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LONG-TERM GOALS 
 
The long-term goal of this research is to construct a unified global and mesoscale nonhydrostatic 
numerical weather prediction (NWP) models for the U.S. Navy using new numerical methods 
specifically designed for modern computer architectures; this unified model is called the Non-
hydrostatic Unified Model of the Atmosphere or NUMA.  To take full advantage of distributed-
memory computers, the global domains of these new models are partitioned into local sub-domains, or 
elements, that can then be solved independently on multiple processors.  The numerical methods used 
on these sub-domains are local, high-order accurate, fully conservative, highly efficient, and 
geometrically flexible. Using these ideas we are developing global and mesoscale nonhydrostatic 
atmospheric models that will improve on the operational models currently used by all U.S. agencies 
including the U.S. Navy.  
 
OBJECTIVES 
 
The objective of this project is to construct new high-order local methods for the Navy’s next-
generation global and mesoscale nonhydrostatic NWP models.  The high-order accuracy of these 
methods will improve the accuracy of the dynamics for the current global spherical harmonics model 
(NOGAPS) and the finite difference local-area model (COAMPS).  It is conjectured that improving the 
accuracy of the dynamics (including tracers) will increase the overall accuracy of the forecast; however, 
such improvements will also have to be made to both the physics and the data assimilation system but 
these two topics are currently beyond the scope of this project. The objective of this project is to 
improve the accuracy of the dynamics while increasing the geometric flexibility in order to use any grid 
as well as to increase the efficiency of these models on large processor-count distributed-memory 
computers.  Higher efficiency means that the new models will require less computing time that then 
allows for increasing the number of ensemble members and/or increasing the resolution of the NWP 
models. The methods that we propose to use for these models are state-of-the-art and are not being 
used by either current or newly emerging NWP models. 
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APPROACH 
 
To meet our objectives we explore: 
 

1. Unified high-order continuous Galerkin (CG) and discontinuous Galerkin (DG) spatial 
discretization methods;  

2. Unified high-order implicit-explicit (IMEX) time-integrators with adaptive time-stepping for 
vastly improved efficiency; 

3. unified global and mesoscale models based on the nonhydrostatic equations;  

4. fully unstructured and adaptive grids; and 

5. scalable parallel implementation of NUMA. 

 
The power of CG and DG methods is that they are high-order accurate yet are completely local in 
nature – meaning that the equations are solved independently within each individual element and, on 
parallel computers, may reside on separate processors. Furthermore, high-order methods have minimal 
dispersion error – this is an important property for capturing fine-scale atmospheric phenomena (e.g., 
tropical cyclones, Kelvin and Rossby waves).  The theoretical development of CG and DG methods are 
now well established and these methods are currently the two most successful methods found in the 
literature for fluid flow problems. 
 
Semi-implicit (SI) and fully-implicit (FI) time-integrators offer vast improvements in efficiency due to 
the longer time steps that they permit; semi-implicit methods can be classified under the heading of 
implicit-explicit (IMEX) methods that has garnered much attention in the computational mathematics 
literature. Furthermore, in order to reap the full benefits of the high-order spatial discretization methods 
requires increasing the order of accuracy of the time-integration methods as well; this is a topic that too 
often has been ignored by most scientific computing communities, including the NWP community, but 
has been at the forefront of research efforts in this project. 
 
Before committing resources towards the development of new NWP models, it is important to identify 
the form of the governing equations that is most capable of conserving all quantities deemed important. 
We have been performing studies on this topic for the past few years – that is, to identify the form of 
the governing equations capable of representing conservation of either mass, energy, or both. In 
addition, we have analyzed various forms of the governing equations with respect to robustness, 
flexibility, and efficiency in the context of implicit-explicit (IMEX) time-integration methods. Two of 
the papers developed within this project are slowly becoming the standard papers for identifying the 
proper equation sets and test cases for nonhydrostatic atmospheric modeling (Giraldo-Restelli JCP 
2008 and Giraldo et al. SISC 2010). 
 
One final area that needs to be explored is the concept of adaptive grids. In the past few years, adaptive 
grids have gained considerable momentum in the atmospheric modeling community – I am currently 
participating in a four month program on this topic at the Newton Institute in Cambridge University, 
England. 
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WORK COMPLETED 
 
In this section, we describe the work completed this fiscal year. The work can be categorized into four 
sections: unified global/mesoscale governing equations, unified IMEX time-integration methods, 
unified spatial discretization methods, and parallel implementation. 
 
Unified Global/Mesoscale Equations. In FY 2010, we developed a fully parallel 3D nonhydrostatic 
model for limited-area (mesoscale) applications using the CG method. This model has been verified 
using standard mesoscale tests such as inertia-gravity waves, rising thermal bubbles, and isolated three-
dimensional mountains. However, in order to construct a truly unified model requires that the 
equations also be able to handle global dynamics. To do this, let us introduce the following governing 
equations (that we refer to as Set 2NC in the nomenclature of Ref. [1])  
 

 

 
where the main (new) strategy introduced here is that of using a radial vector  that denotes the 
direction in which gravity acts. For example, for mesoscale flow (flow in a box) becomes k, the unit 
vector along the z-coordinate direction. On the sphere, becomes the radial unit vector. This then 
requires that the hydrostatic balance be defined as follows: 
 

 
 
The second critical step in constructing a unified global/mesoscale model requires deriving a general 
form for the reference fields that satisfy the required background conditions. For example, the equation 
above imposes the constraint on hydrostatic balance. That is, the prognostic variables are split into the 
following reference fields and perturbations from this reference field as follows: 

 

 

 
where the reference field satisfies the hydrostatic balance. Now, if we wish to impose additional 
constraints on the reference fields (e.g., geostrophic balance) then we must retain some terms that are 
usually omitted in the equations. We arrive at the following set of general equations: 
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where H is a projector that nullifies the component of the gradient operator in the direction of the radial 
component .  This then leaves the remainder of the gradient operator components untouched in order 
to satisfy geostrophic balance. To our knowledge, this form of the governing equations have not been 
derived before nor have the equations been solved in this fashion. We developed this idea at the end of 
2011 and were able to show preliminary results for a balanced initial state and baroclinic instability 
problem using a reference field that is both hydrostatically and geostrophically balanced. In addition, in 
2011 we showed preliminary results for global applications such as the acoustic wave propagation and 
inertia-gravity wave problems. This year, we analyzed the results of this approach quantitatively and 
the results are illustrated in the Results section. 
 
Unified IMEX Time-Integrators.  Directly connected with our choice of equation sets is the resulting 
Implicit-Explicit (i.e., semi-implicit) operators. In studies performed in 2010-2011, we compared 
IMEX time-integrators both in their Schur (i.e., pseudo-Helmholtz) and No Schur (i.e., full system) 
forms and compared them to the types of explicit time-integrators currently being used in explicit 
models. Our results show that if the Schur form is used, then the IMEX methods are always faster than 
explicit models. Furthermore, we have analyzed the types of problems that are amenable to an IMEX 
approach in all directions (which we call 3D-IMEX) versus IMEX approaches only in the vertical 
(which is known as HEVI, Horizontal Explicit – Vertically Implicit, or 1D-IMEX). This study is 
contained in a manuscript that has been submitted to the SIAM Journal of Scientific Computing (see 
Ref. [2]). 
 
One of the main results of that paper is that we have been able to extract the radial direction of our 
model in a general way in order to build the 1D-IMEX methods. This general 1D-IMEX is the clear 
winner for most global modeling problems that we have considered due to the disparate horizontal 
versus vertical scales typically used in global modeling (e.g., the horizontal resolution is typically 
around 50km whereas the vertical resolution is 1km). An additional advantage of 1D-IMEX is that it 
scales as perfectly as a fully explicit method if the domain decomposition is done across the horizontal 
direction (which is explicit) while the points along the vertical column are on processor and so the 
IMEX method incurs no MPI communication per solve. 
 
Unified Spatial Discretization Methods.  We have been arguing in the course of this project that the 
best next-generation models will be those based on element-based Galerkin (EBG) methods such as the 
spectral element (SE/CG) and discontinuous Galerkin (DG) methods. However, we have only partly 
showed the benefits of this approach such as: high parallel efficiency and high-order accuracy. Last 
year, we began studying adaptivity on triangular grids (see Ref. [3]). This year, we began a study of 
adaptive non-conforming quadrilateral grids. One of the attractions of NUMA is that it uses either CG 
or DG methods. In other words, the CG and DG spatial discretizations have been written in a unified 
way which allows the model to use either method. Currently, only the DG-NUMA is able to use non-
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conforming adaptive mesh refinement (AMR); we are currently working on extending AMR to CG- 
NUMA. 
 
Parallel Implementation. In 2010, we were able to extend the 2D serial CG models that we developed 
for the compressible Navier-Stokes equations to 3D parallel. This year we extended the DG models to 
3D and MPI so that we now have two 3D MPI models. We have begun to compare and contrast the 
models in terms of accuracy and efficiency and this study is documented in Ref. [4] and is still 
underway. 
 
RESULTS 
 
The main results for this year can be divided into the following sections: 1) Study of the IMEX Time-
Integrators; 2) a rigorous Analysis of the Parallel Scalability of both the CG and DG models; and 3) 
positivity preserving algorithms for CG-NUMA and dispersion analysis of the CG method. 
 
Unified IMEX Time-Integrators. In Ref. [1] we were able to derive all Implicit-Explicit methods to be 
written in the exact same way using the usual semi-implicit formulation used by all operational 
centers. The advantage of this is that any IMEX method (multistep, multistage, etc.) can be 
incorporated easily into an existing model using our approach. NUMA currently contains the 
following time-integrators: explicit Runge-Kutta, Adams-Bashforth, Backward Difference Formulas, 
and Leapfrog and also implicit-explicit Runge-Kutta, Adams-Moulton, Backward Difference 
Formulas, and Leapfrog. All these methods are defined in a similar manner that the standard Leapfrog-
Trapezoidal rule is defined. This allows NUMA to add new time-integrators quite easily.  In Ref. [1] 
we compared all of these time-integrators and have found the IMEX Runge-Kutta methods to be the 
clear winners in terms of accuracy versus cost.  
 

 
 

a) Accuracy versus Courant Number          b) Accuracy versus Wallclock Time 
 

Figure 1: The a) accuracy and b) efficiency of NUMA using various time-integrators for a global 
atmospheric problem (propagation of an acoustic wave). 

 
Figure 1 shows that the Runge-Kutta methods (ARK) yield high-order rates of convergence (left panel) 
while delivering these quality solutions very efficiently (right panel). For orders of accuracy below 
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10^-1 the 3rd and 4th order RK methods are the clear winners. Another interesting topic that is rarely 
mentioned is the effect of the time-integrator on the conservation metrics of a model.  
 

 
 

a) Mass Conservation                                   b) Energy Conservation 
 

Figure 2: Conservation of a) mass and b) energy for NUMA using various time-integrators for a 
global atmospheric problem (propagation of an acoustic wave). 

 
For example, the EBG methods used in NUMA should allow the model to conserve mass but not 
energy (energy is only conserved up to time-truncation error). Figure 2 shows that all of the Runge-
Kutta methods conserve mass (left panel) while the BDF and Adams methods do not. Admittedly we 
are talking about errors on the order of machine zero but is still worth noting. The right panel shows 
the energy loss of the model where the Runge-Kutta methods yield far smaller errors in energy.  
 
Since the equation sets used in NUMA can only conserve energy to time-truncation error then it makes 
sense to use high-order time-integrators especially for very long time-integrations. In addition, we have 
not discussed preconditioners and iterative solvers but these are discussed in detail in Ref. [2] where 
we derive a new class of preconditioners specifically designed for our IMEX methods. 
 
Parallel Scalability. Building on previous scalability studies using smaller clusters located at NPS, we 
have deployed NUMA on several TeraGrid machines, include Kraken at NICS and Ranger at TACC.  
Optimized explicit versions of both CG-NUMA and DG-NUMA were deployed on Kraken, and a 
scalability study was run using processor counts ranging from 32 to 32,000 cores. Figure 3 displays the 
scalability of CG and DG models.  A 32 x 32 x32 rising thermal bubble problem with 4th and 8th order 
polynomials resulting in 200,000 and 1.7 million grid points, respectively.  
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a) 4th Order Polynomials                           b) 8th Order Polynomials 
 

Figure 3: Scalability of CG-NUMA and DG-NUMA on TACC-Ranger using a 32 x 32 x32 rising 
thermal bubble problem (8th order) and 1.7 million grid points. Results are a) using 4th order 

polynomials and b) using 8th order polynomials. 
 
The results in Fig. 3 show that at 4th order polynomials (left panel) both models shows strong scaling 
up to 8,000 cores; at this point, there are only 4 elements per processor. On the right panel we show 
the results using 8th order polynomials which shows that both models scale strongly up to 16,000 
processors with the DG model continuing to scale strongly up to 32,000 cores; at this number of 
processors, there is only one element per processor. Note that we expect a similar behavior for the CG 
method but ran out of HPC time to complete this run.  The results shown in these figures show a very 
important conclusion, that is, that in order to achieve strong scaling one must be able to do more work 
on the processor than is communicated. This can only be achieved for high-order methods and we 
have rigorously analyzed this in the Journal of Computational Physics paper in Ref. [3]. The analysis 
that we show is essentially a geometric argument whereby one can compute the computational volume 
and compare this amount of on-processor work to the surface area of the communication stencil; we 
show that this ratio has to be of a certain size in order to see the benefits of strong scaling. It should be 
noted that strong scaling is rarely achieved – most models only show weak scaling where the cost of 
running a model remains flat as both the problem size and number of processors are increased at the 
same rate. Strong scaling means that for a fixed problem size one will see perfect (linear) scaling as 
the number of processors are increased. The results in Fig. 3 show strong scaling for NUMA. 
 
Positivity Preserving and Dispersion of CG. In Ref. [4] we included moist processes to NUMA and 
showed that NUMA, although a high-order model, is more efficient than a 2nd order finite difference 
model (such as COAMPS) when one considers not only the wallclock time but also the quality of the 
solution obtained. However, in order to handle moist processes, we required applying severe cut-off 
filter whereby any negatives are completely clipped. This will not conserve moisture in the atmosphere 
and so other strategies were explored.  
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Figure 4: Transport of a discontinuous tracer using a) filtered solutions, b) artificial viscosity, c) 
variational multi-scale method, and d) variational multiscale method with shock capturing. 

 
To this end, in Ref. [5] we explored various diffusivity strategies including classical CG filters, 
artificial viscosity, and a relatively new approach known as the Variational Multi-scale (VMS) method. 
In Fig. 4 we show the results after a long time for a discontinuous tracer embedded in the fully 
compressible equations for a rising thermal bubble problem. The results show that neither filtering nor 
artificial viscosity will help maintain positivity of a fully discontinuous tracer. On the other hand, VMS 
goes a long way in doing this and with the addition of shock capturing it can indeed keep the solution 
positive.  We are currently exploring this approach for a moist physics problem in the next few months. 
 
In order to understand why CG and DG methods capture wave phenomena so well, we decided to 
perform some dispersion analyses of these methods. This year we began with CG methods. We begin 
with studying the dispersion relations for CG for the 1D wave equation. In Fig. 5 we plot the dispersion 
relations for an 8th order polynomial (red dots) comparing with the analytic dispersion relation (blue 
line). We can see that at high-frequencies (far right of the plots) there is a gap in the dispersion 
spectrum which means that large dispersion errors are committed.  On the right panel we perform the 
same analysis but adding a little dissipation (any of the methods from Fig. 4) and show that the 
dispersion behavior of CG looks like what one would expect from an accurate high-order method. 
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a) No Dissipation                                              b) With Dissipation 

 
Figure 5: Dispersion analysis of the CG method: a) with no dissipation and b) with dissipation. The 

results shown are for an 8th order polynomial CG method. 
 
Although the left and right panels in Fig. 5 look different, the overall result is the same, that is, that CG 
is extremely accurate (with no dispersion errors) for waves from the low-frequency (long waves) to the 
mid-frequency waves. It is only the waves in the far right (high-frequency waves) that look a bit 
different between the two plots. However, these waves are completely unresolved in any model and 
therefore insignificant. To see how the unfiltered and filtered solutions behave, we now show the time-
series results for the 1D wave equation. 
 

 
a) No Dissipation                                              b) With Dissipation 

 
Figure 6: Dispersion analysis of the CG method: a) with no dissipation and b) with dissipation. The 

results shown are for an 8th order polynomial CG method for the 1D wave equation. 
 
Figure 6 shows the time-behavior of a right-moving wave. The left panel shows the results for an 8th 
order polynomial with no dissipation whereas the right panel has the same result using one of the 
dissipation mechanisms shown in Fig. 4.  Clearly, CG with dissipation yields an ideal result. One may 
argue that methods should be perfect with no dissipation but in reality no models are ever used without 
any dissipation mechanisms. In fact, they are essential to the proper cascading of energy from the large 
to the small scales. 
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IMPACT/APPLICATIONS 
 
NOGAPS and COAMPS are run operationally by FNMOC and is the heart of the Navy’s operational 
support to nearly all DOD users worldwide.  This work targets the next-generation of these systems for 
massively parallel computer architectures. NUMA has been designed specifically for these types of 
computer architectures while offering more flexibility, robustness, and accuracy than the current 
operational systems. Additionally, the new models are expected to conserve many important quantities 
such as mass and use state-of-the-art time-integration methods that will greatly improve the capabilities 
of the Navy’s forecast systems.  
 
TRANSITIONS 
 
Improved algorithms for model processes will be transitioned to 6.4 as they are ready, and will 
ultimately be transitioned to FNMOC.  
 
RELATED PROJECTS 
   
Some of the technology developed for this project could be used to improve NOGAPS in other NRL 
projects. The work on the mesoscale models will help improve COAMPS. An example is the time-
integration methods that we are exploring for the new models may well be incorporated into the current 
operational version of COAMPS. In a separate Department of Energy (DoE) project, the Mathematics 
and Computational Science group at Argonne National Laboratory is working on interfacing NUMA 
with their highly scalable software PETSc (Portable Extensive Toolkit for Scientific Computing). This 
union will vastly increase the capability of NUMA through the access to the large suite of time-
integrators, preconditioners, and solvers contained in PETSc. Furthermore, having NUMA being 
scrutinized by software and parallel computing scientists will allow us to improve NUMA. 
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