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Investigations on Bent and Negabent Functions via
the Nega-Hadamard Transform

Pantelimon Stănică, Sugata Gangopadhyay, Ankita Chaturvedi, Aditi Kar Gangopadhyay, and Subhamoy Maitra

Abstract—Parker et al. considered a new type of discrete Fourier
transform, called nega-Hadamard transform.We prove several re-
sults regarding its behavior on combinations of Boolean functions
and use this theory to derive several results on negabentness (that
is, flat nega-spectrum) of concatenations, and partially symmetric
functions. We derive the upper bound for the algebraic de-
gree of a negabent function on variables. Further, a characteri-
zation of bent–negabent functions is obtained within a subclass of
theMaiorana–McFarland set.We develop a technique to construct
bent–negabent Boolean functions by using completemapping poly-
nomials. Using this technique, we demonstrate that for each ,
there exist bent–negabent functions on variables with al-
gebraic degree . It is also demonstrated that there
exist bent–negabent functions on eight variables with algebraic de-
grees 2, 3, and 4. Simple proofs of several previously known facts
are obtained as immediate consequences of our work.

Index Terms—Bent and negabent functions, Hadamard and
nega-Hadamard transforms.

I. INTRODUCTION

L ET be the -dimensional vector space over the
two-element field . A function from to is called

a Boolean function on variables. The reader is referred to
Section I-A for all the basic notations and definitions related to
Boolean functions.
The Walsh–Hadamard transform (a particular case of a dis-

crete Fourier transform) has been exploited extensively for the
analysis of Boolean functions and used in coding theory and
cryptology [3], [4], [6]. For even dimension , the functions
that attain the largest distance from the set of affine functions
(this maximum distance is the nonlinearity) are called bent
functions. From the perspective of coding theory, these func-
tions attain the covering radius of the first-order Reed–Muller
code. Further, a Boolean function on an even number of vari-
ables is bent if and only if the magnitude of all the values in its
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Walsh–Hadamard spectrum are the same (flatWalsh–Hadamard
spectrum). The Walsh–Hadamard transform is an example of
a unitary transformation on the space of all Boolean functions.
Riera and Parker [18] considered some generalized bent criteria
for Boolean functions by analyzing Boolean functions that
have flat spectrum with respect to one or more transforms
chosen from a set of unitary transforms. The transforms chosen
by Riera and Parker [18] are -fold tensor products of the

identity mapping , the Walsh–Hadamard transforma-

tion , and the nega-Hadamard transformation

, where . Riera and Parker [18] mention

that this choice is motivated by local unitary transforms that
play an important role in the structural analysis of pure -qubit
stabilizer quantum states. As in the case of the classical discrete
Fourier transform, a Boolean function whose nega-Hadamard
magnitude spectrum is flat is said to be a negabent function.
The research initiated in [18] leads to the natural question

of constructing Boolean functions which are both bent and ne-
gabent (these are referred to as bent–negabent functions [16],
[23], [24]).
First, we concentrate on the nega-Hadamard transform in

more detail. We prove various results in Section II on the
behavior of the nega-Hadamard transform on affine functions,
and also on sums and products of functions. Then, we use
this analysis to obtain insights related to the decomposition
of negabent functions in Section III. Further, in Section IV,
negabent functions, symmetric with respect to two variables,
are studied. Our technique renders a simple proof of the main
result of [21], namely that all symmetric negabent functions
must be affine. Moreover, a characterization of some bent–ne-
gabent functions in the Maiorana–McFarland (MM) class is
obtained in Section V, thus complementing some results of
[23]. In Theorem 17, we present another method of constructing
bent–negabent functions on variables for each algebraic
degree from 2 to , where .
In [23, Th. 10], it is proved that if is an MM-type bent func-

tion on variables ( even) which is also negabent then the al-
gebraic degree of is at most . Example 6 in [23] describes
a technique to construct bent–negabent functions on variables
of algebraic degree ranging from 2 to . Moreover, there is no
known general construction of bent–negabent functions of alge-
braic degree greater than , for all .
In Section VI, we describe a technique of constructing

bent–negabent functions by using complete mapping poly-
nomials on finite fields that constitute a special class of
permutation polynomials [11], [14]. First, we demonstrate

0018-9448/$31.00 © 2012 IEEE
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the connection between existence of complete mapping poly-
nomials over a finite field and the existence of a class of
bent–negabent functions. Then, we demonstrate that for each

, there exist bent–negabent functions on vari-
ables with algebraic degree .

A. Definitions and Notations

The set of integers, real numbers, and complex numbers are
denoted by , , and , respectively. The set of all Boolean
functions on variables is denoted by . Addition over , ,
and is denoted by “ ,” while addition over for all
is denoted by . If and are
two elements of , we define the scalar (or inner) product
and, the intersection by

The cardinality of a set is denoted by . If ,
then denotes the absolute value of , and

denotes the complex conjugate of , where , and
. Any can be expressed in algebraic normal

form (ANF) as

The (Hamming) weight of is . The
algebraic degree of , .
Boolean functions having algebraic degrees at most 1 are said to
be affine functions. For any two functions , we define
the (Hamming) distance

.
TheWalsh–Hadamard transform of at any point
is defined by

Similarly, the Fourier transform of at any point
is defined by

A function is a bent function if for
all . Bent functions (defined by Rothaus [19] more than
30 years ago) hold an interest among researchers in this area
since they have maximum Hamming distance from the set of all
affine Boolean functions. Several classes of bent functions were
constructed by Dillon [8], Dobbertin [9], Rothaus [19], and later
by Carlet [2].
The sum is the crosscor-

relation of and at . Taking above, we get the auto-
correlation of at . It is known [6] that a
function is bent if and only if for all .
For a detailed study of Boolean functions, we refer to [3], [4],

and [6].

The nega-Hadamard transform of at any vector
is the complex valued function:

A function on is said to be negabent if the nega-Hadamard
transform is flat in absolute value, namely for all

. The sum

is the nega-crosscorrelation of and at . We define the nega-
autocorrelation of at by

The negaperiodic autocorrelation defined by Parker and Pott
[16] is

However, the difference between the aforementioned two defi-
nitions is not critical and both definitions can be used.
A Boolean function is said to be symmetric if inputs of the

same weight produce the same output, i.e., ,
for any permutation .
The group of all invertible matrices over is denoted

by . Two Boolean functions are said to be
equivalent if there exist , and
such that for all . If
and , then and are said to be affine equivalent.

B. Quadratic Boolean Functions

The properties of quadratic Boolean functions, that is
Boolean functions having algebraic degree 2, can be found in
[15, ch. 15]. If is a quadratic Boolean function on variables,
the associated symplectic form of is a map
defined by

The kernel of is defined as

The set is a subspace of with dimension where
is the rank of . It is known that two quadratic functions

and are equivalent if and only if [15, ch.
15, Th. 4]. We recall the following result [1, Prop. A1].

Proposition 1: An element if and only if the function
, defined as for all , is

constant. The subspace is said to be the linear kernel of .
Since the autocorrelation spectrum of any bent function is

zero at all points except at , the linear kernel of any
quadratic bent function is of dimension 0. Therefore, by [15,
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ch. 15, Th. 4] and Proposition 1, all quadratic bent function are
equivalent to each other.
Suppose , is a permutation and

is any Boolean function. Rothaus proved that
a Boolean function defined by

is a bent function. The collection of bent functions of this type is
called theMM class. If is the identity permutation and
for all , then the function
for all is a quadratic bent function. Thus, any
quadratic bent function of variables is equivalent to , which
can be written as (by labeling
). From the previous discussions, it is clear that if

is a quadratic bent function, then there exist ,
, and such that .

II. PROPERTIES OF THE NEGA-HADAMARD TRANSFORM

It is well known that the inverse of the Walsh–Hadamard
transform of is given by

(1)

for all . The nega-Hadamard transform is also a unitary
transformation. An immediate consequence of the definition of
the nega-Hadamard transformation of a function in [16]
and [18] is the following.

Lemma 2: Suppose . Then

(2)

for all .
Next, we prove a theorem that gives the nega-Hadamard

transform of various combinations of Boolean functions. We
shall use throughout the well-known identity (see [15])

(3)

Theorem 3: Let be in . The following statements
are true.
(a) For any affine function and ,

.
Further, . In particular,

, and
, , where are the constant 0, respec-

tively, 1 functions, and is an eighth primitive
root of 1.

(b) If on , then for ,

(c) If , then
.

(d) If , then
, where is an

orthogonal matrix over (and so, ).
(e) If , and , then

,
, where

,
.

Moreover, if ,
,

.
Proof: The first part of is direct from the definition of

the nega-Hadamard transform. The second part of the claim
can be derived from [23, Lemma 1], since

.
We show the first identity of (the second follows by sym-

metry). Since

and (see [6, p. 8])

if
if

we obtain (sums are over )

Item is straightforward. The property can be derived
from [16, Lemma 2] and [23, Th. 2]. It is to be noted that [23,
Th. 2] further proves that the action of the orthogonal group pre-
serves the bent–negabentness property of a Boolean function.
To show item , we write,
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from which we obtain the desired identity. Moreover, if ,
and , then , and if

, then , and so

The next result is analogous to the result on the crosscorrela-
tion of two Boolean functions [20]. In the nega-Hadamard trans-
form context, the basic idea of this result is explained in [7] and
[17, eq. (15)].

Lemma 4: If , then the nega-crosscorrelation equals

Proof: We start with the sum at the right hand side.

If we take in the previous lemma, then we obtain

(4)

This is an analogue of the autocorrelation of Boolean functions.
It is to be noted that since both Hadamard and nega-Hadamard
transforms are unitary they are energy preserving and hence,
Parseval’s theorem holds for both transforms. The classical Par-
seval’s identity takes the form

for the Walsh–Hadamard transform. Substituting in (4),
we obtain a proof of this fact for the particular case of nega-
Hadamard transforms.

Corollary 5 (Nega-Parseval’s Identity): We have

(5)

Lemma 6: A Boolean function is negabent if and
only if for all .

Proof: If is a negabent function, then for
all . For all , then by (4), we obtain .
The converse also follows from (4).
An equivalent result is proved after [17, eq. (15)] and in [16,

Th. 2] for the negaperiodic autocorrelation.

Remark 7: Lemma 6 provides an alternate characterization
of negabent functions.
If is an affine function, then for all the nega-

autocorrelation . This implies that any affine function
is negabent. For other proofs, we refer to [23, Lemma 1] and
[16, Prop. 1]. A bound on the algebraic degrees of negabent
functions is an important question. In the following, we provide
such a bound.
A Boolean function is said to be near-bent [12] if

its Fourier transform values belong to . It is rather
immediate that near-bent functions exist only for odd values of
. It is known [3] that if is an variable Boolean function
( ) and such that the Fourier transform values
of are divisible by , then has algebraic degree at most

. In case is near-bent, which implies that
the algebraic degree of is at most .
The following theorem (which will be also used later) proved

by Parker and Pott establishes a connection between bent and
negabent functions.

Theorem 8 (see [16, Th. 12]): A function
is negabent if and only if is bent, where

is the elementary sym-
metric function of degree 2.

Theorem 9: The algebraic degree of a negabent function
is at most , for any integer .
Proof: Suppose is even and is negabent. Then

is bent, and so, its algebraic degree is bounded above by ,
therefore the algebraic degree of is at most .
Suppose is odd and is a negabent function. Then,

by [16, Remark 1], the Walsh–Hadamard transform values of
belong to , in other words is a near-bent

function. Therefore, the algebraic degree of is at most .

III. DECOMPOSITION OF NEGABENT FUNCTIONS WITH
RESPECT TO CODIMENSION ONE SUBSPACES

Suppose . Then, any function can be
thought of as a function from to . For any fixed

, the function is defined as
for all .

Theorem 10: Let be expressed as
. Then

Proof: By definition,

(6)
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Corollary 11: Suppose is expressed as

where . Then

The functions and are said to have complementary nega-
autocorrelation if for all nonzero

The following lemma establishes a connection between the
nega-autocorrelations of , and their nega-Hadamard trans-
formations.

Lemma 12: Two functions have complementary
nega-autocorrelations if and only if

Proof: Let be two functions with complementary
nega-autocorrelations. Then

Conversely, suppose for all .
Then,

where

if
if .

Thus, the functions and have complementary nega-autocor-
relations.

Theorem 13: Suppose is expressed as

where . Then, the following statements are equivalent.
1) is negabent.
2) and have complementary nega-autocorrelations and

for all with .
3) for all and is a
real number whenever .

Proof: We show first . Suppose is a negabent
function. Then for all nonzero .
From Corollary 11, we obtain

for all and

which implies for all with
.

Conversely, assume that the functions and have comple-
mentary nega-autocorrelations and for all
with . Then by Corollary 11,
for all nonzero . This implies that is a

negabent function.
We now show . The nega-Hadamard transform

of at is

Thus

if

if .
(7)

Since is negabent for all
we obtain

(8)

If is negabent, then by Lemma 12 and the equivalence of the
first two statements proved above, we obtain

Suppose for , . Let
and . Then, by (8), we obtain
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Therefore, we have , i.e.,

. This proves that is a real

number.
Conversely, suppose for all

and is a real number whenever .
Without loss of generality, we may first assume
, for some . Then, by the aforementioned condition,

. By (7), for all . Next
we consider the case when . Let

. Then

(9)

Thus, is negabent.

IV. NEGABENT FUNCTIONS SYMMETRIC ABOUT TWO
VARIABLES

Suppose is a Boolean function which is symmetric
with respect to two variables, and say. Then there exist func-
tions such that

(10)

for all . The Boolean function
is bent if and only if, and are bent and for all

(see [3], [4], [6], and [26]). For negabent functions
we prove the following similar result.

Theorem 14: Suppose is expressed as
for all

. The Boolean function is negabent if and only if
and are negabent and for all .

Proof: The nega-autocorrelation of at is

If is a negabent function then . Therefore
, which implies that

for all . Thus, if is a negabent function and sym-
metric with respect to the variables and , then it is of the form

, for all
. The nega-Hadamard transform of

at is

where varies over . Expanding the
above sum by substituting all possible values of
, we obtain

(11)
Therefore, for all

. This proves that both and are negabent. On
the other hand, if and are negabent functions, and
for all , then is also negabent. This shows the

converse.

Corollary 15: A symmetric negabent function is affine.
Proof: Let be a symmetric negabent function. Let

us suppose that has algebraic degree greater than or equal to
2. Since is symmetric, it is symmetric with respect to any two
variables. Therefore, it is possible to express , for at least one
pair of variables, as follows:

where for at least one . But this contradicts
the fact that is negabent. Hence, all symmetric negabent func-
tions are affine.

The result of Corollary 15 gives an alternate proof of the fact
proved in [21]. In fact, the case for even can be immediately
obtained from Theorem 8.
Recall that is the homo-

geneous (i.e., all terms of its ANF are of the same degree), sym-
metric and quadratic bent function. Let

, the (only) symmetric linear function. In [22], it is shown
that the only symmetric bent functions are , , ,

.
In [21], it is proved (by a long argument) that all the sym-

metric negabent functions are affine. Following [16] and [22],
the result in [21] can be achieved in a few lines for even .

Theorem 16: Let be even. A symmetric function
is negabent if and only if it is affine.

Proof: Suppose is a symmetric negabent function.
Then is a bent function. Since the direct sum of two
symmetric functions is symmetric, then is a symmetric
bent function. The only symmetric bent functions are , ,

, (see [22]). Therefore, can be 0, 1, ,
and nothing else. This proves that if is a symmetric negabent
function on even number of variables, then it is affine.
Conversely, it is known that all affine functions are negabent

[23]. Therefore, symmetric functions on even number of vari-
ables, if affine, are negabent.
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Bent functions do not exist for an odd number of input vari-
ables. Thus, there is no equivalent characterization of Theorem
8 for odd dimension, and the result in [21] cannot be proved
trivially as before. However, the odd (as well as the even) case
has already been taken care of by Corollary 15.

V. BENT–NEGABENT FUNCTIONS IN MM CLASS

In this section we shall investigate bent functions which are
also negabent in the MM class of bent functions, namely

(12)

where is a permutation satisfying
(we call a weight-sum invariant permutation), for all

, and is an arbitrary Boolean function, both on . We
remark that if is orthogonal, that is, with
orthogonal ( ), then it satisfies the imposed condition
(since , it suffices to show that

; for that, consider
). It could be interesting to see if there

are such weight-sum invariant permutations outside of the ones
generated by the linear orthogonal group.

Theorem 17: A function in (12) on is bent–negabent if
and only if is bent.

Proof: We evaluate

Now, using the fact that is a weight-sum invariant permu-
tation, and by (3), we obtain

which implies that

Consequently

that proves our claim.

The following corollary follows easily from our theorem,
since bent functions exist for any degree up to half of the (even)
dimension. We remark that [23, Th. 10] gives an upper bound

of on the degree of an MM-type bent–negabent function
on variables, but not an existence result.

Corollary 18: If as in (12) is bent–negabent with
weight-sum invariant, then the degree of is bounded by .
Moreover, there exist bent–negabent functions in the MM class
of any degree between 2 and ( is even).

VI. CONSTRUCTION OF A NEW CLASS OF BENT–NEGABENT
BOOLEAN FUNCTIONS

It is well known that the maximum degree of a bent function
on variables is and the maximum degree of a negabent
function is (Theorem 9), which is for even . Thus, it may
be an interesting problem to find out a nontrivial upper bound on
the algebraic degrees of the bent–negabent functions. However,
no upper bound strictly less than is known to this date. Parker
and Pott also raised this question in [16, Problem 3, p. 19].
So far all the known general constructions of bent–negabent

functions on variables produce functions with algebraic de-
grees less than or equal to , where is any positive integer
divisible by 4. In this section, we construct bent–negabent func-
tions on variables with algebraic degree equal to ,
where is any positive integer greater than or equal to 2.
Throughout this section, and is a quadratic

bent function defined as for all
. It is known that the quadratic

symmetric Boolean function of the form ,
for all is bent. Therefore, by the results
of Section I-B, the function is equivalent to the quadratic
bent function defined previously. Using Theorem 8, proved
by Parker and Pott, we obtain the following.

Lemma 19: ABoolean function ( ) is bent–ne-
gabent if and only if both and are bent functions.

Proof: Assume that is a bent–negabent function.
Since is a negabent function, is a bent function. Thus,
and both are bent functions.
Conversely let us suppose that and both are bent

functions. Since is a bent function is a
negabent function. Therefore, is a bent–negabent function.

The following theorem provides a strategy to construct
bent–negabent functions.

Theorem 20: Let for all ,
where , and . Suppose
is a bent function such that is also a bent function. Then,

defined by

for all is a bent–negabent function.
Proof: The function is equivalent to . Therefore,

is bent. The function is affine equivalent to . Since
is a bent function, is also a bent function. Therefore, by
Lemma 19, is a bent–negabent function.

Remark 21: Since all quadratic bent functions are equivalent
(see Section I-B), if is any quadratic bent function on vari-
ables, then there exist , and ,
such that for all .
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Therefore, if is a bent function and is any
quadratic bent function such that is also a bent function,
then by using the strategy described in Theorem 20 we obtain a
bent–negabent function.
Theorem 20 reduces the problem of constructing bent–ne-

gabent functions to characterizing bent functions such that
is also a bent function. We demonstrate below that such

functions can be constructed by using complete mapping poly-
nomials.

A. Complete Mapping Polynomials

Let be the field extension of of degree . The finite
field is isomorphic to as a vector space over . Any
permutation of can be identified with a permutation on .
Any permutation on can be represented by a polynomial
in of degree at most . A polynomial

is said to be a complete mapping polynomial if
and both correspond to permutations on . For
details on complete mapping polynomials, we refer to [11] and
[14]. The following provides us a strategy to construct bent–ne-
gabent functions by using complete mapping polynomials.

Theorem 22: Let . Suppose denotes the
permutation on induced by a complete mapping poly-
nomial . Let be defined
by for all

, and is a quadratic bent function defined as
for all , such

that for all , where
, and . Then, the Boolean

function is an MM-type bent function and

is a bent–negabent function. The algebraic degrees of and
are equal.

Proof: Since is a permutation on , the function is
a bent function on variables belonging to the MM class.
The function

is also a bent function in the MM class since is induced from
a complete mapping polynomial. Thus, using Theorem 20, we
infer that is a bent–negabent function.

B. Bent–Negabent Functions on Variables With Algebraic
Degree Greater Than

We consider a particular complete mapping polynomial con-
structed by Laigle-Chapuy [11].

Theorem 23 ([11, Th. 4.3]): Let be a prime and
. Let be the order of in . Take and a

positive integer coprime to . Assume is such that
. Then, the polynomials

are complete mapping polynomials.
First, we construct a bent–negabent function on 24 variables

having algebraic degree 7.

Example 24: Following the notations of Theorem 23, let
, , and . The order of in is 2, that is .
Thus, and . Consider
the polynomial , where

. The last condition guarantees
. By using in Theorem 22, we obtain a bent–negabent
function on 24 variables and algebraic degree 7. The algebraic
degrees of the bent–negabent functions constructed in [23] are
bounded above by . Thus, the bent–negabent function con-
structed above does not belong to these classes.
Certainly, the order of in is , so in general

we have the following result.

Lemma 25: For any , the polynomials

have algebraic degree .
Proof: Let . Then

This proves that both and have degree .

Theorem 26: For each , there exist bent–negabent func-
tions on variables with algebraic degree .

Proof: For each , it is possible to construct
and as in Lemma 25 with and . It is
proved in Lemma 25 that and both have alge-
braic degree . It is also to be noted that if , we can
choose so that . Therefore,
and constructed in this way are complete mapping poly-
nomials. If we use Theorem 22 by inducing the permutation
where , then we obtain bent–negabent
functions on variables with algebraic de-
gree . It is also to be noted that these functions may not
be of MM type but belong to the complete class of MM-type
functions.

Complete mapping polynomials over of algebraic de-
grees 1, 2, and 3, listed in Table I, are obtained by Yuan et al.
[25]. In Table I, denotes a primitive element of . Using
these polynomials and Theorem 22 we can construct bent–ne-
gabent functions on eight variables having algebraic degrees 2,
3, and 4. Thus, we note that there exist bent–negabent functions
on eight variables with maximum possible algebraic degree that
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TABLE I
COMPLETE MAPPING POLYNOMIALS OVER

is 4. It is not known whether such is the case for . This
leads us to state the following as an open problem.

Open Problem: For any , give a general
construction of bent-negabent Boolean functions on variables
with algebraic degree strictly greater than .

VII. CONCLUSION

In this paper, we have investigated the nega-Hadamard trans-
form of Boolean functions in detail. First, we study the proper-
ties of nega-Hadamard transform. Next, we concentrate on de-
compositions of negabent functions with respect to codimen-
sion one subspaces, and negabent functions that are symmetric
about two variables. A characterization of some bent–negabent
functions in the MM class allows us to construct bent–negabent
Boolean functions on of all degrees up to . Use of com-
plete mapping polynomials allows us to further construct new
classes of bent–negabent functions on variables of degree
greater than .
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