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LONG-TERM GOALS 
 
An over-arching goal in prediction science is to objectively improve numerical models of nature. 
Meeting that goal requires objective quantification of deficiencies in our models. The structural 
differences between a numerical model and a true system are difficult to ascertain in the presence of 
multiple sources of error. Numerical weather prediction (NWP) is subject to temporally and spatially 
varying error, resulting from both imperfect atmospheric models and the chaotic growth of initial-
condition (IC) error. The aim of our work is to provide new methods that begin to systematically 
disentangle the model inadequacy signal from the initial condition error signal. 
 
OBJECTIVES 
 
We are engaging a comprehensive effort that uses state-of-the-science estimation methods in data 
assimilation (DA) and statistical modeling, including: (1) the characterization of existing model-to-
model differences via heirarchical spatial modeling methods; (2) the development of a flexible 
representation for the various spatial and temporal scales of model error; (3) the estimation of 
parameters to represent those scales using a probabilistic approach to DA, namely the Ensemble 
Kalman Filter; and (4) the determination of whether incorporation of estimated error structure in 
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improves short-term forecasts, again using heirarchical methods, this time within a formal testing 
framework. Research focus is on near-surface winds over both the ocean and land. The method under 
development are sufficiently general and can apply to a wide range of battlespace environments. 
 
APPROACH 
 
The technical approach includes numerical weather prediction and state estimation efforts at NPS, and 
statistical modeling efforts at University of California Berkeley (UCB) under sub-contract. At NPS PI 
Hacker and post-doc Kolczynski are implementing the Navy’s Operational Global Atmospheric 
Prediction (NOGAPS), and two limited-area mesoscale models: the Navy’s Coupled Ocean-
Atmosphere Mesoscale Prediction System (COAMPS) model, and the open-source Weather Research 
and Forecast (WRF) model, within a state-of-the-science ensemble Data Assimilation Research 
Testbed (DART). The NOGAPS-DART provides global ensemble prediction capability that can be 
consistently applied to the COAMPS and WRF as lateral boundary conditions. Scientific objectives 
will be met by systematically choosing the WRF or COAMPS as the “truth,” which can provide 
observations for assimilating into the other model. Under this approach, spatio-temporal distributions 
of uncertainty (error in this context) are available for analysis with special attention to second-order 
moments. Eventually, we will use the same framework to objectively estimate parameters in statistical 
models, of NWP model error, developed at UCB. Hypotheses are being formed and formally tested. 
This work is benefitting from collaboration Co-I James Hansen, Justin McLay, and other NRL staff. 
Post-doc Walter Kolczynski arrived at NPS in November 2011 to contribute. 
 
UCB PI Cari Kaufman is working to advance the statistical methods needed to provide an objective 
space-time characterization of the error distributions. Uncertainty is characterized via fitting a 
hierarchical Bayesian model that captures the important features and variability in the data. The 
implied distribution from the model will be a valid stochastic spatial process under probability theory. 
Ideally, fitting the statistical model to different datasets should allow us to capture the significant 
differences between the different underlying data generating distributions. Moreover, a realistic 
statistical model can also simulate realistic wind fields quickly which can be beneficial for studying 
other processes that require surface winds as an input. Graduate student Wayne Lee (unfunded) is 
contributing substantially to this work. Postdoc Benjamin Shaby began work in September 2011. 
 
WORK COMPLETED 
 
Work in FY2012 continued toward finalizing tasks 1 and 2, which include the primary technical 
development for the production data sets.  Work also addressed several theoretical and practical issues 
underlying tasks 4 and 5, which include the primary error estimation methodologies.  Partial and 
limited funding increments led us to redirect efforts toward away from the technical developments in 
tasks 1 and 2.  Development did not stop, but slowed considerably.  Instead, we chose to focus on 
leveraging existing data sets to ensure progress on error-estimation methods.  
 
At NPS we completed an initial implementation of the COAMPS-DART infrastructure, and completed 
a month-long WRF-DART simulation using NOGAPS-DART to provide lateral boundary conditions.  
Initial results from the NOGAPS-WRF-DART simulations were presented at the joint Canadian 
Meteorological and Oceanographic (CMOS) and American Meteorological Society (AMS) 21st 
Numerical Weather Prediction meetings in Montréal (May 2012). Collaboration with NRL staff was 
critical during this phase. Analysis of the WRF-DART, driven from NOGAPS-DART during the Oct 
2009 simulation period, also proceeded. We adopted a methodology called Self-Organizing Maps 
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(SOMs), and wrote code to compute them. SOMs have emerged during the last decade, provide an 
objective method for classification, and have not previously been extended to study predictability and 
model inadequacy. Initial results are presented below.  NPS also completed error estimation and 
parameter estimation experiments and analysis with the single-column version of the WRF model in 
DART, with results also presented below. 
 
At UCB focus was on addressing challenges associated with applying heirarchical Bayesian techniques 
to large, multivariate, and non-stationary datasets typical of NWP.  Several methods were proposed 
and tested, leading to eventual development of a canonical correlation analysis (CCA) based 
methodology to estimate spatially and temporally varying model errors.  Progress is documented in the 
following results sections. 
 
RESULTS 
 
1.  Mesoscale model results 
Systematic increments from data assimilation are a linear function of model errors integrated over the 
assimilation interval.  The challenge is to intepret the increments in space and time to reveal the scales 
of model errors. We have recently examined Self-Organizing Maps (SOMs; Kohonen, 1988) as a tool 
for identifying the coherent systematic error structures. SOMs are unattended machine-learning 
algorithms that produce low-dimensional “maps” of possible state vectors called “nodes” organized in 
a way so that nearby nodes are similar. The location of the nodes is specified and may be arranged in 
any pattern, though rectangular and hexagonal grids are most common. SOMs are often considered a 
non-linear analogue of principle component analysis (PCA).  The method has been used for cluster 
analysis in the past, but not been used in a data assimilation context or to understand model 
inadequacy. 
 
SOMs are produced through an iterative process. During each iteration a random state is chosen from 
the training dataset. The random state is compared to each node to identify the node closest to the 
chosen state based on a cost function (often the root-mean-squared error). That node is adjusted closer 
to the random state. Nearby nodes are also adjusted closer to the same random state (to a lesser 
degree). The magnitude of the adjustment and the size of the neighborhood are both reduced with each 
iteration, so that initially large changes are made to a large portion of the map become small changes to 
individual nodes.  
 
We have applied SOMs to the ensemble-mean increment in meteorological fields produced by DART-
NOGAPS-WRF, and have preliminary results. An example of 2-m temperature increments is shown in 
Fig. 1. The right-hand nodes are dominated by night-time, and the left-hand nodes are dominated by 
daytime. The increments consistently warm the temperatures at higher elevations, and cool the 
California Central Valley. Errors are in the opposite sense.  cool errors persist over the Sierras, but 
errors over the Rockies are modulated by other factors. At this point it is not clear whether those other 
factors vary on seasonal or synoptic time scales. Results demonstrate that SOMs objectively classify 
the increments, and no a priori data conditioning is needed. Methods for characterizing the spatial 
structures of the error, such as those being developed at UCB in this project, are still needed. 
Additionally, we plan to use data from the full ensemble (the entire distribution) to determine if the 
SOM can separate forecasts based on the variance of the ensemble, which is a proxy for the certainty 
of the forecast. 
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Figure 1: Self-Organizing Map (SOM) for 2-m temperature analysis increments. 

 
In a separate study leveraging other ongoing work, we gained results demonstrating the efficacy of 
ensemble DA in identifying model inadequacy. Experiments with the single-column implementation of 
the WRF model provide a basis for deducing land-atmosphere coupling errors in the model. Coupling 
occurs both through heat and moisture fluxes through the land-atmosphere interface and roughness 
sub-layer, and turbulent heat, moisture, and momentum fluxes through the atmospheric surface layer. 
This work primarily addresses the turbulent fluxes, which are parameterized following Monin-
Obukhov similarity theory applied to the atmospheric surface layer. By combining ensemble data 
assimilation and parameter estimation, the model error can be characterized. Ensemble data 
assimilation of 2-m temperature and water vapor mixing ratio, and 10-m wind components, forces the 
model to follow observations during a month-long simulation for a column over the well-instrumented 
ARM Central Facility near Lamont, OK.  One-hour errors in predicted observations are systematically 
small but non-zero, and the systematic errors measure bias as a function of local time of day. Analysis 
increments for state elements nearby (15-m AGL) can be too small or have the wrong sign, indicating 
systematically biased covariances and model error. Experiments using the ensemble filter to 
objectively estimate a parameter controlling the thermal land-atmosphere coupling show that the 
parameter adapts to offset the model errors, but that the errors cannot be eliminated. Results suggest 
either structural error or further parametric error that may be difficult to estimate. Experiments 
omitting atypical observations such as soil and flux measurements lead to qualitatively similar 
deductions, showing potential for assimilating common in-situ observations as an inexpensive 
framework for deducing and isolating model errors. These results have been submitted to a peer-
reviewed journal (Hacker and Angevine 2012).  The methodology could be easily extended to an over-
water site with suitable data. 
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2.  Modeling Uncertainty in Surface Wind Fields 
One of our goals has been to construct a probabilistic model to characterize the dependence structures 
in surface wind fields. This will allow us to compare wind fields from different models within a 
hierarchical Bayesian framework. In the previous report, we described our incorporation of the 
geostrophic relationship into a hierarchical model to relate surface winds to pressure gradients. This 
simplified the multivariate aspect of wind and efficiently captured the dependencies between different 
wind components. We also allowed the geostrophic coefficients to vary spatially, which was an 
improvement upon the original model proposed by Royle et al. (1999). However, in implementing this 
model, we faced computational issues when generating samples from the posterior distribution, due to 
the large size of the data. 
 
We proposed to use a Gaussian Markov random field (GMRF) approximation to the original spatial 
correlation function (Lindgren and Rue, 2011). Boundary regions were problematic while dealing with 
the precision matrix instead of the covariance matrix, because the conditional relationship for the 
boundary points is different than for interior points. We examined a strategy of constructing the 
precision matrix by using the original covariance for the boundary points and embedding the interior 
points using the conditional relationship. This method is still computationally intensive, and the 
embedding showed a consist bias in estimating the parameters in our toy examples. For example, 
Figure 1 shows a comparison between the original Matérn model and the GMRF approximation while 
estimating the consistently estimable parameter 𝜎2/𝜌2𝜈 in the Matérn model. We published this 
simulation study in Lee and Kaufman (2011).  
 
We also examined the effectiveness of our hierarchical model on a global climate model (the Japanese 
Model MIROC3.2 at medium resolution under the pre-industrial experiment scenario). This dataset has 
8200 spatial locations over the globe over 40 years. The spatial locations are on a regular 
latitude/longitude grid and thus are suitable for the GMRF approximation method. To address the 
highly correlated posterior samples, we originally proposed to use slice sampling. However, slice 
sampling in multiple dimensions is more complicated to code and harder to tune than the adaptive 
metropolis Hastings algorithm.  It may also suffer from high autocorrelation (Agarwal and Gelfand 
2005). Therefore, we implemented the adaptive metropolis Hastings algorithm (Shaby and Wells 
2010), which requires little tuning, is less prone to coding errors, and returns less autocorrelated 
parameters than the naive Gibbs sampler. Finally, we proposed a flexible nonstationary prior based on 
topography, but few papers have shown the benefits of introducing such complexity into the model. In 
particular, Reich et al. (2011) showed little gain in prediction accuracy from introducing a flexible 
covariance model that depends on covariates. Note this is different from introducing covariates into the 
mean, such as we have done with the geostrophic component. 
  



6 

 

 
 

Figure 2: Estimates for 𝝈𝟐/𝝆𝟐𝝂 with effective range of 10 on a 20x20 unit grid and with true values 
𝝂 = 𝟏 and 𝝈𝟐 = 𝟐. The solid square represents the true parameter value, the solid circles represent 
the results from embedding, and the hollow triangles represent the result from simply ignoring the 

boundary issue on a small grid with a relatively large effective range. 

 
3.  Separating spatial scales with model-based EOFs 
Mismatch between model output and observations, or between competing models, is often the result of 
multiple processes or features. These error fields typically are analyzed using empirical orthogonal 
functions (EOFs), which partition the fields into orthogonal components that maximally account for 
variance. It may be the case that components of the error fields vary at characteristic time scales. By 
taking advantage of these different characteristic time scales, we can study the constituent sources of 
the error. Unfortunately, there is no way to direct EOF computations to consider different periods of 
variation. In contrast, we use hierarchical Bayesian models to explicitly separate error fields that occur 
at different time scales.  
 
The main building block for our models is the observation of Tipping and Bishop (1999) that EOF 
construction is equivalent to maximizing a particular probability model with respect to the data. EOF 
computations decompose errors into p spatial fields, which we denote as m1,…,mp, each scaled by p 
time series, which we denote as z1,…,zp. The standard probability model corresponding to EOFs 
assumes that each spatial field mi is independent across locations and that each time series zi is 
independent through time. Our Bayesian method works by assigning a prior distribution to each mi that 
encourages nearby locations to behave similarly, and a prior distribution on each zi to encourage 
temporal structures that exhibit characteristic frequencies. These prior distributions are modeled as 
Gaussian processes with prescribed covariance structures. For example, Figure 2 shows covariance 
functions that induce time series with periods of five (left) and twenty (right) years. Figure 3 shows the 
results of applying this model to simulated data. The left panel shows the true constituent error fields 
(a), the estimated error fields from the Bayesian model (b), and the estimated error fields from standard 
EOF analysis. The right panel shows the true error time series (black line) with time time scales of five 
and twenty years, the estimated time series from the Bayesian model (red), and the estimated time 
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series from standard EOF analysis (green). This simulation shows that when the error arises from 
spatial processes with different characteristic time scales, the Bayesian model successfully partitions 
the error, while traditional EOFs falter. 

 
Figure 3:  Covariance functions that induce periodicity of five (left) and twenty (right) years 

 in EOF time series. 
 
In our future work, we plan to extend the model to canonical correlation analysis (CCA), which is 
similar in spirit to EOF analysis but tries to maximize correlations across datasets, rather than 
variability within a single dataset. The advantage of a probabilistic CCA to this project is that it will 
allow us to characterize components of explained variability within a data assimilation framework. 
Specifically, by using datasets consisting of 1) ensemble analyses and 2) differences between ensemble 
analyses at the next time step and the corresponding forecasts, we can describe the spatial components 
of the analysis that are maximally correlated with subsequent structural model errors. This will allow a 
better understanding of the sources of these errors. 
 

 
Figure 4:  Results of Bayesian computations. The left-hand panel shows true (a) and estimated (b 

and c) spatial fields. The Bayesian estimates (b) correspond closely to the true fields, while the EOF 
fields (c) do not separate the components as clearly. The right-hand panel shows the true and 

estimated error component time series. The Bayesian model (red) tracks the true time series (black) 
well, while the EOF time series (green) is not able to separate signals from different temporal scales. 
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IMPACT/APPLICATIONS 
 
The bulk of DoN day-to-day operations rely on accurate predictions of winds, seas, ceiling, and 
visibility.  The focus of the proposed work is to identify inadequacies associated with the modeled 
atmospheric boundary layer.  Any discoveries that enable the improvement of boundary layer 
modeling will ultimately have a positive impact on Navy warfighters. 
 
The proposed methods have the potential to enable essential improvement in modeling capability.  
Instead of tuning models based on intuition, we are forming a foundation for objective identification of 
model errors.  Those errors could immediately be accounted for in probablistic forecast systems, and 
also be subject to physical interpretation by subject experts. 
 
RELATED PROJECTS 
 
The MATERHORN project (http://www.nd.edu/~dynamics/materhorn/index.html ), funded by ONR, 
seeks to improve atmospheric predictability over complex terrain.  It is similarly focused on 
predictions in the atmospheric boundary layer.  Rather than a focus on model inadequacy, 
MATERHORN focuses on field programs aimed at improving models via direct comparison to 
observations, and quantifying optimal observing strategies for improving predictions.  PI Hacker is 
using some of the technical developments here to aid that effort, and vice versa. 
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