serves as the sin-

gle value for the constant functions and as the maximum

amplitudes of the sinusoids.

4. Pretrial results and adaptations

The pretrials provided the intended information, which

included 1) the elimination of some arrangement options,

2) highlighting which options would require full trials to

eliminate or include, and 3) discovery of shortfalls that

would require modifications before proceeding to full

trials. First, B-spline control point spacing was too fine at

4 control points per data point, and too coarse at 10

control points per data point. Both 6 and 8 points were

better, but it was unclear which of the two was best,

leaving that determination for the full trials. Multiscale

processing was indeed superior, with an average of 64 3

64 grid points being generally the best size for the initial

coarsely scaled grid. Since most grids are not powers of

2 in size, and each scale is half the size of the finer scale,

a range of the coarsest scale is expected. We found that

less than 45 3 45 was too small and over 90 3 90 was too

large. Results were also consistently better when en-

abling the option to scale control point spacing along

with the gridpoint scale. The choice between linear and

cubic interpolation for the DC was inconclusive.

The best optimization strategy was quasi-Newton. The

quality of the end results were all relatively the same, but

the speed of convergence was the deciding factor. Quasi-

Newton was also both easier to configure and tended to

adapt to different datasets quickly. Conjugate gradient

was a close second overall, with speeds of convergence as

much as 20% slower. Methods without DC derivatives

such as stochastic perturbation and an evolutionary op-

timizer were much too slow to converge—slower than

quasi-Newton by orders of magnitude. Quasi-Newton

also allows freezing control points over land areas, but

this tended to restrict the movement of the B-spline grid

in water areas near land and prevented optimal solutions

in those areas, so this option was excluded.

MI seemed like the best DC, but the result was not

conclusive nor was using the gradient in conjunction with

the DCs. It was determined that, for MI, the histogram

size must be large enough—that is, somewhere near

64 bins at the minimum scale of a multiscale run. Also, it

must resize in proportion with the largest dimension of

each scale of a multiscale run. Thus, since each scale

doubles in size along both dimensions from the coarsest

scale, the histogram size must also double at each scale.

Finally, land masks were indeed useful but only when the

masked areas are handled properly. Masked values must

be excluded from all DC aspects, including minimum/

maximum calculations, and left out of interpolations used

to generate the multiscale levels. It was also necessary to

overwrite masked land areas with a first-differentiable

boundary condition to reduce errors in the B-spline

evaluations near land.

5. Full trial results

The pretrial results left the following arrangement pa-

rameters undetermined: 1) six versus eight data gridpoint

spacing per B-spline control point, 2) linear versus cubic
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interpolation, 3) MSE versus NC versus MI for DC, and

4) direct DC versus smooth-gradient DC. The full trial ran

every combination of the above options on each dataset

with the four intensity change functions. The study used

20 datasets from 24 times (2 per month) throughout 2009.

Each dataset is a cutout of the global 1/88 Navy Coastal

Ocean Model (NCOM) surface temperature field. The

model itself is on an orthogonal curvilinear horizontal

grid. Each cutout is interpolated onto a rectilinear grid

of 1/88 resolution and rectangular shape from various lo-

cations around the world and varies in size, scalar range,

and features. The grid sizes range from 97 3 41 to 481 3

561 with a mean size of 421 3 290. Results are in relative

RMS of vector difference between synthetic deformation

and registered displacement (i.e., RMS normalized by the

RMS of deformation magnitudes for a given dataset).

The accumulation of results is in Fig. 3a. The smooth-

gradient-based DCs are clearly inferior. To simplify fur-

ther interpretation, each result that best optimizes its

respective DC can represent that DC for each arrange-

ment and dataset, resulting in Fig. 3b. Overall, MI has

the best accuracy, but some datasets did show decreased

accuracy nonetheless. These were regions with both sig-

nificant temperature gradients and large areas of near-

constant temperature (e.g., combined equatorial and

polar areas).

Qualitative results demonstrate the improvement re-

alized when correcting for displacement. Figure 4a shows

FIG. 3. (a) All results from the full trials. The codes along the bottom indicate the registration

options for the respective arrangement (i.e., ‘‘ms’’ is mean square, ‘‘nc’’ is normalized corre-

lation, ‘‘mi’’ is mutual information, ‘‘1’’ is linear, ‘‘3’’ is cubic, ‘‘v’’ is direct value, ‘‘g’’ is gra-

dient, ‘‘6’’ is six control points per data point, and ‘‘8’’ is eight control points). The brackets

underneath help visually categorize those arrangements. The stacked items indicate the added

synthetic intensity function. (b) The same results data condensed into the three displacement

criteria by keeping only the best optimized criterion for each.
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the synthetic deformation, and Fig. 4b shows the reg-

istration displacement. Figure 4c is the difference mag-

nitude between the analysis and synthetic forecast. The

high-gradient region near the northwest shore dominates

the error. This high-gradient region was (synthetically)

predicted, but the location was shifted by the displace-

ment. Correcting for the displacement in Fig. 4b then re-

peating the absolute difference produces what is depicted

in Fig. 4d. Notice the significantly smaller absolute dif-

ference values on the color scale from Figs. 4c to 4d in-

dicating an improvement in overall error measurement.

It is also now obvious that this particular dataset had its

intensity synthetically altered by the high-frequency si-

nusoid as it is now mostly recovered in Fig. 4d.

6. Discussion and future work

MI without a smooth-gradient modification was the

best overall DC. As theoretically expected, MI handled

low local entropy (e.g., low-frequency sinusoid) intensity

changes better than high local entropy changes, but it

functioned at least as well as other DCs under high local

entropy changes such as the high-frequency sinusoid

addition. One improvement for MI would be adaptive

kernel density estimation, which would allow for variable-

sized histogram bins. This would likely solve the accuracy

problem in combined equatorial and polar regions as long

as the variable bins’ sizes were kept the same between the

two compared datasets.

The best choice for interpolation order and B-spline

grid spacing varies given the dataset, but one has the op-

tion of running them all and choosing the best optimized

DC. Finally, proper treatment of land masks is critical.

The results show that the registration process, once tuned,

works quantitatively and qualitatively for this oceano-

graphic data and successfully separates the model error

into displacement and intensity components.

This study was limited to 1/88 cutouts of surface tem-

perature from a global model, and it would be difficult to

predict its applicability to other situations without the

references cited in this paper. As such, the prior art in the

field of meteorology suggests that spatial error via regis-

tration in general would be useful for a variety of reso-

lutions and variables. It should even be possible to apply it

FIG. 4. (a) The original analysis dataset and the synthetic deformation displayed as vectors. (b) The synthetic

forecast created by the deformation and the displacement field as recovered by the registration. (c) The absolute

point-wise difference between the analysis and synthetic forecast. (d) The absolute point-wise difference between the

analysis and displacement-corrected forecast. The emerging pattern is the synthetic high-frequency sinusoid applied

to test the registration process under intensity changes.
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to global model results, though the aforementioned prob-

lem with datasets containing both equatorial and polar

regions must be addressed first. The prior art in medical

imaging shows even more promise, comparing multimodal

datasets, including those with widely varying resolutions

and scalar properties. This suggests that registration could

be easily applied to more than just temperature for spatial

error. It should even be possible to apply registration to

several variable fields at once using multivariate mutual

information, but this would be a topic for future work.

Registration has been applied to three-dimensional (3D)

medical imagery, and should be possible for oceano-

graphic models as well, though one would likely need to

make special modifications to handle the often-used

nonuniform spacing between depth layers, as that is not

an issue in medical imaging. Finally, while this study was

intended to improve the analysis of forecast skill, it

should also be applicable for simulation errors in data

assimilation systems, though one would need to de-

termine how to incorporate the spatial errors to improve

the simulation errors. For example, it would be possible

to apply the inverse of the displacement field to ‘‘cor-

rect’’ future assimilation results.

This study aims to serve as a first step in establishing

how spatial error might be best applied in oceanographic

modeling. It is important to note that the synthetic errors

generated in the study may be significantly different to

actual model biases in various scenarios. Thus, follow-up

work for the authors includes performing a study com-

paring multiple oceanographic models to actual ground

truth data (e.g., satellite imagery). The study will run

alongside the same comparisons using traditional error

metrics to determine which error metrics provide the

best portrayal of forecast skill.
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