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A note on generalized bent criteria for
Boolean functions

Sugata Gangopadhyay, Enes Pasalic, Pantelimon Stănică

Abstract—In this paper, we consider the spectra of
Boolean functions with respect to the action of uni-
tary transforms obtained by taking tensor products of
the Hadamard kernel, denoted by H , and the nega–
Hadamard kernel, denoted by N . The set of all such
transforms is denoted by {H,N}n. A Boolean function
is said to be bent4 if its spectrum with respect to at least
one unitary transform in {H,N}n is flat. We obtain a
relationship between bent, semi–bent and bent4 functions,
which is a generalization of the relationship between bent
and negabent Boolean functions proved by Parker and
Pott [cf. LNCS 4893 (2007), 9–23]. As a corollary to this
result we prove that the maximum possible algebraic
degree of a bent4 function on n variables is dn

2
e, and

hence solve an open problem posed by Riera and Parker
[cf. IEEE-TIT 52:9 (2006), 4142–4159].

Keywords: Walsh–Hadamard transform, nega–
Hadamard transform, bent function, bent4 function,
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I. INTRODUCTION

Let us denote the set of integers, real numbers and
complex numbers by Z, R and C, respectively and
let the ring of integers modulo r be denoted by Zr.
The vector space Zn2 is the space of all n-tuples x =
(xn, . . . , x1) of elements from Z2 with the standard
operations. By ‘+’ we denote the addition over Z, R
and C, whereas ‘⊕’ denotes the addition over Zn2 for
all n ≥ 1. Addition modulo q is denoted by ‘+’ and
it is understood from the context. If x = (xn, . . . , x1)
and y = (yn, . . . , y1) are in Zn2 , we define the scalar
(or inner) product by x ·y = xnyn⊕· · ·⊕x2y2⊕x1y1.
In Zn2 , let 0 and 1 denote the zero vector, respectively,
the all 1 vector. The cardinality of a set S is denoted
by |S|. If z = a+b ı ∈ C, then |z| =

√
a2 + b2 denotes

the absolute value of z, and z = a − b ı denotes the
complex conjugate of z, where ı2 = −1, and a, b ∈ R.
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We call any function from Zn2 to Z2 a Boolean
function in n variables and denote the set of all Boolean
functions by Bn. In general, any function from Zn2 to
Zq (q ≥ 2 a positive integer) is said to be a generalized
Boolean function in n variables [5], whose set is being
denoted by GBqn. Clearly GB2

n = Bn. For any f ∈ Bn,
the algebraic normal form (ANF) is

f(xn, . . . , x1) =
⊕

a=(an,...,a1)∈Zn
2

µa(

n∏
i=1

xaii ) (1)

where µa ∈ Z2, for all a ∈ Zn2 . The Hamming weight
of a ∈ Zn2 is wt(a) :=

∑n
i=1 ai. The algebraic degree

of f ∈ Bn, deg(f) := max{wt(a) : a ∈ Zn2 , µa 6= 0}.
Now, let q ≥ 2 be an integer, and let ζ = e2πı/q

be the complex q-primitive root of unity. The Walsh–
Hadamard transform of f ∈ GBqn at any point u ∈ Zn2
is the complex valued function

Hf (u) = 2−
n
2

∑
x∈Zn

2

ζf(x)(−1)u·x. (2)

The inverse of the Walsh–Hadamard transform is given
by

ζf(y) = 2−
n
2

∑
u∈Zn

2

Hf (u)(−1)u·y. (3)

A function f ∈ GBqn is a generalized bent function if
and only if |Hf (u)| = 1 for all u ∈ Zn2 . If q = 2 and n
is even, then a generalized bent function is called a bent
function. A function f ∈ Bn, where n is odd, is said
to be semi–bent if and only if |Hf (u)| ∈ {0,

√
2}, for

all u ∈ Zn2 . The maximum possible algebraic degree
of a bent function on n variables (n even) is n

2 and for
a semi–bent function on n variables (n odd) is n+1

2
(cf. [1, Proposition 8.15], [2]).

Let f ∈ Bn and V be a subspace of Zn2 . For any
a ∈ Zn2 the restriction of f to the coset a + V is
defined as f |a+V (x) = f(a + x), for all x ∈ V . It
is to be noted that the restriction of a function f to a
coset a+V is unique up to a translation. The following
well known (cf. [1]) result is stated without proof.

Proposition 1: Let n = 2k, f ∈ Bn be a bent
function, V be an (n − 1)-dimensional subspace of
Zn2 , a ∈ Zn2 \ V such that Zn2 = V ∪ (a ⊕ V ). Then
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the restrictions of f to V and a ⊕ V , denoted f |V
and f |a⊕V respectively, are semi–bent functions and
Hf |V (u)Hf |a⊕V

(u) = 0 for all u ∈ Zn2 .
The nega–Hadamard transform of f ∈ Bn at any

vector u ∈ Zn2 is the complex valued function

Nf (u) = 2−
n
2

∑
x∈Zn

2

(−1)f(x)⊕u·x ıwt(x). (4)

A function f ∈ Bn is said to be negabent if and only
if |Nf (u)| = 1 for all u ∈ Zn2 . If f ∈ Bn, then the
inverse of the nega–Hadamard transform Nf is

(−1)f(y) = 2−
n
2 ı−wt(y)

∑
u∈Zn

2

Nf (u)(−1)y·u, (5)

for all y ∈ Zn2 .
The Hadamard kernel, the nega–Hadamard kernel

and the identity transform on C2, denoted by H , N
and I , respectively, are

H =
1√
2

(
1 1
1 −1

)
, N =

1√
2

(
1 ı
1 −ı

)
and

I =

(
1 0
0 1

)
.

The set of 2n different unitary transforms that are
obtained by performing tensor products H and N , n
times in any possible sequence is denoted by {H,N}n.
If RH and RN partition {1, . . . , n}, then the unitary
transform, U of dimension 2n × 2n, corresponding to
this partition is

U =
∏
j∈RH

Hj

∏
j∈RN

Nj (6)

where

Hj = I ⊗ I ⊗ . . .⊗ I ⊗H ⊗ I ⊗ . . .⊗ I

with H in the jth position, similarly for Nj , and
“⊗” indicating the tensor product of matrices. Let
ix ∈ {0, 1, . . . , 2n−1} denote a row or column number
of the unitary matrix U . We write

ix = xn2
n−1 + xn−12

n−2 + · · ·+ x22 + x1

where x = (xn, . . . , x1) ∈ Zn2 . For any Boolean
function f ∈ Bn, let (−1)f denote a 2n × 1 column
vector whose iu row entry is (−1)f(u), for all u ∈ Zn2 .
The spectrum of f with respect to U ∈ {H,N}n is
the vector U(−1)f . If RH = {1, . . . , n}, then the
entry in the iuth row of U(−1)f is Hf (u) and, if
RN = {1, . . . , n}, then the entry in the iuth row of
U(−1)f is Nf (u), for all u ∈ Zn2 . In the former case,
U(−1)f is said to be the Walsh–Hadamard spectrum
of f , while in the latter case it is the nega–Hadamard

spectrum of f . The spectrum of a function f with
respect to a unitary transform U is said to be flat if
and only if the absolute value of each entry of U(−1)f
is 1.

Definition 2: A function f ∈ Bn is said to be bent4
if there exists at least one U ∈ {H,N}n such that
U(−1)f is flat.

The bent and the negabent functions belong to the
class of bent4 functions as extreme cases. For results
on negabent and bent–negabent functions we refer to
[3], [6], [7], [9].

In this paper, we obtain a relationship between bent,
semi–bent and bent4 functions, which is a general-
ization of the relationship between bent and negabent
Boolean functions proved by Parker and Pott [3]. This
leads us to prove that the maximum possible algebraic
degree of a bent4 function on n variables is dn2 e,
and hence solve an open problem posed by Riera and
Parker [4].

II. BENT PROPERTIES WITH RESPECT TO {H,N}n

Let sr(x) be the homogeneous symmetric Boolean
function of algebraic degree r whose ANF is

sr(x) =
⊕

1≤i1<...<ir≤n

xi1 . . . xir . (7)

The intersection of two vectors c = (cn, . . . , c1),x =
(xn, . . . , x1) ∈ Zn2 is the vector

c ∗ x = (cnxn, . . . , c1x1).

We define the function sr(c ∗ x) by

sr(c ∗ x) =
⊕

1≤i1<...<ir≤n

(ci1xi1) . . . (cirxir ). (8)

We also define the function g ∈ GB4n by g(x) = wt(x)
mod 4, for all x ∈ Zn2 , and we set sc2(x) = s2(c ∗ x),
for easy writing. In the following proposition we obtain
a connection between g and sc2 which plays a crucial
role in developing connections between different bent
criteria. We note that the result of Proposition 3, for
c = 1 is mentioned earlier by Su, Pott and Tang in
the proof of [9, Lemma 1]. In the same paper they
provide a construction of bent–negabent functions of
all algebraic degrees ranging from 2 to n

2 (n even).
Proposition 3: Let x, c ∈ Zn2 . Then, for all x ∈ Zn2 ,

c · x+ 2sc2(x) = wt(c ∗ x) mod 4. (9)

Proof: Using the identity x0+x1 mod 4 = (x0⊕
x1) + 2x0x1 mod 4, by induction on n, we get 1 · x
mod 4 = wt(x) + 2

∑
i<j xixj mod 4. Replacing x

by c ∗ x, we obtain our result.
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Riera and Parker [4, Lemma 7] have obtained a
general expression for the entries of any matrix U ∈
{H,N}n. We obtain an alternative description below
which we use to connect the spectrum U(−1)f of
any f ∈ Bn to the Walsh–Hadamard spectra of some
associated functions.

Theorem 4: If U =
∏
j∈RH

Hj

∏
j∈RN

Nj , is a
unitary matrix constructed as in (6), corresponding to
the partition RH , RN of {1, . . . , n} where n ≥ 2, then
for any u,x ∈ Zn2 the entry in the iuth row and ixth
column of 2

n
2 U is

(−1)u·x⊕s
c
2(x)ıc·x,

where c = (cn, . . . , c1) ∈ Zn2 is such that ci = 0 if
i ∈ RH and ci = 1 if i ∈ RN .

Proof: We prove the result by induction. The case
of n = 2 can be checked directly. By Proposition 3

(−1)u·x⊕s
c
2(x)ıc·x = (−1)u·xıwt(c∗x).

Suppose the result is true for n. Let u,x, c ∈ Zn2 ,
and u′ = (un+1,u),x

′ = (xn+1,x), c
′ = (cn+1, c) ∈

Zn+1
2 . Let U ∈ {H,N}n be the unitary transform

induced by the partition corresponding to c ∈ Zn2 . The
transform corresponding to the partition induced by
c′ = (cn+1, c) is Tcn+1 ⊗ U where Tcn+1 = H if
cn+1 = 0 and Tcn+1

= N if cn+1 = 1. By taking the
tensor product of Tcn+1

and U we obtain

2
n+1
2 (Tcn+1 ⊗ U) =

(
A
cn+1

00 A
cn+1

01

A
cn+1

10 A
cn+1

11

)
where

A
cn+1

ij =
(
(−1)(i,u)·(j,x)ıwt((cn+1,c)∗(j,x))

)
2n×2n

.

Therefore,

2
n+1
2 (Tcn+1

⊗ U) =
(
(−1)u

′·x′ ıwt(c
′∗x′)

)
2n+1×2n+1

.

This proves the result.
In the following two theorems we establish a con-

nection between bent, semi–bent and bent4 functions,
which is a generalization of the relationship between
bent and negabent Boolean functions proved by Parker
and Pott [3]. The unitary transform in {H,N}n in-
duced by the partition corresponding to c ∈ Zn2 is
denoted by Uc while the entry in the iuth row of the
spectrum Uc(−1)f is Uc

f (u).
Theorem 5: Let f ∈ Bn, where n is even. Then, f

is bent4 if and only if there exists c ∈ Zn2 such that
f ⊕ sc2 is bent.

Proof: If f is bent4, then there exists c ∈ Zn2 such
that |Uc

f (u)| = 1 for all u ∈ Zn2 . By Theorem 4 we

obtain

Uc
f (u) = 2−

n
2

∑
x∈Zn

2

(−1)f(x)⊕s
c
2(x)ıc·x(−1)u·x

= 2−
n
2

∑
x∈c⊥

(−1)f(x)⊕s
c
2(x)(−1)u·x

+ ı2−
n
2

∑
x6∈c⊥

(−1)f(x)⊕s
c
2(x)(−1)u·x.

(10)

Therefore

2n =

∑
x∈c⊥

(−1)f(x)⊕s
c
2(x)(−1)u·x

2

+

∑
x 6∈c⊥

(−1)f(x)⊕s
c
2(x)(−1)u·x

2

.

(11)

By Jacobi’s two-square theorem, we know that 2n has a
unique representation (disregarding the sign and order)
as a sum of two squares, namely 2n = (2

n
2 )2 + 0, if

n is even, and 2n = (2
n−1
2 )2 + (2

n−1
2 )2, if n is odd.

Then for n even,

|Hf⊕sc2(u)| = |2
−n

2

∑
x∈Zn

2

(−1)f(x)⊕s
c
2(x)(−1)u·x|

= |2−n
2

∑
x∈c⊥

(−1)f(x)⊕s
c
2(x)(−1)u·x

+ 2−
n
2

∑
x 6∈c⊥

(−1)f(x)⊕s
c
2(x)(−1)u·x|

= 1, ∀u ∈ Zn2 .
(12)

Thus, f ⊕ sc2 is a bent function.
Suppose f ⊕ sc2 is a bent function. If c = 0 there is

nothing to prove. If c 6= 0, then

2
n
2 Uc

f (u) =
∑
x∈Zn

2

(−1)f(x)⊕s
c
2(x)⊕u·xıc·x

=
∑
x∈c⊥

(−1)f(x)⊕s
c
2(x)⊕u·x

+ ı
∑
x6∈c⊥

(−1)f(x)⊕s
c
2(x)⊕u·x.

(13)

Since f ⊕ sc2 is a bent function and c⊥ is a subspace
of codimension 1, by Proposition 1 the restrictions of
f on c⊥ and its remaining coset are semi–bent and
their Walsh-Hadamard spectra are disjoint. Therefore,
the right hand side of the above equation belongs to
the set {±2n

2 ,±2n
2 ı} for all u ∈ Zn2 . This proves that

f is a bent4 function.
Theorem 6: Let f ∈ Bn where n is odd. If f is

bent4, then there exists c ∈ Zn2 such that f ⊕ sc2 is
semi–bent.

3



Proof: As in the previous theorem, the function
f is bent4 implies that there exists c ∈ Zn2 such that
|Uc
f (u)| = 1 for all u ∈ Zn2 . Since n is an odd inte-

ger by (11) we have
∑

x∈c⊥(−1)f(x)⊕s
c
2(x)(−1)u·x,∑

x 6∈c⊥(−1)f(x)⊕s
c
2(x)(−1)u·x ∈ {−2n−1

2 , 2
n−1
2 }.

Therefore, by similar argument as in (12) we obtain
|Hf⊕sc2(u)| ∈ {0,

√
2}, which implies that f ⊕ sc2 is

semi–bent.
The converse of Theorem 6 is not true in general,

since the argument used in Theorem 5 to prove the
converse is not applicable when n is an odd integer.
This is illustrated by the following example.

Example 7: Suppose n = 3. The function s12(x) =
x1x2 + x1x3 + x2x3. Let f(x) = x1x2. It can
be directly checked that f + s12 is semi–bent but
|U1
f (0)| =

√
2. Therefore, the spectrum of f is not

flat with respect to the transform U1.
Riera and Parker [4, p. 4125 ] posed the following

open problem:
What is the maximum algebraic degree of a bent4

Boolean function of n variables?
The solution of this problem can be obtained as a
corollary to Theorems 5 and 6.

Corollary 8: The maximum algebraic degree of a
bent4 Boolean function on n variables is dn2 e.

Proof: Suppose f ∈ Bn is a bent4 function. Then
by Theorems 5 and 6 the function f ⊕ sc2 is bent or
semi–bent depending upon n being an even or an odd
integer, respectively. It is known that the maximum
algebraic degree of a bent or semi–bent function is
dn2 e whereas sc2 is an at most quadratic function. This
proves that the algebraic degree of f is upper bounded
by dn2 e.

Remark 9: Equation (10) connects U ∈ {H,N}n
to the approximation of a Boolean function by the
functions of the form sc2(x)⊕ u · x. This may endow
some cryptographic significance to the spectra of f
with respect to the transforms in {H,N}n.
Acknowledgement: The authors would like to thank
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